Go to:
Logótipo
Você está em: Start > Publications > View > Computability on reals, infinite limits and differential equations
Map of Premises
Principal
Publication

Computability on reals, infinite limits and differential equations

Title
Computability on reals, infinite limits and differential equations
Type
Article in International Scientific Journal
Year
2007
Authors
Loff, B
(Author)
Other
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Costa, JF
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. View Authenticus page Without ORCID
Mycka, J
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Journal
Vol. 191
Pages: 353-371
ISSN: 0096-3003
Publisher: Elsevier
Other information
Authenticus ID: P-004-86C
Abstract (EN): We study a countable class of real-valued functions inductively defined from a basic set of trivial functions by composition, solving first-order differential equations and the taking of infinite limits. This class is the analytical counterpart of Kleene's partial recursive functions. By counting the number of nested limits required to de. ne a function, this class can be stratified by a potentially infinite hierarchy-a hierarchy of infinite limits. In the first meaningful level of the hierarchy, we have the extensions of classical primitive recursive functions. In the next level, we find partial recursive functions, and in the following level we find the solution to the halting problem. We use methods from numerical analysis to show that the hierarchy does not collapse, concluding that the taking of infinite limits can always produce new functions from functions in the previous levels of the hierarchy.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 19
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same authors

A foundation for real recursive function theory (2009)
Article in International Scientific Journal
Costa, JF; Loff, B; Mycka, J
The new promise of analog computation (2007)
Article in International Conference Proceedings Book
Costa, JF; Loff, B; Mycka, J
Differential equations, infinite limits and real recursive functions (2008)
Article in International Conference Proceedings Book
Costa, JF; Loff, B; Mycka, J

Of the same journal

Singular matrices whose Moore-Penrose inverse is tridiagonal (2023)
Article in International Scientific Journal
Bueno, MI; Susana Borges Furtado
Remarks on anti-tridiagonal matrices (2020)
Article in International Scientific Journal
Bebiano, N; Susana Borges Furtado
Modelling and simulation of pear drying (2007)
Article in International Scientific Journal
Guine, RPF; Alírio Rodrigues; Figueiredo, MM
Leader-follower non-fragile consensus of delayed fractional-order nonlinear multi-agent systems (2022)
Article in International Scientific Journal
Chen, LP; Li, XM; Chen, YQ; Wu, RC; António Mendes Lopes; Ge, SL
Efficiency analysis for the Perron vector of a reciprocal matrix (2024)
Article in International Scientific Journal
Susana Borges Furtado; Johnson, CR

See all (8)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Medicina Dentária da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-07-24 at 19:20:09 | Privacy Policy | Personal Data Protection Policy | Whistleblowing | Electronic Yellow Book