
PHYSICAL REVIEW E 96, 043310 (2017)

General purpose graphics-processing-unit implementation of cosmological
domain wall network evolution

J. R. C. C. C. Correia1,2,* and C. J. A. P. Martins1,3,†
1Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal

2Departamento de Física, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
3Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal

(Received 8 May 2017; published 26 October 2017)

Topological defects unavoidably form at symmetry breaking phase transitions in the early universe. To
probe the parameter space of theoretical models and set tighter experimental constraints (exploiting the recent
advances in astrophysical observations), one requires more and more demanding simulations, and therefore more
hardware resources and computation time. Improving the speed and efficiency of existing codes is essential. Here
we present a general purpose graphics-processing-unit implementation of the canonical Press-Ryden-Spergel
algorithm for the evolution of cosmological domain wall networks. This is ported to the Open Computing
Language standard, and as a consequence significant speedups are achieved both in two-dimensional (2D) and 3D
simulations.

DOI: 10.1103/PhysRevE.96.043310

I. INTRODUCTION

Topological defects form at cosmological phase transitions,
as a consequence of the Kibble mechanism [1]. If they are
stable or sufficiently long-lived they will be present in the more
recent universe, as fossil relics of its earlier stages, leading to
a plethora of astrophysical signatures [2]. The conceptually
simplest way of studying the highly nonlinear evolution of
defect networks is by thermodynamic analytic modeling. This
is based on an idea of Kibble [3], and the current state of the art
is the velocity-dependent one-scale model [4,5]. However, just
as in standard thermodynamics there are parameters (such as
Boltzmann’s constant) which cannot be determined ab initio
but must be experimentally determined, so analytic models
for defect evolution include model parameters which must be
determined in high-resolution numerical simulations—thereby
calibrating the model.

For the simplest defect model, domain walls from a single
scalar field, the canonical approach to field theory simulations
is the Press-Ryden-Spergel (PRS) algorithm [6], and state
of the art simulations and analytic model calibration are
described in [7,8]. This WALLS code has been used as a
benchmark for central processing units (CPU) and Intel Xeon
Phi coprocessors [9]. For the more commonly studied case
of cosmic strings there are several Goto-Nambu [10–14] and
field theory codes [15–17]. There are also implementations
for monopoles [18], semilocal strings [19], and non-Abelian
defects [20,21]. All of these are optimized for standard CPUs,
either with shared or distributed memory architectures.

Recent progress in cosmic microwave background [22] and
gravitational wave detection [23] highlights how some of these
scenarios can be constrained by high-resolution data. However,
they also show that the current bottleneck is the lack of efficient
and accurate high-resolution simulations of defect networks
that can be used as templates for robust statistical analysis.
This will be an even bigger problem for next-generation

*Jose.Correia@astro.up.pt
†Carlos.Martins@astro.up.pt

facilities such as CORE [24] and LISA [25]: the number
and resolution of the required simulations eventually require
prohibitive amounts of time or hardware costs. It is therefore
important to exploit recent hardware and software advances
that yield gains in efficiency of these codes. This work is a
step in this direction: we present a first implementation of the
PRS algorithm for domain walls on general purpose graphical
processing units (GPGPUs).

II. DOMAIN WALLS AND THE PRS ALGORITHM

Domain walls arise whenever a discrete symmetry is broken
during a phase transition. The simplest toy model describing
wall networks stems from the Lagrangian density of a scalar
field φ,

L = 1

2
φ,μφ,μ − V0

(
φ2

φ2
0

− 1

)2

, (1)

where the quartic potential V (φ) has two degenerate minima
(and hence the model’s vacuum manifold is comprised of
two disconnected regions). The equations of motion in a
Friedmann-Robertson-Walker universe is obtained by standard
variational techniques, leading to

∂2φ

∂η2
+ α

(
d lna

d lnη

)
1

η

∂φ

∂η
− ∇2φ = −αβ ∂V

∂φ
, (2)

where a is the scale factor and η is the conformal time (related
to physical time t by dη = dt/a). The exact equations of
motion have α = β = 2, but one can show that the numerically
more convenient case where the walls maintain constant
comoving thickness (corresponding to β = 0) still satisfies
the appropriate momentum conservation laws provided one
simultaneously uses α = 3. This is the key insight behind the
PRS algorithm [6].

This equation can be discretized [6] and the evolution of
walls is then described by a first-order (with respect to time)
Crank-Nicholson, second-order staggered leap-frog scheme,
comprised of three different (embarrassingly parallel) steps

2470-0045/2017/96(4)/043310(6) 043310-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.96.043310

J. R. C. C. C. CORREIA AND C. J. A. P. MARTINS PHYSICAL REVIEW E 96, 043310 (2017)

which in the 2D case can be written

(∇2φ)i,j = φi+1,j + φi−1,j + φi,j+1 + φi,j−1 − 4φi,j , (3)

φ̇
n+1/2
i,j = (1 − δ)φ̇n−1/2

i,j + �η
(∇2φn

i,j − ∂V/∂φn
i,j

)
1 + δ

, (4)

φn+1
i,j = φn

i,j + �ηφ̇
n+1/2
i,j (5)

(with a straightforward extension to the 3D case), where the
damping term δ is given by the expression

δ = 1

2
α

�η

η

d lna

d lnη
. (6)

In order to characterize wall network evolution, two diagnostic
quantities are used. The first is the comoving wall area per unit
volume (akin to a density),

ρ = A

V
=

∫
n · d A = �A

∑
links

δ±
∇φ

|φ,x | + |φ,y | + |φ,z| . (7)

To calculate the area one finds neighboring points where
the field changes sign (links), corresponding to an energy
concentration associated with the φ = 0 local maximum of
the field potential. If a link crosses a wall δ± equals unity;
otherwise, it vanishes. This has been shown to be a robust
method to calculate the area [26]. The second quantity is
the square of the product of the average (root-mean squared)
velocity v of the network and the corresponding Lorentz factor.
This can be calculated from the sum of the ratio between the
kinetic and potential energy of each wall (respectively denoted
Ek and V),

(γ v)2 = 1

2N

∑
walls

Ek

V (φ)
, (8)

where γ = 1/
√

1 − v2 is the Lorentz factor, and the sum is
over the number N of grid points containing walls, as identified
in the previous step.

It is known from analytic arguments [1,2], confirmed with
high-resolution simulations [7,8], that wall networks in a
universe whose scale factor grows as a power law (such as
the radiation or matter dominated eras) allowed to evolve for a
sufficiently long dynamical range will reach an attractor linear
scaling solution which numerically corresponds to

ρ ∝ ημ, γ v ∝ ην, (9)

where μ = −1 and ν = 0. For simulations with a smaller
dynamic range this asymptotic regime may not be reached,
which can be identified by a dependence of the exponents
μ and ν on the box size [27,28]. The purpose of this paper
is to present a parallel implementation of the PRS algorithm
for two-dimensional (2D) and 3D domain walls which runs on
GPGPUs, using the behavior of these two quantities to validate
the implementation.

III. IMPLEMENTATION, SPEEDUPS,
AND ERROR ANALYSIS

Our GPGPU implementation of wall network evolution
uses the Open Computing Language (OpenCL) 1.2 framework
as specified by the Khronos Consortium [29] and implemented

by Apple, Inc., and was developed and tested on a machine
equipped with a Radeon R9 M395 Graphics Processing
Unit, possessing 28 compute units clocked at 834 MHz, and
2048 MB total video memory clocked at 1365 MHz. On the
same machine, the sequential reference version of the same
code ran on a Intel i5 6600k with 3.3 Ghz core clock (can
boost to 3.9 GHz) and 8192 MB of system memory (clocked
at 1867 MHz).

In OpenCL, applications are subdivided in data-parallel
functions named kernels, which are to be compiled at run-time
(Just In-Time compilation). Each step of the PRS algorithm
corresponds to a kernel, and so do the velocity and density
calculations, with a separate kernel for the sums. These kernels
execute in order, one time step at a time. For the sum reduction
kernel, we use the scalar version of the kernel in [30]. The
reason for not using the vector one (where instead of using
vector datatypes like float4, one would use float, for instance),
is that the preferred vector width1 of the device in question is,
for both double and floating point types,

CL_DEVICE_NATIVE_VECTOR_WIDTH_FLOAT: 1
CL_DEVICE_PREFERRED_VECTOR_WID-

TH_FLOAT: 1
CL_DEVICE_NATIVE_VECTOR_WIDTH_DOUBLE: 1
CL_DEVICE_PREFERRED_VECTOR_WID-

TH_DOUBLE: 1

so it is equivalent to use either kernel. The sum reduction
kernel computes a partial sum for each local memory2 patch,
and all partial sums are transferred back to the host side,
summed and written to disk. The only role of the CPU is
to sum the partial sums which result from the calculation of
the velocity and the density. As a small optimization we use
two queues running asynchronously with respect to each other,
ensuring overlap between execution of compute kernels and
data transfer operations.

Our code is compatible with both double and single
precision, though it should be noted that consumer facing
graphics cards usually have much lower peak operations per
second and as such there is a severe speed penalty in utilizing
double precision (for AMD cards based on the Graphics
Core Next architecture this varies between 1/2 and 1/16 of
peak single precision operations per second [31,32]). This
expectation is confirmed by our analysis, summarized in Fig. 1,

1The OpenCL compiler automatically packs the preferred number
of work items or threads into single-instruction-multiple-data lanes
and henceforth takes advantage of the native vector width. The native
width is the number of elements a vector arithmetic logic unit can
process at once.

2The OpenCL memory model describes several types of memory:
global (which on a graphics card corresponds to video memory), local
(a fast-access cache on each compute unit), constant (technically part
of video memory as well, but constant), and private (memory bound
to each work item or thread). There is a tendency in this code to try to
utilize local memory whenever possible, due to its faster access times.
We note that we still need to port two kernels to use local memory:
the Laplacian and the density kernel. Concatenation of kernels should
also follow suit, in order to reduce the number of times one copies to
and from memory.

043310-2

GENERAL PURPOSE GRAPHICS-PROCESSING-UNIT . . . PHYSICAL REVIEW E 96, 043310 (2017)

FIG. 1. Top left: estimate of the time wasted in data transfer, or how good the overlap between compute and data transfer is, for different box
sizes. Bottom left: roofline model for the 2D implementation. Right: relative speed-up of the parallel version when compared to the sequential
one, for both single (blue) and double (orange) precision, for 2D (top) and 3D (bottom) simulations.

which also highlights the large relative speedup of going
parallel provided the box size is large enough to fully exploit
a GPU.

We also note a few characteristics of the implementation.
The fields are represented in memory using buffer data (linear
contiguous), and the number of threads (work items) spawned

FIG. 2. Relative error between sequential and parallel code implementations, with 20482 boxes (top panels) and 1283 (bottom panels), for
both single (blue) and double precision (orange), for the wall density (left panels) and the velocity (right panels).

043310-3

J. R. C. C. C. CORREIA AND C. J. A. P. MARTINS PHYSICAL REVIEW E 96, 043310 (2017)

TABLE I. Scaling exponents μ and ν (with 1σ statistical errors)
for single and double precision runs, calculated using the points
beyond log(η) = 2.58 for both 20482 and 1283 simulations.

μ ν

20482

Single precision −0.9381 ± 0.0003 −0.0374 ± 0.0005
Double precision −0.9381 ± 0.0003 −0.0374 ± 0.0005

1283

Single precision −0.956 ± 0.003 −0.034 ± 0.006
Double precision −0.905 ± 0.002 −0.025 ± 0.004

are always equal to the number of points in a box. The
OpenCL compiler (and the underlying hardware) handle the
distribution of threads automatically. The implementation has
low arithmetic intensity, and seems mostly compute bound
(when taking local memory bandwidth into account; see
roofline model in Fig. 1). From AMD’s CodeXL, we report that
all kernels have an occupancy of 70% and the main bottleneck
on the number of waves per SIMD unit seems to be the number
of scalar registers (96 are used, which corresponds to a score
of 8/10; below 81 would be ideal). The tool also shows that the
implementation would highly benefit from more local memory
and more vector register usage (where 4–23 vector registers are
used, depending on the kernel). A prime example of a kernel
which could still benefit from local memory usage would be the
density kernel (25.81% of run time, the most time-consuming
kernel), where locality could be a way to tile memory. This
is not to say that we don’t already employ local memory in
some places; examples include the velocity kernel (where we

highlight the increased granularity of atomic additions needed
to count the number of walls, as seen in [33]).

In order to quantify if there is a data transfer bottleneck,
we first remark how the overlap between compute and data
transfer works: one has two different queues, one for data
transfer, one for kernel execution, and using events one triggers
data transfer upon completion of the partial sums kernel.
Unfortunately, to allow for overlap, the enqueueing of data
transfers needs to be nonblocking. After enqueueing some
kernels, it is important to wait for the data transfers to complete
(to ensure the sum of partial sums isn’t summing over garbage).
Since the waiting time will also include waiting for compute
kernels to finish (again enqueueing kernels is a nonblocking
operation) we estimate the time taken by data transfer to
roughly correspond to the difference between waiting time
and total kernel execution time. Comparing to the run time
reveals that data transfer is only a bottleneck in low resolution
boxes.

Significant loss of precision need not occur from single
precision, though in OpenCL division and square root opera-
tions do not generally apply correct rounding as prescribed
by the IEEE754 specification. For this graphics card (and
implementation), a JIT compiler flag can enable it by passing
the option -cl-fp32-correctly-rounded-divide-sqrt for single
precision arithmetic only. Since this option is not available
for double precision, we compare the sequential and paral-
lel implementations for the two aforementioned diagnostic
quantities, either using single or double precision. To do so we
evolve several boxes with the described settings using the same
initial conditions across the board (generated by the single
precision code, to avoid hamstringing the single precision
version at initial time steps due to typecasting rounding
errors).

FIG. 3. Evolution of the density (ρ, left panels) and the velocity (γ v, right panels), for 20482 and 1283 box simulations (top and bottom
panels, respectively), showcasing the expected scaling behavior.

043310-4

GENERAL PURPOSE GRAPHICS-PROCESSING-UNIT . . . PHYSICAL REVIEW E 96, 043310 (2017)

In both the double and the single precision case, the
differences between the parallel and sequential versions seem
to be negligible after the early time steps, once the wall
networks have eased the “numerical” initial conditions in the
box and are approaching the scaling solution. Both errors seem
bound by the maximum precision specified by their data types
(for this specific machine and as dictated by the FLT_DIG
and DBL_DIG macros) at latter time steps. This can be seen
in Fig. 2. Note that the single precision case tends to incur a
much larger error during the initial time steps.

As a final validation, we use sets of five single and double
precision runs of 20482 and 1283 boxes to calculate the scaling
exponents defined in Eq. (9). The same set of five fixed seeds
is used both in single and in double precision. The scaling
exponents are calculated using a linear fit and ignoring the early
part of the simulations (whose dynamics is still dominated by
the initial conditions). The calculated exponents are listed in
Table I, and are in agreement with previous simulations of
boxes of these sizes with CPU versions of the code [27,28].
The listed uncertainties are statistical, from the average of
each set of five runs (this is the relevant comparison here);
additional systematic uncertainties in these diagnostics are
discussed in [8]. Figure 3 depicts the evolution of the density
and the velocity, illustrating the expected approach to the
scaling behavior.

IV. CONCLUSION

We have ported a previous sequential code based on the
PRS algorithm to a parallel OpenCL-based implementation,

specifically optimized to the GPU used. This highlights the
point that even with a consumer grade graphics card reasonable
speedups are to be expected, provided a large enough box size
is used. We also investigated the possible loss of precision.
The fastest version but with higher error corresponds to the
single precision version with compiler flag -cl-fp32-correctly-
rounded-divide-sqrt. Both the single and double precision
version yield consistent results for the scaling diagnostics
(keeping in mind that larger boxes yield better results).

The bottleneck at larger box sizes will be the amount of
memory available to the graphics card; this might be lessened
by reducing memory usage. Changing graphics card will
require reoptimization of the code. Further ongoing work
includes optimization for central processing units (as OpenCL
guarantees portability of code—minor implementation differ-
ences aside—but not optimized execution for all types of
devices) and a comparison between the parallel codes on
the GPU and on the CPU. After these further validations
and verifications we expect that the GPU domain wall codes
may be used for generating large sets of production runs for
astrophysical exploitation.

ACKNOWLEDGMENTS

This work was done in the context of Project No.
PTDC/FIS/111725/2009 (FCT, Portugal), with additional sup-
port from Grant No. UID/FIS/04434/2013. C. J. A. P. M. is
supported by an FCT Research Professorship, Contract refer-
ence No. IF/00064/2012, funded by FCT/MCTES (Portugal)
and POPH/FSE (EC).

[1] T. W. B. Kibble, J. Phys. A 9, 1387 (1976).
[2] A. Vilenkin and E. P. S. Shellard, Cosmic Strings and Other

Topological Defects (Cambridge University Press, Cambridge,
UK, 1994).

[3] T. W. B. Kibble, Nucl. Phys. B 252, 227 (1985).
[4] C. J. A. P. Martins and E. P. S. Shellard, Phys. Rev. D 54, 2535

(1996).
[5] C. J. A. P. Martins, Defect Evolution in Cosmology and

Condensed Matter: Quantitative Analysis with the Velocity-
Dependent One-Scale Model (Springer, Berlin, 2016).

[6] W. H. Press, B. S. Ryden, and D. N. Spergel, Astrophys. J. 347,
590 (1989).

[7] C. J. A. P. Martins, I. Y. Rybak, A. Avgoustidis, and E. P. S.
Shellard, Phys. Rev. D 93, 043534 (2016).

[8] C. J. A. P. Martins, I. Y. Rybak, A. Avgoustidis, and E. P. S.
Shellard, Phys. Rev. D 94, 116017 (2016).

[9] J. Briggs, S. J. Pennycook, E. P. S. Shellard, C. J. A. P.
Martins, M. Woodacre, and K. Feind, Unveiling the Early
Universe: Optimizing Cosmology Workloads for Intel Xeon Phi
Coprocessors in an SGI UV2000 System (SGI/Intel White Paper,
2014).

[10] D. P. Bennett and F. R. Bouchet, Phys. Rev. D 41, 2408 (1990).
[11] B. Allen and E. P. S. Shellard, Phys. Rev. Lett. 64, 119

(1990).
[12] C. J. A. P. Martins and E. P. S. Shellard, Phys. Rev. D 73, 043515

(2006).

[13] K. D. Olum and V. Vanchurin, Phys. Rev. D 75, 063521
(2007).

[14] J. J. Blanco-Pillado, K. D. Olum, and B. Shlaer, Phys. Rev. D
83, 083514 (2011).

[15] J. N. Moore, E. P. S. Shellard, and C. J. A. P. Martins, Phys. Rev.
D 65, 023503 (2001).

[16] T. Hiramatsu, Y. Sendouda, K. Takahashi, D. Ya-
mauchi, and C.-M. Yoo, Phys. Rev. D 88, 085021
(2013).

[17] M. Hindmarsh, J. Lizarraga, J. Urrestilla, D.
Daverio, and M. Kunz, Phys. Rev. D 96, 023525
(2017).

[18] A. Lopez-Eiguren, J. Urrestilla, and A. Achúcarro, JCAP 01
(2017) 020.

[19] A. Achucarro, A. Avgoustidis, A. M. M. Leite, A. Lopez-
Eiguren, C. J. A. P. Martins, A. S. Nunes, and J. Urrestilla,
Phys. Rev. D 89, 063503 (2014).

[20] P. McGraw, Phys. Rev. D 57, 3317 (1998).
[21] M. Hindmarsh, K. Rummukainen, and D. J. Weir, Phys. Rev. D

95, 063520 (2017).
[22] P. A. R. Ade et al. (Planck Collaboration), Astron. Astrophys.

571, A25 (2014).
[23] J. Aasi et al. (VIRGO, LIGO Scientific), Phys. Rev. Lett. 112,

131101 (2014).
[24] F. Finelli et al. (CORE Collaboration), arXiv:1612.08270 [astro-

ph.CO].

043310-5

https://doi.org/10.1088/0305-4470/9/8/029
https://doi.org/10.1088/0305-4470/9/8/029
https://doi.org/10.1088/0305-4470/9/8/029
https://doi.org/10.1088/0305-4470/9/8/029
https://doi.org/10.1016/0550-3213(85)90439-0
https://doi.org/10.1016/0550-3213(85)90439-0
https://doi.org/10.1016/0550-3213(85)90439-0
https://doi.org/10.1016/0550-3213(85)90439-0
https://doi.org/10.1103/PhysRevD.54.2535
https://doi.org/10.1103/PhysRevD.54.2535
https://doi.org/10.1103/PhysRevD.54.2535
https://doi.org/10.1103/PhysRevD.54.2535
https://doi.org/10.1086/168151
https://doi.org/10.1086/168151
https://doi.org/10.1086/168151
https://doi.org/10.1086/168151
https://doi.org/10.1103/PhysRevD.93.043534
https://doi.org/10.1103/PhysRevD.93.043534
https://doi.org/10.1103/PhysRevD.93.043534
https://doi.org/10.1103/PhysRevD.93.043534
https://doi.org/10.1103/PhysRevD.94.116017
https://doi.org/10.1103/PhysRevD.94.116017
https://doi.org/10.1103/PhysRevD.94.116017
https://doi.org/10.1103/PhysRevD.94.116017
https://doi.org/10.1103/PhysRevD.41.2408
https://doi.org/10.1103/PhysRevD.41.2408
https://doi.org/10.1103/PhysRevD.41.2408
https://doi.org/10.1103/PhysRevD.41.2408
https://doi.org/10.1103/PhysRevLett.64.119
https://doi.org/10.1103/PhysRevLett.64.119
https://doi.org/10.1103/PhysRevLett.64.119
https://doi.org/10.1103/PhysRevLett.64.119
https://doi.org/10.1103/PhysRevD.73.043515
https://doi.org/10.1103/PhysRevD.73.043515
https://doi.org/10.1103/PhysRevD.73.043515
https://doi.org/10.1103/PhysRevD.73.043515
https://doi.org/10.1103/PhysRevD.75.063521
https://doi.org/10.1103/PhysRevD.75.063521
https://doi.org/10.1103/PhysRevD.75.063521
https://doi.org/10.1103/PhysRevD.75.063521
https://doi.org/10.1103/PhysRevD.83.083514
https://doi.org/10.1103/PhysRevD.83.083514
https://doi.org/10.1103/PhysRevD.83.083514
https://doi.org/10.1103/PhysRevD.83.083514
https://doi.org/10.1103/PhysRevD.65.023503
https://doi.org/10.1103/PhysRevD.65.023503
https://doi.org/10.1103/PhysRevD.65.023503
https://doi.org/10.1103/PhysRevD.65.023503
https://doi.org/10.1103/PhysRevD.88.085021
https://doi.org/10.1103/PhysRevD.88.085021
https://doi.org/10.1103/PhysRevD.88.085021
https://doi.org/10.1103/PhysRevD.88.085021
https://doi.org/10.1103/PhysRevD.96.023525
https://doi.org/10.1103/PhysRevD.96.023525
https://doi.org/10.1103/PhysRevD.96.023525
https://doi.org/10.1103/PhysRevD.96.023525
https://doi.org/10.1088/1475-7516/2017/01/020
https://doi.org/10.1088/1475-7516/2017/01/020
https://doi.org/10.1088/1475-7516/2017/01/020
https://doi.org/10.1088/1475-7516/2017/01/020
https://doi.org/10.1103/PhysRevD.89.063503
https://doi.org/10.1103/PhysRevD.89.063503
https://doi.org/10.1103/PhysRevD.89.063503
https://doi.org/10.1103/PhysRevD.89.063503
https://doi.org/10.1103/PhysRevD.57.3317
https://doi.org/10.1103/PhysRevD.57.3317
https://doi.org/10.1103/PhysRevD.57.3317
https://doi.org/10.1103/PhysRevD.57.3317
https://doi.org/10.1103/PhysRevD.95.063520
https://doi.org/10.1103/PhysRevD.95.063520
https://doi.org/10.1103/PhysRevD.95.063520
https://doi.org/10.1103/PhysRevD.95.063520
https://doi.org/10.1051/0004-6361/201321621
https://doi.org/10.1051/0004-6361/201321621
https://doi.org/10.1051/0004-6361/201321621
https://doi.org/10.1051/0004-6361/201321621
https://doi.org/10.1103/PhysRevLett.112.131101
https://doi.org/10.1103/PhysRevLett.112.131101
https://doi.org/10.1103/PhysRevLett.112.131101
https://doi.org/10.1103/PhysRevLett.112.131101
http://arxiv.org/abs/arXiv:1612.08270

J. R. C. C. C. CORREIA AND C. J. A. P. MARTINS PHYSICAL REVIEW E 96, 043310 (2017)

[25] P. Binétruy, A. Bohé, C. Caprini, and J.-F. Dufaux, JCAP 06
(2012) 027.

[26] B. S. Ryden, Astrophys. J. 333, L41 (1988).
[27] A. M. M. Leite and C. J. A. P. Martins, Phys. Rev. D 84, 103523

(2011).
[28] J. R. C. C. C. Correia, I. S. C. R. Leite, and C. J. A. P. Martins,

Phys. Rev. D 90, 023521 (2014).
[29] A. Munshi, OpenCL 1.2 Specification, Tech. Rep., 2012 (un-

published).

[30] M. Scarpino, OpenCL in Action (Manning Publications, Shelter
Island, New York, 2011), pp. 1–458.

[31] AMD Graphics Core Next Architecture, Tech. Rep., 2012
(unpublished).

[32] AMD OpenCL Optimisation Guide, Tech. Rep., 2014 (unpub-
lished).

[33] S. OpenCL, Performance of atomics, 2013, http://simpleopencl.
blogspot.pt/2013/04/performance-of-atomics-atomics-in.html.

043310-6

https://doi.org/10.1088/1475-7516/2012/06/027
https://doi.org/10.1088/1475-7516/2012/06/027
https://doi.org/10.1088/1475-7516/2012/06/027
https://doi.org/10.1088/1475-7516/2012/06/027
https://doi.org/10.1086/185284
https://doi.org/10.1086/185284
https://doi.org/10.1086/185284
https://doi.org/10.1086/185284
https://doi.org/10.1103/PhysRevD.84.103523
https://doi.org/10.1103/PhysRevD.84.103523
https://doi.org/10.1103/PhysRevD.84.103523
https://doi.org/10.1103/PhysRevD.84.103523
https://doi.org/10.1103/PhysRevD.90.023521
https://doi.org/10.1103/PhysRevD.90.023521
https://doi.org/10.1103/PhysRevD.90.023521
https://doi.org/10.1103/PhysRevD.90.023521
http://simpleopencl.blogspot.pt/2013/04/performance-of-atomics-atomics-in.html

