Go to:
Logótipo
Você está em: Start > Publications > View > Duality for partial group actions
Map of Premises
Principal
Publication

Duality for partial group actions

Title
Duality for partial group actions
Type
Article in International Scientific Journal
Year
2008
Authors
Christian Lomp
(Author)
FCUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Journal
Vol. 4 No. 1
Pages: 53-62
Scientific classification
FOS: Natural sciences > Mathematics
CORDIS: Physical sciences > Mathematics > Algebra
Other information
Resumo (PT): Given a finite group G acting as automorphisms on a ring A, the skew group ring A*G is an important tool for studying the structure of G-stable ideals of A. The ring A*G is G-graded, i.e. G coacts on A*G. The Cohen-Montgomery duality says that the smash product A*G#k[G]^* of A*G with the dual group ring k[G]^* is isomorphic to the full matrix ring M_n(A) over A, where n is the order of G. In this note we show how much of the Cohen-Montgomery duality carries over to partial group actions alpha in the sense of R.Exel. In particular we show that the smash product (A *_alpha G)#k[G]^* of the partial skew group ring A*_alpha G and k[G]^* is isomorphic to a direct product of the form K x eM_n(A)e where e is a certain idempotent of M_n(A) and K is a subalgebra of (A *_alpha G)#k[G]^*. Moreover A*_alpha G is shown to be isomorphic to a separable subalgebra of eM_n(A)e. We also look at duality for infinite partial group actions.
Abstract (EN): Given a finite group G acting as automorphisms on a ring A, the skew group ring A*G is an important tool for studying the structure of G-stable ideals of A. The ring A*G is G-graded, i.e. G coacts on A*G. The Cohen-Montgomery duality says that the smash product A*G#k[G]^* of A*G with the dual group ring k[G]^* is isomorphic to the full matrix ring M_n(A) over A, where n is the order of G. In this note we show how much of the Cohen-Montgomery duality carries over to partial group actions alpha in the sense of R.Exel. In particular we show that the smash product (A *_alpha G)#k[G]^* of the partial skew group ring A*_alpha G and k[G]^* is isomorphic to a direct product of the form K x eM_n(A)e where e is a certain idempotent of M_n(A) and K is a subalgebra of (A *_alpha G)#k[G]^*. Moreover A*_alpha G is shown to be isomorphic to a separable subalgebra of eM_n(A)e. We also look at duality for infinite partial group actions.
Language: English
Type (Professor's evaluation): Scientific
License type: Click to view license CC BY-NC
Documents
File name Description Size
4-V4-2008 Published paper 200.10 KB
Recommend this page Top
Copyright 1996-2025 © Faculdade de Medicina Dentária da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-07-14 at 18:10:09 | Privacy Policy | Personal Data Protection Policy | Whistleblowing | Electronic Yellow Book