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ABSTRACT 
In this article, modal sensing via spatially shaped distributed piezoelectric transducers is inves-
tigated for beams. A simple beam model considering the electromechanical coupling effects is 
presented and the spatially distribution of modal sensors is discussed and assessed. 
 

1. INTRODUCTION 
The concept of using spatially shaped distrib-

uted piezoelectric transducers in order to filter 
out undesirable mode’s contributions, making 
them unobservable to the shaped sensor’s voltage 
over the bandwidth of interest, in the field of ac-
tive vibration (AVC) and/or structural acoustic 
control (ASAC), has been extensively investi-
gated since the 1980s [Lee et al. (1991)]. Some 
of the most representative studies include modal 
sensors [Lee and Moon (1990)] and spatial filter-
ing [Collins et al. (1994)] technologies. 

In this article, modal sensing via spatially sha-
ped distributed piezoelectric transducers is inves-
tigated for beams. With that purpose, a simple 
beam model considering the electromechanical 
coupling effects is presented and the spatially dis-
tribution of modal sensors is discussed. A case 
study of a clamped beam is considered and the 
modal sensing performance is assessed by means 
of sensing voltage to transverse force loading fre-
quency response functions (FRFs). 

2. MECHANICAL MODEL OF THE BEAM 

Following the well known Euler-Bernoulli as-
sumptions for thin beams, the transverse vibra-
tion of beams with a constant cross sectional area 
is governed by [Timoshenko et al. (1974)] 
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where  and t  are the beam’s spatial and time 
coordinates,  is the beam’s transverse dis-
placement, 

x
( , )w x t
( , )f x t  is a distributed transverse for-

ce,  is the Young modulus,  is the cross sec-

tional area,  is the second-order moment of 
area and  the mass density and the subscript b  
is used to denote beam quantities. 
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The solution of the governing equation of mo-
tion in Eq. (1) might be expressed as a linear 
combination of the mode shapes, 
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where  and  are the  mode shape 
and modal coordinate, respectively.  
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3. PIEZOELECTRIC SENSING 

For piezoelectric materials of the crystal class 
mm2 polarized in the transverse direction, the 
one-dimensional sensing behavior is given by 

 , (3) 3 31 11
TD e Eε= − 33∈ 3

where  is the piezoelectric stress constant, 31e T
33∈  

is the dielectric constant under constant stress and 
 and  are the transverse electric displace-

ment and electric field, respectively. 
3D 3E

According to the Euler-Bernoulli assumptions, 
the extensional strain component is given by 
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where  is the spatial coordinate in the trans-
verse direction, starting at the beam neutral axis. 

z

If the electrodes are short-circuited, the enfor-
ced electric field will be zero, i.e., . Thus, 
considering Eq. 

3 0E =
(3), the transverse electrical dis-

placement is related with the enforced strain by 
. Integrating the electrical displace-

ment over the electrode/piezoelectric patch area 
3 31 1D e ε= 1
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eA , and considering the mechanical strain defini-
tion in Eq. (4), the induced electric charge , 
due to the enforced mechanical strain, is given by 
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where ,  and  denote the beam’s thick-
ness, width and length, respectively, and  is 
a spatial sensitivity function of an arbitrary sha-
ped piezoelectric sensor, comprised in the int-
erval , so that , which re-
presents the effective area of the electro-
de/piezoelectric patch over which the electric dis-
placement is integrated. The sensing voltage  
is then proportional to the electric charge, 
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where  is the piezoelectric patch capacitance, 
defined in terms of the effective electrode area so 
that 

pC
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According to Eq. (6), the sensing voltage is de-
fined in terms of the beam’s curvature and de-
pends of the chosen spatial sensitivity function. 

4. SPATIAL MODAL FILTERING 

Consider the beam with an arbitrary spatially 
shaped distributed piezoelectric sensor as de-
picted in Fig. 1. Substituting the modal expansion 
of the transverse displacement defined in Eq. (2) 
into Eq. (6), yields 
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Thus, considering the spatial sensitivity function 
 proportional to the generic  modal strain 

distribution along the length of the beam, i.e., 
( )S x ths
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where  is a normalization factor, and substitu-
ting Eq. 

sα
(9) into (8), yields 
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According to the orthonormality properties of the 
modal functions, Eq. (10) reduces to 
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which is to say that the sensing voltage is only 
proportional to the  mode contribution to the 
net vibratory response of the beam, thus acting as 
a modal sensor filter tuned only to the  mode, 
filtering all the other mode’s contributions. 
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Figure 1: Generic beam structure with an arbitrary 
spatially shaped distributed piezoelectric sensor.

In general, if we want to sense more than one 
mode shape, i.e., to define a specific bandwidth 
over which the modal sensor should work or spe-
cific modes to be sensed, Eq. (9) can be general-
ized to 
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where  is the upper mode number of the band-
width of interest,  are the mode numbers of the 
modes that we wish to make unobservable and  
is another multimode normalization factor. Thus, 
Eq. 

l
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(11) can also be generalized to 
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This can be seen as an interesting strategy to 
alleviate the spillover effects by restringing the 
observability of the sensor to the specific modes 
or bandwidth of interest by tailoring the electrode 
profile according to Eq. (12). 
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5. FREQUENCY RESPONSE FUNCTION 

Considering an harmonic concentrated trans-
verse force disturbance of amplitude F ocated at 
x = o that 

 l
x , sF

 j( , ) ( )e t
Ff x t F x x ωδ= − , (14) 

the sensing voltage to force FRF, considering the 
modal filtering approach in Eq. (13), is given by 
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6. CASE STUDY 

In order to illustrate the modal filtering ap-
proach a case study comprising a cantilever beam 
with a spatially shaped distributed modal piezo-
electric sensing patch along the length of the 
beam is considered. The sensor is  thick 
and the beam’s dimensions are mm. 
The aluminum beam and piezoelectric patch (a 
generic PVDF) material properties are given in 
Tab. 

m50 μ
20 3 400× ×

1. 

Table 1: Material properties of the beam and PVDF.

Aluminum PVDF 
[Pa]bE  970 10×  2

31 [C m ]e − 0.025  
-3[Kg m ]bρ  2700  -1[Fm ]T

33∈ 12100 10−×

 
In order to demonstrate the effectiveness of the 

odal sensors to turn specific modes unobserv-
ab

mode sensors 

m

m
le according with the shape of the sensor, two 

situations were considered. In the first one, the 
sensor was tailored so that only the 1st flexural 
mode of vibration is observed. In the second case 
the design purpose was to make all but the 2nd 
and 4th modes unobservable. The correspondent 
single and multimode sensor shapes and the cor-
respondent sensing voltage to force FRFs to a 
transverse force applied at the free edge of the 
beam are presented in Figs. 2 and 4 and Figs. 3 
and 5, respectively. Moreover, the results are also 
compared with the ones obtained with a uniform-
ly distributed piezoelectric sensor. 

As can be seen, when compared with the uni-
form sensor, the single and multi

anage to filter out the unwanted modal contri-
butions. 

 
Figure 2: Shape of the tailored piezoelectric single 
mode sensor tuned to the 1st mode. 

 
Figure 3: Sensing voltage to force FRF of the modal 
(1st mode) and uniform sensors.

 
Figure 4: Shape of the tailored piezoelectric multi-
mode sensor tuned to the 2nd and 4th modes. 

 
Figure 5: Sensing voltage to force FRF of the modal 
(2nd and 4th modes) and uniform sensors.

y shaped 
tric transducing technologies 

7. CONCLUSION 

In this article modal sensors via spatiall
distributed piezoelec
were investigated and successfully shown to meet 
the design purposes. A simple beam model con-
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sidering the electromechanical coupling effects 
was presented and the spatially distribution of 
modal sensors was discussed and assessed. 

It was shown that modal sensors can effec-
tively be used to reduce spillover effects due to 
unobserved model dynamics avoiding, in some 
extent, the use of electronic or digital filtering in 
vibration control applications. Furthermore, an-
other interesting feature observed is that the in-
duced electrical signal for modal sensors was 
shown to be, in general, higher than the one ob-
tained with uniform sensors. Therefore, this fea-
ture can be very interesting for dissipation or 
damping purposes using shunted piezoelectric 
transducers since the electromechanical coupling 
is higher for modal sensors therefore allowing 

more mechanical to electrical energy conversion 
and energy (electrical) to be dissipated. 
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