Lecture Notes in Computer Science

10008

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, Lancaster, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler

University of Surrey, Guildford, UK

Jon M. Kleinberg

Cornell University, Ithaca, NY, USA

Friedemann Mattern

ETH Zurich, Zurich, Switzerland

John C. Mitchell

Stanford University, Stanford, CA, USA

Moni Naor

Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan

Indian Institute of Technology, Madras, India

Bernhard Steffen

TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos

University of California, Los Angeles, CA, USA

Doug Tygar

University of California, Berkeley, CA, USA

Gerhard Weikum

Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7412

Gustavo Carneiro · Diana Mateus Loïc Peter · Andrew Bradley João Manuel R.S. Tavares · Vasileios Belagiannis João Paulo Papa · Jacinto C. Nascimento Marco Loog · Zhi Lu Jaime S. Cardoso · Julien Cornebise (Eds.)

Deep Learning and Data Labeling for Medical Applications

First International Workshop, LABELS 2016, and Second International Workshop, DLMIA 2016 Held in Conjunction with MICCAI 2016, Athens, Greece, October 21, 2016 Proceedings

Editors

Gustavo Carneiro

University of Adelaide Adelaide, SA

Australia

Diana Mateus

Technical University of Munich

Garching, Germany

Loïc Peter

Technical University of Munich

Garching, Germany

Andrew Bradley

University of Queensland

St Lucia, QLD Australia

João Manuel R.S. Tavares Universidade do Porto

Porto, Portugal

Vasileios Belagiannis University of Oxford

Oxford, UK

João Paulo Papa

Universidade Estadual Paulista

Bauru Brazil

Jacinto C. Nascimento Instituto Superior Técnico

Lisbon, Portugal

Marco Loog

Delft University of Technology

Delft, The Netherlands

Zhi Lu

University of South Australia

Adelaide, SA Australia

Jaime S. Cardoso Universidade do Porto

Porto, Portugal

Julien Cornebise Google DeepMind

London, UK

ISSN 0302-9743 ISSN 1611-3349 (electronic) Lecture Notes in Computer Science ISBN 978-3-319-46975-1 ISBN 978-3-319-46976-8 (eBook) DOI 10.1007/978-3-319-46976-8

Library of Congress Control Number: 2016953216

LNCS Sublibrary: SL6 - Image Processing, Computer Vision, Pattern Recognition, and Graphics

© Springer International Publishing AG 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface: DLMIA 2016

After the success of the First Deep Learning in Medical Image Analysis (DLMIA) Workshop, held with MICCAI 2015, where we welcomed hundreds of attendees, we present the proceedings of the Second DLMIA Workshop. Deep learning methods have experienced an immense growth in interest from the medical image analysis community because of their ability to process very large training sets, to transfer learned features between different databases, and to analyze multimodal data. DLMIA is a workshop dedicated to the presentation of work focused on the design and use of deep learning methods in medical image analysis applications. We believe that this workshop is setting the trends and identifying the challenges of the use of deep learning methods in medical image analysis. For the keynote talks, we invited Prof. Dinggang Shen from the Department of Radiology and BRIC at UNC-Chapel Hill, and Prof. Nassir Navab from the Technische Universität München, who are two prominent researchers in the field of deep learning in medical image analysis. We would like to acknowledge the financial support provided by the Butterfly Network for the realization of these keynote talks.

The first call for papers for the Second DLMIA Workshop was released on April 1, 2016, and the last call was on May 24, 2016, with the paper deadline set to July 10, 2016. The submission site of DLMIA received 46 papers registrations, from which 42 papers turned into full paper submissions, where each submission was reviewed by at least three reviewers. The chairs decided to select 21 out of the 42 submissions, based on the scores and comments made by the reviewers (i.e., a 50 % acceptance rate). The top ten papers with the best reviews were selected for oral presentations and the remaining 11 accepted papers had poster presentations. Finally, the workshop chairs voted for the best paper of the workshop based on the reviewers' scores and comments, and the best paper prize of the Second DLMIA Workshop went to Michal Drozdzal, Eugene Vorontsoy, Gabriel Chartrand, Samuel Kadoury, and Christopher Pal for the paper "The Importance of Skip Connections in Biomedical Image Segmentation." Nvidia generously offered to sponsor the Best Paper Award. Finally, we would like to acknowledge the support from the Australian Research Council for the realization of this workshop (discovery project DP140102794 and ARC Future Fellowship FT110100623). We would also like to thank the reviewers of DLMIA.

August 2016

Gustavo Carneiro
João Manuel R.S. Tavares
Andrew Bradley
João Paulo Papa
Jacinto C. Nascimento
Jaime S. Cardoso
Vasileios Belagiannis
Zhi Lu

Preface: LABELS 2016

The First Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis (LABELS) was held during the MICCAI conference on October 21, 2016, in Athens, Greece. With this event, we intended to raise awareness of the importance of training data acquisition in the context of biomedical problems and to promote the development of algorithms that focus on assisting the annotation process.

Our call for papers resulted in ten submissions. Each of them was reviewed in a single-blind fashion by at least three members of the Program Committee. Seven submissions were eventually accepted for a poster presentation at the conference venue and are included in this volume. Following the recommendations of the reviewers, three of these submissions were additionally invited for an oral presentation. We are very enthusiastic about the overall diversity of the final program, which includes topics such as crowdsourcing methods, active learning, transfer learning, semi-supervised learning, or modeling of label uncertainty. In addition to the contribution of the workshop participants, we had the pleasure to invite two keynote speakers who proposed further developments on these topics: Marco Loog from the Technical University of Delft (The Netherlands) and Pascal Fua from the Ecole Polytechnique Federale de Lausanne (Switzerland). We would like to thank them again for their insights and the scientific exchanges fostered by their talks.

To conclude, we would like to thank the reviewers for their contributions and the MICCAI Organizing Committee for encouraging and making possible the holding of this event.

August 2016

Diana Mateus Loïc Peter Gustavo Carneiro Marco Loog Julien Cornebise

Organization

DLMIA Committee

Workshop Chairs

Gustavo Carneiro
João Manuel R.S. Tavares
Andrew Bradley
João Paulo Papa
Jacinto C. Nascimento
Jaime S. Cardoso
Vasileios Belagiannis
Zhi Lu

University of Adelaide, Australia Universidade do Porto, Portugal University of Queensland, Australia Universidade Estadual Paulista, Brazil Instituto Superior Tecnico, Portugal Universidade do Porto, Portugal University of Oxford, UK

University of South Australia, Australia

Program Committee

Aaron Carass
Adrian Barbu
Adrian Johnston
Amr Abdel-Dayem
Ana Rebelo
Ankush Gupta
Carlos Santiago
Daniela Iacoviello
David Liu
Dinggang Shen
Felix Achilles

Gabriel Maicas
Ghassan Hamarneh
Guosheng Lin
Helder Oliveira
Holger R. Roth
Iro Laina
Jianming Liang
Jianqiao Feng
Kelwin Fernandes
Le Lu
Manuel Marques

Neeraj Dhungel Patricia Ribeiro Roger Tam Shanghang Zhang Susana Brandao Tiago Veiga Tom Brosch Vijay Kumar Weidong Cai Yefeng Zheng Zhibin Liao

LABELS Committee

Workshop Chairs

Diana Mateus TU Munich, Germany Loïc Peter TU Munich, Germany

Gustavo Carneiro University of Adelaide, Australia
Marco Loog TU Delft, The Netherlands
Julien Cornebise Google Deepmind, UK

Program Committee

Adrian Barbu Alba Garcia Seco de Herrera Bjoern Menze Danna Gurari Daoqiang Zhang Dinggang Shen

Eugenio Iglesias

Filipe Condessa Holger Roth Jaime Cardoso Joao Papa Ksenia Konyushova

Le Lu

Lena Maier-Hein Michael Goetz Neeraj Dhungel Rahaf Aljundi Raphael Sznitman Roger Tam Shadi Albarqouni Weidong Cai Xue-Cheng Tai

Contents

Deep Learning in Medical Image Analysis	
HEp-2 Cell Classification Using K-Support Spatial Pooling in Deep CNNs Xian-Hua Han, Jianmei Lei, and Yen-Wei Chen	3
Robust 3D Organ Localization with Dual Learning Architectures and Fusion	12
Cell Segmentation Proposal Network for Microscopy Image Analysis Saad Ullah Akram, Juho Kannala, Lauri Eklund, and Janne Heikkilä	21
Vessel Detection in Ultrasound Images Using Deep Convolutional Neural Networks	30
Convolutional Neural Network for Reconstruction of 7T-like Images from 3T MRI Using Appearance and Anatomical Features	39
Fast Predictive Image Registration	48
Longitudinal Multiple Sclerosis Lesion Segmentation Using Multi-view Convolutional Neural Networks	58
Automated Retinopathy of Prematurity Case Detection with Convolutional Neural Networks	68
Fully Convolutional Network for Liver Segmentation and Lesions Detection	77
Deep Learning of Brain Lesion Patterns for Predicting Future Disease Activity in Patients with Early Symptoms of Multiple Sclerosis Youngjin Yoo, Lisa W. Tang, Tom Brosch, David K.B. Li, Luanne Metz, Anthony Traboulsee, and Roger Tam	86

of Expert Deep Neural Networks	9
Ariel Benou, Ronel Veksler, Alon Friedman, and Tammy Riklin Raviv	
Three-Dimensional CT Image Segmentation by Combining 2D Fully Convolutional Network with 3D Majority Voting	11
Medical Image Description Using Multi-task-loss CNN	12
Fully Automating Graf's Method for DDH Diagnosis Using Deep Convolutional Neural Networks	13
Multi-dimensional Gated Recurrent Units for the Segmentation of Biomedical 3D-Data	14
Learning Thermal Process Representations for Intraoperative Analysis of Cortical Perfusion During Ischemic Strokes	15
Automatic Slice Identification in 3D Medical Images with a ConvNet Regressor	16
Estimating CT Image from MRI Data Using 3D Fully Convolutional Networks	17
The Importance of Skip Connections in Biomedical Image Segmentation Michal Drozdzal, Eugene Vorontsov, Gabriel Chartrand, Samuel Kadoury, and Chris Pal	17
Understanding the Mechanisms of Deep Transfer Learning for Medical Images	18
A Region Based Convolutional Network for Tumor Detection and Classification in Breast Mammography	19

XIII

279

Contents