Go to:
Logótipo
Você está em: Start > Publications > View > Fracture analysis in directed energy deposition (DED) manufactured 316L stainless steel using a phase-field approach
Map of Premises
Principal
Publication

Fracture analysis in directed energy deposition (DED) manufactured 316L stainless steel using a phase-field approach

Title
Fracture analysis in directed energy deposition (DED) manufactured 316L stainless steel using a phase-field approach
Type
Article in International Scientific Journal
Year
2020
Authors
Azinpour, E
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Darabi, R
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
José César de Sá
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Santos, A
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Hodek, J
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Dzugan, J
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Journal
Vol. 177
ISSN: 0168-874X
Publisher: Elsevier
Indexing
Other information
Authenticus ID: P-00S-9FB
Abstract (EN): Experimental and numerical study regarding fracture in laser-processed steel components is addressed in the present work. Samples of stainless steel (SS) 316L were obtained by an additive manufacturing process, the directed energy deposition (DED), using different deposition orientations, and tested experimentally until fracture. Microstructural investigations, prior and after fracture, were performed by observing micro-cavities and porosities and fractographic images of the fracture surfaces. A numerical approach based on the phase-field diffusive model was utilised in a micromechanical pressure-dependent plasticity context using Rousselier damage criterion and implemented within the finite element framework. The ability to predict the material failure induced by the porosity evolution through the micro-void growth mechanism is considered as a key feature of the proposed material model. The performance of the numerical model is assessed via material deformation analysis, including initiation and propagation of cracks, which are found to be in good agreement with the experimental and fractographic observations from the fabricated tensile test samples.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 12
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

3D modelling of heat transfer and moisture transport in young HPC structures with hybrid finite elements (2017)
Article in International Scientific Journal
Cuong, PT; Teixeira de Freitas, JAT; Rui Faria
Vibration analysis of rotating 3D beams by the p-version finite element method (2013)
Article in International Scientific Journal
S. Stoykov; P. Ribeiro
Simulating 3D printing on hydrogel inks: A finite element framework for predicting mechanical properties and scaffold deformation (2024)
Article in International Scientific Journal
Pouca, MCPV; Cerqueira, MRG; Ferreira, JPS; Darabi, R; Ramiao, NAG; Sobreiro-Almeida, R; Castro, APG; Fernandes, PR; Mano, JF; Renato Natal Jorge; Parente, MPL
Sheet metal forming simulation using EAS solid-shell finite elements (2006)
Article in International Scientific Journal
parente, mpl; valente, raf; jorge, rmn; cardoso, rpr; de sousa, rja
Sensitivity analysis based crack propagation criterion for compressible and (near) incompressible hyperelastic materials (2014)
Article in International Scientific Journal
Primo¸ ¦u¨tarič; Mariana R. R.Seabra; Jose M.A. Cesar de Sa; Toma¸ Rodič

See all (20)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Medicina Dentária da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-08-28 at 12:46:41 | Privacy Policy | Personal Data Protection Policy | Whistleblowing | Electronic Yellow Book