Resumo (PT):
Abstract (EN):
Ordinal arrangement of objects is a common property in biomedical images. Traditional methods to deal with semantic image segmentation in this setting are ad-hoc and application specific. In this paper, we propose ordinal-aware deep learning architectures for image segmentation that enforce pixelwise consistency by construction. We validated the proposed architectures on several real-life biomedical datasets and achieved competitive results in all cases. © 2018 IEEE.
Language:
English
Type (Professor's evaluation):
Scientific
No. of pages:
7