Go to:
Logótipo
Você está em: Start > Publications > View > Active learning and data manipulation techniques for generating training examples in meta-learning
Map of Premises
Principal
Publication

Active learning and data manipulation techniques for generating training examples in meta-learning

Title
Active learning and data manipulation techniques for generating training examples in meta-learning
Type
Article in International Scientific Journal
Year
2016
Authors
Sousa, AFM
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Prudêncio, RBC
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Ludermir, TB
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Carlos Soares
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Journal
Title: NeurocomputingImported from Authenticus Search for Journal Publications
Vol. 194
Pages: 45-55
ISSN: 0925-2312
Publisher: Elsevier
Other information
Authenticus ID: P-00K-G85
Abstract (EN): Algorithm selection is an important task in different domains of knowledge. Meta-learning treats this task by adopting a supervised learning strategy. Training examples in meta-learning (called meta examples) are generated from experiments performed with a pool of candidate algorithms in a number of problems, usually collected from data repositories or synthetically generated. A meta-learner is then applied to acquire knowledge relating features of the problems and the best algorithms in terms of performance. In this paper, we address an important aspect in meta-learning which is to produce a significant number of relevant meta-examples. Generating a high quality set of meta-examples can be difficult due to the low availability of real datasets in some domains and the high computational cost of labelling the meta-examples. In the current work, we focus on the generation of meta-examples for meta-learning by combining: (1) a promising approach to generate new datasets (called datasetoids) by manipulating existing ones; and (2) active learning methods to select the most relevant datasets previously generated. The datasetoids approach is adopted to augment the number of useful problem instances for meta-example construction. However not all generated problems are equally relevant. Active meta-learning then arises to select only the most informative instances to be labelled. Experiments were performed in different scenarios, algorithms for meta-learning and strategies to select datasets. Our experiments revealed that it is possible to reduce the computational cost of generating meta-examples, while maintaining a good meta-learning performance.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 11
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

The vitality of pattern recognition and image analysis (2015)
Another Publication in an International Scientific Journal
Luisa Mico; Joao M Sanches; Jaime S Cardoso
ydata-profiling: Accelerating data-centric AI with high-quality data (2023)
Article in International Scientific Journal
Clemente, F; Ribeiro, GM; Quemy, A; Santos, MS; Pereira, RC; Barros, A
The vitality of pattern recognition and image analysis (2015)
Article in International Scientific Journal
Micó, L; Sanches, JM; Jaime S Cardoso
Pre-processing approaches for imbalanced distributions in regression (2019)
Article in International Scientific Journal
Branco, P; Torgo, L; Rita Ribeiro
Predicting satisfaction: perceived decision quality by decision-makers in Web-based group decision support systems (2019)
Article in International Scientific Journal
João Carneiro; Pedro Saraiva; Luís Conceição; Ricardo Santos; Goreti Marreiros; Paulo Novais

See all (22)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Medicina Dentária da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-08-10 at 14:41:09 | Privacy Policy | Personal Data Protection Policy | Whistleblowing | Electronic Yellow Book