Abstract (EN):
Although the quantum theory of the optical response of individual atoms to coherent light with frequencies close to electronic transitions and the fluid equations for a gas are well known and understood from first principles, they are developed independently of each other and therefore cannot be applied directly to describe many of the quantum collective and transport phenomena that occur in cold atomic gases, especially in what regards their interaction with optical pulses and beams. Few attempts have been made to derive a consistent formalism and theory that are capable to model this type of systems, and those which exist rely on the adaptation of several ad-hoc hypothesis and simplifications, such as space and time dependent density operators. In this paper we provide the theoretical foundations and establish a formalism capable of paving the way for the development of new simulation tools and to explore new problems in nonlinear optics out of equilibrium.
Language:
English
Type (Professor's evaluation):
Scientific
No. of pages:
6