Go to:
Logótipo
Você está em: Start > Publications > View > Arbitrated Ensemble for Time Series Forecasting
Map of Premises
Principal
Publication

Arbitrated Ensemble for Time Series Forecasting

Title
Arbitrated Ensemble for Time Series Forecasting
Type
Article in International Conference Proceedings Book
Year
2017
Authors
Cerqueira, V
(Author)
Other
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Torgo, L
(Author)
FCUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page Without ORCID
Pinto, F
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Carlos Soares
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Conference proceedings International
Pages: 478-494
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD)
Skopje, MACEDONIA, SEP 18-22, 2017
Other information
Authenticus ID: P-00N-BX9
Abstract (EN): This paper proposes an ensemble method for time series forecasting tasks. Combining different forecasting models is a common approach to tackle these problems. State-of-the-art methods track the loss of the available models and adapt their weights accordingly. Metalearning strategies such as stacking are also used in these tasks. We propose a metalearning approach for adaptively combining forecasting models that specializes them across the time series. Our assumption is that different forecasting models have different areas of expertise and a varying relative performance. Moreover, many time series show recurring structures due to factors such as seasonality. Therefore, the ability of a method to deal with changes in relative performance of models as well as recurrent changes in the data distribution can be very useful in dynamic environments. Our approach is based on an ensemble of heterogeneous forecasters, arbitrated by a metalearning model. This strategy is designed to cope with the different dynamics of time series and quickly adapt the ensemble to regime changes. We validate our proposal using time series from several real world domains. Empirical results show the competitiveness of the method in comparison to state-of-the-art approaches for combining forecasters.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 17
Documents
We could not find any documents associated to the publication.
Recommend this page Top
Copyright 1996-2025 © Faculdade de Medicina Dentária da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-07-20 at 14:04:59 | Privacy Policy | Personal Data Protection Policy | Whistleblowing | Electronic Yellow Book