Abstract (EN):
Given the plethora of Reinforcement Learning algorithms available in the literature, it can prove challenging to decide on the most appropriate one to use in order to solve a given Reinforcement Learning task. This work presents a benchmark study on the performance of several Reinforcement Learning algorithms for discrete learning environments. The study includes several deep as well as non-deep learning algorithms, with special focus on the Deep Q-Network algorithm and its variants. Neural Fitted Q-Iteration, the predecessor of Deep Q-Network as well as Vanilla Policy Gradient and a planner were also included in this assessment in order to provide a wider range of comparison between different approaches and paradigms. Three learning environments were used in order to carry out the tests, including a 2D maze and two OpenAI Gym environments, namely a custom-built Foraging/Tagging environment and the CartPole environment.
Language:
English
Type (Professor's evaluation):
Scientific
No. of pages:
13