Go to:
Logótipo
Você está em: Start > Publications > View > Progressive delamination analysis through two-way global-local coupling approach preserving energy dissipation for single-mode and mixed-mode loading
Map of Premises
Principal
Publication

Progressive delamination analysis through two-way global-local coupling approach preserving energy dissipation for single-mode and mixed-mode loading

Title
Progressive delamination analysis through two-way global-local coupling approach preserving energy dissipation for single-mode and mixed-mode loading
Type
Article in International Scientific Journal
Year
2019
Authors
Akterskaia, M
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Camanho, PP
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Jansen, E
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Rolfes, R
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Journal
Title: Composite StructuresImported from Authenticus Search for Journal Publications
Vol. 223
ISSN: 0263-8223
Publisher: Elsevier
Other information
Authenticus ID: P-00Q-JRG
Abstract (EN): Together with fiber breakage and matrix cracking, delamination is one of the common damage mechanisms occurring in laminated fiber-reinforced composite structures. Delamination initiates due to the relatively low interlaminar strength of adjacent plies. Delamination onset and propagation can be induced by various combinations of loads and usually leads to a significant reduction of the load-carrying capacity of the structure. For this reason, an efficient and reliable progressive failure analysis capability is required. In this work, the delamination process is simulated by means of a two-way global-local coupling approach. In particular, within this novel global-local approach a method is introduced that ensures the preservation of the dissipated energy when switching between the global and local level. This approach is tested and illustrated under single-mode I and II, and mixed-mode loading in the double cantilever beam (DCB), the end-notched flexure (ENF) and the mixed-mode bending (MMB) benchmark tests, respectively, and the results are compared to available analytical solutions. Finally, the developed method has been applied to a one-stringer stiffened panel and a good agreement was attained compared to the solid model reference solution.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 14
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

Smart composites and composite structures In honour of the 70th anniversary of Professor Carlos Alberto Mota Soares (2016)
Another Publication in an International Scientific Journal
Benjeddou, A; Araujo, AL; Carrera, E; Reddy, JN; António Torres Marques; Mota Soares, CMM
Simplified stress analysis of functionally graded single-lap joints subjected to combined thermal and mechanical loads (2018)
Another Publication in an International Scientific Journal
Paroissien, E; da Silva, LFM; Lachaud, F
Reinforcement of CFRP single lap joints using metal laminates (2019)
Another Publication in an International Scientific Journal
Morgado, MA; Ricardo Carbas; Marques, EAS; da Silva, LFM
Multifunctional Material Systems: A state-of-the-art review (2016)
Another Publication in an International Scientific Journal
Ferreira, ADBL; Novoa, PRO; António Torres Marques

See all (197)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Medicina Dentária da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-07-22 at 18:51:55 | Privacy Policy | Personal Data Protection Policy | Whistleblowing | Electronic Yellow Book