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Abstract

We perform a two-parameter bifurcation study of the driven-damped regular-

ized long-wave equation by varying the amplitude and phase of the driver.
Increasing the amplitude of the driver brings the system to the regime of spa-

tiotemporal chaos (STC), a chaotic state with a large number of degrees of
freedom. Several global bifurcations are found, including codimension-two bi-
furcations and homoclinic bifurcations involving three-tori and the manifolds

of steady waves, leading to the formation of chaotic saddles in the phase space.
We identify four distinct routes to STC; they depend on the phase of the driver

and involve boundary and interior crises, intermittency, the Ruelle–Takens sce-
nario, the Feigenbaum cascade, an embedded saddle-node, homoclinic and other

bifurcations. This study elucidates some of the recently reported dynamical
phenomena.
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1 Introduction

Spatiotemporal chaos (STC) is a state of a dynamical system, characterized
by the lack of order both in time and space. STC typically arises in systems

strongly driven out of equilibrium, such as high Reynolds number fluid flow,
or in spatially extended systems, such as large-aspect-ratio Bénard convection.
STC can be defined differently as a state with a large number of degrees of free-

dom; their presence distinguishes STC from temporal chaos (TC), characteristic
for low-dimensional attractors. Here, by degrees of freedom we understand the

active spatial Fourier modes, i.e., the modes with a considerable amount of
energy. An increase in the number of excited Fourier modes through nonlin-

ear interactions implies that the spatial complexity is augmented. While the
extensive study of TC has led to a substantial progress in the theory of dynam-
ical systems (the concepts of global bifurcations, attractors and fractals have

emerged in the TC theory), much less has been achieved so far in exploration
of STC. This paper is devoted to the identification of the route (in other terms,

of a sequence of bifurcations) leading to STC. The importance of this problem
can be illustrated by the fact that transition to turbulence, a subject of interest

in fluid mechanics in the last hundred years since the work of Reynolds, is an
instance of transition to STC (see [10]).

Investigation of bifurcations in nonlinear partial differential equations has
often been regarded as a way to understand the onset of STC (e.g., see Bohr et
al. [2], who consider the onset of weak turbulence in fluids and plasmas). The

usual approach consists of varying one control parameter while fixing all other
system parameters. However, some bifurcations can only be observed when two

parameters are varied (the so-called codimension-two bifurcations [25]). Given
that much more information on codimension-one global bifurcations is available

than on those of higher codimensionality, considering global bifurcations in two-
parameter systems has the potential of yielding important results. Another

interesting question is how the route to STC is modified when we slightly change
the values of the parameters that were fixed in the one-parameter study, i.e.,
what are the stability properties of the route to STC under a small variation of

parameters. A related question is whether a “typical” route to STC exists (at
least, in a particular system under consideration), i.e. whether the route is (in

some sense) unique.
In this paper, we perform a two-parameter bifurcation study of solutions
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to the regularized long-wave equation (RLWE) in the presence of an external
driver and linear damping, with the emphasis on how the transition to STC,

on increasing the amplitude of the external driver, depends on the phase of
the driver. The RLWE, also known as the Benjamin-Bona-Mahony equation,

models the propagation of one-dimensional, unidirectional small-amplitude long
waves in nonlinear dispersive media. It was first derived by Peregrine [31], then
by Benjamin et al. [1], as an alternative to the Korteweg-de Vries equation [6].

The RLWE was employed to study the propagation of long waves in shallow wa-
ters [6], tsunami waves [38] and drift waves in a controlled nuclear fusion plasma

[24]. Our approach to investigation of transition to STC is purely numerical.
For an example of analytical study of Hopf and steady state bifurcations in a

system of nonlinear elliptic PDEs describing a reaction-diffusion predator-prey
model, see e.g. [39], where spatially nonhomogeneous periodic orbits bifurcating

from the curve of the constant coexistence steady states were investigated.
The RLWE was also used as a canonical model for transition to STC and

wave turbulence. He [17] explored a crisis transition from a temporally chaotic

and spatially coherent state to an STC state occurring in the driven-damped
RLWE on increasing the driver amplitude. This transition was subsequently

investigated in [18, 19, 20, 22, 23]. More recently, Rempel and Chian [34] and
Rempel et al. [35] studied the transient and intermittent dynamics in this transi-

tion to STC, showing that immediately upon the transition the system displays
intermittent switching between TC and STC states (chaotic saddles). Chian et
al. [4] described this intermittency in terms of amplitude and phase synchro-

nization among spatial scales in each chaotic saddle. Galuzio et al. [11, 12]
suggest that the intermittency is related to an unstable dimension variability,

with unstable periodic orbits embedded in the chaotic sets losing transversal
stability time and again. Finally, Chian et al. [5] claimed that the chaotic sad-

dle responsible for the STC regime is born at the boundary between two basins
of attraction due to a smooth-fractal metamorphosis. In the present paper, we

identify the birth of chaotic saddles due to homoclinic bifurcations where both
leading eigenvalues are complex, implying the existence of an infinite number
of saddle periodic orbits. Apparently, the chaotic saddles are comprised of such

unstable orbits.
In all the papers mentioned above, bifurcations of the driven-damped RLWE

were studied with a single parameter, ǫ (the amplitude of the driving force), typ-
ically varied. The transition from TC to STC was investigated for only one value
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of the driver phase, Ω = 0.65, for which the transition takes place via an inte-
rior crisis leading to intermittency. Here, we consider the phases in the interval

0.56 ≤ Ω ≤ 0.65 and identify, on increasing ǫ, a series of codimension-one and
codimension-two global bifurcations of space-periodic solutions to the RLWE.

These bifurcations are responsible for dynamic transitions involving equilib-
rium points, periodic, quasiperiodic and chaotic orbits. The transitions found
numerically include interior and boundary crises, homoclinic bifurcations, em-

bedded saddle-node bifurcations and the Feigenbaum and Ruelle–Takens routes
to chaos. We show that the transition to STC can also happen:

• via a homoclinic bifurcation;
• via a boundary crisis bifurcation, resulting in the STC attractor emerging

“out of the blue”;
• an embedded saddle-node bifurcation, where the STC attractor emerges “out

of the blue” as well.
Hence, we find that there is no universality in the transition to STC – in the
particular system under consideration, variation of the two parameters instead

of just the amplitude reveals that there exist at least four distinct routes to
STC!

Our goal to construct a two-parameter bifurcation diagram distinguishes our
work from the majority of studies aimed at exploring bifurcations in dynamical

systems. While a very detailed study of bifurcations in a one-parameter family
is feasible, a thorough investigation of bifurcations in a two-parameter family is
difficult and very resource consuming, especially in a large-dimensional system.

Moreover, it is important not to get swamped by examination of various fine
details in order not to miss the global picture. For instance, the sequence of

bifurcations leading to STC in RLWE for Ω = 0.65 was studied in several
dozens of papers (see the papers cited above and references therein), where

much attention was paid to the boundary crises and intermittency — but in
the present paper we show that these phenomena are not really essential. Since

we are interested in the global picture, we cannot allow ourselves and do not
intend to go into minute details, leaving this for future studies.

The paper comprises four sections. In Section 2, the driven-damped RLWE

is presented. Section 3 reviews the definitions of the relevant global bifurcations.
The bifurcations occurring in the dynamical system are discussed in section 4.

The final remarks are given in section 5.
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2 Equations and numerical methods

We solve the regularized long-wave equation with forcing and damping,

∂ψ

∂t
+ a

∂3ψ

∂t ∂x2
+ c

∂ψ

∂x
+ fψ

∂ψ

∂x
= −νψ − ǫ sin(x− Ωt), (1)

under the periodicity condition

ψ(x, t) = ψ(x+ 2π, t).

The equation involves six parameters, a, c, f , ν, Ω and ǫ, but only four of
them are independent, because the transformations

t→ αt, c→ αc, f → αf, ν → αν, ǫ→ αǫ, Ω → Ω/α

and

f → βf, ψ → ψ/β

do not modify the equation.

Upon changing the spatial variable to ξ = x−Ωt (i.e., in the reference frame
co-moving with the external driver) equation (1) takes the form

∂

∂t

[
ψ + a

∂2

∂ξ2
ψ

]
− Ω

∂

∂ξ

[
ψ + a

∂2

∂ξ2
ψ

]
+ c

∂ψ

∂ξ
+ fψ

∂ψ

∂ξ
+ νψ + ǫ sin ξ = 0. (2)

A solution to (2) can be expanded in Fourier series,

ψ(ξ, t) =

∞∑

k=−∞
uk(t)e

ikξ. (3)

Substitution of (3) into (2) yields a system of ordinary differential equations for

the complex coefficients uk(t).
Similarly, a solution to (1) can be expanded in Fourier series

ψ(x, t) =
∞∑

k=−∞
vk(t)e

ikx. (4)

Evidently, coefficients of the two series are related:

uk(t)e
ikΩt = vk(t). (5)
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The energy of a solution is

E =
1

4π

∫ 2π

0

[
ψ2(x, t)− a2

(
∂ψ(x, t)

∂x

)2]
dx. (6)

For analyzing bifurcations, (2) is more convenient than (1), because in the
co-moving reference frame the attractors lose a degree of complexity (e.g., a

travelling wave becomes a steady state, and a torus becomes a periodic orbit).
However, the equivalent (by (5)) equation (1) is more practical for computa-

tions1.

3 Global bifurcations

Before presenting numerical results, we review the types of global codimension-
one bifurcations that occur in our system. In this section we consider a dynam-

ical system

ẋ = f(x, α), f : Rn+1 → R
n, f ∈ Ck(Rn), where k ≥ 5, (7)

and assume that a bifurcation occurs at a critical parameter value α = αc.

Boundary crisis. Suppose system (7) has two attractors. Often the bound-

ary between basins of the attractors coincides with the stable manifold of an
unstable invariant set; this holds true for the RLWE, the set being just an un-
stable steady state. Suppose that on variation of the parameter α, the minimum

distance between an attractor and its basin boundary decreases, approaching
zero when α → αc, so that for α = αc the attractor collides with its basin

boundary. For α slightly above αc, the attractor turns into a transient. Trajec-
tories starting in the basin of the former attractor typically spend a considerable

time near this set, now unstable, before approaching the other coexisting at-
tractor. Hence the set is still visible in the temporal evolution of trajectories

for a positive measure set of initial conditions.

Interior crisis. Suppose an attractor collides with a stable manifold of
an unstable invariant set that belongs to the attractor’s basin. After the bi-

furcation, trajectories starting near the former attractor traverse towards the

1For ǫ = 0, (1) and (2) have a steady solution ψ = 0, the eigenmodes of the operator of linearization about
which are eikx and eikξ with the associated eigenvalues (−ν − ikc)/(1 − k2a) and (−ν − ikc)/(1 − k2a) + iΩk,
respectively. For large k, (2) has eigenvalues with large imaginary parts. For a sufficiently small ǫ, the large
imaginary parts persist, forcing us to proceed with tiny time steps.
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invariant set along its stable manifold, continue along its unstable manifold,
and finally return to a neighborhood of the former attractor. The bifurcation

results in a significant enlargement of the attractor, the new attractor including
the former one, the unstable invariant set and their unstable manifolds. The

temporal behavior of trajectories comprising the new attractor is thus more
complex than that of the trajectories comprising the old one.

The two types of crises are discussed in the monograph [29]. Note that we

use the word “crisis” in a broader sense than, e.g., in [15], where it is defined as
“a collision between a chaotic attractor and a coexisting unstable fixed point

or a periodic orbit”.

The Ruelle–Takens route of transition to chaos. A small C2 (C∞)
perturbation of a quasiperiodic flow on the 3-torus (them-torus, m ≥ 3, respec-

tively) can result in emergence of strange Axiom A attractors [37, 28]. Hence, if
the system (7) possesses a quasiperiodic attractor with three incommensurate

frequencies, then a small perturbation of f in (7) changes the motion from a
quasiperiodic one to a chaotic one. The respective route from a stable steady

regime to a chaotic attractor involves at least three Hopf bifurcations: the first
one results in the emergence of a periodic orbit, the second one turns the pe-

riodic motion into a quasi-periodic one, and in the third one a quasi-periodic
regime with three incommensurate frequencies sets in. The system can become
chaotic bypassing the onset of the three-frequency regime.

The Feigenbaum scenario for the loss of stability of a simple periodic
motion consists of an infinite number of period-doubling bifurcations.

The distances between consequent bifurcation points, αn − αn−1, for large n
are asymptotically close to a convergent geometric progression [7, 8]. For
α > α∞ = limn→∞ αn, none of these cycles is stable and trajectories become

chaotic. On further increasing α, stable periodic motions with different peri-
ods emerge again, but they exist in small intervals of α only. Usually one can

observe cycles with triple and quintuple periods.

Homoclinic bifurcation. An orbit ψ(t) of a dynamical system is called
homoclinic for an equilibrium point x0, if it approaches x0 for both t → ∞
and t→ −∞. Such an orbit is structurally unstable, and therefore in a single-
parameter system it exists only for an isolated parameter value. The behavior

of trajectories near the homoclinic orbit depends on the so-called leading eigen-
values of the Jacobian matrix df(x0) that are the closest ones to the imaginary
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axis, in particular, on whether the eigenvalues are real or complex.
We have checked numerically that both eigenvalues in the homoclinic bi-

furcation in the RLWE are complex. For such a bifurcation, it was proved
[30, 9, 26] that there exists a neighborhood of the homoclinic cycle in which

the system has an infinite number of saddle limit cycles for all α sufficiently
close to αc. To the best of our knowledge, such a bifurcation has never been
observed before in a large- (or infinite-)dimensional physical system, although

an example of a system in R
4 undergoing this bifurcation is presented in [14].

Embedded saddle-node bifurcation, ESN. A saddle-node bifurcation
results in the appearance of a pair of steady states, one of which is stable

along the direction of the critical eigenvector of df and another one is unstable.
Now, suppose the pair exists for α > αc and emerges at α = αc from a steady

state that belongs to a chaotic attractor (or, in other terms, is embedded in
the chaotic attractor). If this steady state is stable in directions transverse

to the critical eigenvector, then for α > αc the attractor becomes a transient
and trajectories starting in the basin of the former attractor, after wandering
around this now unstable set, are finally attracted by the stable steady state.

In [36] the ESN bifurcation of an R2 → R2 map was discussed, the arguments
ibid. can be easily generalized for the system (7).

4 Numerical results

We have studied numerically bifurcations for 0.56 ≤ Ω ≤ 0.65, step 0.01, for ǫ

increasing from 0 to 0.25, the remaining RLWE (1) parameters set to the values

a = −0.287, c = 1, f = −6 and ν = 0.1. (8)

The studies [4, 5, 12, 34, 35] focused on the value Ω = 0.65, other parameters

also being confined to (8) and 0 < ǫ ≤ 0.25 . We have chosen a sufficiently
distant lower value Ω = 0.56 so that by varying Ω we could identify several

routes to STC, that are different from those found for Ω = 0.65. Computations
were performed with the resolution of 1024 Fourier harmonics. The results are
summarized in bifurcation diagrams (figs. 1 and 10) and in tables 3 and 4.

We first describe transitions occurring in the system, considering individually
bifurcations that occur on varying ǫ for certain fixed Ω’s. The global picture is

discussed at the end of the paper. We use small letters to label codimension-one
bifurcations. They are shown by solid dots in one-parameter diagrams in fig. 1
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and by lines in two-parameter diagrams in fig. 10. Codimension-two points are
labelled by capital letters.

4.1 Notation

In this subsection we define the notation that is used to label attractors and
invariant sets of the equation in the co-moving reference frame (2) (note that a

steady state of (2) is a travelling wave of (1)). As previously shown numerically
[18, 19, 23] and analytically [3], equation (2) possesses a branch of steady states.
For any Ω in the interval 0.56 ≤ Ω ≤ 0.65, on increasing ǫ the steady state

undergoes two saddle-node bifurcations. As a result, there exists an interval
of ǫ where three steady states coexist. We label by Sl, Sm and Sh the steady

states with small, medium and high energies, respectively (see fig. 1). The
steady states Sm comprising the intermediate part of the branch are unstable;

nothing (but Sl and Sh at the end points of the Sm branch) bifurcates from
them.

We label by Al and Ah the attractors that bifurcate from Sl and Sh, re-

spectively (including the stable Sl and Sh themselves). Pl, Ph, Tl, Th, Cl and
Ch denote periodic orbits, tori and chaotic attractors bifurcating from the re-

spective branches. Pl(F1), Pl(F1/2), Pl(F1/4), etc., are periodic orbit with the
primary, halved, quartered, etc., frequencies involved in a sequence of period-

doubling bifurcations (the Feigenbaum scenario). A similar notation is used for
tori. A quasiperiodic regime with three main frequencies is denoted T 3. T̃ 3 de-

notes the chaotic attractor bifurcating from T 3 in line with the Ruelle–Takens
scenario. (Since no T 3 are structurally stable, an infinitesimal perturbation,
e.g., a change in the time step, can turn T 3 into T̃ 3, and hence we cannot dis-

tinguish them.) Attractors were identified by analyzing Poincaré sections, and
frequency spectra of the energy (6) and of individual Fourier harmonics.

In the earlier work on the RLWE, much attention was devoted to invariant
sets called chaotic saddles [34]. Consider a compact invariant set of a dynamical

system. If the set contains at least one chaotic trajectory, it can be called
chaotic. In terms of its attractiveness, the set can be an attractor (here, we mean
an asymptotically stable set), a repeller (a set that becomes an attractor upon

reversing time t→ −t), or none of these. A chaotic saddle is a compact invariant
chaotic set, which is neither an attractor, nor a repeller. Chaotic saddles are

important, because often they are responsible for complex transient dynamics
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before a trajectory finally converges to an attractor. A chaotic attractor can
become a chaotic saddle, e.g., in a boundary crisis. In this bifurcation, changes

of the chaotic attractor, regarded as a set in the phase space, can be small, if
not infinitesimal; the essential change is in the attractiveness properties of the

set.

4.2 Identification of attractors and bifurcations

Following, e.g., [29], we identify attractors of the following types: steady state,
periodic orbit, tori (with two or more independent temporal frequencies, also

referred to as quasiperiodic attractor), and chaotic attractor, which is none of
above. Hence, to identify an attractor, we analyse the temporal behaviour of

trajectories, in particular, by considering the frequency spectra of energy or
Fourier coefficients. Examples of frequency spectra are shown in fig. 2. As

an additional check, we also consider Poincaré sections, which we also use to
illustrate the occurring bifurcations.

Let us point out an important question not addressed here. As mentioned

above, STC is characterised by a large number of degrees of freedom, which
can be estimated numerically as the dimension of attractors or the number of

positive Lyapunov exponents. It is therefore of interest to determine how these
quantities vary on the (Ω, ǫ) plane. However, we regard this as an independent

problem. Such computations are very numerically demanding, especially given
that the number of degrees of freedom is large (this also raises the issues of

accuracy), as indicated by the results for Ω = 0.65 [4, 5].
As we have stated in the introduction, our goal is to understand the global

picture without going into fine details (despite they may be important), with

the emphasis on bifurcations related to the transition to STC. In particular,
we do not perform a thorough investigation of bifurcations of Al: for Ω ≥ 0.64

(this agrees with the findings of [5] for Ω = 0.65), Al undergoes a complex
sequence of bifurcations, including period-doublings, some of them comprising a

Feigenbaum scenario, Hopf bifurcations and foldings of the branch of attractors
resulting in several saddle-node bifurcations.

A steady state can be efficiently computed by a program that solves an

equation F (x) = 0 (we use the code from [33] based on Broyden’s method),
where F (x) represents the r.h.s. of (2). Bifurcations of a steady state can then

be determined by computing the eigenvalues of the linearisation of F (x) near
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the steady state. Bifurcations of periodic orbits and tori are studied by direct
numerical simulations, by considering the energy spectra of the solutions and by

comparing the number and values of independent frequencies before and after
a bifurcation.

As in any generic system, for a fixed Ω and only ǫ varied, codimension-
one bifurcations are expected to take place. All types of such bifurcations are
known, and therefore it suffices to register specific features of a bifurcation

to identify it. The ones listed in section 3 were identified as follows. Before
a boundary crisis, a system possesses two attractors, and after it one of the

attractors turns into a chaotic transient. A trajectory starting near the defunct
attractor stays in its vicinity for a long time (see, e.g., plots shown in fig. 7),

before making its way to the other attractor. Thus, a transformation of one
of the attractors, on variation of a parameter, into a chaotic transient is a

signature of a boundary crisis bifurcation.
An interior crisis is characterised by a significant enlargement of the attrac-

tor, the former attractor becoming a part of the new one. This is detected in

various temporal plots (e.g., in Fig. 9 we see time intervals when the trajectory
is close to the former Cl and Ch) and in Poincaré sections. The Ruelle-Takens

route to chaos requires existence of three temporal frequencies. On a minor
variation of a parameter, a chaotic behaviour turns into a quasiperiodic one

due to frequency locking. The system is highly sensitive to perturbations, in-
cluding those of the numerical nature, such as changing the time step or spatial
resolution. A Feigenbaum scenario is characterised by a sequence of accumulat-

ing period-doubling bifurcations, bringing system to a chaotic state. As usual,
Poincaré sections (see, e.g., fig. 8b,c, higher-ǫ regions) illustrate well the tran-

sition.
To study bifurcations involving homoclinic and heteroclinic trajectories, it is

useful to consider the difference ψ(t)−S∗ between a solution ψ(t) and a steady
state S∗ and its energy, E(ψ(t) − S∗). A structurally unstable homoclinic or

heteroclinic trajectory exists for an isolated parameter value. For nearby values,
trajectories closely follow stable and unstable manifolds of a steady state (as,
e.g., in fig. 4b for 2500 < t < 3000), which we use as a signature.

In the ESN bifurcation, the critical value ǫj for disappearance, on decreasing
ǫ, of the chaotic attractor Ch coincides with the critical value for emergence of

Sm and Sl in a saddle-node bifurcation. An alternative scenario that we also
observe in computations is the disappearance of Ch in a BC bifurcation at ǫi,
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implying coexistence of Sl and Ch for ǫi < ǫ < ǫa.
Except for bifurcations of steady states (and sometimes periodic orbits),

where critical points can be found by computing eigenvalues, in numerical stud-
ies points of bifurcations are detected by computing intervals of existence of

attractors. Intervals of existence of attractors are given in tables 3 and 4, bi-
furcations are listed in table 1. From these tables, one can estimate critical
values of ǫ for some bifurcations: for a,j,r,s or b,h,i,o,p as endpoints of intervals

of existence of Al or Ah, respectively; l,n,c,d and e are located between inter-
vals where the relevant attractors (Sl and Pl(F1), Pl(F1) and Pl(F1/2), Sh and

Ph(f1), Ph(f1) and Ph(f1, f2), Ph(f1, f2) and Ph(f1, f2/2), respectively) exist.
For example, for Ω = 0.56, tables 1 and 3 imply that the critical value of the

saddle-node bifurcation for disappearance of Sl is ǫa ≈ 0.103; from tables 1 and
4, the critical value for Hopf bifurcation of Sh satisfies 0.0944 < ǫc < 0.0945.

Plots of the energy (6) (fig. 1) as a function of ǫ for six values of Ω summarise
bifurcations occurring in the system and show four different routes of transition
to STC. When the steady states Sm, Sl and Sh are not attracting, they are

shown by dashed lines. For clarity, we present only the major bifurcations. For
example, for Ω = 0.56 (top left panel) we show the saddle-node bifurcations

resulting in emergence of Sl,m,h, a and b; the Hopf bifurcation of Sh, c; and the
homoclinic bifurcation, g.

4.3 Ω = 0.56 and Ω = 0.57

For Ω = 0.56, the steady states Sl in the lower part of the branch are always
stable till the branch turns back in the saddle-node bifurcation at ǫ = ǫa.
(Evidently, ǫa depends on Ω and we should write ǫa(Ω), but we abbreviate this

notation for the sake of simplicity.) The steady states Sh in the upper part of
the branch emerge in the saddle-node bifurcation on increasing ǫ at ǫ = ǫb and

become unstable in the Hopf bifurcation at ǫ = ǫc with emergence of a stable
periodic orbit. The orbit bifurcates into a torus in another Hopf bifurcation at

ǫ = ǫd, followed by halving of one of the basic frequencies of the torus (ǫ = ǫe).
The next Hopf bifurcation results in the emergence of a torus with three main
frequencies. For higher ǫ, in a small interval ǫf ≤ ǫ ≤ ǫg a variety of attractors

was observed in computations: chaotic attractors (existing in agreement with
the Ruelle–Takens scenario), periodic orbits and tori with frequencies f1/n1,

f2/n2 and f3/n3, where fj are the three frequencies of T 3
h and nj are integer
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(see fig. 3). We attribute the respective transitions to frequency locking and do
not study them in depth.

At the interval ǫf ≤ ǫ ≤ ǫg, a steady state Sh has a two-dimensional unstable

manifold that is attracted by T̃h (recall that this is a generic notation for the
attractors T̃ 3

h , T
3
h (f1/n1, f2/n2, f3/n3) or T 2

h (f1/n1, f2/n2)). On increasing ǫ,

the distance between T̃h and the stable manifold of Sh decreases, and finally at

ǫ = ǫg it vanishes. Hence, at ǫg the stable and unstable manifolds of Sh intersect,
resulting in existence of an orbit homoclinic to Sh. This scenario can be inferred

from the time series of fig. 4, where the energy of the difference between an
individual trajectory ψ and the steady state Sh is plotted as a function of time.

For ǫ slightly smaller than ǫg, the trajectory ψ is confined to the attractor Th
(fig. 4a); for ǫ slightly larger than ǫg, the attractor is chaotic and has already
collided with the stable manifold of Sh, resulting in intermittent excursions of

the trajectory ψ towards Sh, during which E(ψ − Sh) becomes close to zero
(fig. 4b). For larger ǫ, a similar behavior is observed, with excursions becoming

increasingly frequent (fig. 4c,d). We have checked numerically that the leading
eigenvalues of the linearization of (2) near Sh are complex; as follows from the

theory of homoclinic bifurcations, in this case there exists an infinite number
of unstable periodic orbits in a neighborhood of the homoclinic cycle for ǫ close
to ǫg.

Computations show that for ǫ > ǫg the behavior is chaotic. In time series
computed for an individual trajectory, well-defined signatures of close homo-

clinic trajectories are observed (see fig. 4,b,c) — the time intervals, during
which the trajectory approaches the steady state Sh along its stable manifold,

and leaves along the unstable one. In the log-linear plot, the dependence of the
energy E(ψ(t)− Sh) on time during these time intervals is essentially linear.

For ǫ increasing further, the energy of flows comprising Ch increases, however
there are no qualitative changes in their temporal behavior (cf. figs. 4c and d),
which indicates the absence of bifurcations.
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Figure 1: Bifurcation diagrams: the time-averaged square root of the energy (6) as a function
of ǫ (horizontal axis) of the RLWE attractors (solid line) and unstable steady states (dashed
line) for Ω = 0.56, 0.57, 0.60, 0.63, 0.64 and 0.65 . Dots indicate selected bifurcation points.
Labelling of the bifurcations is explained in table 2.
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Figure 2: Frequency spectra Eω = |Êω|2 of the energy E(t) =
∑
Êωe

iωt (6) for Ω = 0.56 :
ǫ = 0.0955, attractor T 2

h
(f1, f2) (a); ǫ = 0.0959, attractor T 2

h
(f1, f2/2) (b); ǫ = 0.096, attractor

T̃ 3

h
(c). Vertical axis: Eω, horizontal axis: ω.

The route to STC for Ω = 0.56 is illustrated by fig. 5, showing the evolu-

tion of the spatio-temporal structure of the attractor Ah on increasing ǫ: For
small ǫ, the attractor is a travelling wave, whose spatial structure is simple

(fig. 5a, ǫ = 0.094). When the temporal behavior becomes periodic in a Hopf
bifurcation at ǫc, simultaneously a small-amplitude spatial oscillatory pattern
emerges (fig. 5b, ǫ = 0.095). (Recall, that a travelling wave solution of (1)

is a steady state of (2), and when discribing attractors, we assume attractors
of (2). ) Emergence of a second temporal frequency at ǫd is also accompanied

by a slight enhancement of the spatial complexity of the attractor; neverthe-
less, for ǫ < ǫg (i.e., before the homoclinic bifurcation), the spatial structure of

the regime remains fairly regular. For ǫ > ǫg, amplitudes of spatial oscillations
emerging in the Hopf bifurcations grow fast and active development of irregular

spatial patterns is observed. Figs. 5c-d, ǫ = 0.097, 0.1 and 0.15, show the evolu-
tion of the chaotic attractor after the homoclinic bifurcation, as ǫ is increased.
Clearly, the development of STC along this route is intimately related to the

onset of temporal chaos in the solution due to its predominantly travelling-wave
structure.

Spatiotemporal chaos can be characterized by a measure of the spreading of
energy towards smaller scales due to nonlinear interactions, in which additional

Fourier modes are excited. The spectral average has been frequently used in this
context, defined as

√
N2 =

√∑∞
k=0 k

2|vk|2/
∑∞

k=0 |vk|2, where vk denotes the k-
th Fourier coefficient. In other words, the spectral average is just the enstrophy
of a flow normalized by the kinetic energy, or it can be also regarded as the
average Fourier mode amplitude weighted by the wave number [13, 21, 27].

Figure 6 depicts the time variation of the spectral average for the six regimes
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Figure 3: Poincaré sections Re u3 = 0.03 for Ω = 0.56, ǫ = 0.0955, attractor T 2
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(f1, f2)

(a); 0.0959, T 2
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(f1, f2/2) (b); 0.09595, T 2

h
(f1, f2/4) (c); 0.09598, T 3

h
(f1, f2/2, f3) (d); 0.09599,

T 2

h
(f1, f2/16) (e); 0.096, T̃ 3

h
(f); 0.0963, T 3

h
(f1, f2, f3) (g); 0.09634, T 2

h
(f1, f2/2) (h); 0.09635,

T 3

h
(f1, f2/2, f3) (j); and 0.09636, Ch (k). Vertical axis: Im u3; horizontal axis: Reu4.

shown in fig. 4. Note that energy is progressively spread toward higher wave
numbers as ǫ is increased, with a jump of almost an order of magnitude at

ǫ = 0.15, where STC is strongly developed.
For Ω = 0.57, similarly to Ω = 0.56, the steady states Sl constituting the

lower part of the branch are stable. The upper part of the branch, also as for

Ω = 0.56, undergoes three Hopf bifurcations interrupted by halving of one of the
frequencies. As a result, a quasi-periodic regime with three main frequencies,

T 3
h , emerges.
The next bifurcation has no analogues for Ω = 0.56 . When T 3

h is attract-

ing, the system possesses two unstable steady states, Sh and Sm. The unstable
manifold of Sh is attracted by T 3

h . For Ω = 0.56, the torus T 3
h intersects with

W s(Sh), giving rise to existence (just for an isolated value ǫg) of an orbit homo-

clinic to Sh. For Ω = 0.57, the attractor, T 3
h , intersects with W

s(Sm), resulting
in the emergence of a heteroclinic orbit from Sh to Sm, that also exists only

for ǫ = ǫh (a heteroclinic connection to a saddle is not structurally stable in a
generic system). Existence of this heteroclinic orbit was confirmed numerically

by investigating trajectories for ǫ close to ǫh. Trajectories on the unstable (two-
dimensional) manifold of Sh were traced by computing the unstable subspace
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(c) (d)

t t

E(ψ(t)− Sh)

E(ψ(t)− Sh)

Figure 4: The discrepancy E(ψ(t) − Sh) (vertical axis) for Ω = 0.56, ǫ = 0.0963 (a), 0.09636
(b), 0.1 (c) and 0.15 (d). Horizontal axis: time t.

of Sh and taking initial conditions in this subspace near Sh. The computations
show that for ǫ < ǫh these trajectories are attracted by T 3

h , i.e., the unstable

manifold of Sh is attracted by T 3
h . Hence, the intersection of T 3

h with W s(Sm)
implies existence of a heteroclinic trajectory Sh → Sm, which passes near former

T 3
h . For ǫ > ǫh such trajectories go toward (unstable) Sm.
The steady state Sm has an one-dimensional unstable manifold. For ǫ slightly

smaller than ǫh, one branch of the manifold is attracted by T 3
h , another one by

the stable Sl. For ǫ > ǫh, the torus T
3
h is unstable, a trajectory starting near the

torus is bound for the (unstable) Sm, and subsequently approaches Sl following

the unstable manifold of Sm (see fig. 7a).
Further on, in some interval ǫh < ǫ < ǫi the only attractor is the stable Sl.

For larger ǫ, coexistence of attractors takes place again. One of the attractors
is Ch that was found for Ω = 0.56 . For the largest considered ǫ = 0.25, Ch is

an attractor for all considered Ω. On decreasing ǫ from this value, for Ω ≥ 0.57
it becomes unstable and turns into a chaotic saddle. For Ω = 0.57, it loses
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Figure 5: The route to STC for Ω = 0.56 : enhancement of complexity of spatio-temporal
patterns in the regimes ψ(x, t) on increasing ǫ. The attractors are: Sh for ǫ = 0.094; Ph(f1) for
ǫ = 0.095; T 3

h
(f1, f2, f3) for ǫ = 0.0963; Ch for ǫ = 0.097, 0.1 and 0.15.18



t

√
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Figure 6: Time variation of the spectral average
√
N2 for ǫ = 0.094 (solid line), ǫ = 0.095

(dotted line), ǫ = 0.0963 (dashed line), ǫ = 0.097 (dash-dot line), ǫ = 0.1 (dash-dot-dot-dot
line), and ǫ = 0.15 (long dash). The attractors are: Sh for ǫ = 0.094; Ph(f1) for ǫ = 0.095;
T 3

h
(f1, f2, f3) for ǫ = 0.0963; Ch for ǫ = 0.097, 0.1 and 0.15.

stability at ǫ = ǫi via a boundary crisis. Note, that the time series of the

discrepancy E(ψ(t) − Sm) shown in fig. 7b does not have a minimum before
the trajectory converges to Sl. This indicates that for ǫ = ǫi the boundary

crisis is due to the collision of the attractor with the stable manifold of Sl, in
contrast with the case ǫ = ǫh, where it is due to the collision with the stable

manifold of Sm. Similarly, for larger Ω the boundary crisis of T 3
h is due to the

collision with the stable manifold of Sm (note e.g. the minimum in fig. 7c) and
the boundary crisis of Ch is due to the collision with the stable manifold of Al

(chaotic attractor for Ω = 0.64 shown in fig. 7d).
The proposed boundary crises scenarios are based on monitoring the time

series alone. The precise characterization of crisis due to the collision of the
chaotic attractor with the stable manifold of a saddle orbit is cumbersome in

such a high-dimensional phase space, and we leave it for future works.

4.4 Ω = 0.58, 0.59, 0.60 and 0.61

For such Ω the dependence on ǫ is similar, except for now:
• The attractors Ch and Sl do not coexist any more. This happens because

on decreasing ǫ the attractor Ch became now unstable in an ESN bifurcation,
and not in a boundary crisis. Occurrence of the ESN bifurcation rules out the
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Figure 7: The discrepancy E(ψ(t)− Sm) (vertical axis) for Ω = 0.57, ǫ = 0.1001 (a) and 0.109
(b); Ω = 0.64, ǫ = 0.12828(c) and 0.2024 (d). Horizontal axis: time t.

coexistence of multiple attractors for the following reason. Consider the critical

value ǫcrit(Ω) for the disappearance of Sl in the saddle-node bifurcation. When
for ǫ = ǫcrit(Ω) the distance between Ch and Sl = Sm is non-zero, the bifurca-

tion does not affect Ch, and Ch disappears at a smaller ǫ = ǫi in a boundary
crisis. If this distance is zero, then Ch disappears at ǫ = ǫcrit(Ω) = ǫj in the
ESN bifurcation.

• The steady states Sl become unstable in a Hopf bifurcation. Two such bi-
furcations occur. On increasing ǫ, a periodic orbit, Pl, emerges from Sl in a

forward Hopf bifurcation. On further increasing ǫ, a backward Hopf bifurcation
occurs, in which Pl turns into a steady state Sl. The periodic orbit Pl is always

stable.
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4.5 Ω = 0.62

For Ω = 0.62, the bifurcations are similar to those observed for Ω = 0.61, except

for now:
• The attractors Ch and Sl coexist again in the interval ǫi < ǫ < ǫa, Ch suffering

a boundary crisis at ǫ = ǫi as it turns into a chaotic saddle;
• The branch of the periodic orbits Pl folds. This creates two parts of the Pl
branch, that consist of stable orbits, terminate in saddle-node bifurcations and
coexist in the interval ǫm < ǫ < ǫ′m. For all considered Ω ≥ 0.62 several (two or

three) branches of attractors Al coexist in certain intervals of ǫ.

4.6 Ω = 0.63

The difference with the sequence of bifurcations for Ω = 0.62 is in that:
• Attractors from the Ah family undergo fewer bifurcations before disappearing

in a boundary crisis, namely, now no tori with three main frequencies emerge
and Th(f1, f2/2) becomes unstable due to a boundary crisis.

• The periodic orbit Pl now undergoes several forward and backward period-
doubling bifurcations. The respective sequence of attractors is

Pl(F1) → Pl(F1/2) → Pl(F1/4) → Pl(F1/2) → Pl(F1)

for one branch of Al, and Pl(F1) → Pl(F1/2) for another branch. For Ω ≥ 0.63
the bifurcations of Al are shown in the Poincaré maps (fig. 8).

4.7 Ω = 0.64

Now, the behavior of attractors bifurcating from Sl is much more complex. Pl
undergoes a Hopf bifurcation, forward and backward period-doubling cascades

(the complete Feigenbaum scenario takes place twice, for increasing and de-
creasing ǫ) and saddle-node bifurcations, see fig. 8(c). Otherwise, the diagram

is similar to the one for Ω = 0.63.

4.8 Ω = 0.65

Compared to Ω = 0.64, significant changes in the sequence of bifurcations are
observed (see fig. 3 in Chian it et al. [5]). The attractors bifurcating from

the lower branch, Al, do not exist in the whole interval of existence of Sl (see
figs. 1 and 8c). On increasing ǫ, at some ǫ = ǫp, the chaotic attractor Cl
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disappears, apparently in a collision with the stable manifold of Sm, and turns
into a temporally chaotic saddle. For ǫp < ǫ < ǫr none of the attractors belongs

to the Al or Ah families. The bifurcation at ǫ = ǫp is an interior crisis of Al (on
increasing ǫ), the bifurcation at ǫ = ǫr is an interior crisis of Ah (on decreasing

ǫ). As a result of the two crises, a larger attractor is formed for ǫp < ǫ < ǫr, that
involves the former Al and Ah, and the intersection of their stable and unstable
manifolds. A typical intermittent (see refs. [4, 34, 35]) temporal behavior of

trajectories is shown in fig. 9, where for long times a trajectory stays close either
to Ch (higher values of E(ψ(t)− Sm)), or to Cl (lower values of E(ψ(t)− Sm)).

Note significant increase of the energy over a short interval of ǫ between two
interior crisis bifurcations, the points “p” and “r” in fig. 1. The bifurcations

for this control parameter were studied in detail by Chian et al. [5], where
the intermittency shown in fig. 9 was explained in terms of regime switching

between a temporally chaotic saddle and a spatiotemporally chaotic saddle. At
ǫ = ǫs the attractor Cl emerges “out of the blue” (a boundary crisis of Cl occurs
on decreasing ǫ).

4.9 Two-parameter bifurcation diagram

The results are summarized in the bifurcation diagram (fig. 10), compiled from
the numerical results presented in the previous section. The notation for bifur-

cations is explained in tables 1 and 2. In the area bounded by the lines “p”
and “r” there are no attractors from the families Al and Ah. This area repre-

sents the intermittency regime illustrated in fig. 9. Note also a codimension-two
bifurcation point (labeled A) in which a homoclinic bifurcation and two bound-
ary crisis bifurcations (of Th and Ch) occur simultaneously. This point can

be regarded as an organizing center for the nearby dynamics; future studies
of this codimension-two bifurcation will clarify the transitions occurring in the

dynamical system governed by the RLWE.

5 Conclusion

Many bifurcation studies employing the RLWE were conducted in the past two

decades, aimed at investigating the transition to wave turbulence (see the ref-
erences cited in the Introduction). In all these studies of transition to STC in

the RLWE, only the amplitude of the driver, ǫ, was varied, with other param-
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Figure 8: Poincaré sections Im u1(t) = 0.02 of the attractors from the family Al, d Im u1(t)/dt >
0, for Ω = 0.63 (a), 0.64 (b) and 0.65 (c). Vertical axis: Im u2(t); horizontal axis: ǫ. When
attractors coexist, they are shown in different plates.
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t

E(ψ(t)− Sm)

Figure 9: Intermittent temporal behavior of E(ψ(t) − Sm) (vertical axis) for Ω = 0.65 and
ǫ = 0.2001. Horizontal axis: time t.

eters set to the values (8) and Ω = 0.65. The transition, via an interior crisis

and intermittency, was examined in detail (see [5] and references therein). We
considered the behavior of the dynamical system for the amplitude and phase
of the driver in the intervals 0 < ǫ ≤ 0.25 and 0.56 ≤ Ω ≤ 0.65, respectively.

For small ǫ, the attractor is a travelling wave, while for sufficiently large ǫ
(in particular, this is always the case for ǫ = 0.25), the attractor is chaotic

both in time and space. For different values of Ω, routes to this regime, i.e. the
sequences of bifurcations, are distinct. We have found four types of the tran-

sition. One is the route via intermittency, thoroughly investigated in the pre-
vious studies. Another route is via a homoclinic bifurcation, in which the

chaotic attractor emerges in the vicinity of a structurally unstable homoclinic
orbit (a codimension-one bifurcation). In the third and fourth routes to STC,
the chaotic attractor emerges “out of the blue” as the amplitude of the driver

is increased. Alternatively, these bifurcations can be regarded as a boundary
crisis or an ESN bifurcation of the chaotic attractor on decreasing the driver

amplitude.
In the bifurcation diagram, we see a codimension-two junction point, in

which three lines, that indicate the homoclinic bifurcation and two boundary
crisis bifurcations, are meeting (the point is marked as A in fig. 10).

Since all the three bifurcations play important roles in transition to STC, a
low-dimensional dynamical system constructed by the center manifold reduction
at this codimension-two point is likely to be useful for understanding the nature

of the codimension-two bifurcation: the reduced system is likely to exhibit a
behavior that is qualitatively similar to the one of the original system even far

away (in the space of parameters) from the bifurcation point, provided advanced
reduction techniques are employed (such as [32]). A possible continuation of
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the present study is therefore construction of a low-dimensional reduction and
investigation of bifurcations in this dynamical system.

We also note that we did not analyze the details of transition to STC for
the three new routes as thoroughly as it was done for the transition via inter-

mittency; this line of investigation is also left for future studies. A yet another
open question is what kind of transitions to STC we will see for Ω outside the
considered interval, or on varying the remaining parameters, a, c, f and/or ν,

that have been fixed in the present study. We believe our two-parameter study
of the RLWE can be used as a roadmap for further in-depth investigations of

the different routes to temporal chaos and spatiotemporal chaos — the ones
briefly discussed here, as well as the new ones to be identified in the future

work.

Acknowledgements

OP, VZ, ELR, RC and PRM acknowledge financial support from FAPESP
(grants 2012/22285-4, 2012/22243-0, 2013/22314-7, 2013/01242-8 and 2011/10466-

1, respectively). ELR and ACLC acknowledge financial support from CAPES
and CNPq (Brazil).

25



b c d e f g

h
i

jk

e

f
i

o
r

A

B

B

C

C
F

G

a

l

m m
n

q p s

D

E
G

Ω

0 ǫ 0.25

0.65

0.56

0.65

0.56

Ω

Figure 10: The global bifurcation diagram showing attractors of the families Al (lower plate)
and Ah (upper plate). Horizontal axis: ǫ; vertical axis Ω. The diagram is not in scale in
any direction and only the major bifurcations are shown. Bold lines denote codimension-one
bifurcations and dots codimension-two bifurcations. The areas of existence of the attractors
are shaded. Thin lines indicate the areas of existence of attractors from the opposing family.

26



Table 1. Codimension-one bifurcations shown in fig. 10.

Label Bifurcation

a saddle-node, birth of Sl and Sm (on decreasing ǫ)

b saddle-node, birth of Sh and Sm (on increasing ǫ)
c Hopf, Sh → Ph(f1) (on increasing ǫ)

d Hopf, Ph(f1) → Th(f1, f2) (on increasing ǫ)
e period-doubling, Th(f1, f2) → Th(f1, f2/2) (on increasing ǫ)

f Hopf, Th(f1, f2/2) → T 3
h(f1, f2/2, f3) (on increasing ǫ)

g homoclinic, T 3
h → Ch (on increasing ǫ)

h boundary crisis of T̃ 3
h (on increasing ǫ)

i boundary crisis of Ch (on decreasing ǫ)
j ESN, instability of Ch due to birth of Sl (on decreasing ǫ)

k Hopf, Th(f1, f2) → T 3
h (f1, f2, f3) (on increasing ǫ)

l Hopf, Sl → Pl(F1)

m saddle-node, birth of Pl(F1) and its unstable counterpart
n period-doubling, Pl(F1) → Pl(F1/2)

o boundary crisis of T̃h(f1, f2/2) (on increasing ǫ)

p interior crisis of Cl (on increasing ǫ)
q saddle-node, birth of Pl(F1/2) and its unstable counterpart

r interior crisis of Ch (on decreasing ǫ)
s boundary crisis of Cl (on decreasing ǫ)

Table 2. Codimension-two bifurcations shown in fig. 10.

Label Bifurcations

A homoclinic and boundary crisis bifurcations of T 3
h(f1, f2/2, f3)

B boundary crisis of Ch and saddle-node of Sl imbedded in Ch
C frequency-halving, Th(f1, f2) → Th(f1, f2/2) and

Hopf, Th(f1, f2/2) → T 3
h(f1, f2/2, f3)

D two saddle-node bifurcations of Pl(F1)

E saddle-node and frequency-halving of Pl(F1)
F Hopf and boundary crisis of Th(f1, f2/2)

G boundary crises of Cl and Ch
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Table 3. Intervals of ǫ, for which exist some attractors from the family Al

Ω Al Sl Pl(F1) Pl(F1/2) Pl(F1/4)

0.56 (0, 0.103] (0, 0.103] −− −− −−
0.57 (0, 0.115] (0, 0.115] −− −− −−
0.58 (0, 0.128] (0, 0.084], [0.085, 0.103] −− −−

[0.104, 0.128]
0.59 (0, 0.142] (0, 0.07], [0.071, 0.127] −− −−

[0.128, 0.142]
0.60 (0, 0.156] (0, 0.065], [0.066, 0.145] −− −−

[0.146, 0.156]
0.61 (0, 0.170] (0, 0.065], [0.066, 0.162] −− −−

[0.163, 0.170]
0.62 (0, 0.186] (0, 0.066], [0.067, 0.179] −− −−

[0.18, 0.186]
0.63 (0, 0.201] (0, 0.069], [0.07, 0.1608], [0.1609, 0.1678], [0.177, 0.1842]

[0.197, 0.201] [0.1644, 0.1689], [0.169, 0.1769], [0.1843, 0.1889]
[0.189, 0.196]

0.64 (0, 0.218] (0, 0.074], [0.075, 0.1649], [0.165, 0.1747], [0.1828, 0.1838],
[0.214, 0.218] [0.1778, 0.1786], [0.1784, 0.1827], [0, 2062, 0.2081] [0.2057, 0.2061]

[0.2082, 0.213]
0.65 (0, 0.2], (0, 0.078], [0.079, 0.1921], [0.1772, 0.1805], [0.1914, 0.1921],

[0.222, 0.234] [0.231, 0.234] [0.2267, 0.234] [0.1844, 0.1913], [0.2253, 0.2266] [0.225, 0.2252]

Table 4. Intervals of ǫ, for which exist some attractors from the family Ah

Ω Ah Sh Ph(f1) Th(f1, f2) Th(f1, f2/2) Ch

0.56 [0.063, 0.25] [0.063, 0.0944] [0.0945, 0.0951] [0.0952, 0.0957] [0.0958, 0.0959] [0.09636, 0.25]
0.57 [0.067, 0.1], [0.067, 0.0978] [0.0979, 0.0985] [0.0986, 0.0997] [0.09976, 0.0998] [0.110, 0.25]

[0.110, 0.25]
0.58 [0.07, 0.1041], [0.07, 0.101] [0.102, 0.1022] [0.1023, 0.103] [0.1031, 0.1034] [0.129, 0.25]

[0.129, 0.25]
0.59 [0.073, 0.1085], [0.073, 0.104] [0.105, 0.106] [0.107, 0.1077] −− [0.143, 0.25]

[0.143, 0.25]
0.60 [0.076, 0.112], [0.076, 0.108] [0.109, 0.1109] [0.111, 0.1113] −− [0.157, 0.25]

[0.157, 0.25]
0.61 [0.079, 0.1165], [0.079, 0.111] [0.112, 0.114] [0.115, 0.1155] [0.1156, 0.1158] [0.171, 0.25]

[0.171, 0.25]
0.62 [0.082, 0.12047], [0.082, 0.115] [0.116, 0.118] [0.119, 0.1197] [0.1198, 0.112] [0.184, 0.25]

[0.184, 0.25]
0.63 [0.085, 0.1242], [0.085, 0.118] [0.119, 0.122] [0.123, 0.124] [0.1241, 0.1242] [0.197, 0.25]

[0.197, 0.25]
0.64 [0.088, 0.1282], [0.088, 0.121] [0.122, 0.125] [0.126, 0.1279] [0.128, 0.1282] [0.203, 0.25]

[0.203, 0.25]
0.65 [0.091, 0.1323], [0.091, 0.1246] [0.1247, 0.1295] [0.1296, 0.132] [0.1321, 0.1323] [.202, .25]

[0.202, 0.25]
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