
OLBS: Offline Location Based Services
P. Coelho1, A. Aguiar2, J. C. Lopes3

1Fraunhofer Portugal AICOS, 2IT Porto/FEUP, 3INESC/FEUP
1pedro.coelho@fraunhofer.pt, 2ana.aguiar@fe.up.pt, 3jlopes@fe.up.pt

Abstract—Most existing location-based services rely on
ubiquitous connectivity to deliver location-based contents
to the users. However, connectivity is not available any-
where at anytime even in urban centres. Underground,
indoors, remote areas, and foreign countries are examples
situations where users commonly do not have guaranteed
connectivity but could profit from location-based contents.
In this work, we propose an open platform for publishing,
distributing and maintaining location-based contents that
can be accessed offline by the user on a mobile device. Ad-
ditionally, we describe the prototype we implemented for
proof of concept consisting of an smartphone application
and a web application backoffice, using 2D-barcodes as
location identifiers. Our prototype provides offline access,
as well as publishing, installing and updating location-
based content.

Index Terms—content delivery; location-based services;
mobile applications; Web-based application; Android OS

I. INTRODUCTION

Mobile phones have evolved into devices with multi-
ple connectivity (3G, bluetooth, WiFi) and capable of a
lot more than just making phone calls, fostering the de-
velopment of a wide range of enhanced applications that
rely on ubiquitous connectivity. Location-based services
(LBS) are very popular among them, offering on-demand
navigation like GoogleMaps [1] or GoogleTransit [2],
identification of nearby restaurants or other points of
interest like Place Directory [3], reviews about nearby
places, like Yelp [4], leaving virtual notes, sharing and
viewing location of people in a social network like
Foursquare [5] or Gowalla [6], among many others.

However, connectivity is far from being ubiquitous
and it will be long before it is so for everyone due
to a wide range of reasons, raging from actual lack of
wireless connectivity to lack of financial capability to
access it. The first case is true for several areas outside
of the main urban centres where cellular data services are
not available, or underground and indoors areas, where
cellular coverage is poor and WiFi access points are not
freely accessible. Moreover, not all mobile devices that
might be used for LBS are equipped with both cellular

and WLAN connectivity, e.g. the iPod Touch. On the
other hand, while the high costs that keep ubiquitous
wireless access from being universal tend to disappear
within national borders, but not outside them. Although
tourists/travellers configure a main target group for LBS,
the need to be online associates prohibitive costs with the
use of such applications for many users.

Navigation and tourist guide applications have re-
cently shown a tendency to offer offline access to
contents. The downturn of these solutions is that they
provide the contents in a proprietary format embedded
into applications. Even when user-produced data sharing
is built-in, it is only possible within each application, as
in Gowalla or Foursquare. This state of affairs forces
the user to download, get acquainted with and use a
multitude of different applications for different purposes,
geographical areas and types of content. A cachable
version of GMaps is still one of the most requested
items in the category Location-Based Services of Google
Product Ideas1.

This work proposes an open platform for distributing
and maintaining packages of location-based content that
can be accessed offline on a mobile device. We envision
a platform that enables access to contents associated
with physical places without requiring permanent Inter-
net connectivity. Moreover, the platform should support
various types of location sensors and enable new ones
to be easily added. Finally, the platform should be open,
clearly specifying a format for location-based content
packages, as well as interfaces between different entities
in the platform. Here, we make several contributions
related to the data structures and interfaces necessary
for an open platform. 1) We propose an open and
uniform way to describe the association of contents with
a location, supporting different types of content formats
and different types of location sensors. 2) We specify an
open platform that enables offline access to LBS, namely

1The website is being re-directed by Google, but it is still accessible
if you enter the following url by hand: http://productideas.appspot.
com//#15/e=cf&t=2d8d1

displaying information about a location or displaying
the location on a map together with nearby points of
interest. We do not consider navigation at this stage, as
it would impose a high processing burden on the resource
limited mobile device. 3) We propose a solution to enable
intuitive management (download, update, deletion) of
location packages.

The remainder of this paper is organised as follows:
the next section briefly surveys related work, Section III
describes a uniform representation of location-based
information, Section IV describes the functionality of
the platform and Section V specifies the interfaces,
Section VI describes the proof of concept prototype, and
Section VIII discusses future work and concludes the
paper.

II. RELATED WORK

We divided related work in two main fields: architec-
tures and models for context-aware services, of which
location-based services are a specific case as described
by Abowd et al [7], and existing applications that provide
location-based services. A large amount of effort has
been dedicated to designing architectures, frameworks
and models for context-aware services, and we refer
to [8] for a representative survey and a taxonomy for
their classification. We opted for a middleware appli-
cation architecture, which separates application logic
from low level components, providing scalability and
re-usability to the system, as well as hiding low level
components from the application developer.

A simple hierachical architecture, as proposed in [8],
offers too little flexibility, since we aim at supporting
multiple location sensors, like GPS, RFID [9] or 2D-
barcodes [10]. The Context Toolkit [11] architecture
resembles a peer-to-peer network architecture, where a
widget is associated with a sensor unit, has a particular
state depending on what context information it is moni-
toring and can be queried by applications. Applications
can register to be notified of context changes detected
by a widget through a callback. Composite widgets may
also be used to combine the state of other widgets.
The Context Managing Framework [12] proposes an
architecture that provides distributed components for the
low level sensors (resource servers), which are unified
by the context manager acting like a blackboard. The
context manager then acts as a server to applications. The
context manager, any resource servers, and applications
run on the mobile device itself. Our application borrows
concepts from these two architectures.

Among the wide range of recently emerged LBS
applications, we mention here only a few examples
related to our work. GoogleMaps [1] allows users to
view their location on a map, shows nearby contents
added by other users and offers navigation services.
Place Directory [3] identifies nearby restaurants or other
points of interest, Yelp [4] presents reviews about nearby
places, Foursquare [5] or Gowalla [6] enable sharing
and viewing location of people in a social network,
together with other functionalities, like leaving virtual
notes. These applications, as many others of the kind,
rely on connectivity at the time the users access the
services but do not allow users to take a snapshot of
the data with them for later offline access.

Signpost [10] is an application developed to offer in-
door navigation using camera-enabled devices using vi-
sual markers (2D-barcodes) for indoor location sensing,
and does not rely on connectivity for displaying the user
position on a map and showing nearby points of interest.
However, it uses a closed data format, which requires
that the map and location information be compiled into
a standalone application that offers the service offline
in the form of a closed and proprietary application.
Recently, enhanced user interaction and localisation tech-
niques for location-based services were proposed [13],
but no considerations are made regarding the lack of
ubiquitous connectvity.

The platform that we present in this work differs from
these applications in that it does not requires connectivity
to offer location-based services. We specify a data format
and a communication model between platform compo-
nents, so that anyone can create packages of information
and publish them through the platform, and multiple
information package servers and reading applications can
co-exist and interact.

III. LOCATION, LOCATION IDENTIFIER AND

PACKAGE

In this section, we define the information structure
used to represent places and associated contents.

A Location is a representation of a spot/place in
the physical world. It exists in the virtual world, must
be associated with at least one location identifier and
must be unique within a package. Each location can be
associated with various types of content, where Content
is information stored in a file in one of several supported
formats. A Location Identifier is the output of a location
sensor and identifies a spot/place in the virtual world.
It is the key that binds the spot/place to a location in
the physical world with the location in the virtual world.

The granularity of the place that the location identifier
refers to may vary, ranging from geographic coordinates,
through name of a monument/building, to a room inside
a building or even a static object, like a vending machine
or an exhibit in a museum. A Location Sensor is a device
that associates a spot/place in the physical world with
a location identifier in the virtual world. A Package is
an organisational entity in the platform that aggregates
a collection of Locations and their associated Contents.
These concepts are depicted in Figure 1.

Fig. 1. Overview of the information structure about a place in the
physical world

!"#$%&'()*+

&,-./)('+0#1'2+ 3/1$4('+0#1'2+

5#)(6#7+!*7.#1+ 5#)(6#7+
82*769*1+

5#)(6#7+

:#7$*7$.+

&();(<*+

5#)(6#7+

5#)(6#7+

5#)(6#7+

IV. OLBS: OFFLINE LOCATION-BASED SERVICES

PLATFORM

In this section, we give an overview of the platform
as a whole and describe its functionalities.

A. Platform Overview

We propose a mobile application that communicates
with repositories for retrieving content packages follow-
ing a client-server model, and a specification of the
data formats used to implement the information structure
defined in the previous section. The envisioned use
scenario is that a user choses and downloads content
packages from a repository where they were published,
using the mobile application when he has connectivity.
The contents are stored in the smartphone and the
user can access them later on offline. Additionally, the
user is notified of content package changes so that he
can update his local version. This last functionality is
critical to provide comfortable use of offline versions of
content packages that result from collaboration or that
are regularly improved. A possible use case could be
the content package for the temporary exhibition of a
museum, or a snapshot of GoogleMaps or Yelp.

B. Content Distribution and Management

Content packages must be distributed prior to their
use, remaining stored in the user’s device and being
updated when connectivity is available upon explicit
user request. We propose an approach similar to ex-
isting Linux package distribution systems. A package
management system is a collection of tools to automate
the process of installing, upgrading, configuring, and
removing software packages from a computer. So, a user
pre-installs a package from a repository, and the content
associated with the locations in that package is then
available offline.

A package may suffer updates, additions or dele-
tions, and new packages may be added to the system.
Therefore, the platform includes a package manager that
manages package transactions. The package manager
client is part of the application and the server lies
in a remote backoffice, co-located with the package
repository containing available location-based content
packages. The application connects to the repository
using the package manager to search, add or update
packages. Packet deletion from the mobile application
must currently be explicitly requested by the user.

C. Offline Access

To enable the user to access location-based contents
while offline, the content packages are stored in the
mobile device. Only the organisation and indexation of
contents is done inside the application, while the contents
themselves are stored as files in the file system.

Access to location-based contents is triggered by the
user from inside the application. I. e., the user controls
the process by requesting readings from location sensors
(e.g. a 2D barcode or RFID tag), which respond with
a location trigger to the location manager in the appli-
cation. Upon reception of this trigger, the application
accesses the local database to retrieve the path to the
contents associated with that location, then retrieves and
displays them.

D. Content Publishing

Packages can be prepared by anyone who wishes to
share location-based information for a set of locations,
as long as they follow the specified format. Users who
produce location-based information will from now on
be called publishers. A publisher user management and
authentication system is required, and eventually a rep-
utation system may be added, but those matters are out
of the scope of this work.

V. SPECIFICATION

A. Information Structure

An information package has the attributes name, ver-
sion and description, the latter being useful when the
user is searching for packets. A location has the attributes
name, location identifier and tags. A location identifier
has a single attribute, which is the identifier itself. This is
how a location may be retrieved using not only one but
several identifiers, which can occur in different formats
or sources: data embedded in a 2D barcode, positioning
data retrieved from GPS or other sensors. Each item of
content associated with a location has a name, a path
pointing to the corresponding file in the file system, zero
or more tags to characterize the content and its MIME-
type, in order for the application to know how to handle
it. These structures can be visualised in Figure 3, in
Section VI where we show the structure of the databases
used in the prototype.

B. Application-Repository Interaction

All communication between application and repos-
itory uses HTTP, as the primitives and the request-
response transactions provide all the functionality re-
quired and the stability and robustness of its network
stack are well proven. The backoffice implements a
RESTful webservice that exposes the package, location
and content resources. Therefore, a GET request on
either one of these three resource URLs (e.g. GET
/packages) returns the collection of the respective
entities, whereas a request directed towards a spe-
cific entity identified by a sequential integer (e.g. GET
/packages/2) returns the meta-data of that specific
resource. Similarly, other HTTP verbs may be used
to execute other actions beyond fetching (e.g. using
POST to create new entities). The integer specifying
an entity can be retrieved from the response to GET
on the aggregating resource, i.e. packages for location
identifiers, and locations for contents identifiers. This
is relevant to enable updating single resources within
a package.

A return format may also be specified by append-
ing its standard file extension to the URL (e.g. GET
/locations.xml, or GET /packages/2.json).
If no format is specified, an HTML page describing the
requested entity is returned. Included formats are XML
and JSON.

Between JSON and XML, the first is preferred be-
cause it is light in size and complexity without sacrificing
portability. Though XML may be more descriptive, it is

also more verbose and more complex. Since its verbosity
is of no use in this particular case, the extra amount of
data to be transferred would present no benefit.

As a repository contains files with the actual con-
tents in a binary format besides metadata, these are
compressed in the ZIP format and fetched when the
user downloads a package after fetching its meta-
data. Figure 2 shows an example of a JSON response
when querying a repository for a package listing (GET
/packages.json).

Fig. 2. Example of a package listing response from the repository
[

{
"package": {

"name": "FraunhoferAICOS",
"updated_at": "2010-06-01T18:23:02Z",
"id": 3,
"version": 6

}
},
{
"package": {

"name": "FEUP",
"updated_at": "2010-05-25T19:25:15Z",
"id": 4,
"version": 2

}
}

]

VI. PROTOTYPE

As a proof of concept and verification of the specifica-
tion, we implemented a prototype comprising of a mobile
application for the Android Operating System and a
Web application, containing a repository for content pub-
lishing. Besides verification that the proposed platform
provides the envisioned functionality, the purpose of
implementing and using the prototype was to identify
additional features that might be useful or even required,
for management or usability purposes. The Android
application was set up in an HTC Magic smartphone,
running the Android OS 1.5.

A. Location Sensors

We used 2D-barcodes as a location sensor, similarly to
the Signpost [10] application. We chose QR-Codes since
they have proven to be the most reliable and legible in
tests performed by Kato et al. [14].

B. Backoffice

The backoffice serves as a package repository, imple-
menting a package versioning strategy. Additionally, to

ease package building, it also functions as a package
generator and publisher, converting locations and associ-
ated contents into a package format that the application
can download and read. A publishing interface allows
a publisher to create new packages, add locations to
those packages, edit their meta-data, and add additional
contents to the locations created. Upon generating a
location, the interface exposes a generated QR Code
containing an identifier to the location itself. That QR
Code will later be used as the visual tag that identifies
a location, enabling the mobile application to access
the contents associated with that location. Published
packages may receive additional contents or locations,
or have them removed without affecting the currently
published version of that package. Changes between
versions are also tracked, enabling the publisher to track
when a certain content was added, removed or modified.

Having the platform generate the packages also en-
ables future optimisations, like adapting the formats of
contents to mobile device capabilities. We identify that
process as “content adaptation”.

C. Mobile Application

The mobile application prototype component imple-
ments listing, retrieval and update of packages published
on a single backoffice, as well as location-based content
retrieval, caching and access. It connects to the backof-
fice in order to list, download and install packages or
their updates. The remainder of its operation is done
entirely off-line. Access to contents associated to a
location is done in a simple way: by scanning the QR
Code that marks a location.

D. Packages of Location-based Information

Each package contains locations with associated meta-
data and content stored in files, as specified in Section V.
The list of locations and their meta-data is stored in
a database, together with links to content files in the
file system. This is so both in the repository and in the
application, whereby PostgreSQL was used in the first
because it has a decent fulltext search implementation
out of the box, and SQLite3 was used in the application,
as it is the SQL engine that bundles with Android, featur-
ing also decent capabilities. Figure 3 shows the structure
of both databases, where some differences can be seen
with respect to the specification that proved relevant to
the deployment, like the tags to classify contents or the
timestamps required for the packet versioning in the
repository.

Fig. 3. Database structure for the package repository and application

(a) Repository

(b) Application

VII. A PROTOTYPE PACKAGE

We generated a package for the premises of Fraun-
hofer Portugal AICOS, at Campo Alegre, Porto, which
displays information associated with a location. The
package includes a set of locations that describe a room
or a desk. Each “room” location is associated with
various HTML files that describe the room itself and
the people who work there. “Desk” locations describe
textually via an HTML file the person that works there,
attaching a picture of that person. These locations also
describe the projects that the person positioned there
works on, through text, pictures and sometimes video

or sound. The test package contained 17 locations, each
with 1 to 9 associated content files of type HTML, JPG
or PNG. The package contained 9 PNG files, 23 JPG,
29 HTML and 1 GIF, adding up to a package file size of
6,403,947 Bytes2, an acceptable value for state-of-the-art
mobile devices.

The package was built entirely using the back-office,
and installed or updated using the mobile application.
Locations can be added or removed, meta-data edited and
published, creating a new version of the package, which
triggers an update notification when the mobile device is
within the range of an WLAN and the mobile application
is started. All these interactions works as planned, thus
making the prototype fully functional.

The application was successfully deployed in the sce-
nario depicted above. It performs as it should, displaying
off-line content triggered by a QR Code scan positioned
at the physical location. The mobile application currently
occupies 512 kB in the smartphone’s internal memory,
while the relational database fits in an extra 8 kB,
providing it stores only the meta-information of the
test package. The total sum is 520 kB occupied in the
smartphone’s internal storage for the application and the
package meta-data and roughly 6.5 megabytes in the
external storage, in this case an SD card, for the content
files.

VIII. CONCLUSIONS

We propose Offline Location Based Services an initial
step towards an open platform for publishing, distribut-
ing and maintaining location-based contents that can
be accessed offline by the user on a mobile device.
Location-based contents are organised into packages that
can be downloaded and stored on the mobile device for
offline use.The platform consists of a backoffice that has
a repository for location packages, which are managed in
a way similar to software package managers, providing
a friendly way for the user to list, download, update
and remove packages from his device. Additionally, the
platform provides a de-coupling between location sen-
sors and information associated with a location, enabling
the support of more than one location sensing technol-
ogy. The platform is designed to provide two common
functionalities associated with location-based services:
delivering information associated with a location and
pinpointing the user’s location on a map.

We implemented a prototype of the platform on a
state-of-the-art Android smartphone using 2D-barcodes

2The package size is the sum of the file sizes, since no content
adaptation is implemented at this stage.

as visual marker for proof of concept. We verified
that the prototype works as expected with respect to
package generation, publishing, editing, updating, and
accessing the contents offline. The prototype backoffice
and application are published under the LGPL license
and can be downloaded from the following locations:
http://github.com/punnie/OpenLBS-Backoffice and http:
//github.com/punnie/OpenLBS-Android.

Currently, the prototype only implements viewing
contents associated with a location, and the next step
is the implementation of the pinpointing functionality,
followed by content adaptation. Another open matter is
the design of an algorithm to suggest packet deletions
in the mobile application. Further work also includes
extending the platform to enable users to add information
to a location offline and synchronising it at a later time.
This will enable a more powerful interaction between the
users and the environment.

REFERENCES

[1] Google. Google maps api. [Online]. Available: http://code.
google.com/apis/maps/

[2] ——. Google maps transit. [Online]. Available: http://maps.
google.com/help/maps/transit/

[3] ——. Place directory. [Online]. Available: http://googlemobile.
blogspot.com/2009/06/places-directory-app-for-android.html

[4] Yelp. [Online]. Available: http://www.yelp.com/
[5] Foursquare. [Online]. Available: http://foursquare.com/
[6] Gowalla. [Online]. Available: http://gowalla.com
[7] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith,

and P. Steggles, “Towards a better understanding of context and
context-awareness,” in HUC ’99: Proceedings of the 1st inter-
national symposium on Handheld and Ubiquitous Computing.
London UK: Springer-Verlag, 1999, pp. 304–307.

[8] M. Baldauf, S. Dustdar, and F. Rosenberg, “A survey on context-
aware systems,” Int. J. Ad Hoc Ubiquitous Comput., vol. 2,
no. 4, pp. 263–277, 2007.

[9] H. D. Chon, S. Jun, H. Jung, and S. W. An, “Using rfid for
accurate positioning,” Journal of Global Positioning Systems,
vol. 3, no. 1-2, pp. 32–39, 2004.

[10] A. Mulloni, D. Wagner, I. Barakonyi, and D. Schmalstieg,
“Indoor positioning and navigation with camera phones,” IEEE
Pervasive Computing, vol. 8, no. 2, pp. 22–31, 2009.

[11] D. Salber, A. K. Dey, and G. D. Abowd, “The context toolkit:
aiding the development of context-enabled applications,” in CHI
’99: Proceedings of the SIGCHI conference on Human factors
in computing systems. New York, NY, USA: ACM, 1999, pp.
434–441.

[12] P. Korpipaa, J. Mantyjarvi, J. Kela, H. Keranen, and E.-J.
Malm, “Managing context information in mobile devices,” IEEE
Pervasive Computing, vol. 2, no. 3, pp. 42–51, 2003.

[13] D. McGookin, C. Magnusson, M. Anastassova, W. Heuten,
A. Renteria, and S. Boll, Eds., Proc. of Workshop on Multimodal
Location Based Techniques for Extreme Navigation at Pervasive
2010. FP7 Project ”HaptiMap”, May 2010.

[14] H. Kato and K. T. Tan, “Pervasive 2d barcodes for camera phone
applications,” IEEE Pervasive Computing, vol. 6, pp. 76–85,
2007.

