Go to:
Logótipo
Você está em: Start > Publications > View > A Comparative Analysis for 2D Object Recognition: A Case Study with Tactode Puzzle-Like Tiles
Map of Premises
Principal
Publication

A Comparative Analysis for 2D Object Recognition: A Case Study with Tactode Puzzle-Like Tiles

Title
A Comparative Analysis for 2D Object Recognition: A Case Study with Tactode Puzzle-Like Tiles
Type
Article in International Scientific Journal
Year
2021
Authors
Daniel Silva
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. View Authenticus page Without ORCID
Armando Jorge Sousa
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Valter Costa
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. View Authenticus page Without ORCID
Journal
Title: Journal of ImagingImported from Authenticus Search for Journal Publications
Vol. 7 No. 1
Pages: 1-65
Publisher: MDPI
Other information
Authenticus ID: P-00T-PT1
Resumo (PT):
Abstract (EN): Object recognition represents the ability of a system to identify objects, humans or animals in images. Within this domain, this work presents a comparative analysis among different classification methods aiming at Tactode tile recognition. The covered methods include: (i) machine learning with HOG and SVM; (ii) deep learning with CNNs such as VGG16, VGG19, ResNet152, MobileNetV2, SSD and YOLOv4; (iii) matching of handcrafted features with SIFT, SURF, BRISK and ORB; and (iv) template matching. A dataset was created to train learning-based methods (i and ii), and with respect to the other methods (iii and iv), a template dataset was used. To evaluate the performance of the recognition methods, two test datasets were built: tactode_small and tactode_big, which consisted of 288 and 12,000 images, holding 2784 and 96,000 regions of interest for classification, respectively. SSD and YOLOv4 were the worst methods for their domain, whereas ResNet152 and MobileNetV2 showed that they were strong recognition methods. SURF, ORB and BRISK demonstrated great recognition performance, while SIFT was the worst of this type of method. The methods based on template matching attained reasonable recognition results, falling behind most other methods. The top three methods of this study were: VGG16 with an accuracy of 99.96% and 99.95% for tactode_small and tactode_big, respectively; VGG19 with an accuracy of 99.96% and 99.68% for the same datasets; and HOG and SVM, which reached an accuracy of 99.93% for tactode_small and 99.86% for tactode_big, while at the same time presenting average execution times of 0.323 s and 0.232 s on the respective datasets, being the fastest method overall. This work demonstrated that VGG16 was the best choice for this case study, since it minimised the misclassifications for both test datasets.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 20
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

Skin Cancer Image Classification Using Artificial Intelligence Strategies: A Systematic Review (2024)
Another Publication in an International Scientific Journal
Vardasca, R; Joaquim Mendes; Magalhaes, C
Visible and Thermal Image-Based Trunk Detection with Deep Learning for Forestry Mobile Robotics (2021)
Article in International Scientific Journal
da Silva, DQ; Filipe Neves Santos; Armando Jorge Sousa; Filipe, V
Synthesizing Human Activity for Data Generation (2023)
Article in International Scientific Journal
Romero, A; Pedro Carvalho; Luís Corte-Real; Pereira, A
Preventing Wine Counterfeiting by Individual Cork Stopper Recognition Using Image Processing Technologies (2018)
Article in International Scientific Journal
Valter Costa; Armando Sousa; Ana Reis
Photo2Video: Semantic-Aware Deep Learning-Based Video Generation from Still Content (2022)
Article in International Scientific Journal
Viana, P; Maria Teresa Andrade; Pedro Carvalho; Vilaca, L; Teixeira, IN; Costa, T; Jonker, P

See all (12)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Medicina Dentária da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-08-23 at 13:39:58 | Privacy Policy | Personal Data Protection Policy | Whistleblowing | Electronic Yellow Book