Go to:
Logótipo
Você está em: Start > Publications > View > Ag-loaded ZnO materials for photocatalytic water treatment
Map of Premises
Principal
Publication

Ag-loaded ZnO materials for photocatalytic water treatment

Title
Ag-loaded ZnO materials for photocatalytic water treatment
Type
Article in International Scientific Journal
Year
2017
Authors
Maria Lima
(Author)
Other
Baptista, DL
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Journal
Vol. 318
Pages: 95-102
ISSN: 1385-8947
Publisher: Elsevier
Other information
Authenticus ID: P-00R-CK4
Abstract (EN): ZnO materials with different morphologies were obtained by hydrothermal and solid state techniques. The ZnO materials were loaded with different amounts of silver nanoparticles (atomic percentages ranging from 0.25 to 1) by a liquid impregnation method. The materials were characterized by physical adsorption of nitrogen, scanning and high-resolution transmission electron microscopy (SEM, HRTEM), UV-vis diffuse reflectance spectroscopy (DRUV-Vis), X-ray photoelectron spectroscopy (XPS) and temperature programmed reduction (TPR). The photocatalytic efficiency of the materials was assessed in the degradation of phenol using simulated solar light, by means of the pseudo-first-order kinetic constant (k(app)) for phenol conversion and corresponding degree of mineralization. The photocatalyst made of ZnO prepared by thermal decomposition of zinc acetate (ZnO-t) loaded with a 0.25 atomic percentage of Ag (0.25%Ag/ZnO-t) was the most efficient, reaching a 58% mineralization after 60 min irradiation (k(app)=7.7 x 10(-2) min(-1)). Trapping of photogenerated holes and radicals by selective scavengers showed that photogenerated holes played the main role on phenol oxidation. The study was extended to a complex mixture containing phenol, resorcinol, 4-methoxyphenol and 4-chorophenol using bare ZnO-t and 0.25%Ag/ZnO-t photocatalysts, either in powder form or immobilized on glass rings (packed in a continuous photocatalytic reactor). The conversion of the phenolic compounds was faster when Ag particles were deposited on the photocatalyst.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 8
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

Strategies for the intensification of photocatalytic oxidation processes towards air streams decontamination: A review (2020)
Another Publication in an International Scientific Journal
da Costa Filho, BM; Vitor Vilar
Special issue of the 7th European meeting on solar chemistry and photocatalysis: Environmental applications (SPEA7) (2013)
Another Publication in an International Scientific Journal
Adrián M.T. Silva; Alfano, O.M.; Dionysios, D.D.; Li Puma, G.; Mantzavinos, D.
Performance and prospects of different adsorbents for phosphorus uptake and recovery from water (2020)
Another Publication in an International Scientific Journal
Bacelo, H; Ariana Pintor; Santos, SCR; Boaventura, RAR; Cidália Botelho
Oil and grease removal from wastewaters: Sorption treatment as an alternative to state-of-the-art technologies. A critical review (2016)
Another Publication in an International Scientific Journal
Ariana Pintor; Vitor Vilar; Cidália Botelho; Rui Boaventura
Intensification of photocatalytic processes for niche applications in the area of water, wastewater and air treatment Preface (2017)
Another Publication in an International Scientific Journal
Vitor Vilar; Amorim, CC; Puma, GL; Malato, S; Dionysiou, DD

See all (219)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Medicina Dentária da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-07-19 at 00:47:42 | Privacy Policy | Personal Data Protection Policy | Whistleblowing | Electronic Yellow Book