Hugo Miguel Oliveira Romualdo Simoes

Amortised Resource Analysis

for

Lazy Functional Programs

Departamento de Ciéncia de Computadores
Faculdade de Ciéncias da Universidade do Porto

Fevereiro de 2014

Hugo Miguel Oliveira Romualdo Simoes

Amortised Resource Analysis

for

Lazy Functional Programs

Tese submetida a Faculdade de Ciéncias da Universidade do Porto
para obtengao do grau de Doutor em Ciéncia de Computadores

Supervisors: Prof. Mario Florido and Prof. Kevin Hammond

Departamento de Ciéncia de Computadores
Faculdade de Ciéncias da Universidade do Porto
Fevereiro de 2014

To my wife and sons.

Acknowledgements

| would like to express my deepest thanks to the people who directly contributed to the
conclusion of this thesis. First, | would like to thank my supervisors Mario Florido and Kevin
Hammond for their encouragement, support and optimism. | especially thank Kevin and his
wife for a warm welcome and making me feel at home during my stay in bonnie St Andrews

together with my wife.

My thanks extend to the functional programming group in St Andrews for valuable discus-
sions and, in particular, | would also like to thank Steffen Jost and Armelle Bonenfant, and
their respective families, for our hiking trips across Scotland and for putting our shared

interests in board gaming into practice.

A very special thanks goes to my friends and colleagues Steffen Jost and Pedro Vascon-
celos for their continuous help in pursuing a practical approach to the problem of resource
analysis for lazy functional programs. Our long collaboration formed the basis for this thesis.

| would like to thank Mario, Kevin, Steffen and Pedro for reviewing drafts of this thesis, with
special thanks to Sandra Alves and Olivier Danvy for also actually volunteering for that task.

Many thanks to the external examiners present at my viva, Vasco Thudichum Vasconcelos
and Ricardo Pena, for their kind comments and interesting observations.

After my research grant was over, | was able to regularly work on my thesis, while de-
veloping mobile applications, thanks to Luis Damas and Michel Ferreira at Geolink Lda.
Similarly, | would like to thank Eduardo Carqueja at AppGeneration for gracefully handling
my indecision over setting the end date of my leave of absence while | was finishing writing
this thesis.

Financial support is acknowledged from the “Fundacao para a Ciéncia e Tecnologia”, for the
Ph.D. grant SFRH/BD/17096/2004 and for a research grant at project RESCUE (REliable
and Safe Code execUtion for Embedded systems) PTDC/EIA/65862/2006, and also from
the LIACC (Laboratory of Atrtificial Intelligence and Computer Science) of the University of

Porto, Portugal.

Finally, | thank my wife, not only for her unconditional support during this long Ph.D. period,
but also for sharing the happiest days of my life together with our three sons. To happiness!

Vii

Resumo

Esta tese descreve a primeira tentativa bem-sucedida, de que temos conhecimento, de
definir uma analise estatica, automatizada e baseada em sistemas de tipos, capaz de en-
contrar majorantes relativos a quantidade de recursos utilizados em programas funcionais
lazy. A avaliagao lazy permite melhorar a composigao de programas, mas dificulta quase
sempre as previsoes de recursos. A nossa andlise utiliza a abordagem de amortizacao
automatizada desenvolvida por Hofmann e Jost, que estava anteriormente restringida a
avaliagao eager. Nesta tese, estendemos este trabalho a sistemas lazy através da cap-
tura em anotacdes de tipos dos custos de expressdes por avaliar e da amortizagao do
pagamento destes custos utilizando uma nogao de potencial lazy. Apresentamos a nossa
analise como um sistema de demonstracao que prevé (em tempo de compilagao) a quan-
tidade total de alocagées de memoria heap de uma linguagem funcional minima (incluindo
funcdes de ordem superior e tipos de dados recursivos) e definimos um modelo de custos
formal baseado na semantica de Launchbury para avaliagao lazy. Provamos a correcao
da nossa analise face ao modelo de custos. A nossa abordagem ¢ ilustrada através
de derivagbes de tipos de exemplos representativos e ndo triviais, que foram analisados
utilizando um protétipo da implementacao da nossa analise.

Palavras-chave: avaliacao lazy, analise amortizada, analise de recursos, sistema de tipos,
call-by-need, analise estatica

viii

Abstract

This thesis describes the first successful attempt, of which we are aware, to define an
automatic, type-based static analysis of resource bounds for lazy functional programs. Lazy
evaluation allows improved modularity of programs, but often makes resource usage difficult
to predict. Our analysis uses the automatic amortisation approach developed by Hofmann
and Jost, which was previously restricted to eager evaluation. In this thesis, we extend this
work to a lazy setting by capturing the costs of unevaluated expressions in type annotations
and by amortising the payment of these costs using a notion of lazy potential. We present
our analysis as a proof system for predicting (at compile-time) total heap allocations of a
minimal functional language (including higher-order functions and recursive data types) and
define a formal cost model based on Launchbury’s natural semantics for lazy evaluation.
We prove the soundness of our analysis with respect to the cost model. Our approach is
illustrated by type derivations of a number of representative and non-trivial examples that
have been analysed using a prototype implementation of our analysis.

Keywords: lazy evaluation, amortized analysis, resource analysis, type system, call-by-

need, static analysis

Contents

Resumo viii

Abstract ix
List of Figures XV
List of Theorems and Definitions Xvii
1 Introduction 1
1.1 Contributions 2
1.2 OVEIVIEW e 4

2 Related WorlJ 5
2.1 Semantics for Lazy Evaluation, 5
2.2 Resource Analyses for Lazy Evaluation 6
2.3 Amortised Analyses e 8
2.4 Other Heap Analyses for Eager Evaluation 9

3 Amortisation 11
‘3.1 Classical Amortisation Technique 11
‘3.1 .1 Example: AnalysingaStack. 12

Xi

32

Automatic Amortised Analysis Lo 13
‘3.2.1 Informal Description L. 14
Cost Model 17
41 Language Syntax e 18
4.2 Operational Semantics 18
4.3 Cost-instrumented Operational Semantics 22
4.4 Example: Modelling Call-By-Need 24
Amortised Analysis 27
‘5.1 Types and Typing Contexts 27
‘5.2 Sharing Relation 29
5.2.1 Subtyping Relation L 30
5.2.2 IdempotentTypes 31
5.3 TypingdJdudgements 32
5.4 Example: Analysing Call-By-Need 34
5.4.1 Non-Strict Evaluation 35
5.4.2 Lazy Evaluation‘ 35
5.5 Soundness 36
5.5.1 Auxiliary Lemmas‘ 37
5.5.2 Global Types, ContextsandBalance 38
55.3 Potential 39
5.5.4 Consistency and Compatibilit% 41
5.5.5 Soundness of the Proof System 42
5.5.6 Detailed Proofs 45

Xii

5.5.6.1 MinorLemmas 45

5.5.6.2 Inversion Lemma for Constructors 46

5.5.6.3 Inversion Lemma for A-abstractions 49

5.5.6.4 Context SplittingLemma 51

5.5.6.5 Potential SplitingLemma 53

5.5.6.6 IdempotentCycles. 54

5.5.6.7 Proof of the Soundness Theorem 55

5.6 A System for Eager Evaluation 69
5.7 Summary e 71

6 Experimental Results 73
6.1 Higher-Order Functions:map 74
6.2 List Fusion:map/map 76
6.3 Infinite Data Structures: cycle 79
6.4 Nested Data Structures: concat 80
6.5 Known Limitation with Co-Recursive Definitions: fibs 83
6.6 Summary 86

7 Conclusion 87
7.1 Assessment of Achievements 87
7.2 Limitations and FurtherWork 88
7.3 FinalRemark e 90
Bibliography 93
A A System for Eager Evaluation 103

Xiii

A.1 Definitions and Figures 103

A.2 Proof of the Soundness Theorem for the Eager System 106
B Complete Derivations 115
‘B.1 Simple Example: Analysing Call-By-Need 115
‘B.Z Higher-Order Functions:map 117

Xiv

List of Figures

2.1 Family feature comparison 10
41 Language Fun 19
4.2 lLazy operationalsemantics Lo 20
4.3 Bound variables of Fun expressions L. 20
4.4 Cost-instrumented lazy operational semantics 23
4.5 Evaluation under a call-by-need semantics 26
5.1 Annotatedtypes 28
5.2 Sharingrelation. 30
5.3 Sharing relation extendedtocontexts L. 30
5.4 Syntaxdirectedtyperules L L 33
5.5 Structuraltyperules 34
5.6 Type derivation for a non-strict evaluationexample 36
5.7 Type derivation for a lazy-evaluation example 37
5.8 Potential 40
A.1 Eager operational semantics 0. 103
A.2 Cost-instrumented eager operational semantics. 104

XV

A3 Annotatedtypes 104
A4 Sharingrelation. 104
‘A.S Syntax directed typerules 105
‘A.6 Structural typerules 105
‘A.7 Potential 106
‘B.1 Type derivation for a non-strict evaluation example 115
B.2 Type derivation for a lazy-evaluation example 116
B.3 Type derivation for map applied to a list with potential‘ 117
B.4 Auxiliary type derivation for map applied to a list with potential 118
B.5 Auxiliary type derivation for map applied to a list with potential (cont.)‘ 119
B.6 Type derivation for map applied to a list with no potential‘ 120
B.7 Auxiliary type derivation for map applied to a list with no potential 121
B.8 Auxiliary type derivation for map applied to a list with no potential (cont.) . .. 122

XVi

List of Theorems and Definitions

4.1 Definition (Bound Variables of Fun Expressions)‘ 19
4.2 Definition (Freshness) 20
4.3 Lemma (Invariant Locations Under Evaluation) 22
5.1 Definition (Idempotent Types and Idempotent Contexts) 31
5.2 Lemma (Substitution) 37
5.3 Lemma (CONS Inversion)‘ 37
5.4 Lemma (ABS Inversion)‘ 38
5.5 Lemma (Context Splitting)‘ 38
5.6 Definition (Potential) 39
5.7 Lemma (Potential Splitting) 40
5.8 Corollary (Potential Remaining) 41
5.9 Corollary (Potential Subtype) 41
5.10 Definition (Type Consistency of Locations) 41
5.11 Definition (Type Consistency of Heaps) 42
5.12 Definition (Global Compatibility) 42
5.13 Theorem (Soundness)‘ 42
5.14 Lemma (Subtyping is a partialorder) 45

XVii

5.15 Lemma (ldempotent Subtypes) oo 45
5.16 Definition (Reachability) 54
5.17 Lemma (Idempotent Cycles) 54
5.18 Theorem (Soundness of the Eager System) 70
A.1 Definition (Type Consistency of Locations) 106
A.2 Definition (Type Consistency of Heaps) 106

XViii

1. Introduction

Non-strict functional programming languages, such as Haskell [PAB*+99], offer important
benefits over more conventional eagerly-evaluated languages in terms of modularity and
abstraction [Hug89] through exploiting lazy evaluation. A key practical obstacle to their
wider use, however, is that extra-functional properties, such as time- and space-behaviour,
are often difficult to determine prior to actually running the program. This is largely because
the effects of lazy evaluation are hard to predict without actually running a program, since
evaluation order is determined dynamically: reduction is carried out if and when it is found
to be needed and consequently memory is allocated only if and when needed. Given
this difficulty, providing guarantees about memory usage or time performance would both
increase confidence in software reliability and performance of lazily-evaluated programs,

and open new resource-critical applications such as real-time, memory-limited systems.

Recent advances in static cost analyses, such as sized types [VH05, SHFV07, Vas08] and
type-based amortisation [HJ03, HAH11] have enabled the automatic prediction of resource
bounds for eager functional programs, including uses of higher-order functions [JLHH10].
This thesis develops a new mechanism, lazy potential, that allows execution costs to be
transferred from one point of a program to another, as part of an amortised analysis.
By exploiting this mechanism, we are then able to extend type-based amortisation to
lazy evaluation, describing a static analysis for determining a-priori worst-case bounds on

execution costs (specifically, dynamic memory allocations).

Our amortised analysis derives costs with respect to a cost semantics for lazy evaluation
that derives from Launchbury’s natural operational semantics of graph reduction [Lau93]. It
deals with both first-order and higher-order functions, but does not consider polymorphism.
Moreover, the analysis is compositional, i.e. it can be applied to program fragments as well
as to complete programs. For simplicity, we restrict our attention to total heap allocation,
but previous results have shown that the amortised analysis approach also extends to other

2

FCUP
1. Introduction

countable resources, such as worst-case execution time [JLHT09]. In order to ensure
a good separation of concerns, our analysis assumes the availability of Hindley-Milner
type information [Mil78]. We extend Hofmann and Jost’s type annotations for capturing
potential costs [HJ03] with information about the latent costs of unevaluated expressions.
The analysis produces a set of constraints over cost variables that we solve in our prototype
implementation using an external LP-solver. We have thus demonstrated all the steps that
are necessary to produce a fully-automatic analysis for determining bounds on resource
usage for lazily-evaluated programs.

Although we do not directly address the issue of algorithmic type reconstruction in this

thesis, a prototype implementationq and previous work in the strict setting [HJ03, JLHH10,
HAH11] suggests that our analysis should be fully automatable, e.g. by performing a stan-
dard Damas-Milner type inference [DM82] with types decorated with fresh annotation vari-
ables and producing a set of linear inequalities that can then be automatically solved by a
standard LP solver. No guidance from the programmer is necessary.

1.1 Contributions
This thesis makes the following novel contributions:

e we present the first successful attempt, of which we are aware, to produce an auto-
matic, efficient, type-based, static analysis with formally guaranteed data-dependent

resource bounds for lazy evaluation;

e we introduce a cost model for heap allocations for a lazy functional language based
on Launchbury’s natural semantics for lazy evaluation [Lau93], and use this as the
basis for developing a resource analysis;

e we prove the soundness of our analysis with respect to the cost-instrumented seman-

tics;

e we develop an analysis for eager functional programs with the purpose of better

contrasting the analysis for laziness; and

*Pedro Vasconcelos implemented in Haskell a publicly accessible web-prototype for our analysis (available
at http://www.dcc.fc.up.pt/~pbv/cgi/aalazy.cgi) — a much welcome relief from the burden of manually
testing program examples.

http://www.dcc.fc.up.pt/~pbv/cgi/aalazy.cgi

FCUP
1.1. Contributions

e we demonstrate the effectiveness of the analysis by deriving costs for some non-trivial

examples.

The research on which this thesis is based was done in collaboration with others. In
particular, the automatic amortised analysis for lazily-evaluated functional programs has
previously been reported in a published paper [SVFt12] which was jointly authored by
Pedro Vasconcelos, Steffen Jost, my two supervisors Mario Florido and Kevin Hammond,
and myself: Hugo Simoes, Pedro Vasconcelos, Mario Florido, Steffen Jost, and Kevin Ham-
mond. Automatic Amortised Analysis of Dynamic Memory Allocation for Lazy Functional
Programs. In Proceedings of the ACM SIGPLAN International Conference on Functional
Programming (ICFP’12), pages 165-176, Copenhagen, Denmark, September 2012. The
technical differences to the published paper are that this thesis:

e fixes a minor problem in the soundness proof (caused by rule LET of our type system);

e changes the language to be compatible with Launchbury’s semantics (replaces match
with case expressions, removes parentheses of constructor applications and merges

letcons with let expressions);

e simplifies annotations by replacing the double cost annotations with a single cost
annotation (this is possible since we are analysing a monotonic resource: total heap
allocations);

e restricts the inversion lemmas of Section|5.5.1/to have zero on the turnstile of the type
judgements (otherwise those lemmas would not hold);

e adds a side-condition to rule WEAK of our type system;

e contrasts the lazy system with an eager system that is specifically tailored to empha-

sise the key elements of the novel analysis; and

e illustrates the effectiveness of the analysis with detailed derivations of some non-trivial

examples;

Note that meanwhile the soundness proof was double checked in detail, since the first five
items above forced almost all of the previous technical work (including proofs) to be rewritten

in this thesis.

3

4

FCUP
1. Introduction

Also in the course of his PhD plan, during the introductory studies on the field of static
resource analysis, the author contributed to another paper [SHFV07]: Hugo R. Simdes,
Kevin Hammond, Mario Florido, and Pedro Vasconcelos. Using Intersection Types for
Cost-Analysis of Higher-Order Polymorphic Functional Programs. In Thorsten Altenkirch
and Conor McBride, editors, Revised Selected Papers of the International Workshop on
Types for Proofs and Programs (TYPES’06), Nottingham, UK, April, 2006, volume 4502 of
Lecture Notes in Computer Science, pages 221-236. Springer, 2007. This paper improves
the quality of a previous analysis for eagerly evaluated programs by showing how discrete
polymorphism helps reduce the problem of size aliasing. However, since it is not a direct
contribution to the field of analysis for lazy evaluation (the core topic of this thesis), the result

is simply referenced here.

1.2 Overview

In the remainder of this thesis we start by reviewing some related work in Chapter 2. Next,
in Chapter|3, we review some background on amortisation, covering the description of the

general technique and its application to type-based analyses.

Then, in Chapter 4, we define a simple functional language and present a cost model for
measuring the total heap allocations under a call-by-need semantics of programs written in
this language.

In Chapter|5 we develop a type-based amortised analysis for lazy evaluation and provide a
soundness proof as the main contribution of this thesis, guaranteeing that the cost bound

of the analysis is observed with respect to the cost model.

An experimental assessment of the analysis is given in Chapter 6 through a range of

illustrative examples.

Finally, Chapter|7/concludes.

2. Related Work

2.1 Semantics for Lazy Evaluation

We build heavily on Launchbury’s natural semantics for lazy evaluation [Lau93], as subse-
quently adapted by Sestoft [Ses97], and exploit ideas that were developed by Encina and
Pefna [EP02, EP03a). There is a significant body of other work on the semantics of call-
by-need evaluation. Pre-dating Launchbury’s work, Josephs [Jos89] gave a denotational
semantics of lazy evaluation, using a continuation-based semantics to model sharing, and
including an explicit store. However, this approach does not fit well with standard proof
techniques. Maraist et al. [MOW898] subsequently defined both natural and reduction se-
mantics for the call-by-need lambda calculus, so enabling equational reasoning, and a
similar approach was independently described by Ariola and Felleisen [AF97].

Like Encina and Pefa [EP03a, EP09], Mountjoy [Mou98] derived an operational semantics
for the Spineless Tagless G-Machine from the natural semantics of Launchbury and Sestoft,
including poly-applicative A\-expressions. The main differences between these approaches
are that Encina and Pena correct some mistakes in Mountjoy’s presentation; that they
provide correctness proofs; that their semantics correctly deals with partial applications
in the Spineless Tagless G-Machine; that they deal with partial applications as normal
forms; and that they consider two distinct implementation variants, based on push/enter
versus apply/eval. More recently, Pirog and Biernacki [PB10] have established the equiv-
alence between the Spineless Tagless G-Machine and an extended version of the natural
semantics of Launchbury and Sestoft as evidenced by Danvy et al.'s [ADM04] functional

correspondence between abstract machines and evaluators.

Bakewell and Runciman [BRO1] have previously defined an operational semantics for Core

Haskell that gives time and space execution costs in terms of Sestoft's semantics for his

5

6

FCUP
2. Related Work

Mark 1 abstract machine. The work has subsequently been extended to give a model
that can be used to determine space leaks by comparing the space usage for two evalua-
tors using a bisimulation approach [BR00]. Gustavsson and Sands [GS99] have similarly
defined a space-improvement relation that guarantees that some optimisation can never
lead to asymptotically worse space behaviour for call-by-need programs and Moran and
Sands [MS99] have defined an improvement relation for call-by-need programs that can
be used to determine whether one terminating program improves another in all possible

contexts.

Finally, given that compilers for lazy evaluation eventually generate optimised code based

on information from strictness analysis [Myc81, BHA86, MN92, WH87] or cheapness anal-
ysis [Myc80, Fax00] and thus implement in fact a non-strict semantics rather than call-by-
need, it is worth noting an alternative non-strict reduction strategy by Ennals et al. [EP03b,
Enn03], called optimistic evaluation, that, in an attempt to improve the average time perfor-
mance against call-by-need, is based on speculatively evaluating expressions that are con-
sidered to be usually used and usually cheap to evaluate and aborting if an embedded pro-
filer determines that it is not the case. Although the approach promised to achieve consid-
erable performance improvements, its development is currently suspended from industry-
strenght compilers given the difficulties in maintaining the supporting framework (i.e. spec-
ulation, profiling and abortion) while implementing other features.

Our own work differs from this body of earlier work in that we provide a cost semantics from
which we derive a static analysis to automatically determine upper bounds on the memory

requirements of lazily evaluated programs.

2.2 Resource Analyses for Lazy Evaluation

Resource analysis based on profiling and manual code inspection has long formed the
state-of-the-art and still is current practice in many cases. Indeed, for non-strict functional
languages, such as Haskell, ad-hoc techniques, manual analysis or symbolic profiling are
the only currently viable approaches: the dynamic demand-driven nature of lazy func-
tional programming creates particular problems for resource analysis, whether manual or
automatic. There has therefore been very little work on static resource analysis for lazy
functional programs, and, to our knowledge, no previous automatic static analysis has ever

been produced. The most significant previous work in the area is that by Sands [San90a,

FCUP
2.2. Resource Analyses for Lazy Evaluation

San90b], whose PhD thesis proposed a cost calculus for reasoning about sufficient and nec-
essary execution time for lazily evaluated higher-order programs, using an approach based
on evaluation contexts [Wad88, San98] to capture information about evaluation degree
and appropriate projections [WH87] to project this information to the required approach.
Wadler [Wad88] had earlier proposed a similar approach to that taken by Sands, but lim-
ited to first-order functions and using only strictness analysis combined with appropriate
projections, rather than the neededness analysis that Sands also uses. Around the same
time, Bjerner and Holmstrom [BH89] developed an approach using demand analysis which
requires, a-priori, a domain structure describing an approximation of the output of the
analysed program. A primary disadvantage of such approaches lies in the complexity of the
domain structure and associated projections that must be used when analysing even simple
data structures such as lists. In contrast, our approach easily extends to algebraic data
structures. A secondary disadvantage is that a demand analysis approach requires knowing
in advance much information about the output value and, unlike the self-contained analysis
we have described, projection-based approaches rely on the existence of a complex and
powerful external neededness analysis to determine evaluation contexts for expressions.
These are serious practical disadvantages: in fact, to date, we are not aware of any fully

automatic static analysis that has been produced using these techniques.

Transforming lazy programs into eager ones would be a possible approach to producing an
analysis for lazily evaluated programs. The resulting programs would then be analysed us-
ing (simpler) techniques for eagerly evaluated programs. Unlike our work, these approaches
would suffer from the problems that they would produce very poor quality bounds (many
programs requiring a small finite amount of resources under lazy evaluation, would require
an infinite amount if evaluated eagerly), that they would be, in general, not cost-preserving,
that they would lead to potentially exponential code explosion, and that, because they
would alter the program, they would not be suitable for use with standard compilers for
lazy functional languages. Perhaps because of such drawbacks, no one appears to have

actually done this.

Several authors have proposed approaches where programs are annotated with additional
cost parameters. For example, Albert et al. [ASV03] describes how to automatically con-
struct recurrence relations by adding extra cost parameters to each function under a call-by-
name semantics and suggests extending the approach to call-by-need through an additional
linearisation phase together with guarded constraints (to handle sharing and so avoid cost

7

8

FCUP
2. Related Work

duplication); and Hope [Hop08] describes how to derive an instrumented function for deter-
mining time and space usage, including a simple deallocation model, for a strict functional
language and outlines how this could be extended to lazy evaluation. By constrast, our work
is capable of inferring cost bounds. Also, unlike Albert et al. [ASV03]'s work, our system
deals directly with higher-order programs, as opposed to using program transformation
techniques such as defunctionalisation [Rey72] which are, in general, not cost-preserving
and require a whole-program analysis.

Another approach followed by Wadler [Wad92] uses monads to capture execution costs
through a tick-counting function; Danielsson [Dan08] takes this work a stage further, de-
scribing a library that can be used to annotate (lazy) functions with the time that is needed
to compute their result. An annotated monad is then used to combine these time complexity
annotations. This can be used to verify the time complexity of (lazy) functional data struc-
tures and algorithms against Launchbury’s semantics, using a dependent type approach.
However, some of the annotations must be manually introduced by the programmer and that
may require ingenuity. Moreover, unlike our work, the system is not capable of inference.

2.3 Amortised Analyses

The amortised analysis approach has been previously studied by a number of authors, but
has never previously been used to automatically determine the costs of lazy evaluation. Tar-
jan [Tar85] first described amortised analysis, but as a manual technigue. Okasaki [Oka98]
subsequently described how Tarjan’s approach could be applied to (lazy) data structures,
but again as a manual technique. While there has subsequently been significant interest
in the use of amortised analysis for automatic resource usage analysis, using an advanced
per-reference potential, none of this newer work, however, considers lazy evaluation. Hof-
mann and Jost [HJ03] were the first to develop an automatic amortised analysis for heap
consumption, exploiting a difference metric similar to that used by Crary and Weirich [CW00]
(the latter, however, only check bounds, and therefore does not perform an automatic
static analysis of the kind we require); Hofmann et al. have extended their method to
cover a comprehensive subset of Java, including imperative updates, inheritance and type
casts [HJ06, HR09]; Shkaravska et al. [Svv07] subsequently developed a polynomial heap
consumption analysis for first-order polymorphic lists, with restricted (shapely) functions,

but did not consider the efficiency of the suggested inference; in the meantime, Herrmann,

FCUP
2.4. Other Heap Analyses for Eager Evaluation

Bonenfant et al. [HBH'07] showed an automatic amortised analysis for worst-case exe-

cution time; and Campbell [Cam08, Cam09] has developed the ideas of depth-based and
temporary credit uses to give better results for stack usage. Jost et al. [JLH*09, JLHH10]
significantly extended previous analyses by dealing with higher-order, polymorphic func-
tions, varying resource metrics, arbitrary recursive data types, the creation of circular data,
and the possibility of directly adding constraints on resource annotations in types through
resource parametric functions; later, Hoffmann et al. [HH10, HAH11] achieved another
breakthrough by extending the technique to infer (multivariate) polynomial cost functions,
still only requiring efficient LP solving.

The analysis presented in this thesis is yet another member of the Hofmann and Jost based
family of amortised analyses and can be further put into context by Figure(2.1 which extends
a related figure from Jost’s PhD thesis. The work presented here corrects a minor technical
problem found in the soundness proof of Simdes et al. [SVF*12] and, except for object-
orientation and imperative update (which are unrelated to the purely functional language of
this thesis), all remaining features not handled by our analysis are discussed in Section(7.2

as further work.

2.4 Other Heap Analyses for Eager Evaluation

Finally, several authors have recently studied analyses for heap usage in eager languages,
without considering lazy evaluation. For example, Albert et al. [AGG09] present a fully
automatic, live heap-space analysis for an object-oriented bytecode language with a
scoped-memory manager, and have subsequently extended this to consider garbage
collection [AGG10], but, unlike our system, data-dependencies cannot be expressed.
Braberman et al. infer polynomial bounds on the live heap usage for a Java-
like language with automatic memory management, but do not cover general recursive
methods. Finally, Chin et al. [CNPQO8] present a linearly-bounded heap and stack analysis
for a low-level (assembler) language with explicit (de)-allocation, but do not cover lazy

evaluation or high-level functional programming constructs.

9

10

FCUP

2. Related Work

Feature

full recursion
aliasing
inference
object-orientation
imperative update
non-termination
total heap allocation usage
heap usage (w/ deallocation)
worst-case execution time
stack usage
varying resource metrics
arbitrary recursive data types
polymorphism
resource parametricity
higher-order
creating circular data
delayed execution
requires shapely functions (*)
super-linear bounds
laziness

(*) Requiring shapely functions is actually not a feature, but a limitation.

+ + +[[HJO3

+ +|[HJO6

+

+ | [Sw07]

+ + +|[HBH07]

)

+ + +|[Cam08, Cam09]

+

+ + +|[JLHT09]

+ + + [[JLHH10]

+ + +|[Jos10]

+ + + + + +

+ + + + + + + + + +

+

+ + +|[HH10, HAH11]

+ + 4+ + +

+ + +|[SVFt12] and This Thesis

+

Figure 2.1: Family feature comparison

3. Amortisation

3.1 Classical Amortisation Technique

First described by Tarjan [Tar85], amortisation is a technique in the field of complexity
analysis of algorithms. It is a manual method that tries to take advantage of the correlated
effects of a sequence of operations on a data structure in order to obtain tighter bounds
than for example the sum of the worst-case costs of each operation in the sequence.

There are two equivalent views of amortisation. We will focus hereafter on the so-called

physicist’s view as it better serves the intuition behind the analysis described in this thesis.

To use the general technique, we define a potential function ® mapping any configuration
of a data structure to a number, henceforth referred to as the potential of that configuration.
The amortised cost a; of an operation to a data structure is then defined as the actual cost
t; of the operation plus the difference between the potential of the configuration of the data
structure after the operation ®; and the potential of the configuration before the operation
D, 4.

a; =1t +®; — P;;

In a sequence of n such operations the following equality holds:

n n n
th’ ZZ(ai—@i+‘I’z’—1) :q)O_(I)n+Zai
i=1 =1

i=1

If we ensure that potential is always non-negative then the potential of the initial configura-

tion plus the sum of the amortised costs provide an upper bound on the actual cost of the

11

12

FCUP
3. Amortisation

sequence.
iti < <I>o+iai, if ®; > 0forall:
i=1 =1
By cleverly defining the potential function, the goal is to further simplify the bounding ex-
pression by making the amortised costs zero or at least (bounded by a) constant, thus being
able to easily bound the fluctuations of the successive actual operation costs.

3.1.1 Example: Analysing a Stack

To better understand the intuition and the application of the amortisation technique the
following exampleﬁ will be used:

Consider the manipulation of a stack using the two standard primitives: push, which adds a
new element to the top of the stack, and pop, which returns and removes the top element
from the stack.

Now consider an additional compound operation consisting of applying any number of pops
followed by exactly one push. Starting with an empty stack, we would like to analyse the
cost — in terms of the number of pushes and pops — of a sequence of n such compound

operations.

The worst-case cost of a single operation is n, corresponding to the case where no pops
occur in the first n — 1 operations and the last operation applies n — 1 pops followed by the
mandatory push. So, although the cost of each of the first n — 1 operations is 1 (a push),
the cost of the last operation is n (n — 1 pops plus 1 push).

Compare a worst-case analysis in which we sum the worst-case cost of a single operation
for each operation in the sequence, obtaining n * n, to the following worst-case analysis

using amortisation.

Define the potential of a stack to be the number of elements it contains. It follows that, if a
stack has m elements, the amortised cost of an operation that pops & elements followed by
apushis (k+1)+ (m—k+ 1) —m = 2. Since the potential is always non-negative (by
definition) and the initial potential is zero (we start with an empty stack), we know that the
actual cost of the sequence of n operations is bounded by >"" ; a; = > | 2 = 2n.

*Due to Tarjan [Tar85].

FCUP
3.2. Automatic Amortised Analysis

We know that in a sequence of n operations, starting with an empty stack, we have exactly
n pushes (one per operation). Given that each pop must correspond to an earlier push,
we can have at most n pops as well. In fact, since push is the last primitive applied in an
operation, we cannot pop the last element and so we have at most n — 1 pops. Thus, the

maximum number of pushes and pops in a sequence of n operationsisn+(n—1) = 2n—1.

The amortised analysis of this example allowed us to obtain a tight worst-case bound 2n of

the actual worst-case cost 2n — 1.

3.2 Automatic Amortised Analysis

As a manual technique, amortisation has two shortcomings. Firstly, it requires ingenuity
when defining a useful mapping from each configuration to a number representing its po-
tential (since it is unfeasible to try all possible mappings), thus restricting the widespread use
of the technique. Secondly, as Okasaki [Oka98] notes, “traditional methods of amortization
break in presence of persistence”. This represents a problem, given that persistent data

structures are commonly found in functional settings.

A type-based approach solves both of these issues. It has been successfully applied [HJO3,
Cam09, JLH*09, JLHH10, HH10, HAH11] as a way not only to provide a means to automat-
ically determine a suitable potential function, but also to deal with persistent data structures

(by assigning potential on a per-reference basis, instead of resorting to a lazy evaluation
strategy as in Okasaki’'s approach [Oka98]).

The first type-based automatic amortised analysis was developed by Hofmann and
Jost [HJO3] for analysing the heap-space consumption of first-order eager functional pro-
grams. Although at that time unaware of the connection to Tarjan’s work [Tar85], their goal
was to produce an automatic analysis that could find bounds to resource usage at the press
of a button. For that purpose, their fundamental idea was to collect linear inequalities arising
from the side conditions of a type derivation and then solve them with an LP-solver (such
as the glpk®). The main limitation was the expressiveness of the bounds — the potential
function was linearly tied to the number of nodes of data structures and since the analysis
depends on the potential of the initial configuration, it could only hope to find linear bounds
as well — but the end result in itself, and the program examples that could be successfully

Thttp://www.gnu.org/software/glpk/

13

http://www.gnu.org/software/glpk/

14

FCUP
3. Amortisation

analysed, made the approach interesting.

Since then, keeping the fundamental idea, their technique has been successfully applied in
the analyses of stack usage [Cam09], generic resource metrics [JLH109], higher-order and
polymorphic functions [JLHH10] and in efficiently finding multivariate polynomial
bounds [HAH11] through using non-linear potential functions.

3.2.1 Informal Description

In the classical amortisation technique, the first step in developing an amortised analysis is
to define the potential function — the mapping from configurations to numbers. In Hofmann
and Jost’s approach, this corresponds to defining the annotated types the type system will
handle. The annotated data types, in particular, carry the contributions of a node in a
particular data structure to the overall potential of the memory configuration. For example,
a red-black binary tree [Bay72] is a binary tree data structure that is easier to maintain
balanced than its regular counterpart. It consists of three possible constructors: a Red and
a Black binary constructors having a left and a right red-black binary tree as arguments,
and a zero-arity Leaf constructor. Consider the following annotated data type for red-black
binary trees of Ints:

RBTree(q, qp, qi, Int)

In a tree with this type, where ¢,, ¢, and ¢; are non-negative rational numbers, each Red and
Black node contributes with ¢, and ¢, respectively, and each Leaf node contributes with
q: to the potential of the tree. Given a tree with n,. red nodes, n; black nodes and n; leaf
nodes, the potential of such tree is n, x ¢, + ny x g, + n; x ¢;. Note that the potential of the
tree is linear with respect to its number of nodes. Restricting to linear potential with respect
to the number of constructors in a data structure is common in type systems following the
approach of Hofmann and Jost, with a notable exception [HH10, HAH11]. Since our main
concern here is to extend the approach to a lazy setting, we keep the linear restriction,

leaving as further work the adoption of super-linear bounds in our analysis.

Also, recall from Section [3.1/that the goal of any amortised analysis is to find a constant
that bounds the fluctuations of the successive actual operation costs (in order to simplify the
overall bounding expression). That is the purpose of the annotated type systems following

Hofmann and Jost’s approach: to ensure the amortised costs are zero, so that the potential

FCUP
3.2. Automatic Amortised Analysis

of the initial configuration is an upper bound of the overall actual cost.

Once the type system is defined, these type-based amortised analyses obtain their result

automatically by performing the following 4 steps:

1) perform a Damas-Milner type inference [DM82] to obtain a type derivation (without

annotation variables);
2) decorate the Hindley-Milner types [Mil78] with fresh annotation variables;

3) traverse the type derivation, gathering linear constraints among annotation variables
according to the rules of the type system;

4) feed the linear constraints to a standard linear programming solver with the objective

of minimising the overall expression cost.

Note that only the first or the last step may fail, i.e. either the program being analysed is not

well-typed or the gathered linear constraints cannot be solved.

Each solution to the generated linear program corresponds to a particular bound on the ex-
ecution cost. However, these bounds are then only useful provided a correctness guarantee
exists. As such, a soundness proof is the key result of these systems, since it establishes
the link between cost model and type system. This ensures the run-time actual costs never
exceed the compile-time predicted bounds.

It is important to note that the analysis produces data-dependent bounds. For example,
using an automatic amortised analysis, Loidl and Jost [LJ09] learned that insertion, in their
cost model, is generally more expensive for a red-black tree having many black nodes, since

coefficient ¢, was about 3 times higher than ¢,..

In this thesis we present a type-based amortised analysis for lazy functional programs
following Hofmann and Jost’s approach and show its complete development in Chapter 5
— from the chosen annotated types, to the invariants required for the soundness proof.

15

16 | FCUP
3. Amortisation

4. Cost Model

In this chapter we present a cost model that allows us to measure total heap allocations. It is
given as an operational semantics that formalises the cost of evaluating an expression. We
define a cost model for two reasons: to prove the soundness of our analysis (Chapter 5),
i.e. to prove that evaluating an expression never costs more than the analysis predicted,
and to measure the quality of our analysis against a range of examples (Chapter6), i.e. to
compare the costs of evaluating an expression with the costs predicted by the analysis for

the same expression.

The cost model we present is built on Encina and Pena’s corrected version [EP02] of
Sestoft’s revision [Ses97] of Launchbury’s natural semantics for lazy evaluation [Lau93].

Launchbury’s semantics forms one of the earliest and most widely-used operational ac-

counts of lazy evaluation for the A-calculus. Encina and Pefa [EP02] [EP03a] subse-

quently proved that the Spineless Tagless G-Machine [Jon92] is sound and complete with
respect to one of Sestoft’s abstract machines. More recently, Pirog and Biernacki [PB10]
have established the equivalence between the Spineless Tagless G-Machine and their
extended version of the natural semantics of Launchbury and Sestoft. This equivalence is
evidenced by Danvy et al.’s [ADMO04] functional correspondence between abstract machines
and evaluators. We therefore have a high degree of confidence that the cost model for lazy
evaluation developed in this thesis is not just theoretically sound, but also that it could, in
principle, be extended to model real implementations of lazy evaluation, such as the GHC
implementation of Haskell.

Before looking at the cost model in Section 4.3, we will see in detail the operational seman-
tics on which it is based. However, we first need to define the language to be used on both

the cost model and the analysis.

17

18

FCUP
4. Cost Model

4.1 Language Syntax

The Fun language (Figure [4.1) is similar to the one found in Sestoft’s revision [Ses97] of
Launchbury’s natural semantics for lazy evaluation [Lau93]. The reader unfamiliar with the
mentioned references should note that arguments to both applications and constructor ap-
plications are restricted to variables and that this can be achieved through a process called
normalisation [Lau93], which consists of naming the arguments using /et expressions.
We have thus a normalised A-calculus extended with (possibly recursive) local bindings,
(saturated) constructor applications and case expressions.

In contrast to Launchbury and Sestoft’s language, we consider only (for simplicity) single-
variable let-bindings (multiple let-bindings can be encoded, if needed, using pairs and
projections). Also, constructor applications appear only in let-bindings as in Encina and
Pefna’s semantics for lazy evaluation [EP09]. However, Encina and Pefia’s motivation for
such restriction was different from ours: they wanted to be as close as possible to the STG
language, while we simply need to distinguish between allocating a constructor and merely
referencing an existing one, since these are handled differently by our analysis.

As in Sestoft’s language, we do not require bound variables (either lambda-, let- or case-
bound) to be distinct, except that, for each case expression, each element in multiset {E}

must be distinct, for i = 1, ..., n. For example,
caseeofcrzy->x, coy->y
would be a valid program, whereas the following would not

caseeofcrzar >z, oy >y

4.2 Operational Semantics

Our big-step operational semantics is based on Launchbury’s natural semantics for lazy

evaluation [Lau93], as subsequently adapted by Sestoft [Ses97], as corrected for case
expressions by Encina and Pefa [EP02]. Figure |4.2 shows the set of rules that define

our operational semantics.

FCUP
4.2. Operational Semantics

— Variables
DREES x |y — bound variable
| l — free variable (location)

— Expressions

e u= v — variable
| Ax.e — lambda abstraction
| ev — application
| letz =¢ine — (possibly recursive) let-binding
|

case e of {¢; T} -> ¢;}1_, — case expression

— Augmented expressions

e = cv — (saturated) constructor application
| e — expression
— Weak head normal forms
woon= Ax.e — lambda abstraction

| cl — constructor application

Figure 4.1: Language Fun

Judgements of the form H,8,L +— ¢ || w,H' should be read as “in the heap X, (aug-
mented) expression e evaluates to whnf (weak head normal form) w, producing the new
heap H"”, where a heap is a partial function mapping distinct variable names to thunks and
a thunk is an augmented expression (bound in the heap) that may be further evaluated to
whnf. Note that, as usual (and seen in Figure|4.1), weak head normal forms are expressions
whose outermost structure is a lambda or a constructor. The auxiliary set £ of locations
under evaluation was one of the changes introduced by SestofH to improve the renaming
mechanism of Launchbury’s semantics. The auxiliary set 8§ was introduced by Encina and
Peﬁel; in order to fix a freshness property of Sestoft’s rules, and, although in their paper it
contains the alternatives of case expressions {c¢; 7 > e;t_q, we simply keep the bound

variables of such alternatives, since these are sufficient to fix the problem.

We next define the set of bound variables contained in a Fun expression in order to later
formalise the notion of freshness of variables.

Definition 4.1 (Bound Variables of Fun Expressions). The bound variables of a Fun ex-
pression ¢, denoted by BV (e), are defined in the usual way as shown in Figure 4.3.

*In [Ses97] this set is called A.
fIn [EP02] this set is called C.

19

20

FCUP
4. Cost Model

w is in whnf (WHNF,)

H,8,L —wl w,K Y

(gL H,8,LU{L} — H) | w,H Vam)

5,8,L — £ w, Tl — w] 4

H,8,L — el \x.e/, H H, 8, L +— €et/x] | w,H" (APP))

H,8,L — el | w,H" v

¢ is fresh H[l s ell/z]],8,L +— e[l/z] | w,H (LETY)

H,8,L — letz=cine | w,H Y

H,SUUL, (T IUBV(e:), L — e b 6,3

H,8, L — ey[l/7], H”

)95 676[/xk] Jw, (CASEu)

H,8,L +— case e of {c; 7} > e;}iy I w, H”

Figure 4.2: Lazy operational semantics

v) =1

Az.e) = {:c} UBV(e)

ev) =BV(e)

letx =¢€ine) —{x}UBV()UBV e)

V(case e of {¢; 7} > e;}i ;) = BV(e) U, ({7} } UBV(e;))

BV(
BV(
BV(
BV(
BV(
BV(cv)=10

Figure 4.3: Bound variables of Fun expressions

The following auxiliary definition of freshness of variables is due to Encina and Pena [EP02]:

Definition 4.2 (Freshness). In a judgement H,8,£L +— ¢ || w,H a variable is fresh if it is

not in dom(%) nor 8 nor £ and it is not bound in either ran(¥) or e.

Expressions in whnf (lambda abstractions and constructor applications) are already values
and should therefore evaluate to themselves, keeping the heap unchanged. This is reflected

in rule WHNF.

Rule VAR, states that in order to evaluate a location ¢, present in a heap I, we evaluate
H(¢) with ¢ included in the set of locations under evaluation. If, as a result, we obtain
a whnf w and a heap 3, then evaluating ¢ in 3 evaluates to the same w and the new
heap produced is H’ with a mapping updating ¢ to w. Note that once /¢ is updated its

FCUP
4.2. Operational Semantics

subsequent accesses obtain the corresponding whnf immediately, effectively implementing
sharing of named expressions. Also note that if £ depends directly on itself before evaluating
to whnf, when attempting to evaluate ¢ for the second time, no rule will apply, since ¢ will
be marked as being under evaluation in rule VARy. This situation is known as a “black-
hole”: a detectably self-dependent infinite loop. In Launchbury’s semantics, a black-hole
is detected by removing ¢ from the heap before evaluating its contents. Since Sestoft’s
revision of the semantics, black-holes can equivalently be detected using the set of locations
marked as being under evaluation. In this thesis we need to keep ¢ in the heap since the
mappings defined for the invariants of our soundness proof in Chapter|5 must apply to all
heap locations (regardless of being under evaluation). Thus, we use set £ to detect black-

holes (in addition to the benefits that motivated its introduction).

The ApPp rule deals with function applications and, assuming the term is well-typed, evalu-
ation is done in two steps: first, its expression e is evaluated in the original heap, producing
a lambda abstraction and an intermediate heap. Then, substituting the lambda variable by
the argument of the application, the body of the function is evaluated in the intermediate
heap to a final whnf, producing a final heap as well.

The LET rule starts by creating a fresh location. Then, the let-bound variable is renamed
to this fresh location in all sub-expressions. The location is then allocated to the heap,
mapping to the respective augmented expression, and the body of the let is evaluated in

this larger heap, with the results being carried over.

Finally, rule CASE first evaluates the case discriminant, adding to § the bound variables
of the case alternatives in order to avoid such variables from being used as locations. As-
suming this evaluates to a constructor application in an intermediate heap, then, depending
on the constructor that results from the evaluation, the selected alternative is evaluated in
the intermediate heap, substituting the formal constructor arguments by the concrete ones.
The results of evaluating the alternative are then carried over as the results of evaluating
the whole case expression. Note that the set § was introduced by Encina and Pefia [EP02]
to keep freshness locally checkable, a property that motivated Sestoft’s revision [Ses97] to

Launchbury’s semantics [Lau93].

21

22

FCUP
4. Cost Model

To illustrate the purpose of set 8, consider the following artificial example (in lack of a

meaningful short one):
case (let s = Succ s in s) of Succ x => \y. x

Note that s is defined as a cyclic successor of itself and that the expected result of evaluating
the whole expression is a function that discards its single argument and returns the cyclic
successor. However, when evaluating let s = Suce s in s, had the lambda-bound variable
y not been added to set S, we could have chosen y as a fresh location and, although not
violating the freshness condition, we would have ended up with the identity function instead
as the result, since (with naive substitution) the term \y. z[y/z] is equivalent to A\y.y. The
set § avoids such variable captures.

We now present a lemma that states that the contents of heap locations that are under

evaluation are preserved during intermediate evaluations.

Lemma 4.3 (Invariant Locations Under Evaluation). IfH,8,L e | w,H then forall ¢ € L
we have (€ H iff ¢ € H" and if ¢ € H then H'(¢) = H({).

Proof. By inspection of the operational semantics (Figure [4.2) we observe that VAR is
the only rule that modifies an existing location ¢ and that this rule does not apply when
{e L.]

4.3 Cost-instrumented Operational Semantics

In order to measure the total number of heap allocations of a given program, we have
defined a cost model by instrumenting the rules of Figure 4.2 with a non-negative counter
as shown in Figure |4.4|

In the new rules, judgements of the form 3,8, £ += ¢ || w,H should be read as “in the
heap H, expression ¢ evaluates to whnf w, producing the new heap H’, and m new heap
cells have been allocated”.

For simplicity, but without loss of generality, we choose a uniform cost-model where eval-
uation costs one (heap) unit for each fresh heap location (regardless of its content) that

is needed during evaluation — essentially counting the number of new locations in the

FCUP
4.3. Cost-instrumented Operational Semantics

w is in whnf
H.8, L v wlw K (WHNFyc)
(¢ L H,8,LU{L} = H(E) §w, H (VARL)
H,8,L F= € w, 5[— w] ve
H,8,L F= el Ax.e/, H H!, 8, L r= e'[0)x] |} w, H"
H,8, L retmt o ||, H” (APPyc)
¢ is fresh H[— elt/x]],8,L ¥ e[l/z] || w,H (LET,0)
H,8,L Pt letz = éine | w, K’ e
H,SUUL, (T} UBV(e:)) , £ = e Jox £, 3

H', 8, L+t enll) 7 L H"

eklt/Ti] 4 w (CASEyc)

K, 8, L remt case e of {¢; T -> e}, I w, H”
Figure 4.4: Cost-instrumented lazy operational semantics

heap (i.e. the number of newly allocated locations). We could have chosen other met-
rics [JLHT09], modelling the usage of other countable resources such as execution time or
stack space, but we believe this simplicity has allowed us to focus on the principles needed
to develop a resource analysis for call-by-need. Cost-metric refinements are left to further

work.

The only change introduced in Figure [4.4 with respect to Figure [4.2 is the introduction of
the non-negative value above the turnstile. This value corresponds to the cost of evaluation
in terms of quantity of heap cells required. We will now describe how the rules in Figure|4.4
affect this total heap allocation counter.

As we have seen, rule WHNF leaves the heap unchanged. Thus, no heap cells are
allocated in rule WHNF ¢, corresponding to a cost of zero.

In rules APPc and CASE ¢ the cost of evaluation is the sum of the costs of each of the two

evaluation steps.

Rule VAR states that the cost of evaluating a location ¢ is the cost of evaluating the
corresponding heap expression H(¢). Note that although the resulting heap is updated, ¢

was already in the domain of H’ (by Lemma 4.3) and thus no new heap cell was added at
that point which justifies the preservation of cost m.

Rule LET ¢ is the only rule that effectively allocates heap cells, costing one heap cell for the

23

24 | FCUP
4. Cost Model

binding created.

4.4 Example: Modelling Call-By-Need

This section illustrates through a couple of simple examples that we are modelling call-by-
need rather than call-by-value or call-by-name.

To stress the sequential nature of evaluation we lay out the rules of our cost model vertically:
if 7,8, L #= e || w, H' we write

H,8,LFe

a sub-rule premise

another sub-rule premise

U(m U),j‘(l

Consider the expression below, which includes a divergent term:

letz==zin (Ax. \y.y) z (4.1)

Under a call-by-value semantics this would fail to terminate, because z does not admit a

normal form. In our call-by-need semantics, however, evaluation succeeds:

H,8,LEletz=zin (A\x. \y.y) z
H[ls — l3],8, L (Ax. A\y.y) l3
H[ls — 03], 8, L Ax. \y.y

U0 Ax. Ay. v, H[ls > £3]
H[ls s 03], 8, L F Ay.y
U0 Ay, v, K[tz v £3]
U0 Ay, v, K[tz v 3]
WAy y, H[ls = 43

FCUP
4.4. Example: Modelling Call-By-Need

The final heap is augmented with a fresh location /3 whose content is a cyclic self-reference;
because the argument z is discarded by the application, its evaluation is never attempted.

We can see that the semantics is call-by-need rather than call-by-name by observing the

sharing of normal forms. Consider,

letf =letz==zin (Ax.\y.y)z
() (4.2)
inleti =Ax.xinletv==fiinfv

where f is bound to the thunk (4.1) and applied twice to the identity function. Evaluation of
f v forces the thunk. After the thunk is evaluated, the location ¢, that is associated with f is
updated with the corresponding whnf A\y.y. The second evaluation of £ does not re-evaluate
the thunk (4.1).

Following the rules of our cost model and starting from the empty configuration, Figure|4.5

shows how we derive the following judgement:
0,0,0 = (4.2) |} Ax.x, [lo — Ay.y, 01 — Ax. %, b > Ax. %, {3 > 3]

Evaluating expression (4.2) thus costs four heap cells, that is, one cell for each let expres-
sion. Under a call-by-name semantics, the cost would instead be 5, since the let expression
that is bound to £ would then be evaluated twice, rather than once as here.

The next chapter shows an analysis for lazy evaluation and its validation against the cost

model developed in this chapter.

25

26

FCUP

4. Cost Model

0,0,0Fletf =letz=zin (Ax. A\y.y)zinleti =Ax.xinletv=fiinfv

<~

([lo —letz==zin (\x.\y.y)z],0,0Fleti=Ax.xinletv=1/lyiinlyv
([lo—letz=zin (Ax. A\y.y)z, 01 — Ax.x|,0,0 Fletv=1{ylyinlov
[lo—letz=2zin (Ax. A\y.y) 2,01 — Ax.x, 0o — Lo U], 0,0 £y 4o
([lo—letz=zin (Ax. \y.y)z, 01 — Ax.x, 0o — Lo l4],0,0 F Lo

[lo—letz=2zin (Ax. A\y.y) 2,01 — Ax.x, 0o — Lo 4], 0, {lo}
Fletz==zin (Ax. \y.y)z
[Eo —letz==zin (AX)\y y) 2,51 — AX. X,gg — EO 61,53 = Ks], @, {Eo}
F(Ax. Ay.y) 43
[Eo —letz==zin (/\X)\yy) Z,€1 — AX. X,EQ — Eo €1’€3 — Zs], @, {éo}
FAx. Ay.y
19 Xz Ay, y,
[lo—letz=zin (Ax. \y.y)z, 01 — Ax.x, by > by Uy, 03— {3]
[lo—letz==zin (Ax. \y.y) 2,01 — Ax.x, 0y > Lo by, b3 — C3],0,{lo}
FAy.y
19 Ay.y,
[lo — letz =z in (Ax. A\y.y) 2,01 — Ax.x, 0y > Lo Uy, U3 — (3]
Oy 7, [lo = letz =z in (A\x. AY.¥) 2, €1 > Ax.x, Uy > Lo £y, U3+ L3]
W Ay.y, [l = letz =z in (A\x. A\y.¥) 2, €1 = Ax.x, by > Lo Uy, U3 +— £3]

1)\y Y, [60 —)\yy,gl —)\X.X,£2 — Eo 61753 — 63]
([g() —)\yy7£1 —)\X.X,EQ '—>£0€1,€3 |—>€3],(Z),@ l_gg

,

[fo —)\y y,€1 — AX. X,fg — fo 61,63 — Ks],@, {EQ} F fo 61
[lo = Ay. ¥, 01— Ax.x, by > Lo by, ls — L3], 0, {la} I £
[fo —)\yy,€1 —)\X.X,gg — 6051,63 — 63],(2), {62,60} F)\yy
{UO)\y.y, [fo —)\y.y,€1 —)\X.X,gg — KO 61,63 — £3]
U«O)\y y, [Eo —)\YY,51 —)\X.X,EQ — Eo 61763 — 63]
[Eo —)\y y,£1 — AX. X,EQ — Eo £1,€3 — 63],@, {EQ} F Ei
[60 —)\yy,g;l = AX. X, 0y — Lo by, U3 +— 63],@, {62761} FAx.x
{UD)\X.X, [(o —)\y.y,ﬁi —)\X.X,EQ — fo 51,f3 = gg]
U,O AX. X, [eo —)\yy,gl —)\X.X,gg — Lo 61753 — 63]

l}o AX. X, [fo —)\y v, €1 — AX. X, EQ — fo €1,€3 — £3]
PO Ax.x, [l = AY. 7, €1 = Ax.x, Uy > AX. X, U3 +— £3]
LU A% x, [lo = Ay, £y = AX. X, fg = AX. X, 3+ 3]

V2 Ax.x, [l = AY. 7,01 > Ax.x, Uy > AX. %, U3+ £3]

\ P Ax.x, [l = AY. 7,01 > Ax.x, ly > AX. X, l3 = {3]

P Ax.x, [l = Ay 7,01 > Ax.x, ly > AX. X, U3 > L3]

Figure 4.5: Evaluation under a call-by-need semantics

5. Amortised Analysis

In this chapter we present a type-based amortised analysis of total heap allocation for
higher-order lazy functional programs.

Our approach is based on the principle of amortisation as described in Chapter 3. We start
by defining the types and presenting the rules of our type system. We then define some
auxiliary mappings that help us construct the invariants to the main contribution of this
thesis: a soundness proof connecting our analysis to the cost model of Chapter 4, proving
that the upper bounds given by our analysis are not exceeded under the cost model. Finally,
at the end of the chapter we present a system for eager evaluation, derived with minimal
changes from the lazy, in order to, by contrast, emphasise the key elements needed in the

development of our analysis for lazy evaluation.

5.1 Types and Typing Contexts

As described in Chapter|3, to develop a type-based amortised analysis, we start by defining
the annotated types the type system (to be presented later in this chapter) will handle.

The syntax of allowed types is shown in Figure[5.1. We use meta-variables A, B, C for
types, X, Y for type variables and p, ¢ for annotations, i.e. non-negative rational numbers
representing potential or cost (whenever possible we use p for potential and ¢ for cost an-
notations). The allowed types include type variables, function types and possibly recursive
data types over labelled sums of products (representing the types of each constructor) and
thunk types.

Except for type variables, all types have annotations. Annotation ¢ in a function type
expresses the cost incurred by each evaluation of the corresponding function; similarly,

the annotation ¢ in a thunk type captures the cost of evaluating the corresponding thunk

27

28

FCUP
5. Amortised Analysis

A B,C = X — type variable
| A&B — function type
| pXAcr:(p,B1)l -+ len: (pn, Bn)} —datatype
| TYA) — thunk type

with q,P1;---,Pn € @[—)i_

Figure 5.1: Annotated types

(this cost can be zero if the thunk is known to be in whnf). As in previous type-based
amortised analyses, our potential function (from data structures to numbers) is defined in
a type-directed way: in particular, we choose to annotate data types with non-negative
coefficients p; that specify the contribution of each constructor ¢; to the potential of the
data structure. Although this representation of potential in data types limits the analysis to
express bounds that are linear functions to the number of constructors in data structures,
we keep our focus on the contributions found in this thesis, showing a range of interesting
examples successfully handled by the analysis (Chapter 6), and leave as further work the
study of an extension to super-linear bounds, along the lines of recent work [HAH11].

Recall from Chapter |4/ that arguments to constructor applications are always variables
(locations) and never values, and also that constructor applications are always introduced
by lets. As such, constructor applications and their arguments are always stored in the heap
and are referenced by a location, i.e. constructors in our cost model are boxed, and this is
reflected in data types, where each type in B;, with i = 1,...,n, is implicitly a thunk type.
Similarly, since arguments to applications are always variables, the argument of function
types is implicitly a thunk type as well.

We consider only recursive data types that are non-interleaving [Mat98], i.e. we exclude
p-types whose bound variables overlap in scope, e.g. uX . {c1 : (..., pnY {ea: (..., T(X)}) }.
This helps us prove a crucial lemma on cyclic structures (Lemma 5.17) in the key soundness
proof (Theorem|5.13). Note that this restriction does not prohibit nested data types; e.g. the
type of lists of lists of naturals is Y. {Nil : (p), ()) | Cons : (p., (T(LN),T(Y)))}, where
LN = pY{Nil : (pn, ()) | Cons : (p., (T(N),T(Y)))} is the type of list of naturals and
N = puX.{Zero : (p., () | Succ : (ps, T(X)) } is the type of naturals, and we have omitted
thunk type annotations for simplicity. Also, note that distinct lists can be assigned different

constructor annotations in their types, thus improving the precision of the cost analysis.

FCUP
5.2. Sharing Relation

For simplicity, we also exclude resource parametricity [JLHH10], since this is only important
for functions that are re-used in different circumstances and not for thunks that are evalu-
ated at most once, being thus orthogonal to this thesis. Nevertheless, adopting resource

parametricity in our analysis is left as further work.

Typing contexts are multisets of pairs z: A of variables and annotated types; we use multisets
to allow separate potential to be accounted for in multiple references. We use T', A, © for
contexts and I'[, for the multiset of types associated with z inT', i.e. I'[, = {A | z:A € T'}.
Note that, since variables in typing contexts represent locations in a heap, their corre-
sponding types are implicitly thunk types, similar to the above observation on arguments

to function types and data types.

5.2 Sharing Relation

Figure 5.2 shows the syntactical rules for an auxiliary judgement Y(A| B, ..., B,) that
is used to share a type A among a finite multiset of types {Bi,...,B,}. It is used to
limit contraction in our type-system. Rule SHAREEMPTY accepts sharing a type among
an empty multiset of types. Data type annotations for potential associated with A are
linearly distributed among By, ..., B, (SHAREDAT), whereas cost annotations for functions
and thunks are preserved (SHAREFUN and SHARETHUNK). Rule SHAREVEC is applied to
vectors of types with the same length and is used as a premise of SHAREDAT.

Figure 5.3 extends the sharing relation for typing contexts. With rule SHARECTX a typ-
ing context {z1:41,...,z,:4,} shares to another typing context A iff there is a partition
Ay, ..., A, of Asuchthat Y(z;:A4; | A;) holds and dom(A;) C {z;}, for (1 <i <mn).

For example,

Y (2 T2 (pX {Unit:(5,())}) | 2:T3(uX {Unit:(3,()}), 2:T7 (X {Unit:(2,()}))
V(FTAT)2 B) | FTHTHA) S B), [:T(T2(4) > B))

hold, whereas

Y (2:T?(pX {Unit:(5,())}) ‘ T3 (X {Unit:(3,())}), v:T°(uX . {Unit:(2,())}))
Y (2: T2 (uX {Unit:(5,())}) | &:T3(uX {Unit:(3,())}), 2:T°(uX.{Unit:(3,())}))
V(FTATHA) S B)| £THTHA) > B))

(5
(5

—_ —

29

30 | FCUP
5. Amortised Analysis

(SHAREEMPTY)

Y(A[0)

SHAREVAR
VX[X, . X) ‘ ’

Bi = pX.{e1: 0y, Ba)l - lem s (s Bim)
--vénj> pj > D Pl (1<i<n,1<j<m)

Y(NX-{Cl C(pr, AL Lem : (pm, [fm)} | By, ..., Bn)

Y(Ai|A) Y(B|B;) g >q (1<i<n)

Y(Ej

(SHAREDAT)

7 @ = (SHAREFUN)
Y(A™ B|A1™" By, ..., A," By)
Y(A;| By, ..., Byj) m:EZ‘B} (1<i<n, 1<j<m)
By - (SHAREVEC)
Y(A Bl,...,Bn)
AlAy, ... A, ;> <i<
Al) azq (s<isn (SHARETHUNK)
Y(T () TH(AL), ..., T™(Ay))
Figure 5.2: Sharing relation
(SHAREEMPTYCTX)
v(Ir0)
A| By,...,B I'A
Y(A| Bi.....By) V(D[A) (SHAREGTX)

Y(z:AT|xz:By,...,x: By, A)

Figure 5.3: Sharing relation extended to contexts

do not. The last three sharing examples fail since in the first of these a typing for y appears
only at the right-hand side of the sharing relation; in the second, the potential on the left-
hand side is not linearly distributed with respect to the right-hand side (5 £ 3 + 3); and
the last example fails since sharing is contravariant in the left argument of functions and
thus, while the cost of the outermost thunk type on the right-hand side can exceed the

corresponding cost on the left-hand side, the cost of the inner thunk type cannot.

5.2.1 Subtyping Relation

Sharing also allows the relaxation of annotations to subsume subtyping. The special case
of sharing one type to a single other corresponds to a subtyping relation; we define the
shorthand notation A <: B to mean Y(A|B). Inequalities over type annotations in rules
SHAREDAT, SHAREFUN and SHARETHUNK allow potential annotations to decrease and

cost annotations to increase. Informally, A <: B implies not only that A and B have identical

FCUP | 31
5.2. Sharing Relation

underlying types, but also that B has lower or equal potential and greater or equal cost than
that of A. As usual in structural subtyping, this relation is contravariant in the left argument
of functions (SHAREFUN).

5.2.2 Idempotent Types

We now define the notion that some types can be freely shared. Namely, if they observe

the following definition:

Definition 5.1 (Idempotent Types and Idempotent Contexts). We say type A (respectively
context I') is idempotent iff Y(A| A, A) (respectively Y(I'|T',T")) holds.

This special case occurs when sharing a type or context to itself: because of non-negativity,
Y(A| A, A) (respectively Y(I' | T, T")) requires the potential annotations in A (respectively I')

to be zero for all data types outside of function types.

Note though that function types are unaffected by this special case of sharing. However,
since function types do not carry potential per se (the potential required to execute the body
of a function must come from its arguments), all types subject to such constraint carry no
potential.

For example, types

T (uX {Unit:(0,())})
TH(TY (X {Unit:(1,()}) — B)
TH(uX.{Cons: (0, (TH(uX.{Unit:(0,())}), TH(X))) | Nil:(0,())})

are idempotent, whereas types

T (X {Unit:(1, ()})
T (X {Cons:(L, (T (uX.{Unit:(0, ()}), TH(X))) | NiL:(0,()})
T (1X{Cons:(0, (T (uX.{Unit:(0, ()}), TH(X))) | NiL:(1, ()})

are not.

We use this property to impose a constraint that types or contexts carry no potential. A
variant of this is Y(A | A, A"), which implies that A’ is a subtype of A that holds no potential.

32

FCUP
5. Amortised Analysis

5.3 Typing Judgements

Our analysis for lazy evaluation is presented in Figures and 5.5 as a proof system
that derives judgements of the form I' - € : A, where I' is a typing context, ¢ is an
augmented expression, A is an annotated type and ¢ (above the turnstile) is a non-negative
rational number approximating the cost of evaluating e. For simplicity, we will omit turnstile

annotations whenever they are not explicitly mentioned.

In the LET rule, the cost ¢ of evaluating ¢ is deferred by moving it to the thunk type of z in the
type judgement of e. If x does not occur in e then its cost can be discarded, in accordance
with lazy evaluation. Also, type A’ is restricted to being idempotent in order to prevent the
potential of = from being reused in the derivation of e, keeping potential from being obtained
for free in the recursive definition. Finally, the overall cost of the let expression is 1 for the
newly allocated heap cell (according to the cost model) plus the cost ¢ of evaluating the
body e and, if € is a constructor, its potential p’ is also added to the overall cost. Note that
the thunk cost of = in the type judgement of € is ¢/, instead of always zero as in a previous
presentation [SVF+12]. This change allowed us to fix a minor problem in the soundness
proof of the main theorem.

VAR moves the cost from the thunk type to the turnstile, ensuring that any cost in the thunk

type is paid for at this point of access in a type derivation.

In the ABS rule, the cost of eventually applying the A-abstraction is ¢, but the cost of
evaluating the A-abstraction itself is zero, since it is already a whnf. In order to avoid
duplicating potential where a A-abstraction is applied more than once, ABS ensures that I’
is idempotent, by forcing it to share with itself. While on the one hand this means functions
can be reused arbitrarily without risking unsound duplication of potential, on the other hand
functions must obtain all their required potential, other than a constant amount, from their

input argument = alone and not from other variables in dom(T").

APP ensures that the argument and function types match and includes the cost of the

function in the final result.

The CONS rule simply ensures consistency between the arguments and the result type.
Since constructors cannot appear in source forms, the rule is used only when we need to

assign types either to heap expressions or to evaluation results. Note that while rule LET

FCUP
5.3. Typing Judgements

DaTA) F-2: A AxTYA) r-e:C
r ¢ dom(I',A) Y(A|AA) ¢ =0ifeisawhnf
_ { p.ife=cgand A=puX{ - lc: (/. B)l -}
P=19 0, otherwise

LET
A 22 etz =€ine: O (LET)
VAR
TYA) +H-z: A (VAR)
aeAr-e: C dom(T" I|\r,r
' dze: A—C
M e: AL C
; (APP)
Iy AHEC ey : C
B=uX{lc:(p,A)]---
pX A le: (p)O}ﬁ (Cons)
ylAl[B/X},,ykAk[B/X] Fcy:B
— —
P't-e: B B=pXA{cr:(pr, A1)l len: (pn, An)}
(Ui {i}) N dom(A) = 0
A==
U Ay Ay B X, A [B)X) FEEE e O
’1 (CASE)

T, A F+L case e of {¢; 7 -> ¢}, : C

Figure 5.4: Syntax directed type rules

must ensure that sufficient potential (p’) is available for the constructor, the CONS rule does
not — the former corresponds to allocating a constructor, the latter to merely referencing

one.

The CASE rule deals with pattern-matching over an expression of a (possibly recursive) data
type. The rule requires that all branches of the alternatives admit an identical result type
and that part of the estimated cost of each alternative branch is the same; fulfilling such
a condition may require the relaxation of type and/or cost information using the structural
rules described below. The matching branch uses extra resources corresponding to the
potential annotation on the matched constructor, previously set aside at the introduction of

the constructor (LET).

The structural rules of Figure 5.5 allow the analysis to be relaxed in various ways. Rule
WEAK allows the introduction of an extra hypothesis in the typing context and the side
condition ensures type A must be structurally equivalent to any of I'[,, if I'[, is not empty,
preventing ill-formed contexts, such as {z:Bool, z:List}. RELAX allows argument costs to
be relaxed. SUPERTYPE and SUBTYPE allow supertyping in a hypothesis and subtyping

33

34

FCUP
5. Amortised Analysis

I't-e:C YA | (T, z:A)],)

(WEAK)
NaoAr-e: C
Tl e: A > g
c 1=1 (RELAX)
I'rt-e: A
I'aBr-e:C A<:B
(SUPERTYPE)
NeAr-e:C
' ¢e:B B<:C
(SUBTYPE)
I'e: C
I,x:Ay, 2: 45 H-e: C AlA A
bt e ‘ VA4, A) (SHARE)
NaoAr-e: C
[, 2:T%(A) = e: C
z:T(4) ‘ (PREPAY)

L, 2: Tt (A) 1L e C

Figure 5.5: Structural type rules

in the conclusion, respectively. SHARE allows the use of sharing to split potential in a
hypothesis. Finally, PREPAY allows (part or all of) the cost of a thunk to be paid for, so
reducing the cost of further uses.

It is important to note that a decrease of cost annotations for thunks (possibly down to zero)
can only be achieved through the PREPAY structural rule and not through the sharing rules
of Figure|5.2. Without PREPAY the system would model call-by-name, since each access
of a variable would pay for the entire cost. Also, if we would force the use of PREPAY for
the entire cost after each LET, we would be modelling call-by-value: pay in full once at
introduction (LET) and pay zero at every access (VAR). It is the ability to selectively choose
when to use PREPAY that enables the system to model call-by-need. Thus, “prepaying”
is key to correctly modelling the reduced costs of lazy evaluation by allowing costs to be
accounted only once for a thunk, if at all.

5.4 Example: Analysing Call-By-Need

We now present type derivations for the examples from Section|4.4 in order to illustrate how

the type rules of Figures 5.4 and|(5.5 reflect the costs of our operational semantics.

FCUP
5.4. Example: Analysing Call-By-Need

5.4.1 Non-Strict Evaluation

Recall example (4.1) which demonstrates that unneeded redexes are not reduced (i.e. that
the semantics is non-strict):

letz==zin (Ax. \y.y)z

Evaluation of this term in our operational semantics succeeds, requires one heap cell (for

allocating the thunk named by z) and the result is the identity function \y. y:

H,8,L H-letz==zin (Ax.\y.y)z | A\y.y, H'

An analysis for this term is given in Figure|5.6/as an annotated type derivationﬂ

The final judgement is:

fH-letz=zin (A\x.\y.y)z: TYB) = B

The annotation in the turnstile of this judgement gives a cost estimate of one heap cell,
matching the exact cost of the operational semantics. The type annotation ¢ represents the
cost of the thunk bound to the concrete argument of the identity function \y.y. The value of
q can be arbitrary. So can type B. Note that type A’ is similarly arbitrary, subject only to the

side condition Y(A’| A’, A"), forbidding circular data for having potential.

5.4.2 Lazy Evaluation

The second example (4.2) illustrates the sharing of normal forms, i.e. lazy evaluation:

letf =letz=zin (Ax. \y.y)z

inleti = \x.xinletv=fiinfv

Evaluating £ v forces the thunk named by f£; following evaluation, the location associated
with f is updated with a whnf. Subsequent evaluations of f re-use this result. Evaluation of

*For the complete derivation see Figure|B.1 in Appendix B.

35

36

FCUP
5. Amortised Analysis

g ; VAR g :
zTT(A) H=z: A zTT(A) ¥ (AxAy.y)z: TYB) — B

fH-letz==zin (A\x.\y.y)z: TYB) = B

LET

where Y(A'| A, A")
Figure 5.6: Type derivation for a non-strict evaluation example
the overall expression therefore costs 4 heap cells (as seen in Figure|4.5, Chapter4):

0,0,0 = (4.2) |} Ax.x, [lo — Ay.y, 01 — Ax. %, by — Ax. %, 03 — 3]

The type derivation in Figure|5.7 shows the analysis for this exampIeJT

The final type judgement replicates the exact operational cost of 4 heap cells:

/

0+ (4.2) : B, where B=T7(C) = C

Note that we employ the structural type rule SHARE to allow the function £ to be used twice.

The duplication is justified since the type of £ is idempotent (i.e. it shares to itself).

The crucial point in this type derivation that allows us to match the exact operational cost is
the use of the structural rule PREPAY (below SHARE) to pay, precisely once, the cost of the
thunk bound to £.

Also note that although the type derivation constrains B = Tq'(C) <5 C'to be idempotent,

i.e. Y(B| B, B), it leaves type C unconstrained.

5.5 Soundness

This section establishes the soundness of our analysis for lazy evaluation with respect to

the cost model of Section 4.3.

We begin by stating some auxiliary proof lemmas and preliminary definitions, notably for-
malising the notion of potential. We then define the principal invariants of our system,
namely, type consistency and type compatibility relations between a heap configuration of

TFor the complete derivation see Figure/B.2 in Appendix B.

FCUP
5.5. Soundness

((Figure 5.6, where ¢ = 0)

0o 5y - o 5 05 5 WEAK
£:T(TA(B) 7 B) = letz==zin (Ax.\y.y)z: T(B) — B

£:TO(TYB) = B),
£:TOTYB) = B), 1:TO(B) - letv=fiinfv:B Shane
£:TUTYB) = B), iT%B) - letv=fiinfv: B

-0 0 0 - PREPAY
£:T(TA(B) —7 B), i:T'(B) P letv=fiinfv:B LET

£:THTYB) = B) ¥ leti = x.xin ...: B
Dr-letf=(letz==zin (Ax.\y.y)z)inleti = x.xinletv=£fiinfv: B

LET

/

where B=TY(C) = C

Figure 5.7: Type derivation for a lazy-evaluation example

the operational semantics and global types, contexts and balance. We conclude with the
soundness result proper (Theorem|5.13).

5.5.1 Auxiliary Lemmas

The first auxiliary lemma allows us to replace variables in type derivations. Note that
because of the lazy evaluation semantics (and unlike the usual substitution lemma for the
A-calculus), we substitute only with variables but not with arbitrary expressions. Also, since
our typing contexts are multisets, we need to ensure the simultaneous substitution of all

typings of the variable in the context.

Lemma 5.2 (Substitution). IfT", z:A;,...,2:A, +~¢: C andx ¢ dom(I") and y ¢ dom(T") U
FV(e) thenalsol',y:Ai,...,y: A, H- €ly/x] : C.

Proof. By induction on the height of derivation of T', z: 44, ..., z:A, - € : C, simply replac-
ing any occurrences of x for y. O

The next two lemmas establish inversion properties for constructors and A-abstractions.

-,

Lemma 5.3 (CONS Inversion). IfT'+~c 4 : B then B = pX.{---]c¢ : (p,A)|---} and
Y(I' [y A [B/X], ...y Ak[B/X]).

37

38

FCUP
5. Amortised Analysis

Lemma 5.4 (ABS Inversion). IfT - \z.e : A== C then there exists T' such that Y(T'|T"),
YT, 1), ¢ dom(I") and ", z:A +- e : C.

Proof Sketch (for both lemmas). A typing with conclusion T" - ¢ ¢ : B must result from ax-
iom CONS followed by (possibly zero) uses of structural rules. Similarly, atyping " +- A\z.e :
A -5 C must result from an application of the rule ABs followed by (possibly zero) uses of
structural rules. The proof follows by induction on the structural rules, considering each rule
separately. For rules RELAX and PREPAY induction is trivial since both type judgements

have zero on the turnstile. For the remaining structural rules the proof follows by transitivity

of the sharing relation. See Section 5.5.6.2 and 5.5.6.3, respectively, for the detailed
proofs. O

Note that, for a typing judgement with any number greater than zero on the turnstile,
inversion in our type system would not hold in general. The reason is that two (mu-
tually exclusive) rules might apply. For example x:T!(A) - e : C' might have premise
z:TY(A) ¥ e : C through rule RELAX, or it might have premise x:T°(A) - e : C throught
rule PREPAY. This is not a problem since the proofs we present in our system do not require
inversion lemmas with a number other than zero on the turnstile of the typing judgements.

The final auxiliary lemma allows splitting contexts used for typing expressions in whnf

according to a split of the result type.
Lemma 5.5 (Context Splitting). /f ' v~ w : A, where w is an expression in whnf and

Y(A| Ay, Ay); then there existT'y, 'y such thatY(I' |I'1,T2), 'y ¥~ w: Ay andTy = w : As.

Proof Sketch. The proof follows from an application of Lemma |5.3 (if w is a constructor)
or Lemma (5.4 (if w is an abstraction) together with the definition of sharing. See Sec-
tion 5.5.6.4 for the detailed proof. O]

5.5.2 Global Types, Contexts and Balance
We now define some auxiliary mappings that will be necessary for formulating the sound-
ness of our type system.

The mapping M from locations to types, written {¢; — Ay, ..., ¢, — A, }, records the global

type of a location, which accounts for all potential in all references to that location.

FCUP
5.5. Soundness

We extend subtyping to global types in the natural way, namely M <: M’ if and only if
dom(M) C dom(M') and for all £ € dom(M) we have M(¢) <: M'(¢). This relation will be
used to assert that the potential assigned to global types is always non-increasing during

execution.

The mapping € from locations to typing contexts, written {¢; — T'y, ..., ¢, — I',,}, associates

each location with its global context that justifies its global type.

We also extend the projection operation from (local) contexts to global contexts in the natural
way:

def
Clo= {11, by > T} (Th,. ., Tl

Furthermore, we introduce an auxiliary balance (or lazy potential) mapping B from locations

to non-negative rational numbers.

The balance mapping will be used to keep track of the partial costs of thunks that have been
paid in advance by applications of the PREPAY rule.

Note that these auxiliary mappings are needed only in the soundness proof of the analysis
for bookkeeping purposes, but are not part of the operational semantics — in particular,

they do not incur run-time costs.

5.5.3 Potential

We now define the potential of an augmented expression with respect to a heap and an
annotated type.

Definition 5.6 (Potential). The potential assigned to an augmented expression ¢ of type A
under heap H, written ¢4(e:A), is defined in (5.1) within Figure|5.8.

The potential of data constructors is obtained by summing the type annotation with the
(possibly recursive) potential contributed by each of the arguments. Note how the potential
of data constructors is unwrapped from thunk types. The potential of expressions other than

data constructors is always zero.

Equation (5.2) extends the definition to typing contexts in the natural way. Equation (5.3)

defines potential for global contexts, but considers only thunks that are not under evaluation.

39

40

FCUP
5. Amortised Analysis

—

I S bac(H(:):Bi[A/X]) i A=pX{-le(p,B)I---}and €= c

93c(@4) €' { 4y (@:B) it A=TYB) (5.1)
0 otherwise

65c(T) B S {65(9t(2):A) | z:A € T} (5.2)

0%(€) €S {ye(C(£)) | € € dom(3() and £ ¢ £ and H(¢) is not a whnf } (5.3)

o5(B) €'Y " { B(6) |¢c dom(30)and ¢ ¢ £ and 3(¢) is not a whnf } (5.4)

Figure 5.8: Potential

Finally, (5.4) defines a convenient shorthand notation for a similar summation over the
balance.

Note that for cyclic data structures, the potential is only defined if all the type annotations
of all nodes encountered along a cycle are zero (the overall potential must therefore also
be zero). For example, consider the heap H = [l — True, ¢; — Cons {o {1] where /¢4

represents an infinite list of booleans True as a cyclic list of length 1. Potential

¢%(€1:T1(MX.{COHS:(O, (TH(uY.{True:(0, () IFalse:(1,())}), THX))) | Nil:(1,())}))
is zero, whereas potentials

g (Elle(,uX.{Cons:(l, (TYH (Y {True:(0, () IFalse:(1,())}), TH(X))) | Nil:(1, ())}))
g (Eile(,uX.{Cons:((), (TY (Y {True:(1,())IFalse:(1,())}), TH(X))) | Nil:(1, ())}))

are not defined.

The next lemma formalises the intuition that sharing splits the potential of a type.

Lemma 5.7 (Potential Splitting). If Y(A|A4,..., A,) then for all € such that the potentials
are defined, we have ¢4 (e:A) > >, d5(€:4;).

Proof Sketch. First note that the results follow immediately if € is not in whnf or is a A-
abstraction (because potentials are zero in those cases). The potential is also zero if € is
a constructor that is part of a cycle (since otherwise it would be undefined). The remaining
case is for a constructor with no cycles, i.e. a directed acyclic graph (DAG). The proof is
then by induction on the length of the longest path. See Section |5.5.6.5 for the detailed
proof. O

FCUP
5.5. Soundness

This lemma has an important corollary when A occurs as one of the types on the right hand
side.

Corollary 5.8 (Potential Remaining). If Y(A| A, By,...,B,) then for all € such that the

potentials are defined, we have ¢4 (e:B;) = 0 for all i.
Proof. This is a direct corollary of Lemma 5.7. O

It also follows as corollary that a supertype of a type A has potential that is no greater than
that of A.

Corollary 5.9 (Potential Subtype). If A<: B then for all € such that the potentials are
defined, we have ¢4 (e:A) > ¢4 (e:B).

Proof. By the definition of subtyping, this is a direct corollary of Lemma|5.7 for the case

when n = 1. O

5.5.4 Consistency and Compatibility

We now define the principal invariants for proving the soundness of our analysis, namely,
consistency and compatibility relations between a heap configuration and the global types,

contexts and balance.

We proceed by first defining type consistency of a single location and then extending it to a
whole heap.

Definition 5.10 (Type Consistency of Locations). We say that location ¢ admits type T4 A)
under context I', balance B and heap configuration (3(, £), and write I', B; H, L . £ :
T9A), if one of the following cases holds:

(Loc1) %(¢) is in whnf and T F= 3((f) : A
(Loc2) H(¢) notin whnfand ¢ ¢ L and T H2 3((¢) : A

(Loc3) H(¢) notin whnfand ¢ e £Land T = ()

The three cases in the above definition are mutually exclusive: Loc1 applies when the
expression in the heap is already in whnf; otherwise Loc2 or LOC3 apply, depending on

whether the thunk is or is not under evaluation.

41

42

FCUP
5. Amortised Analysis

Note that for Loc2 the balance B(¢) associated with location ¢ is added to the available
resources for typing the thunk JH(¢), effectively reducing its cost by the prepaid amount.
Once evaluation has begun (Loc3), or once it has completed (Loc1), the balance is
considered spent. However, we never lower or reset the balance, since it is simply ignored

in such cases.

Definition 5.11 (Type Consistency of Heaps). We say that a heap state (H, £) is consistent
with global contexts, global types and balance, and write €, B ., (H, L) : M, if and only
if for all £ € dom(J(): C(¢), B; H, L | o £ : M(£) holds.

Definition 5.12 (Global Compatibility). We say that a global type M is compatible with

context I" and a global context €, written Y(M |T', €), if and only if Y(M(¢) | IT,, €[,) for all
¢ € dom(M).

Definition 5.11 requires the type consistency of each specific location. Definition [5.12
requires for each location that the global type accounts for the joint potential of all references
(in both the local and global contexts).

5.5.5 Soundness of the Proof System

We can now state the soundness of our analysis as an augmented type preservation result.

Theorem 5.13 (Soundness). If the following statements hold

TH-e: A (5.5)
H,8, L+ el w, H (5.6)
C, B Fyey (F,L) : M (5.7)
Y(M|(T,©),¢) (5.8)

then for allt € Qf andm € N with

m >t 4 ¢+ ¢g(D) + dge(©) + D5(€) + P5(B) (5.9)

FCUP
5.5. Soundness

there exist1”, ¢, B', M" and m’,m"” € N such that the following statements also hold

I w: A (5.10)

H,8, L e bw, H (5.11)

M<: M (5.12)

€ B Fyen (F, L) M (5.13)

YW |(T,0),¢) (5.14)

m' >t + ¢go (w:A) + g0 (0) + @5 (€') + @5, (B) (5.15)
m—m'>m" (5.16)

Informally, the soundness theorem reads as follows: if an expression ¢ admits a type A (5.5),
its evaluation is successful (5.6) and the heap can be consistently typed (5.8), then
the resulting whnf also admits type A (5.10). Furthermore, the resulting heap can also be
typed (5.12) (5.13) (5.14) and the static bounds that are obtained from the typing of e give
safe resource estimates for evaluation (5.9) (5.11) (5.15) (5.16).

The arbitrary value ¢ is used to carry over excess potential which is not used for the
immediate evaluation but will be needed in subsequent ones (e.g. for the argument of an
application). Similarly, the context © is used to preserve types for variables that are not in
the current scope but that are necessary for subsequent evaluations (e.g. the alternatives
of the case).

Note that type preservation — i.e. the fact that expression e and its whnf w both have
judgements with the same type A — could be proven separately from the main theorem, but

obviously only if there were no resource related type annotations in the relevant statements.

We present here a proof sketch of our main theorem; a detailed proof is available in
Section|5.5.6.

Proof Sketch. The proof follows by induction on the lengths of the derivations of (5.6) and
(5.5) ordered lexicographically, with the derivation of the evaluation taking priority over the
typing derivation. We proceed by case analysis of the typing rule used in premise (5.5),

considering just some representative cases.

43

44

FCUP
5. Amortised Analysis

Case VAR: The typing premise ¢:T9A) +- ¢ : A is an axiom. By inversion of the eval-
uation premise, we obtain H,8, L U {¢} + H(¥) |} w,H'. In order to apply induction to
the evaluation of the thunk 3 (¢), we take the typing context from the hypothesis of type
consistency for the location ¢. We apply induction to a typing with the global type M(¢)
rather than the local type T%A) in the local context. This gives us a stronger conclusion
with a context that we can then split using Lemma 5.7 to justify type consistency for the
heap update and the local context for the answer. Finally, we require an auxiliary result to
ensure that if the update introduces a cycle, the locations on the cycle can be assigned a
type with zero potential (Lemma 5.17 in Section|5.5.6).

Case LET: The typing premise is I'; A —-2*£ |et = €in e : C' and evaluation premise
gives us Hy, 8, L F e[l/x] || w,H" where Hy = H[¢ — €[¢/z]] is the heap extended with a
new location ¢ and thunk. To apply induction to the evaluation of e[¢/x] we reestablish the
consistency to the new location ¢; this is done using I' from the typing hypothesis together
with an idempotent type for self-references to ¢. Applying induction then yields all required

conclusions.

Case CASE: The typing premise is I', A =% case ¢ of {¢; T -> e;}i_q : C and, by inver-
sion of the type rule, we get atyping I' H- e : B for e, where B = uX.{c; : (pl,Zl))l o lep s
(pn,ZZ)} is some data type for constructors ci,...,c,. We apply induction to the evalu-
ation of e. We then apply induction to e;[(/z}] and obtain the proof obligation. To es-
tablish the premise (5.9) on m/, we use the definition of potential: ¢4 (cx E:B) = pr +
> Oy (H(4;):A;[B/ X]), i.e. the potential of the constructor ¢ is the sum of the type an-
notation p;. plus the potential of its context.

Case PREPAY: The typing premise is T, £:T%4(A) r+ ¢ . C. We want to apply induc-
tion to the typing T', £:T%(A) - e : C, obtained by inversion of the type rule, and we use
the same evaluation premise, since PREPAY is a structural rule. We reflect the prepayment
of ¢’ in the global balance B’ = B¢ — ¢'+B(¢)]. Let T"(A") = M(¥¢), k = max(r—¢’,0) and
M = M[¢ — T*(A")], i.e. we want to show that we can lower (by ¢’) the global cost of thunk
types for location ¢. In order to do so, we need to reestablish type consistency and global
Tib(4)),
in particular k& < ¢, but this is equivalent to show that max(r—¢',0) < ¢{, <= r—¢ < ¢{)A0 <

compatibility for the new B’ and M’. The important part is to show that \j(T’f(A’)

FCUP
5.5. Soundness

40, Where the latter follows from the non-negativity of ¢), and r—¢' < ¢ < r < ¢(+¢/,
which holds by the compatibility premise Y(TT(A’) Ta+e (A))

The soundness proof presented in this thesis does not require co-induction for proving

memory consistency. This contrasts with previous amortised analyses that deal with re-

cursive closures [JLHH10, Jos10]. It should be noted that the same reason, i.e. proving
the consistency of recursive closures, also caused Milner and Tofte [MT91] to resort to
co-induction. The analyses presented in this thesis, however, do not need a co-inductively
defined consistency for recursive closures, but instead rely upon the convention that all vari-
able names are sufficiently fresh, hence a single, global, environment suffices. Therefore,
checking all locations for this global environment once suffices since a function value does

not need a recursive check for its consistency with a new environment.

The next section includes the detailed proof of the soundness theorem for our analysis.

5.5.6 Detailed Proofs

We begin with an auxiliary definition and lemma that will be used in the proof of the sound-
ness of the analysis in the case VAR for updating a location with a whnf.

5.5.6.1 Minor Lemmas

Lemma 5.14 (Subtyping is a partial order). <: is a partial order.

Proof. Straightforward by induction on the type structure and the definition of sharing (Fig-
ure(5.2). O

Lemma 5.15 (Idempotent Subtypes). IfY(A| A, A") thenY(A'| A’, A") as well.

Proof. Straightforward by induction on the type structure and the definition of sharing (Fig-
ure|5.2). 0

We now present the proof of Lemma [5.3 (CONS Inversion), followed by the proof of
Lemma 5.4 (ABS Inversion).

45

46

FCUP
5. Amortised Analysis

5.5.6.2 Inversion Lemma for Constructors

—,

Lemma [5.3 (CONS Inversion). IfT'H-cy : Bthen B = pX.{---|c: (p,A)|---} and
YT [y1:A1[B/X], ..., yp: Ag[B/ X]).

Proof. A typing with conclusion T' - ¢ i : B must result from axiom CONS followed by
(possibly zero) uses of structural rules. The proof follows by induction on the structural
rules, considering each rule separately. For rules RELAX and PREPAY induction is trivial
since both type judgements have zero on the turnstile. For the remaining structural rules the
proof follows by transitivity of the sharing relation. We now consider each of the remaining

structural rules.

Case WEAK: We have I, 2,,41:C,11 H= ¢ ¥ : B. Applying induction to the premise of rule
WEAKT H- ¢ i : B we obtain

B=uXA{-le:(p,A)]---}
as required for the conclusion, and

V(I y1:Ar[B/X], ... yp: Ag[B/X])

Let T’ = {z1:C4,...,2,:C,}. By the definition of sharing (Figure5.3) we know that
Y(x1:Ch,. .oy 20:Cy | y1: A1 [B/ X, . . ye: Ak [B/ X))

iff there is a partition Ay,..., A, of {y1:A1[B/X],...,yx:Ax[B/X]} such that Y(z;:C; | A;)
holds and dom(A;) C {xz;}, for (1 <i <n).

Let A, 1 = 0. Since Y(zp+1:Cri1| Any1) holds (by SHAREEMPTYCTX) and dom(A,,11) C

{zn+1}, again by definition of sharing we have
Y(I, 2p41:Cnq1 | y1: AL [B/ X, .. yk:Ag[B/X])

as required.

FCUP | 47
5.5. Soundness

Case SUPERTYPE: We have I, z,,.1:C;,,; + ¢ i : B. The premises of rule SUPERTYPE
are ', 2y, 11:Cry1 H- ¢ : Band Y(C),, 1 | Cry1). Applying inductionto I, z,41:Cpiy H- ¢4
B we obtain

B=uXA{-lc:(p,A)]---}

as required for the conclusion, and

YL, n41:Cnsr |y1: AL [B/ X, ..oyt A [B/ X])

LetT = {z1:Cy,...,z,:C,}. By the definition of sharing (Figure|5.3) we know that
Y(21:C1,y .y 20 Cpy i 1: Ot |y1: A [B/ X,y Ag[B/XT)

iff there is a partition Aq,...,A,, Any1 of {y1:A1[B/X],...,yx:Ax[B/X]} such that
Y(z;:Ci | A;) holds and dom(A;) C {z;}, for (1 <i<n+1).

From Y(C,,1 | Cn+1) and Y(@p41:Crt1 | Apgr) by the transitivity of sharing we have
Y(2nt+1:Cp 1 [Ant)
Thus by definition of sharing we have
V(T 2n41:Cp 1y |y Ai[B/ X,y AR[B/X])

as required.

Case SUBTYPE: We have I' - ¢ ¢ : C. The premises of rule SUBTYPE areI' -~ c 4 : B
and Y(B|C). Applying induction to " I~ ¢ ¢/ : B we obtain

B=uXA{-lc:(p,A)] -}

and
YT |yr: A1 [B/X], ... yk: A [B/ X])

From Y(B | C') we know
C=pX{le: (@, AN -}

48

FCUP
5. Amortised Analysis

where p < p’ and y([f)@). Also, Y(y;:A;[B/X]|yi:AL[C/X]) for (1 < i < k). By the

transitivity of sharing we obtain
V(I [y A1 [C/X], ...y AL [C/X])

as required.

Case SHARE: We have I',z:C' - ¢ : B. Applying induction to the premise of rule
SHARE I', 2:C}, x:C%, % ¢ i : B we obtain

B=puXA-le: (p, Al -}
as required for the conclusion, and

Y(T, 2:C1, :Ch | y1: A1 [B/X], ..., yr: Ax[B/ X])

Let T = {z1:C4,...,2,:C,}. By the definition of sharing (Figure5.3) we know that
Y(x1:Ch,. . 20 Ch, 2:C 2:Ch | y1: AL [B/ X, . . . yk: Ak [B/ X))

iff there is a partition Aq,...,A,, A, AL of {y1:4:[B/X],...,yx:Ax[B/X]} such that
Y(x;:C; | A;) holds and dom(A;) C {z;}, for (1 < i < n), and Y(z:C] | A}), Y(z:Cy| AL)
hold and dom(A} U AL) C {z}.

From Y(z:C7 | A}) and Y(x:C4 | Al) we have Y(x:C1,x:Ch| A}, AL). From Y(C'|CY,CY)
(also premise of rule SHARE) and the transitivity of sharing we have Y(x:C’"| A}, Al)). By

definition of sharing we have
Y(T,z:C" |y1:A1[B/X], ..., yx:Ak[B/X])

as required.

This concludes the proof of the CONS Inversion. O

FCUP
5.5. Soundness

5.5.6.3 Inversion Lemma for \-abstractions

Lemma 5.4 (ABS Inversion). IfI' & \z.e : A== C then there exists ' such that Y(I' |T"),
YT, 1), ¢ dom(I") and ", 2:A +- e : C.

Proof. Atyping ' - \z.e : A= C must result from an application of the rule ABs followed
by (possibly zero) uses of structural rules. The proof follows by induction on the structural
rules, considering each rule separately. For rules RELAX and PREPAY induction is trivial
since both type judgements have zero on the turnstile. For the remaining structural rules the
proof follows by transitivity of the sharing relation. We now consider each of the remaining

structural rules.

Case WEAK: We haveI', y,11:Bpt1 F= \re: A “ (' and, as a premise of rule WEAK,

I Aze: A= C
Applying induction to T' - \z.e : A~ C we obtain T' such that Y(T'|T"), Y(I'|I’,T"),
x ¢ dom(I")and I, x:A - e : C.

Let T' = {y1:Bu, ..., yn:Byn}. By the definition of sharing (Figure 5.3) we know that

Y(yliBl, ey yn:Bn ‘ F/)

iff there is a partition Aq,..., A, of IV such that \Y(y;: B; | A;) holds and dom(A;) C {y;}, for
(1<i<n).

Let A,,+1 = 0. From SHAREEMPTYCTX we have Y(yn+1:Bnt1 | Ant1). By the definition of

sharing we have
Y(F’ Yn+1:Bny1 | F/)

as required.

Case SUPERTYPE: We have I',y,11:B,_ | F= \z.e : A~ C and, as a premise of rule
SUPERTYPE,
I, Yns1:Bng1 F= Aze: A5 C

49

50

FCUP
5. Amortised Analysis

where Y(B., .1 | By11). Applying induction to I, y,,11:Bp41 F- Az.e : A~ C we obtain I
such that Y(T', yp+1:Bpt1 | T7), YTV | T/, 1), z ¢ dom(I") and IV, z:A +- e : C.

Let T = {y1:Bu,...,yn:Bn}. By the definition of sharing (Figure 5.3) we know that

Y(ylzBl, 3 Yn:Bny Ynt1: By | FI)

iff there is a partition Aq,..., A,, A, 1 of IV such that \Y(y;:B; | A;) holds and dom(A;) C
{yi}, for (1 <i<n+1).

From Y(B,, .1 | Bnt1) and Y(yp41:Bny1 | Any1) by the transitivity of sharing we have
Y(Yn+1:Bp i1 | Anta)

Thus, by the definition of sharing we obtain
Y(T, yns1:By 4 [T7)

as required.

Case SUBTYPE: We have I & \z.e : A’ = ('’ and, as a premise of rule SUBTYPE,
L \ze: A2 C

where y(A Lola C’). Applying induction to T' - Az.e : A= C we obtain I’ such
that Y(T'|T7), Y(I'" | T, T), x ¢ dom(I") and ", z:A +- e : C.

From y(AC‘—> C ‘ A c') we know ¢ < ¢/, Y(A'| A) and Y(C'|C").

From I'', 2: A +- e : C applying rules SUPERTYPE (with Y(A’| A)), RELAX (with ¢ < ¢’) and
SUBTYPE (with Y(C'|C")) we obtain

I 2 A e O

as required.

FCUP
5.5. Soundness

Case SHARE: WehaveI',y:B’ & \z.e: A== C and, as a premise of rule SHARE,
T, y:By,y:By H- Aze: A C

where Y(B'| B}, B). Applying induction to T, y:B},y:B} - \z.e : A=~ C we obtain T’
such that Y(T', y: B}, y:B5 | T7), YXV | T", 1), ¢ dom(I") and IV, z:A +- e : C.

LetT' = {y1:Bu, ..., yn:Byn}. By the definition of sharing (Figure 5.3) we know that
Y(y1:B1, ..., yn:Bp, y: By, y:By [T)

iff there is a partition Ay, ..., A,, A}, Al of I such that Y(y;:B; | A;) holds and dom(A;) C
{yi}, for (1 <i<mn),and Y(y:B] | A}) and Y(y:B} | AL) hold, and dom (A} U A}) C {y}.
From Y(y:B] | A}) and Y(y:B, | AL) we have Y(y:B], y:B5 | A}, AL). From Y(B'| B}, B}) and
the transitivity of sharing we have Y(y:B’| A}, A}). By definition of sharing we have

YT, y:B'[T7)

as required.

This concludes the proof of the ABS Inversion. O

We now present the proof of Lemma (5.5 (Context Splitting), followed by the proof of
Lemma5.7 (Potential Splitting).

5.5.6.4 Context Splitting Lemma

Lemma 5.5 (Context Splitting). If T' v w : A, where w is an expression in whnf and
Y(A| Ay, Ay); then there exist I'1,T'y such that Y(I'|T'1,T2), 'y = w : Ay and Ty K- w :
A,.

Proof. Expression w is either a constructor application or a A-abstraction. The proof follows
by considering the two cases separately.

Z/A A/B B/Z

51

52

FCUP
5. Amortised Analysis

Casew =cj: Wehavel - cj: AandY(A| A, As). By applying Lemma/5.3/we obtain

A=pXA{-lc: (p,B)l---}and Y(T|y1:B1[A/X],...,yx:Bk[A/X]). From Y(A| A, Ay)

we also obtain
Av=pX A le: (p, B -}
Ay =pX{--le: (), B -}

Applying rule CONS we obtain

yi:Bi[A /X, ye B [A /X - eyt Ay
y1:B{[A2/X], ..., yp:Bl[A2/ X F-c§: As

as required, by considering

Fl = leHAl/X], . ,ka;C[Al/X]
Fg = yliBi/[Az/X], e ,kaz[Ag/X]

We are left to prove Y(I'|T'1, 'y). Note that by definition of sharing and Y(A | A;, Ay)
Y(yi:BilA/ X] | yi: Bi[A1/ X], yi: B [A2/ X])

for (1 < i < k). Thus, we have Y(y1:B1[A/X],...,yx:Bi[A/X]|T1,T2). By transitivity of
sharing we obtain Y(I' | I';, 'z) as required.

Case w = Az.e: We have I' - Az.e : A== C and V(A C| A, ™ C1, A, 7 C3). By
applying Lemma 5.4 we obtain I such that Y(T'|T"), Y(I'|I',TV), z ¢ dom(I') and
I'z:A+-e: C.

FromY (A= C|A; ™ Cy, Ay ™ Cy) we also obtain Y(A1 | A), ¢ < q1, Y(C'| C1), Y(Az | A),
q<gqandY(C|Cy).

LetT'; =Ty =T1". FromI'y,2:A - e : C applying rules SUPERTYPE (with Y(A4; | A)), RELAX
(with ¢ < ¢1), SUBTYPE (with Y(C'|C})) and ABS (with Y(T'; |T'1,T1) and = ¢ dom(I';))
we obtain T'; +& \z.e : A; 2 C) as required. Also from I's, z:A v~ e : C applying rules
SUPERTYPE (with V(A2 | A)), RELAX (with ¢ < ¢o), SUBTYPE (with Y(C'| C)) and ABS (with
Y(T2 |T2,Ty) and 2 ¢ dom(T2)) we obtain Ty F- \z.e : Ay =% Cy as required.

We are left to prove Y(I'|T'1,T'2). This is equivalent to Y(I" |T”,T") and follows from Y(T" | I)

FCUP
5.5. Soundness

and Y(I' |T',T") by the transitivity of sharing.

We thus conclude the proof of Context Splitting. O

5.5.6.5 Potential Splitting Lemma

Lemma 5.7 (Potential Splitting). /f Y(A|A1,...,A,) then for all € such that the potentials
are defined, we have ¢4 (e:A) > >, d5(€:4;).

Proof. First note that the results follow immediately if € is not in whnf or is a A-abstraction
(because potentials are zero in those cases). The potential is also zero if € is a constructor
that is part of a cycle (since otherwise it would be undefined). The remaining case is for a
constructor with no cycles, i.e. a directed acyclic graph (DAG). The proof is then by induction
on the length of the longest path. We have Y(A| Ay, ...,A4,) and e = c ¢. Also ¢4 (c §:A) is
defined.

If A = TYB) then 4, = T%(B;) for (1 < ¢ < n) and we would proceed to proving
Ggc(c §:B) = 3_; Ga(c 4:By).

Otherwise, A = uX.{---le:(p, B)| ---} and A; = pX.{--- Ic:(pi,élf)l < pfor (1 <i <mn).
We have to prove ¢q(c y:A) > >, d4c(c y:A;) or in this case the equivalent inequality

p+2¢g{ Bj[A/X]) >Zpl+2¢9{ Bj;[A4;/X)))

By induction on the shorter paths J(¢;), we know

Z%{ B;[A/X]) >ZZ¢% Bj;[4;/X))

From the non-negativity of potential annotations, all that remains to prove is
P> Zpi
7

and that follows from Y(A| A44,..., 4,,) by the definition of sharing.

This concludes the proof of Potential Splitting.

53

54

FCUP
5. Amortised Analysis

5.5.6.6 Idempotent Cycles

Definition 5.16 (Reachability). The one-step reachability relation ¢ ~»4:¢' between two loca-
tions ¢, /' in a heap holds if and only if H(¢) = ¢ ¢"and ¢’ € (". The many-step reachability

relation ~ is defined as the transitive closure of the one-step reachability relation.

Note that reachability only traverses constructors, but not unevaluated locations nor

A-abstractions. This mimics the definition of potential (Definition 5.6).

The following lemma shows that, in a consistent configuration, locations within cycles can be
assigned global types with zero potential. Because of the way the invariants were defined,
any cycles having positive potential must keep this potential within the cycle in order to
justify the typing of each subsequent location. Therefore, since this potential cannot affect
the types of locations outside the cycle, we can always set the potential within a cycle to

Zero.

Lemma 5.17 (Idempotent Cycles). Let (3, £) be a heap configuration consistent with global
types, contexts and balance M, C, B, that is, such that C, B k., (3{,£) : MandY(M |T,C).
Then there exist €', M such that M <: M with €', B bz, (H, L) : M" andY(M' |T',€") such
that for all ¢ with (~.(we have Y(M'(¢) | M'(¢), M'(¢)) as well.

Proof. Consider a cycle consisting of the locations /o, . .., {41 With ¢;~qcl; 11 and £, 41 =
¢o. By Definition [5.16 (Reachability) each #(¢;) must be a constructor of the form
¢i(...,li+1,...). The type consistency of locations (Definition 5.10) for each ¢; must hold
by case Loc1, because constructors are whnfs. Since thunk annotations are irrelevant for

Loc1, we omit them in the following for readability.

Let M(¢;) = T(A;), hence C(¢;) += ¢;(...,4i+1,...) : A; by LOoc1. By our assumption that
recursive types are non-interleaving, the type for the position of ¢;, 1 within the constructor ¢;
must be the p-bound type variable, i.e. A; = uX.{---l¢; : (pi,... T(X)...)l---}. Applying
Lemma 5.3 (CONS Inversion) we obtain

Y(C(:) | liv1:T(As),...) (5.17)

FCUP
5.5. Soundness

From (5.17) by the definition of context sharing and subtyping we conclude that there
exists A; such that T(4}) € €y,
(Definition5.12), we have Y (M(¢;11) | Tly,,, , €ly,,,); again by definition of subtyping this
implies A;41 <: A}; combining with A} <: A; established earlier, we obtain

and A; <: A;. By the definition of global compatibility

A <:Al<:A; for0<i<n (5.18)

Because <: is a partial order (Lemmal5.14) and A,,.1 = Ag by definition, it follows from (5.18)
that the A;, A, must all be equal. Let A be this common type of the cycle locations, i.e.
M(¢;) = T(A) for all 0 < i < n. The compatibility hypothesis for location ¢; now instantiates
as follows:

Y(T(A) | TT,, , T(A),...) (5.19)

Because each location occurs at least once in the cycle with exactly the global type T(A)
we know that any other references in I or € must occur with an idempotent subtype of A,
i.e. A suchthat A<: A" and Y(A’| A’, A”). We can thus set the global type for all locations
in the cycle to this self-sharing type A" without disrupting type consistency. O

5.5.6.7 Proof of the Soundness Theorem

The proof of Theorem5.13/follows by induction on the lengths of the derivations of (5.6) and
(5.5) ordered lexicographically, with the derivation of the evaluation taking priority over the
typing derivation. This is required since an induction on the length of the typing derivation
alone would fail for the case of unevaluated locations, which prolongs the length of the
typing derivation by a typing judgement for the thunk, granted through the type consistency
hypothesis. On the other hand, the length of the derivation for the term evaluation never
increases, but may remain unchanged where the last step of the typing derivation was
obtained by a structural rule. In these cases, the length of the typing derivation does de-
crease, allowing an induction over the lexicographically ordered lengths of both derivations.

We proceed by case analysis of the typing rule used in premise (5.5).

Case VAR: We have (:TYA) ++ ¢ : A from the typing hypothesis (5.5). From the compati-
bility hypothesis (5.8) we then obtain Y(M(¢) | T4A), €I, €,) which implies M(¢) = T¢(A)
and y(ﬁ\ A, A) for some types A, A and annotation ¢’ with ¢ > ¢'.

55

56

FCUP
5. Amortised Analysis

The evaluation premise (5.6) reads as 3,8, L + ¢ || w,H'[¢ — w] for some intermediate
heap H'; by inversion of the only applicable evaluation rule VAR, we obtain ¢ ¢ £ and

H,S, LU {0} HE) I w,H (5.20)

By (5.7) for location ¢ we obtain €(¢), B; 3, L +, . £ : T¢(A). We proceed by case analysis

of the rule used for type consistency of /. Note that LOC3 cannot apply because ¢ ¢ £ by

Loc

the premise of the VAR rule. The remaining cases are then Loc1 and Loc2, which apply

according to whether 3((¢) is in whnf or not, respectively.

If 7(¢) is in whnf: The evaluation (5.20) terminates immediately by WHNF;, and we have
w = H() and X = H' = H'[¢ — w], i.e. the update is without effect. By LOC1 we obtain
C(f) K- w: A. By Y(A| A, A) established earlier and Lemma/5.5 we obtain Y(C(¢) | I}, T%)
and I’} +&- w:A as required for (5.10), as well as I') H~ w:A. Let M/ = M[¢ — T%A)] and
€' = C[¢ — I'y]. By the previous results together with (5.7) we obtain €', B k., (F,£) : M/
as required for (5.13). From the compatibility premise (5.8) together with Y(C(¢) | T}, T}) es-
tablished earlier we can conclude Y(M' | T}, ©, €') as required for (5.14). Conclusions (5.11)

and (5.16) with m’ = m follow directly from an application of rule WHNF . It remains to
show that the bound (5.15) is satisfied for the choice m’ = m. Our proof obligation is:

t+q+ds(ETYA)) + dy(0) + B5(C) + G (B) > t+ e (w:A) + pye(©) + G (€') + G (B)

The above inequality holds because: ¢ is non-negative; ¢4 (:TYA)) = ¢q(H(£):A) =
dqc(w:A) by Def. 5.6/ (potential); and ®5(€') = ®£.(C) because € differs from € only for

¢ which is in whnf, and therefore its context does not contribute to the potential.

If 7(¢) is not in whnf: By Loc2 we obtain €(¢) F29 g¢(¢) : A. Let M/ = M[(
T7(A)] and € = C[¢ + §]. We observe that €', B k., (3, £ U {¢}) : M’ must hold by hy-
pothesis (5.7) together with the case for Loc3 for location ¢. Furthermore Y(M' | €(¢),0,¢")
holds, since for all ¢ we have €, = C(¢)[» UC'],» by definition.

We will now apply the induction hypothesis to the evaluation of #(¢) with type A. We first

show that m can be chosen as required for the induction; the proof obligation is:

m > t+ (¢ + B(0) + b5 (C0)) + 6ye(©) + D51 (€) + @5 1 (B) (5.21)

FCUP
5.5. Soundness

Starting from the hypothesis (5.9) we obtain:

m > b+ q+ o (ETYA)) + ¢gc(0) + 5 (€) + 5 (B)
> 144 + 04 (63c(C0)) + dye(©) + o (@)) + (25710 (B) + B (1))
= t+ (¢ +B(0)) + 5c(C(0) + d5(©) + D51 (€) + 5 1 (B)

The inequality follows, since ¢’ < ¢ from above; ¢4, ((:TYA)) = 0 because H(¢) is not in
whnf; ®5(C) = ¢y (C(0)) + ®5°1(€') by definition; and ®%(B) = B(¢) + &5 1 (B) by
definition.

We can now apply the induction hypothesis to the evaluation of H{(¢) with type A and obtain:

' Hw: A (5.22)

H, 8, L U {£} F 3(8) § w, K (5.23)

M <M (5.24)

", B Fyew (', LU {£}) : M (5.25)

YOV | T7,0,¢") (5.26)

m' >t + G (w:A) + g (0) + 5T (€7) + o5 (B) (5.27)
m—m' > m" (5.28)

By applying the induction hypothesis to the global type, we obtained a stronger typing
(5.22) for the resulting whnf as well. We now recover the required typing for A by the
lemma for splitting contexts and the remaining potential associated through A allows us to
establish memory consistency for the remaining aliases. So by Y(ﬁ} A, A) from above,
(5.22) and Lemma 5.5/ we obtain Y(I"|T},T) and T} +- w:A as required for (5.10), as
well as T, F- w:A; this together with (5.25) and the case Loc1 of Def. 5.10 gives us
C"e = T5], B by (H'[€— w], £) : M” as required for (5.13).

Conclusion (5.12) follows by the transitivity of subtyping from M <: M’ by the definition of
M’ and (5.24).

From (5.26) we have Y(M" | T}, T, ©, €”) which by definition is equivalent to

VMY, 0, €7[0 = T

57

58

FCUP
5. Amortised Analysis

as required for (5.14).

Conclusion (5.11) follows directly from (5.23) by application of VARy,.

It remains to show that m’ obtained from (5.27) satisfies the requirements of (5.15); our
proof obligation is:

t+ oo (w:A) + G (0) + 0o (€7) + S5 (BY) >

tt D0 (o] (WiA) + Dgpriy (O) + o [6—w] (€"[¢ = T)) + (I)§-C’[€»—>w} (B)

First note that @5, (') = @,

tions under evaluation. It remains to show that

] (B') since the balance ignores both whnfs and loca-

Paor (WE) + ¢90(0) + q)ﬁcﬁj{ﬁ} (€)= D300 (W A) + Do) (©) + ®§f'[éHw] (€"[¢ = T5))

(5.29)
We first argue that we can assume without loss of generality that the potentials above are all
defined (i.e. finite): these could be undefined only if the update H'[¢ — w] introduced new
cycles, but in that case we would apply Lemma|5.17 (Idempotent Cycles) and obtain new
global contexts and global types that still satisfy the three conclusions (5.12), (5.13) and
(5.14) proved earlier. Furthermore, any new cycles must include the updated location ¢, for
which the refined global type assigns zero potential by Lemma 5.5 That implies (5.29) is
then an equality, since ¢4 (w:A), D[(w:A) @nd @ﬁf,[%w]((e”[é — T'5])l,) must then all
be zero, and likewise @5t (€],) by definition.

In the remaining case where the update did not introduce a cycle, we have ¢g{,(w:ﬁ) =
Syriprug (W A) AN G30(0) = dyupq,,1(©). Recall that Y(A | 4, 4), so by Lemma 5.7 we
have ¢ge (g, (w:A) > D31 (ty00) (W A) + Pypr(g) (w2 A). Thus it remains to be shown that

Gy (w:A) > <1>§{,[6Hw] ("¢ —T%)) — q»ﬁgf{’f}(e") = @gf,[gHw] ((€"[e— T3,) (5.30)
which follows by the compatibility concluded earlier, and applying Lemma|5.9 for
T7(A) <: M (¢)

This concludes the proof of the VAR case.

FCUP
5.5. Soundness

Case LET: The typing and evaluation premises (5.5) and (5.6) instantiate as
A HEE2 gtz =eine: C

and 3,8, L F let z = ein e || w, 3, respectively. By inversion of rules LET and LET; we
obtain

x ¢ dom(T', A) (5.31)

Y(A|AA) (5.32)

D,:T?(A) H-€: A (5.33)

A, z:TY(A) - e: C (5.34)

_ P, ife=cgand A=puX{-lc:(p,B)l---} (5.35)

0, otherwise

Cis fresh (5.36)

H[O — ele/x]], 8, L+ e[t/x] I w, H (5.37)
Applying Lemma 5.2 (substitution) to (5.33) and (5.34) we obtain

0, 6TY(A) H-efefz]: A (5.38)

A LTY(A) ¥ e[t/z] : C (5.39)

We intend to apply the induction hypothesis over subterm ¢[¢/z] using (5.39) and (5.37),
so we must establish the required premises first. Note that we do not invoke the induction
hypothesis for subterm e, since it is not executed at this point, but just stored within the

heap.

Let 3o = H[¢ — €[¢/z]]. In order to establish global compatibility and type consistency for
the extended memory H,, we set By = B[l — 0], My = M[¢ — T7(A)] and Cy = C[/
I, £:T9(A")]. Type consistency for existing locations is unaffected by these extensions, since
¢ is a fresh location.

The required global compatibility Y(Mo | A,¢:T9(A),0,¢C) follows from (5.8) and
Y(TY(A) | T9(A), T9(A")), where the latter follows from typing premise (5.32).

Type consistency for the new location ¢ requires T, £:T7(A’), Bo; Ho, £ oo £ = TY(A) to
hold. We now distinguish whether e[¢/x]| happens to be in whnf or not. In the case that

59

60

FCUP
5. Amortised Analysis

e[¢/x] is not in whnf, (LOoc2) applies, since a fresh location is not contained in £ and the
required typing (5.38) holds.

In the case that e[¢/z] is in whnf, (LOoc1) applies since there is a type judgement for
expression e[¢/x] with zero on the turnstile as required by (Loc1), either by inversion of
ABS (Lemma [5.4) or CONS (Lemma [5.3), followed by an immediate application of ABS
or CONS, depending on whether the whnf is a A-expression or a constructor application,
respectively. (Note that instead of I, /:T?(4’), inversion might require an altered context. If

this is the case, then Cj is chosen above to deliver the altered context in the first place.)

This establishes the required type consistency for ¢ and thus together with also
Go,'Bo l_MEM (j‘fo,ﬁ) : Mo.

In order to establish the remaining premise (5.9), we proceed by case analysis on whether
expression e[¢/x] is a constructor application (and consequently on whether we need to

consider the potential p/).

Ife=cy: Premise (5.9) reads as
m+1>t+1+q+p + dg(D, A) + ¢gc(O) + P (€) + P5(B)

By definition ¢y, (Z:T‘#A)) < P+ by, (F,E:Tq'(A’)) = p' + ¢qc(T"), where the inequality
is due to the context possibly containing unneeded or needlessly strong references and
the equality follows by ¢ ¢ dom(T") from the freshness of ¢ and type A’ being idempotent
by Y(A|A, A’) and Lemma 5.15; &, (Co) = ®4(€) since ¢ points to a whnf; furthermore
o5 (B) = @5, (Bo) by definition. Combining these three with the previous inequality yields

as required
m >t g+ e, (A ETU(A)) + e, (0) + B, (Co) + 25, (Bo)

since the other statements are unaffected by the fresh ¢ extending H to H.

If e cy: Premise (5.9) reads as

m+1>t+14q+0+ ¢y (T, A) + dgc(©) + B5(€) + B5(B)

FCUP
5.5. Soundness

Since e # ¢ y, Ho(¢) is either a A-expression or not in whnf, hence gf)g{O(E:Tq'(A)) = 0; by
subtyping ¢y, (£:T7(A’)) = 0 and thus ¢4(T') = ¢4, (Co(¢)) by definition of €, and hence
D5 (Co) < ¢ge(I') + 5(€) (note that this is an equality if Jo(¢) is not in whnf, and T
is minimal, and strict inequality if JHy(¢) is a A\-expression and ¢4:(I") > 0); furthermore
®5(B) = 5, (Bo) by definition. Combining these three with the inequality before yields as
required

m >4+ (A, ETT(A)) + g, (0) + O (Co) + DF;, (Bo)

since the other statements are unaffected by the fresh ¢ extending H to Hj.

Regardless of whether expression ¢[¢/z] is a constructor application, once premise (5.9) is
established, applying the induction hypothesis then yields all required conclusions directly

without any alterations, except for (5.12) which follows by the transitivity of subtyping and

M <: My by definition. This concludes the proof of the LET case.

Case ABS: The typing premise (5.5)is I K~ \z.e : A= C.

The evaluation premise (5.6) is H,8,L F Az.e || Az.e, H. Assume m satisfying (5.9); let
I'=T,¢=CM =M,B =3B,m =mandm” = 0; we trivially obtain (5.12), (5.10),
(5.13), (5.14), (5.11), (5.16).

It remains to show that the bound (5.15) is satisfied when m’ = m. From the premise (5.9)
we know
m >t + ¢ge(T) + ¢g(©) + B (€) + 5(B) (5.40)

By inversion of rule ABS we obtain Y(I'|I',T") which by Lemma 5.7 implies ¢4(I") = 0.
By Def. 5.6 (potential) we also obtain ¢, (Az.e:A > C) = 0, and therefore also ¢4 (I") =
¢gc(A\x.e:A == O); substituting in (5.40) gives us

m' >t + ¢g(Av.e:A = O) + ¢gc(O) + B5(C) + D5 (B)

as required. This concludes the proof of the ABS case.

Case APpP: The typing and evaluation premises (5.5) and (5.6) instantiate as

D, AP ¢ (: C

61

62

FCUP
5. Amortised Analysis

and H,8,L el w,H", respectively. By inversion of rules APP and APP; we obtain

I e: AL O (5.41)
H,8,LF el Aze, H (5.42)
H,8, L Fet)x] | w, H" (5.43)

By premise (5.9) we assume

m 2+ g+ q + dyc(T, CA) + d3(©) + D5 (€) + Di(B)
= (t+4) + q+ d3(T) + ¢y (G:A,0) + D5(€) + P5(B) (5.44)

Inequation (5.44) shows that the bound for m satisfies the requirements for applying induc-
tion for expression e using judgements (5.41) and (5.42); we obtain m/,T’, ¢/, B, M’ and m/

such that:

I e s AS O (5.45)

K, 8,0 L e | dae!, 3 (5.46)

M<: M (5.47)

B Fypey (30, L) : M (5.48)

YOV | (I, C:A, ©,¢") (5.49)

m' > t+q + b </\a:.e’:A £ C) + by (1A, ©) + B, (C) + D5, (B) (5.50)
m —m' > mf (5.51)

By Lemma 5.4 (ABS inversion) applied to judgement (5.45) we can assume without loss
of generality that V(I | I”,T") and I", z:A - ¢’ : C; applying Lemma 5.2/ (Substitution) we
obtain

I A V- €[e)z]: C (5.52)

In order to apply the induction hypothesis to ¢’[¢/x] it remains to show that the bound (5.50)
for m’ satisfies the premise (5.9). By Y(I'|I,I") established earlier and Lemma 5.7
(Potential Splitting) we know ¢4, (I") = 0 and therefore ¢4, (I7, £:A) = ¢pqp (L:A).

FCUP
5.5. Soundness

By Def.|5.6 (Potential) we know ¢, (/\:r.e’:A L C) = 0; substituting in (5.50) gives us:

m' >t +q + bag ()\x.e’:A s c) + g (A, ©) + B () + D5, (B)
=t+q + ¢50(L:A,0) + 85 (C) + 05 (B)
=t+q + ¢g (T, G:A) + 30 (0) + 5 (C) + 5 (B)

Hence we are able to apply induction on ¢’[¢/x] and obtain:

Iy O (5.53)

H', 8, L V¢ [0)a] I w, H" (5.54)

M <: M (5.55)

€, B Fyey (307, L) : M (5.56)

Y |(r”,e),€") (5.57)

m” Z t+ ¢g{//(w20) -+ ¢g{//(e) + (DL 11 (e//) + (I)L 17 (B//) (558)
m' —m” >ml} (5.59)

From (5.47) and (5.55) and the transitivity of subtyping we conclude M <: M”. From (5.46)
and (5.54) and rule APPc we obtain K, 8§, L FEmE gl w, K. From (5.51) and (5.59)
we establish proof obligation (5.16), i.e. m —m” = m+ (—m/+m/) —m” = (m —m/) + (m’ —
m”) > m! +mj. Equations (5.53), (5.56), (5.57) and (5.58) establish the remaining proof

obligations. This concludes the proof of the APP case.

Case CONs: This case cannot occur because the theorem applies only to initial expres-

sions (not augmented expressions).

Case CASE: The typing and evaluation premises are

[,A F+L case e of {¢; 7 -> ¢}, : C (5.60)

H,8, L+ caseeof {¢;) ->e}t, I w,H" (5.61)
=1

63

64 | FCUP
5. Amortised Analysis

From (5.61) by inversion of rule CASE we obtain:

H,SU|J(Z}UBV(e)), L+ el ep 6,3 (5.62)
=1
H, 8, L+ ep[l/z]] I w, H” (5.63)

From (5.60) by inversion of the typing rule CASE we obtain:

i c:B (5.64)
B=puXder: (01, A - Len : (pny A} (5.65)
(U{=ih) ndom(A) =0 (5.66)

=1
A = 73] = j (5.67)
A,y Ay [B/X], ... ap,: Ay, [B/X] F2 e 2 C (5.68)

From (5.68), (5.66) and (5.67) together with Lemma 5.2 (substitution) we obtain

—

A, b AR [B/X], ... 0 A [B/X] H=2 ey [0/a] - © (5.69)
Let m be such that

m>t+q+q + o5 (T, A) + ¢5e(O) + 5 (€) + P5(B)
= (t+q) + q+ ¢5c(T) + d3(A, ©) + 5(C) + B5(B) (5.70)

We are now able to apply the induction hypothesis for expression e using (5.64) and (5.62)

and obtain:

't ¢, (: B (5.71)
H,8U|J (@} UBV(e))), £ FL e i 0,3 (5.72)

i=1
M<: M (5.73)
€, B Fyey (3, L) : M (5.74)
YW |[(I", A, 8),¢) (5.75)
m' > (t+¢') + ge(ck :B) + dge (A,) + 05 (C) + D5,/ (B) (5.76)
)

m—m' > m’l/ (5.77

FCUP
5.5. Soundness

From (5.71), by Lemmal5.3|(inversion), we have

V(I | 1:Ag, [B/X], ..., 1: Ay, [B/X]) (5.78)

From (5.75) and (5.78), global compatibility can be relaxed to

YO | (I: A, [B/ X, ... 12 Ag, [B/ X], A, ©),C) (5.79)

We now apply induction again, this time for expression e;,[¢/z}] using (5.69), (5.63), (5.74)
and (5.79). It remains to show that the bound (5.76) satisfies premise (5.9). By Def.[5.6
(potential) and (5.65) we know ¢q;(ci, £:B) = pr + S, dge(0i: Ay, [B/X]); substituting
in (5.76) yields:

m' >t +q + pr+ S o (Ui A, [B/ X)) + doe (A, O) + DL, (€) + B (B')
=t 4+ + pp + boo (A, A [B/X], ... €5: A1, [B/X]) + b3 (©) + fe (€) + 5 (B)

Hence we can apply induction and obtain:

I'" > w:C (5.80)

H',8, L VL e [0/Th] 4 w, H” (5.81)

M <: M (5.82)

" B" Fyew (F”, L) : M” (5.83)

Yo' [(I",©),€") (5.84)

m” >t+ ¢g{//(wZC) + (Zsj.[//(@) + (DL 17 (e,/) + (I)L 1" (B//) (585)
m' —m” >m} (5.86)

From (5.73) and (5.82) and the transitivity of subtyping we conclude M <: M”. From (5.72)
and (5.81) and rule CASE ¢ we obtain

" G
my + mg

H,8, L FE"2 case e of {¢; 7} -> ;i Ibw, H”

From (5.77) and (5.86) we establish proof obligation (5.16), i.e. m —m” = m+ (—m’ +m/) —
m” = (m—m')+ (m'—m") > m! +m}. Equations (5.80), (5.83), (5.84) and (5.85) establish
the remaining proof obligations. This concludes the proof of the CASE case.

65

66

FCUP
5. Amortised Analysis

Case WEAK: The typing premise (5.5) reads I', z: A - e : C. By inversion of rule WEAK
we obtain " +- e : C. In order to apply the induction hypothesis for this judgement, we note
that premise (5.7) (type consistency) holds unchanged; and because Y(M|T',z:A4,0,C)
implies Y(M |T',©, €) so does (5.8) (global compatibility). The bound (5.9) for the induction
also holds because ¢4 (I, z:A) > ¢4.(I'). We can therefore apply induction to e with the
typing I' H- e : C' and obtain all required results for this case.

Case RELAX: By the second premise of RELAX follows ¢ — ¢’ > 0 and thus we can choose
' = t+q— ¢. We apply the induction hypothesis to I' +- ¢ : A for this ¢’. Since RELAX is a
structural rule, all statements apart from (5.5) and (5.9) remain unchanged. The induction
hypothesis thus yields all required conclusions verbatim, except for (5.15). Instead, the
induction yields m’ > ' + ¢y (w:A) + ¢ger (0) + @5, (€') + @5, (B'). Unfolding our choice for
t"yields m’ > (t +q — ') + ¢y (w: A) + ¢ges (©) + @5, (C') + ®F, (B). By the second premise
of RELAX follows ¢ — ¢’ > 0 and thus m/ > ¢ + ¢qp (w:A) + ¢q0 () + ®F,(C) + D5 (B') as
required to conclude this case.

Case PREPAY: The typing premise is
L, 0TV (A) Bl ¢ O
By inversion of the rule PREPAY we obtain
T, 0:TH(A) +- e : C (5.87)

Let B = B[¢ — ¢ + B(¢)], i.e. B’ is equal to B except for location ¢ where it increases by
q'. Assuming m as in premise (5.9), we show that it satisfies the requirements for applying
induction to (5.87) with the modified B':

m >t +q+q + ¢y (T, LTOT(A)) + g3 (O) + D5 (€) + P5(B)
>t + g+ dg(T, TH(A)) + 5c(©) + O5(C) + DF(B')

The last inequality holds because ¢q (£:T%7(A)) = ¢4 (£:T9%(A)) by Def. 5.6 (potential)
and ¢’ + ®5(B) > ®5(B’); note that the latter is an equality when 3((¢) is not a whnf.

We need to reestablish both global compatibility and type consistency in order to apply

FCUP
5.5. Soundness

the induction hypothesis. Let T"(A’) = M(¢). By the definition of sharing and global
compatibility (5.8) we have Y(T"(A’) | T%*+7(A)) and hence ¢) + ¢ > r. Define k =
max(r — ¢, 0), and M’ = M[£ — THA")].

To establish consistency for M’, note that only the global type of location ¢ changes. Assume

that (Loc2) applies, i.e. H(¢) is not in whnf and ¢ ¢ £, since otherwise the claim is trivial.

From the consistency premise (5.7) we have
C(0) K29 F(p) : A (5.88)

By the definition of k we have k+¢’ = max(r—¢’,0)+¢ > r. Hence we can apply rule RELAX
to (5.88) and obtain
C(l) PELE2E 30(p) : A

By definition of B’ this is equivalent to the required

C) PEEW g0y : A"

To establish compatibility for M’ we need to show

v(THA)

T, To(4) €,)

From the compatibility premise (5.8) we know

V()

I, T+4(4) €1,) (5.89)

First we show that y(Tk(A’)

definition of k, we have ¢ > k <= ¢) > max(r — ¢,0) < ¢, >r—q¢d Nq¢g), >0 <~

th')(A)); by definition of sharing, we need to show ¢, > k. By

q,+4 > r Ag, > 0; the latter holds by non-negativity assumption, while the former holds by

the compatibility premise above.

For other types T5(A”) in either I, or €[, observe that THA’) <: T"(A’) by construction and
T(A") <: T A”) by the original compatibility (5.89). By transitivity we obtain the desired

result.

Since the other premises remain unchanged, we can therefore apply induction and obtain

precisely the results required for the conclusion of this case.

67

68

FCUP
5. Amortised Analysis

Case SHARE: The typing hypothesis is I',¢:A - e : C. By inversion of rule SHARE we
obtain T, £: Ay, 0: Ay H— e : C and Y(A| Ay, Ay). Assuming m as in premise (5.9), we obtain:

m >t + ¢ (T, £:A) + ¢g(0) + ©5(C) + D5 (B)
>t + Goo(D, LA, L:Ag) 4 ¢ge(O) + BF(C) + BF(B)

The last inequality holds by Lemma 5.7 (Potential Splitting) ¢q.(H(¢):A) > ¢ (FH(£): A1) +
dqc(H(£):A2). We can therefore apply the induction hypothesis to e with typing premise
T, 0:Aq,0:Ay H= e : C and obtain as result the required conclusions for the case SHARE.

This concludes the proof of this case.

Case SUPERTYPE: The type rule gives us I', x:A - e : C' and A <: B. We show that we
can apply induction for the premise I', z:B +- ¢ : C. Type consistency holds unchanged
for the induction; by A <:B and the compatibility premise (5.8) Y(M|T',2:4,0,€), we
have Y(M|T,z:B,0,€). The bound (5.9) also holds because ¢q(z:4) > ¢4 (z:B) by
A<:B and Lemma 5.9. Applying the induction gives us the required conclusions for the
case SUPERTYPE.

Case SUBTYPE: The type rule givesus T - e : C; by inversion we obtain " +- ¢ : B and
B <:C. Because the context is unchanged, we can apply induction hypothesis directly and

obtain:

'+ w:B (5.90)

H,8,L - e | w, H (5.91)

M<: M (5.92)

€, B Fyen (3, L) - M (5.93)

V(M [(TY,0),¢) (5.94)

m' >t + ¢gp(wiB) + ¢y (0) + 5 (€') + 5 (B') (5.95)
m—m' >m" (5.96)

Applying SUBTYPE to (5.90) gives us IV +- w : C' as required for (5.10). Lemma 5.9 with
B <:C gives US ¢qu (w:B) > ¢qp (w:C'); substituting in (5.95) establishes the bound (5.15).
Results (5.91), (5.92), (5.93), (5.94) and (5.96) directly establish the remaining proof obli-

FCUP | 69
5.6. A System for Eager Evaluation

gations for this case.

5.6 A System for Eager Evaluation

This section emphasises the key points of the analysis for lazy evaluation developed in this
thesis by contrast to the minimal changes needed to derive an analysis for eager evaluation.
The complete definitions and figures of the eager system can be seen in Appendix A.

First of all, the analysis needs a cost model to be validated against. For that purpose we
derive a cost model for eager evaluation from Figure [4.4 by replacing rule LET ¢ with the

following:

tisfresh H[0+s€[t/x]],8, LU {l} r==€[¢/x] w', 3
H'[l— w'],8,L ¥~ e[l/x] | w,H"

EAGERLET
KH,8, L Himtm |ot gz =¢inel w, H” (te)

The new rule EAGERLET ¢ forces evaluation of e before evaluating the body of the let
expression. Note that the cost m’ of this forced evaluation is immediately added to the
overall cost of the let expression while, in a lazy setting, an expression in a new location
would only possibly incur a cost if its evaluation was needed indeed. Correspondingly, in
rule VAR ¢ the cost m is zero since all locations introduced by EAGERLET ¢ map to whnfs
in the heap if their evaluation terminates.

Although it is tempting to simplify the eager semantics (for example, in EAGERLET we could
avoid adding to H the mapping for £ when evaluating e[¢/z] or we could alter rule VAR to
remove the update since H' = H'[¢ — w]) we must refrain from doing so, remembering that
the purpose of presenting an eager system in this thesis is to be able to contrast it with the
lazy system. The fewer the changes, the simpler the contrast.

With respect to the type system, from Figures 5.4 and|5.5 we derive a type system suitable
for eager evaluation by removing the now unneeded rule PREPAY and by replacing rules
LET and VAR with

70

FCUP
5. Amortised Analysis

oA FEe: A AzAr-e:C
z ¢ dom(T', A) Y(A|A A q = 0if eis a whnf
- { P, ifé\EcgjandA:uX.{---lc:(p',g)l e}

0, otherwise
- (EAGERLET)
[NA 22t et g =€ine: C
and
(EAGERVAR)

respectively.

Since we removed all explicit references to thunk types from the type system, we can also
derive for the eager system both a new syntax of allowed types (by removing the thunk

types from Figure 5.1) and a new sharing relation (by removing rule SHARETHUNK from
Figure(5.2).

In order to validate the analysis for eager evaluation against its respective cost model, we al-
ter the invariants needed for the proof of the soundness theorem. We start by removing the
now unneeded balance B (lazy potential). Moreover, since we no longer have references
to thunk types and there is no need to account for expressions that are simultaneously
not in whnf and not under evaluation (set £), we can simplify the definition of potential
(Figure|5.8) with respect to thunk types (also removing the auxiliary definitions of potential
for global contexts € and balance B) and furthermore remove case Loc2 from the definition

of type consistency of locations (Definition 5.10).

The soundness theorem (Theorem 5.13) is restated according to the changes introduced
for the eager system in this section:

Theorem 5.18 (Soundness of the Eager System). If the following statements hold

FH-c: A (5.97)
H,8,LFel wH (5.98)
Chumem (FG, L) : M (5.99)

)

Y[(T,8),€) (5.100

FCUP
5.7. Summary
then for allt € Q) andm € N with
m > t+q+ ¢5c(L) + d4(O) (5.101)

there exist ', @', M’ and m’, m" € N such that the following statements also hold

I' - w: A (5.102)
H,8, L r e Jbw, H (5.103)
M<: M (5.104)

C ey (F, L)« M (5.105)
YOV | (T, ©), ') (5.106)

m' >t + dgp (w:A) + dge (O) (5.107)
m—m' >m" (5.108)

Except for EAGERLET, the proof of the eager system is omitted since all cases are similar
to (or simpler than) the ones presented in the soundness proof of the lazy system (in
Section[5.5.6.7). The proof of the eager system can be seen in the Appendix A.2.

Note that, apart from the expected changes to the operational semantics (EAGERLET) and
its corresponding type rules (EAGERLET and EAGERVAR), the fundamental difference be-
tween the lazy and the eager systems presented in this chapter is rule PREPAY, that allows
the lazy system to prepay or otherwise defer the costs of thunks. Without rule PREPAY,
the eager system does not need thunk types nor lazy potential (global balance B) and
consequently there is no need to handle those in the definitions of sharing, potential and

type consistency.

5.7 Summary

In this chapter we have presented a type-based amortised analysis of total heap allocations
for lazily evaluated programs and proved that its statically determined bounds are not
exceeded during run-time. We have also emphasised the key elements needed in the
development of this analysis for lazy evaluation by contrasting the lazy system with a

specifically tailored eager system.

71

72

FCUP
5. Amortised Analysis

The eager system implicitly forces PREPAY when allocating new heap cells (EAGERLET),
while the lazy system is flexible enough to allow prepaying part of the cost of a named
expression (all of the cost, none or something in between) at allocation (LET) and defer the
remainder to the references of the expression (VAR).

Note that the difference of modelling call-by-name would be not prepaying at all and instead
defering the cost to every reference, and although we would avoid paying the cost of
expressions that are not referenced, we might have to pay the full cost multiple times

(corresponding to the number of references to the named expression).

The next chapter discusses the applicability of our analysis for lazy evaluation with some
concrete program examples.

6. Experimental Results

This chapter illustrates the strenghts and limitations of our approach through a series of
examples. We first analyse a higher-order function, map. Then, we use the bounds obtained
for map in a list fusion example in order to show that our analysis can capture intensional
behaviour, by comparing two programs and their respective bounds as given by our anal-
ysis. Afterwards, we show the accurate bounds predicted for an infinite list constructed as
a cycle of a finite non-empty list. We then analyse a function concat for an example that
deals with nested data structures. Finally, we describe an interesting limitation that we have

found for our analysis.

In this chapter we abbreviate the type of lists of A as:

L% (pe, pny A) & X.{ Cons : (pe, (A, T#(X))) I N1 : (pn, () }

where ¢ is an upper bound on the maximum of the costs of evaluating to whnf each of the
tails of the Cons nodes of the list, and p. and p,, are the potentials assigned to each Cons
node and Nil node of the list, respectively. Also, whenever we have T%(L% (p., p,, A)), the
qo represents an upper bound on the cost of evaluating the list to whnf.

Note that type derivations show one possible solution. In most examples the best solution
would depend on the context. We provide alternative solutions for the first example that try
to take advantage of more concrete use cases, since these types will also help us explain
two other examples in this chapter. In particular, we present two alternative types for map:
one when applied to lists with potential and the other when applied to lists with zero potential

such as circular lists (which the soundness of our system prevents from having potential).

73

74

FCUP
6. Experimental Results

6.1 Higher-Order Functions: map

The first example we will analyse using our system is the function map which takes as
arguments a function £ and a list xs and returns a new list constructed from the results of

applying f to every element of xs.

let map = \f.\xs.case xs of Nil -> let nil = Nil in nil,
Cons x xs’' > lety = f xin
let ys’ = map £ xs’ in
let ys = Cons y ys’ in ys in

map

Assuming ¢y is an upper bound on the cost of applying £ to an element of xs, and p,, and
p,, are the potentials associated to the Cons nodes and the Nil node of the output list,

respectively, we can derive the following informative type for mapﬁ

TO(TO(A 5 B) %2 T0(Lin) * Low) Where Lyy = L% (3+gy+q+pi, 141}, A)
Louwt = Lo(p/mp;w TO(B))

¢ = max(qo, qr)

According to this type, once applied to a function £ and a list xs of length n, the cost of map
is bounded by gy + n(3+qf+q+p.) + 1+p), i.e. the cost of map is bounded by gy — the
cost over the arrow type — plus n(3+q+q +pl.) — n times the potential required for each
Cons node of the input list — plus 1+ p/, — the potential required for the Nil node of the
input list. Also, observe that any potential carried to the output list (p.. and p,) imposes an
extra requirement on the potentials of the input list. Note that in general when applying a
function, we can use rule PREPAY to shift to the caller (or turnstile) the costs of evaluating
the arguments to whnf. For example, when applying map to its list argument we can prepay
qo and make subsequent costs of evaluating the tail of the Cons nodes depend on ¢ instead
of ¢;.

In terms of quality, provided ¢y, qo, ¢; and ¢; are actual costs (and not just upper bounds)
and map is evaluated in a context that demands all elements of the output list to be in whnf

(and, for simplicity, the output list has zero potential), the analysis of map gives an exact

*See Figure|B.3lin Appendix|B for the type derivation.

FCUP
6.1. Higher-Order Functions: map

match to its operational cost. Dividing the cost into three parts — g, 1 and n(3+q¢+q;) —
we can see that the first part corresponds to evaluating xs in order to determine which of
the case alternatives apply. The second part corresponds to the cost of allocating a heap
cell for the nil. Finally n(3+¢s+¢;) corresponds to, for every Cons node in xs, the cost of
allocating three heap cells (for y, ys’ and ys) plus the cost of applying £ to x plus ¢;, the cost
of applying map to £ and xs’, where we have to take the maximum between ¢, (the cost that
map expects for its input list) and ¢; (the cost of evaluating xs’ to whnf).

The above type for map has the advantage that if the length of the input list is known as
well as the other parameters ¢y, qo, ¢;, p,, and p},, then an upper bound on the cost of map is
determined by a simple linear formula. However, with lazy evaluation, the actual cost largely
depends on the context in which evaluation takes places. For instance, suppose that we
knew for a fact that we would not need the whnfs of the elements in the output list. Then, a
more suitable type for reasoning about map (also derivable in our system) would have been
to have L;, = L% (3+q+pL, 1+p.,, A) and Loyt = LO(pL, p!,, T9 (B)). The corresponding cost
formula would then be ¢y + n(3+¢+p..) + 1+p),, and although each element of the output list
had a latent cost ¢, we could ignore those, since we had known that we would not need to

evaluate them.

Note that we have considered types for map that are valid only when applied to a non-circular
list, since they rely on the input list having positive potential (and the soundness of our type
system only allows circular data structures without potential). However, it is important to

note that we can similarly derive a type for map when the input list has zero potential:’

TO(TO(AI AN B) 0_) Ta (L;_n) 3+4q¢+q; +max(pl, pl —2) Lout)
where L, = L(0,0, A'), with Y(A'| A/, A")
Lout - Lgﬂfﬂﬁpi’ (p’c,p;“ TO(B))

Note that since ¢y and ¢; do not contribute independently to the cost formula for this type,
we use the maximum between them (¢;) throughout instead. In this case, the cost formula
is expressed in terms of how many elements, say m, of the output list are demanded from
the context of the evaluation of map. The corresponding cost formula is now 3+q; +¢q; +
max(p, pj, —2) + m(3+qs+q+p.). When comparing with the cost formula of the initial type
presented for map, it is interesting to realise that the higher bound now obtained is due to the
inability of having separate potential for the Cons nodes and the Nil node of the input list,

TSee Figure|B.6/in Appendix|B for the type derivation.

75

76

FCUP
6. Experimental Results

and for that reason there is a fixed cost (3+q;+q+max(p, p,,—2)) covering both alternatives.
f (& n

Note the change in the expected type for function £: since the input list has zero potential,

the argument to £ cannot have potential as well.

Having discussed map we now move to another example that benefits from the types just
presented.

6.2 List Fusion: map/map

The following two Haskell programs are equivalent in the sense that, given the same input,

produce the same output:

e progh f g =map f . map g

e progB f g = map (\x -> f (g x))

Translating to our Fun language:

e let progh = A\f.\g.\xs.let ys = mapl g xs in map2 £ ys in progA

e let progB = Af.\g. Axs.leth = (Ax.lety = gxin £ y) in map h xs in progB

where map1 and map2 are two copies of the code for map, as defined in the previous sec-
tion, in order to enable our analysis to annotate the types of each copy differently and
successfully handle the first of the above programs. Resource parametricity as previously
established [JLHH10] would avoid the need for such code duplication and its adoption here

is suggested as further work.

Conceptually, progA constructs an intermediate list ys from applying g to every element of
xs and then returns a final list from applying £ to every element of ys, while progB starts
by creating a function, that, given x as an argument, creates an intermediate value y from
applying g to x and proceeds by applying f to y, and then returns a final list from applying
the newly defined function h to every element of xs. Note though that under a call-by-need
semantics these intermediate structures are created as needed and not up front as this

conceptual description would seem to imply.

FCUP | 77
6.2. List Fusion: map/map

In this section we want to show that our analysis can express intensional behaviour of
programs. In particular, we want to show that operationally progB allocates fewer heap cells
than progA and that our analysis captures this difference in cost, despite the fact that both

programs produce the same output if given the same input.

The types given by our analysis for progA and progB are, respectively:

o TO(TOTO(A) 2 B) = TOTO(B) 5 C) & T (Liga) = Lows)

1+4q0

. TO(TO(TO(A) 2y B) % TOTO(B) L) 5 T4 (Lypg) 2 Lout)

wheré}

Lina = L% (6+qg+qf+q+p., 2+p,, TO(4))
Ling = L% (4+qg+qfr+q+pL, 1+p),, TO(A4))
Lout - Lo(pi;ap;w TO(C))

First note that the only two differences between the above types are that 6 and 2 in L, are
replaced by 4 and 1 in L;»5. Now recall from the previous section that, assuming ¢ (and gy),
qo and ¢; are actual costs (and not just upper bounds), the analysis of map gives an exact
match to its operational cost. We also assume for simplicity that we are not interested in

having potential in the resulting list (p.. = p), = 0).

We start by showing that the type given for progA corresponds to its expected cost. Ac-
cording to its type, progA has the following cost when applied to two functions and a list of
length n

1+qo+n(6+qg+qr+q)+2

Let us divide the cost formula into three parts, 1+qo, n(6+q4+qr+¢:) and 2, and explain
each of them. The first part corresponds to a fixed cost of 1+¢, where the 1 corresponds to
allocating a heap cell for binding ys to the thunk map1 g xs and the ¢ is prepayment for eval-
uating xs to whnf. In the second and third parts the 6+¢,+q;+q¢; and the 2 correspond to the
cost of processing each Cons node and the Nil node of xs in progA, respectively. In order
to understand the origin of these costs, we have to consider what types do map1 and map2
have, in this concrete example. Given that ¢y has been prepaid in the first part as a fixed
cost, the type for the input list that map1 is expecting is TO(th (34+4qg+q:+pe, 14+pn, TO(A))),

where p. and p,, are extra amounts that are returned in the output list of map1. Also, since

Note that the cost of zero in the thunk type T°(A) assumes that the eventual cost of the thunk has been
shifted to q,. Similarly, for T°(B) and ¢;.

78

FCUP
6. Experimental Results

qo has been prepaid, the cost of applying map1 to g and xs is zero, which is also the cost
of ys. Since the output of map1 has type L°(p., p,, T°(B)) and ys has cost zero, the type
for the input list of map2 is TY(LY(p., pn, T°(B))), the cost of applying map2 to £ and ys is
zero and the type of the output of map2 is L°(0,0, T°(C)), the same type as the output of
progA. Note from the type of map that the extra amounts p. and p,, are 3+¢,+0+0 and 140,
respectively. Now we can see where the costs for the second and third parts come from,
since 3+qy+qi+pe = 3+qg+q+(3+qf) = 6+q4+qr+q; and 1+p, = 1+1 = 2. Since the cost
of map is an exact match to its operational cost and no expression in progA is unaccounted
for, we conclude that the cost formula of progA shown above is accurate.

We use a similar argument to demonstrate that the type given for progB also corresponds
to its expected cost. The cost formula is now

1+qo+n(d+gg+qr+aq)+1

which we also divide in three parts: 1+qo, n(4+q4+qr+q;) and 1. The first part corresponds
again to a fixed cost of 1+ ¢, but this time the 1 corresponds to allocating a heap cell for
binding h to the \-abstraction (Ax.let y = g x in £ y), while the ¢q is still prepayment for
evaluating xs to whnf. Before looking at the second and third parts, it is useful to reason
about the cost of applying function h. We know function h allocates a heap cell for the
binding of y to the application of g to argument x, and returns £ applied to y. So, we know
h costs g, = 1+¢4+qs to apply. Now going back to the second and third parts of the cost
formula of progB, since ¢y has been prepaid, the specific type for map in progB is

TO(TOTO(4) 2 €)= T 3+ gutar, 1, T(4)) = 1(0,0, T°(C)))

and it is clear now that the costs for the second and third parts of the cost formula of
progB come from the potential assigned to the input list of map, in particular the Cons nodes:
3+an+qi = 3+(14q4+qr)+q: = 4+q4+qr+q:- Again, since the cost of map is an exact match
to its operational cost and no expression in progB is unaccounted for, we conclude that the
cost formula of progB shown above is accurate, indeed showing that our analysis is able to
measure deforestation benefits.

FCUP | 79
6.3. Infinite Data Structures: cycle

6.3 Infinite Data Structures: cycle

This section serves to demonstrate that our static analysis can obtain accurate bounds

when applied to definitions of infinite data structures.

Consider the following program

let append’ = Ays.\xs.case xs of Nil -> ys,
Cons x xs’ -> let ws’ = append’ ys xs’ in
let ws = Cons x ws’ in
ws in
let cycle = Azs.let zs’ = append’ zs’ zs in zs' in

cycle

where cycle is a function that, given a finite non-empty list as its argument, generates
an infinite list by constructing a copy of the input list and connecting its end back with the
beginning, effectively creating a circular list. The function cycle uses the auxiliary append’,
which is defined as the classical append, except for having its argument order reversed.
This change is necessary since our system only allows potential in the innermost argument
of a function (rule ABS of our type system forces context I" to be idempotent) and thus, if
we want the cost of applying append to be paid from the potential in the recursive argument,
we must swap the order of arguments (as in this example) or use an uncurried version of

the function (as we will see in the next section).

In our type system we can derive the following type for cycle:

TO(TqO(Lin) oy Lgut)
where L;, = L%(2+4¢;,0, A)
Lgut = LO (0’ 0’ A,)v Wlth y(Lgut | Li)ut’ L:)ut) and Y(A | A? A,)

Note that, since the outermost argument ys of append’ cannot have potential, the output list
of append’ cannot have potential as well, since for the case alternative of the Nil branch,
the returning expression is ys. However, given that cycle outputs a circular list and our
system does not allow circular data structures with (positive) potentiaE, the restriction on
append’ does not negatively affect the type of cycle, since we would not expect its output

¥Note in Figure (5.4 the use of an idempotent type A’ in the recursive typing of rule LET.

80

FCUP
6. Experimental Results

list L.

out

to have potential anyway.

We now show that the bounds given by our analysis are tight. According to the type of

cycle, we have the following cost formula

1+qo+n(2+q)

where n is the length of zs with n > 1 (otherwise, cycle applied to the empty list would
fail to terminate). We divide the cost formula into two parts: a fixed part 1+¢ and a part
that depends on the length of the input list n(2+¢;). In the first part, the 1 corresponds to
the heap allocation for the let-binding of zs’, while the ¢y corresponds to a prepayment of
the cost of evaluating zs to whnf. The second part corresponds to, for each Cons node of
xs in append’, the cost of allocating two heap cells for the let-bindings of ws’ and ws plus
a prepayment for the evaluation of xs’ to whnf. Note that ys acts as a reference to a copy
of zs and can be seen as a thunk with zero cost, provided the cost of constructing a copy
of the Cons nodes of zs has been prepaid for, as in this case. Since we have covered the
cost of all the expressions in the program, we conclude that the cost formula shown above
is tight, as long as ¢ and ¢; are actual costs and not just upper bounds.

6.4 Nested Data Structures: concat

In this section we show the applicability of our analysis to nested data structures, using a
function concat. The classical list concatenation function is defined as taking a list of lists as
its argument and creating a single list by appending each of the inner lists to the previous
one. Here, we define the following alternative version to the classical list concatenation,

using an auxiliary function appendp:

let appendp = \p.case p of Pair xs ys -> case xs of Nil -> ys,
Cons x xs’ -> let p’ = Pair xs’ ysiin
let zs’ = appendp p’ in
let zs = Cons x zs’ in

zs in

FCUP | 81
6.4. Nested Data Structures: concat

let concat = Axss.case xss 0f Nil -> let nil = Nil in nil,
Cons xs xss’ -> let ys = concat xss’ in
let p = Pair xs ys in

appendp p in

concat

We choose to define concat with appendp and not with the append’ seen in the previous
section. While this allows us to show another alternative version of append successfully
handled by our analysis and avoids imposing unnecessary constraints on the output list
(since the output list can now have potential, unlike the output of append’), appendp does
have a higher cost due to the construction of a pair for each call of this uncurried version
and this is reflected on the following type for concat

concat : TYT%0(Loyter) S Ltina1)
where Louter = LY (2+qo+qi0, 1+, T4 (Linner))
Linner = L% (3+qit+p,, 0, A)
Ltinar = LO(p), Py, A)

do1 = max(qo0, Got)

whose derivation uses the following type for appendp

TO(P(T(Linner)s T (Lgsnar) = Lsnaa)
where P(A, B) = TY(uX.{Pair : (0, (A, B))})
Ltinal = Lo(p/c’ 0,4)

where ¢,0 and ¢,; are the usual costs of a list (as defined in the introduction of the current
chapter), in this case for the outer list of concat, and ¢;o and g;; are the usual costs applied
to the inner lists, but taking the maximum of such costs for each of the inner lists of concat,
i.e. gio is an upper bound on the maximum of the costs of evaluating to whnf each of the
inner lists (xs) and ¢;; is an upper bound on the maximum of the costs of evaluating to whnf
each of the tails of the Cons nodes of the inner lists (xs').

Assuming, for simplicity, that we are not interested in the potential of the output list (p.. = 0),

82

FCUP
6. Experimental Results

the cost formula extracted from the type of appendp is
1(3+qit)

where [is the length of the first list of the input. We start by explaining how the cost
formula relates to the definition of appendp. First note that the type assigned by our analysis
assumes that the first list of the input pair costs zero to evaluate to a whnf (or assumes that
this cost has been prepaid). Now, looking at the program definition, the cost of the case
expression for the pair is equal to the cost of the case expression for the list xs, since p, from
its type, costs nothing to evaluate to whnf. We can also see in the type that xs and ys cost
zero to evaluate to whnf, and thus, the cost of the case expression for the list is equal to the
cost of the Cons case alternative, which in turn, for each Cons node of xs, corresponds to
a cost of 3 for the three heap cells storing the thunks referenced by p’, zs’ and zs, plus the
cost of prepaying g;; for xs’ since appendp expects a pair of lists that cost zero to evaluate
to whnf (or have those costs prepaid, as in this case). Note that applying appendp to p’
has no extra cost and that not only zs is in whnf, but also evaluating each of its Cons nodes
also has no extra cost, according to the type L}, ., of the application appendp p’. We have
thus related each expression in the definition of appendp to the cost formula expressed by

its type.

We now do the same with respect to concat. According to its type, and ignoring, for
simplicity, p/. and p/,, we have the following cost formula

QO0+1+n(2+QOl +Qi0) +m(3+Qit)

where n is the length of outer list passed as input to concat and m is the sum of the
lengths of the inner lists (m = [y,...,1,). Connecting the cost formula to the definition
of concat, we can see that, once applied to a list of lists xss, concat evaluates the case
discriminant (costing ¢.0). When concat reaches the end of the outer list, it costs 1 for the
heap cell allocated by the let-binding for nil. Meanwhile, we have to consider the cost
of each Cons node of the outer list, and it useful to consider its part on the cost formula
(24 Gor+qio) +m(3+qi) as

n

> (2+qotai0+1i(3+qin))
i=1

So, for each inner list of the input to concat, it costs 2 heap cells to create the two let-
bindings for ys and p. We also have to pay q,;, as the worst case between the cost ¢, of

FCUP
6.5. Known Limitation with Co-Recursive Definitions: fibs

evaluating xss’ to whnf and the cost ¢, that the type of concat expects for its input list.
Furthermore, we prepay the cost ¢;p of xs, since the type of appendp expects a list with
no cost, and pay the cost /;(3+¢;;) of applying appendp to p. Thus, we have related each
expression in the definition of concat to the cost formula expressed by its type.

Note that m is the sum of the lengths of the inner lists, taking each length separately
into account, and thus it does not introduce a source of relaxation on the cost, unlike, for
example, if we had considered m as n x max(ly,...,l,). The cost formula for concat is an
exact match to its operational cost, provided g0, qot, i0, gt and q,; are exact values and not

just upper bounds, and therefore the quality of the bounds is the best we could hope for¥.

6.5 Known Limitation with Co-Recursive Definitions: fibs

Non-strict functional languages allow the use of an idiom that consists of concisely defining
an infinite list where, other than a finite number of initial elements, each element depends
on previous ones. The classical definition of the Fibonacci series is an example of such

idiom and is written in Haskell as
fibs =0:1:zipWith (+) fibs (tail fibs)

Unfortunately, although fibs has a linear cost with respect to the number of elements
needed from this infinite list, our analysis cannot capture that fact and cannot find a solution
for this example. In fact, we have found that our analysis cannot handle such examples and

we discuss the difficulties in the remainder of this section.

In order to isolate the problem, we highlight the difficulties with what we believe to be one
of the simplest examples of this idiom, concisely written in Haskell as

bools = True : map not bools

TNote that, by definition, g.¢, ¢+ and q.; are likely to be a source of relaxation of the cost. However, this loss
of precision is expected of any static analysis, since it results from the need to create a single abstraction to
represent an infinity of concrete data.

83

84 | FCUP
6. Experimental Results

and translated into our Fun language as

let true = True in
let false = False in
let not = A\b.case b of True -> false, False -> true in
let map = A\f.\xs.case xs of Nil -> let nil = Nil in nil,
Cons x xs' > lety = f xin
let ys’ = map £ xs’ in
let ys = Cons y ys’ in ys in
let bools = let bls’ = map not bools in
let bls = Cons true bls’ in
bls in
bools

The bools example defines an infinite list of alternating booleans (arbitrarily starting with
True) where each element, other than the first, is defined as the negation of the preceeding

element.

We start by observing that bools yields a constant cost for each successive element (and
thus has a linear cost with respect to its length). Evaluating bools to a whnf, in order to
access its first element, costs 2, corresponding to the allocation of two heap cells that hold
the thunk map not bools and the whnf Cons true bls’. Each subsequent element costs 3
heap allocations, corresponding to the three /lets in the Cons branch of function map. Given
this reasoning, we would like to obtain a typing such as bools : TZ%(L?*(0,0, T%(Bool))),
where Bool &' pX.{True: (0, ()) | False : (0, ()) }.

Recall the type of map, for input lists without potential, as shown in Section 6.1:

TO(TO(A 25 By 2 Ton(1y,) HHotatmthnhotl)
where L, = L% (0,0, A'), with Y(A'| A, A')
Lout -]'--3+qf—'—ql—~_pé (p'c,p;“ TO(B))

Applying to this concrete example: A’ = T%(Bool), ¢; = 0 (since applying not to a boolean

has zero cost), B = Bool and, for simplicity, assuming we are not interested in having

FCUP
6.5. Known Limitation with Co-Recursive Definitions: fibs

potential in the output list, p,. = 0 and p/, = 0. We thus have

T0<T0(T0(Bool) > Bool) = Ta (Li) R Lout)
where L = 1%(0,0, T°(Bool))
Lous = L¥%(0,0, T°(Bool))

Since in bools the output list of map is passed back again as the input list, the types Loyt
and L}, must match, but then our analysis fails to produce a type for bools due to the
impossibility of finding a finite solution to ¢; = 3+¢; (the costs in L, and Loyt).

However, the real problem with this co-recursive definition is that, because of lazy eval-
uation, the cost of the recursive call of map (3+ ¢;) is shared with the cost of obtaining
each element of the output list (also 3+¢;). Unfortunately, the rules of our type system
(including PREPAY) are not enough to track the circular sharing dependencies which would
allow lowering the costs of thunk types. Therefore, we conclude that our analysis cannot

handle such examples of co-recursive functions.

It is important to note that bools can be rewritten in a way for which our analysis obtains
accurate results. For example, in the translation to our Fun language of the following Haskell

code
bools = iter not True

where iter f x = x : iter f (f x)

bools has type
T3+pC(L3+p“ (Pes Pns TO(Bool)))

where any potential in the Cons nodes p. must be paid for from the costs of evaluating bools,
and subsequent tails, to its whnf, while the potential in the Nil node p,, has no restriction
since bools never creates such node. We could do better and rewrite bools as a circular
definition having constant overall cost, such as

let true = True in

let false = False in

let bools = let bls’ = Cons false bools in
let bls = Cons true bls’ in
blsin

bools

85

86

FCUP
6. Experimental Results

(in Haskell it could be written as bools = True : False : bools), which has type
T(L°(0,0, T*(Bool)))

and thus, although here we could not have potential in bools if we wanted tcm, this version
has better cost.

While we believe the remaining examples with linear cost of this idiom can also be rewritten
in a way our analysis can handle, such reformulations might not feel natural for some
examples. We would like to avoid forcing programmers out of this style when using our

analysis and we will pursue a solution to this problem as further work.

6.6 Summary

In this chapter we have shown how our analysis provides accurate cost bounds for functions
such as map, cycle and concat, thus covering examples of higher-order functions and the
use of infinite and nested data structures. We have also seen how our analysis can hint into

which alternative program definition has better operational cost.

Remember though, that all static analyses are doomed to fail for some programs and we
did show some examples that in particular our analysis finds problematic. Some limitations
such as that of append have simple workarounds by swapping the order of arguments
or using an uncurried version, but each has its drawbacks: restricted output potential or
increased cost of uncurrying the input. Other limitations are left as further work, such as the
one found on the co-recursive definitions of the previous section and the one that restricts
our analysis to programs with linear costs with respect to the number of constructors in data

structures.

ICircular data structures in our system cannot have potential other than zero. This is similar to the restriction
found in the output of function cycle in Section|[6.3.

7. Conclusion

In this chapter we summarise the work described in this thesis and note the limitations of
our approach together with a discussion of further work.

7.1 Assessment of Achievements

Analyses for lazily evaluated programs were restricted to first-order programs or were not
automatic or depended on context information currently impractical to obtain or made the
relation between costs and inputs more opaque by not expressing data-dependencies in
the bounds.

This thesis has introduced the first automatic static analysis for accurately determining
bounds on the execution costs of lazy functional programs. The analysis uses an amortised
analysis technique that is capable of directly analysing higher-order lazy programs, without
requiring defunctionalisation or other non-cost-preserving program transformations. Our
analysis deals with user-defined (potentially infinite) data structures and data-dependencies
are expressed in the produced bounds. We have presented a soundness proof, validating
the analysis against an operational semantics derived from Launchbury’s natural semantics
of graph reduction, and analysed in detail some non-trivial examples of lazy evaluation
using the rules of our system, while providing a URL to a web-prototype implementation of
the analysis where more examples can be found and users can try their own. From our
novel analysis for lazy evaluation we have derived with minimal changes an analysis for
eager evaluation, clearly highlighting the key element of our result: a type rule (PREPAY)
that allows costs to be deferred.

87

88

FCUP
7. Conclusion

Although the examples in this thesis have only considered list and scalar data structures,
previous work [JLH*09, JLHH10] suggests that there should be no difficulties in finding
examples that successfully deal with other forms of data structures. Also, even though
we do not provide a formal guarantee for the predicted bounds of the publicly accessible
web-prototype implementation (we have not worked on a proof connecting the analysis
to the implementation), examples with other forms of data structures are available and
we have confidence on the implementation results based on the similarity to other (three)
implementations by Jost [Jos10] (that have been around for over 10 years now) and on the
fact that we have used this same tool to help construct the complete type derivations found
in Appendix B.

7.2 Limitations and Further Work

There are a number of limitations to the work presented here that would repay further

investigation.

Deallocation and other resource metrics: While Jost et al. [JLHt09, JLHH10] have
previously constructed analyses that are capable of dealing with arbitrary countable re-
sources for strict languages, for simplicity, in this thesis we have restricted our attention to
the heap allocation metric only. There are two obvious ways to extend the analysis to handle
deallocation: a destructive pattern matching operator similar to the one used in [HJ03] and
a deallocation primitive such as free (/). In either case we would extend the type system
with an extra annotation (on thunk types, function types and turnstile) to represent how many
heap cells could be reused. For example, a type Tg,(A) would correspond to an expression
that needs at most ¢ heap cells to evaluate and frees at most ¢’ heap cells once evaluated.
Supporting deallocation would widen the range of successfully handled examples as seen
for example in the analysis of insertion sort with destructive pattern matching [HJ03] that
turned an otherwise quadratic heap usage function into a linear one. Once deallocation
is supported, the same principle can be used to measure other non-monotonic resource
usage such as stack information. Analysing countable resource metrics other than heap
usage should then follow a similar structure, but might require a richer operational semantics

than that given by Launchbury.

FCUP
7.2. Limitations and Further Work

Co-recursive definitions: We would like to tackle the limitation found in Section 6.5. It
seems that the cause for failure is related to our type system inability to capture sharing of
costs in co-recursive examples such as the ones found in Section[6.5. Our first attempt at
solving this problem would be to provide a way to unfold recursive types and see where it
would lead us. Failing that, and since a circular definition can successfully reach a whnf if it
only ever depends on parts of the data that can readily be in whnf themselves, we could try
to change rule LET in order to allow the free reuse of the recursive binding by having zero
on the costs of the thunk types for z, in the typing for e. After these attempts, we hope we
would have more insight and be better positioned to suggest further alternatives to tackle

this current limitation.

Super-linear bounds: It seems possible to combine our analysis for lazy evaluation with
recent advances by Hoffmann et al. [HAH11] in the study of super-linear bounds. However,
it is not clear how to keep higher-orderness since their system currently only applies to first-
order functional languages. Another approach that could be taken (based on a suggestion
found in Jost’s thesis [Jos10]) is the combination of current sized type and automatic amor-
tised analyses. The idea is to use information from a sized type analysis (such as the length
of a list) to recharge the potential (of that same list) on an amortised analysis. Inference of
super-linear bounds could still be efficient through the successive application of LP-solving.
Note though that, to be effective, this alternative approach would have the extra difficulty
of first extending a sized type analysis, since such analyses currently do not handle lazy

evaluation.

Interleaving types: The analysis is limited to non-interleaving types [Mat98] , which ex-
clude types such as finitely branching trees (uY.{FinT:(uX.{Cons:(Y, X)INil:()})}), but
include nested types such as lists of lists and trees of lists and most of the commonly
user-defined data types. The requirement of non-interleaving types helps us prove a crucial
lemma on cyclic structures (Lemma [5.17) in the key soundness proof (Theorem [5.13).
However, this restriction feels arbitrary — we do not know if there is a fundamental reason
for such requirement or if it results from our current inability to find a better argument for
the proof, although we suspect the latter. In accordance with this intuition, note that the
soundness proof of the eager system presented in this thesis also relies on the same lemma
(and thus relies on having non-interleaving types only), while no other previous analyses for

eager systems do so. We believe that, if removing the limitation of non-interleaving types

89

90

FCUP
7. Conclusion

is possible, it will require different invariants for the soundness proof, since that is the main
difference between the eager system presented in this thesis and the previous automatic

amortised analyses for eager evaluation.

Non-terminating programs: As Jost [Jos10] observes: “all programs that exceed the
available free memory, even non-terminating ones, must do so already after a finite num-
ber of steps”. The technique for handling non-terminating programs as a separate proof
treatment in analyses following Hofmann and Jost’s approach was introduced by Aspinall
et al. [ABH07] and later used in other analyses [Cam08, Jos10, Hof11]. It consists of
extending the core semantics with extra rules that force the termination of programs that
exceed some arbitrary prescribed amount of resources during evaluation and then add
a soundness theorem for non-terminating programs, stating that if a program is forced
to terminate then the prescribed bound is lower than what the analysis predicted. This
technique can be straightforwardly applied to our system, extending our analysis to handle

non-terminating lazy programs.

Polymorphic functions and resource parametricity: The system we have described is
restricted to monomorphic definitions. Jost et al. [JLHH10] describe an amortised analysis
for polymorphic, higher-order but strict functions. Also, improving our system to allow
function types to be resource parametric [JLHH10] would imply that instead of having the
type system deal only with rational numbers as type annotations, it would have to deal
also with so-called resource variables in order to directly manipulate constraints on the
annotations. With this convenient feature we would not have to duplicate the code in
order to produce the required different type annotations for function map when showing
the deforestation benefits in Section [6.2. We believe the same techniques that enable
polymorphic functions and resource parametricity can be straightforwardly adapted to a
lazy setting.

7.3 Final Remark

Lazy evaluation, in practice being free from side-effects, is particularly well suited for
parallelism [THLPJ98, MML*10, KCL*10, MNPJ11], and can offer important advantages
in the current era of many-core processors. Recent work [DMMZ12] allows further

FCUP | 91
7.3. Final Remark

research on call-by-need to simply focus on one formal system, e.g. a reduction semantics,
an abstract machine or a natural semantics, since we can mechanically inter-derive the
others. Combined with the continuous improvements on the automatic amortised analysis
over the past few years [HJ03, HJ06, Cam08, JLH*09, JLHH10, Jos10, HAH11, SVF*+12],
we look forward to see our work on bridging lazy evaluation and automatic amortised

analysis enjoy increasing success.

92 | FCUP
7. Conclusion

Bibliography

[ABH+07]

[ADMO04]

[AF97]

[AGGO09]

[AGG10]

[ASV03]

[Bay72]

David Aspinall, Lennart Beringer, Martin Hofmann, Hans-Wolfgang Loidl, and
Alberto Momigliano. A program logic for resources. Theoretical Computer
Science, 389(3):411-445, 2007. 7.2

Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional correspondence
between call-by-need evaluators and lazy abstract machines. Information
Processing Letters, 90(5):223-232, 2004. [2.1,4

Zena M. Ariola and Matthias Felleisen. The Call-by-Need Lambda Calculus.
Journal of Functional Programming, 7:265-301, May 1997. 2.1

Elvira Albert, Samir Genaim, and Miguel Gémez-Zamalloa. Live Heap Space
Analysis for Languages with Garbage Collection. In Proceedings of the
International Symposium on Memory Management (ISMM’09), pages 129—-138,
Dublin, Ireland, June 2009. ACM. 2.4

Elvira Albert, Samir Genaim, and Miguel Gomez-Zamalloa. Parametric Infer-
ence of Memory Requirements for Garbage Collected Languages. In Pro-
ceedings of the International Symposium on Memory Management (ISMM’10),
pages 121-130, Toronto, Ontario, Canada, June 2010. ACM. 2.4

Elvira Albert, Josep Silva, and German Vidal. Time Equations for Lazy
Functional (Logic) Languages. In Proceedings of the Joint Conference on
Declarative Programming, AGP-2003, pages 13—-24, Reggio Calabria, ltaly,
September 2003. [2.2

Rudolf Bayer. Symmetric binary b-trees: Data structure and maintenance
algorithms. Acta Informatica, 1:290-306, 1972. 3.2.1

93

94

FCUP

BIBLIOGRAPHY

[BFGYO08]

[BH89]

[BHAS6]

[BROO]

[BRO1]

[CamO08]

[Cam09]

[CNPQOS8]

[CW00]

Victor Braberman, Federico Fernandez, Diego Garbervetsky, and Sergio
Yovine. Parametric Prediction of Heap Memory Requirements. In Proceedings
of the International Symposium on Memory Management (ISMM’08), pages
141-150, Tucson, Arizona, USA, June 2008. ACM. 2.4

Bror Bjerner and Séren Holmstrdm. A compositional approach to time analysis
of first order lazy functional programs. In Proceedings of the ACM SIGPLAN
Conference on Functional Programming Languages and Computer Architecture
(FPCA’89), London, UK, September 1989. [2.2]

Geoffrey L. Burn, Chris Hankin, and Samson Abramsky. Strictness analysis for
higher-order functions. Science of Computer Programming, 7:249-278, 1986.

2.1]

Adam Bakewell and Colin Runciman. A Model for Comparing the Space Usage
of Lazy Evaluators. In Proceedings of the 2nd International ACM SIGPLAN
Conference on Principles and Practice of Declarative Programming (PPDP’00),
pages 151-162, Montreal, Quebec, Canada, September 2000. [2.1

Adam Bakewell and Colin Runciman. A Space Semantics for Core Haskell. In
Graham Hutton, editor, ACM SIGPLAN Haskell Workshop 2000, volume 41 of
Electronic Notes in Theoretical Computer Science. Elsevier, 2001. 2.1

Brian Campbell. Type-based amortized stack memory prediction. PhD
thesis, Laboratory for Foundations of Computer Science, School of Informatics,
University of Edinburgh, UK, 2008. 2.3,/7.2,7.3

Brian Campbell. Amortised Memory Analysis Using the Depth of Data Struc-
tures. In Giuseppe Castagna, editor, Proceedings of the European Symposium
on Programming (ESOP’09), York, UK, March, 2009, volume 5502 of Lecture
Notes in Computer Science, pages 190—204. Springer, 2009. 2.3,!3.2

Wei-Ngan Chin, Huu Hai Nguyen, Corneliu Popeea, and Shengchao Qin.
Analysing Memory Resource Bounds for Low-Level Programs. In Proceedings
of the International Symposium on Memory Management (ISMM’08), pages
151-160, Tucson, Arizona, USA, June 2008. ACM. 2.4

Karl Crary and Stephanie Weirich. Resource Bound Certification. In Proceed-
ings of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming

[Dan08]

[DM82]

[DMMZ12]

[Enn03]

[EP02]

[EP03a]

[EP03D]

[EP09]

FCUP
BIBLIOGRAPHY

Languages (POPL00), pages 184—198, Boston, Massachusetts, USA, January
2000. 2.3

Nils Anders Danielsson. Lightweight Semiformal Time Complexity Analysis for
Purely Functional Data Structures. In Proceedings of the ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL08),
pages 133-144, San Francisco, California, USA, January 2008. 2.2

Luis Damas and Robin Milner. Principal type-schemes for functional programs.
In Proceedings of the ACM Symposium on Principles of Programming Lan-
guages (POPL82), pages 207-212, Albuquerque, New Mexico, USA, January
1982.[1,[3.2.1

Olivier Danvy, Kevin Millikin, Johan Munk, and lan Zerny. On Inter-deriving
Small-step and Big-step Semantics: A Case Study for Storeless Call-by-need
Evaluation. Theoretical Computer Science, 435(0):21-42, 2012. (7.3

Robert Ennals. Adaptive Evaluation of Non-Strict Programs. PhD thesis, King’s
College, University of Cambridge, December 2003. 2.1

Alberto de la Encina and Ricardo Pefia. Proving the Correctness of the STG
Machine. In Thomas Arts and Markus Mohnen, editors, Selected papers
of the International Workshop on Implementation of Functional Languages
(IFL01), Stockholm, Sweden, September, 2001, volume 2312 of Lecture Notes
in Computer Science, pages 88—104. Springer, 2002. 2.1,/4,/14.2,,14.2, 4.2

Alberto de la Encina and Ricardo Pefna. Formally Deriving an STG Machine. In
Proceedings of the 5th International ACM SIGPLAN Conference on Principles
and Practice of Declarative Programming (PPDP’03), pages 102—112, Uppsala,
Sweden, August 2003. ACM. 2.1| 4

Robert Ennals and Simon Peyton Jones. Optimistic Evaluation: an adaptive
evaluation strategy for non-strict programs. In Proceedings of the ACM
SIGPLAN International Conference on Functional Programming (ICFP’03),
pages 287-298, Uppsala, Sweden, August 2003. 2.1

Alberto de la Encina and Ricardo Pena. From Natural Semantics to C: a Formal
Derivation of two STG Machines. Journal of Functional Programming, 19(1):47—
94, 2009. 2.1, 4.1

95

96

FCUP

BIBLIOGRAPHY

[Fax00]

[GS99]

[HAH11]

[HBH*07]

[HH10]

[HJO3]

[HJOB]

Karl-Filip Faxén. Cheap eagerness: Speculative evaluation in a lazy functional
language. In Proceedings of the ACM SIGPLAN International Conference
on Functional Programming (ICFP’00), pages 150-161, Montreal, Canada,
September 2000. 2.1

Jorgen Gustavsson and David Sands. A Foundation for Space-Safe Transfor-
mations of Call-by-Need Programs. In Andrew D. Gordon and Andrew M. Pitts,
editors, Third International Workshop on Higher Order Operational Techniques
in Semantics, volume 26 of Electronic Notes in Theoretical Computer Science.
Elsevier, 1999. 2.1

Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. Multivariate Amortized
Resource Analysis. In Proceedings of the ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL'11), pages 357-370, Austin,
Texas, USA, January 2011. 1, 2.3,13.2,13.2.1,/5.1,7.2, 7.3

Christoph A. Herrmann, Armelle Bonenfant, Kevin Hammond, Steffen Jost,
Hans-Wolfgang Loidl, and Robert Pointon. Automatic amortised worst-case
execution time analysis. In Proceedings of the 7th International Workshop on
Worst-Case Execution Time (WCET) Analysis, pages 13—18, Pisa, ltaly, July
2007.12.3

Jan Hoffmann and Martin Hofmann. Amortized Resource Analysis with
Polynomial Potential. In Giuseppe Castagna, editor, Proceedings of the
European Symposium on Programming (ESOP’10), Paphos, Cyprus, March,
2010, volume 6012 of Lecture Notes in Computer Science, pages 287-306.
Springer, 2010./2.3,13.2,13.2.1

Martin Hofmann and Steffen Jost. Static Prediction of Heap Space Usage
for First-Order Functional Programs. In Proceedings of the ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL03),
pages 185-197, New Orleans, Louisiana, USA, January 2003. 1, /2.3, 3.2,
7.2,7.3

Martin Hofmann and Steffen Jost. Type-Based Amortised Heap-Space Anal-
ysis. In Peter Sestoft, editor, Proceedings of the European Symposium
on Programming (ESOP’06), Vienna, Austria, March, 2006, volume 3924 of
Lecture Notes in Computer Science, pages 22—37. Springer, 2006. 2.3,(7.3|

[Hof11]

[Hop08]

[HROO]

[Hug89]

[JLH+09]

[JLHH10]

[Jon92]

[Jos89]

[Jos10]

FCUP
BIBLIOGRAPHY

Jan Hoffmann. Types with Potential: Polynomial Resource Bounds via
Automatic Amortized Analysis. PhD thesis, LMU Munich, Germany, 2011. (7.2

Catherine Hope. A Functional Semantics for Space and Time. PhD thesis,
University of Nottingham, UK, 2008. 2.2/

Martin Hofmann and Dulma Rodriguez. Efficient Type-Checking for Amortised
Heap-Space Analysis. In Proceedings of the CSL: Annual Conference of
the European Association for Computer Science Logic, Coimbra, Portugal,
September, 2009, volume 5771 of Lecture Notes in Computer Science, pages
317-331. Springer, 2009. 2.3

John Hughes. Why Functional Programming Matters. The Computer Journal,
32(2):98-107, 1989. [1!

Steffen Jost, Hans-Wolfgang Loidl, Kevin Hammond, Norman Scaife, and
Martin Hofmann. “Carbon Credits” for Resource-Bounded Computations Using
Amortised Analysis. In Ana Cavalcanti and Dennis R. Dams, editors, FM 2009:
Formal Methods, Eindhoven, The Netherlands, November, 2009, volume 5850
of Lecture Notes in Computer Science, pages 354-369. Springer, 2009. 1,12.3,
3.2,4.3,[71,[7.2,[7.3

Steffen Jost, Hans-Wolfgang Loidl, Kevin Hammond, and Martin Hofmann.
Static Determination of Quantitative Resource Usage for Higher-Order Pro-
grams. In Proceedings of the ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (POPL'10), pages 223-236, Madrid, Spain,
January 2010. 1,2.3 3.2,/5.1, 5.5.5,16.2,17.1,7.2,7.2,[7.3

Simon Peyton Jones. Implementing Lazy Functional Languages on Stock Hard-
ware: The Spineless Tagless G-Machine. Journal of Functional Programming,
2(2):127-202, 1992. |4/

Mark B. Josephs. The semantics of lazy functional languages. Theoretical
Computer Science, 68(1):105—111, 1989. [2.1

Steffen Jost. Automated Amortised Analysis. PhD thesis, Faculty of Mathemat-
ics, Computer Science and Statistics, LMU Munich, Germany, 2010. 2.3,/5.5.5,
7.1,7.2,7.2,[7.3

97

98

FCUP

BIBLIOGRAPHY

[KCL+10]

[Lau93]

[LJO9]

[Mat98]

[Mil78]

[MML*10]

[MN92]

[MNPJ11]

[Mou98]

Gabriele Keller, Manuel M.T. Chakravarty, Roman Leshchinskiy, Simon Pey-
ton Jones, and Ben Lippmeier. Regular, shape-polymorphic, parallel arrays
in haskell. In Proceedings of the ACM SIGPLAN International Conference
on Functional Programming (ICFP’10), pages 261-272, Baltimore, Maryland,
USA, September 2010.

John Launchbury. A Natural Semantics for Lazy Evaluation. In Proceedings
of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL93), pages 144—154, Charleston, South Carolina, USA,
January 1993. 1,11.1,2.1,14,4.1,4.2, 4.2

Hans-Wolfgang Loidl and Steffen Jost. Improvements to a Resource Analysis
for Hume. In Proceedings of the 1st International Workshop on Foundational
and Practical Aspects of Resource Analysis (FOPARA), Eindhoven, The Nether-
lands, November 2009. Springer. 3.2.1

Ralph Matthes. Extensions of System F by Iteration and Primitive Recursion on
Monotone Induction Types. PhD thesis, LMU Munich, Germany, 1998. 5.1,(7.2|

Robin Milner. A theory of type polymorphism in programming. Journal of
Computer and System Sciences, 17:348-375, 1978.(1,13.2.1

Simon Marlow, Patrick Maier, Hans-Wolfgang Loidl, Mustafa K. Aswad, and Phil
Trinder. Seq no more: Better strategies for parallel haskell. In Proceedings
of the third ACM SIGPLAN Haskell Symposium, pages 91-102, Baltimore,
Maryland, USA, 2010. ACM. 7.3

Alan Mycroft and Arthur Norman. Optimising compilation — lazy functional
languages. In Proceedings of the 19th Software Seminar (SOFSEM), Zdiar,
Czechoslovakia, 1992. 2.1

Simon Marlow, Ryan Newton, and Simon Peyton Jones. A monad for
deterministic parallelism. In Proceedings of the fourth ACM SIGPLAN Haskell
Symposium, pages 71-82, Tokyo, Japan, 2011. ACM. [7.3|

Jon Mountjoy. The Spineless Tagless G-machine, naturally. In Proceedings
of the ACM SIGPLAN International Conference on Functional Programming
(ICFP’98), pages 163—173, Baltimore, Maryland, USA, September 1998. 2.1

[MOW98]

[MS99]

[MTO1]

[Myc80]

[Myc81]

[Oka98]

[PAB+99]

[PB10]

[Rey72]

[San90a]

FCUP
BIBLIOGRAPHY

John Maraist, Martin Odersky, and Philip Wadler. The Call-by-Need Lambda
Calculus. Journal of Functional Programming, 8:275-317, May 1998. (2.1

Andrew Moran and David Sands. Improvement in a Lazy Context: An
Operational Theory for Call-by-Need. In Proceedings of the ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL99),
pages 43-56, San Antonio, Texas, USA, January 1999. [2.1|

Robin Milner and Mads Tofte. Co-induction in relational semantics. Theoretical
Computer Science, 87(1):209-220, 1991.5.5.5

Alan Mycroft. The theory and practice of transforming call-by-need into call-by-
value. In Proceedings of the International Symposium on Programming, Paris,
France, April, 1980, volume 83 of Lecture Notes in Computer Science, pages
269-281. Springer, 1980.

Alan Mycroft. Abstract interpretation and optimising transformations for applica-
tive programs. PhD thesis, Department of Computer Science, University of
Edinburgh, UK, 1981. 2.1

Chris Okasaki. Purely Functional Data Structures. Cambridge University Press,

1998.12.3,[3.2

Simon Peyton Jones (editor), Lennart Augustsson, Brian Boutel, F. Warren
Burton, Joseph H. Fasel, Andrew D. Gordon, Kevin Hammond, John Hughes,
Paul Hudak, Thomas Johnsson, Mark P. Jones, John C. Peterson, Alastair
Reid, and Philip Wadler. Report on the Non-Strict Functional Language, Haskell
(Haskell98). Technical report, Yale University, 1999. [1

Maciej Pirog and Dariusz Biernacki. A Systematic Derivation of the STG
Machine Verified in Coq. In Proceedings of the third ACM SIGPLAN Haskell
Symposium, pages 25-36, Baltimore, Maryland, USA, 2010. ACM. 2.1,/4

John C. Reynolds. Definitional Interpreters for Higher-Order Programming
Languages. In Proceedings of the ACM National Conference, pages 717—-740.
ACM, August 1972.

David Sands. Calculi for Time Analysis of Functional Programs. PhD thesis,
Imperial College, University of London, September 1990. [2.2|

99

100

FCUP

BIBLIOGRAPHY

[San90b]

[San98]

[Ses97]

[SHFVO07]

[SVF+12]

[Svv07]

[Tar85]

[THLPJ98]

David Sands. Complexity Analysis for a Lazy Higher-Order Language. In
Neil Jones, editor, Proceedings of the European Symposium on Programming
(ESOP’90), Copenhagen, Denmark, May, 1990, volume 432 of Lecture Notes
in Computer Science, pages 361-376. Springer, 1990. 2.2

David Sands. Computing with contexts: A simple approach. In Andrew D.
Gordon, Andrew M. Pitts, and Carolyn L. Talcott, editors, Second Workshop
on Higher-Order Operational Techniques in Semantics, volume 10 of Electronic

Notes in Theoretical Computer Science. Elsevier, 1998. 2.2

Peter Sestoft. Deriving a Lazy Abstract Machine. Journal of Functional
Programming, 7(3):231-264, 1997.2.1| 4,14.1, 4.2,1%,(4.2|

Hugo R. Simdes, Kevin Hammond, Mario Florido, and Pedro Vasconcelos.
Using Intersection Types for Cost-Analysis of Higher-Order Polymorphic Func-
tional Programs. In Thorsten Altenkirch and Conor McBride, editors, Revised
Selected Papers of the International Workshop on Types for Proofs and
Programs (TYPES'06), Nottingham, UK, April, 2006, volume 4502 of Lecture
Notes in Computer Science, pages 221-236. Springer, 2007. [1| 1.1

Hugo Simdes, Pedro Vasconcelos, Mario Florido, Steffen Jost, and Kevin
Hammond. Automatic Amortised Analysis of Dynamic Memory Allocation for
Lazy Functional Programs. In Proceedings of the ACM SIGPLAN International
Conference on Functional Programming (ICFP’12), pages 165-176, Copen-
hagen, Denmark, September 2012.(1.1,12.3,/5.3, 7.3

Olha Shkaravska, Ron van Kesteren, and Marko van Eekelen. Polynomial
Size Analysis of First-Order Functions. In Proceedings of the 8th International
Conference on Typed Lambda Calculi and Applications (TLCA’07), Paris,
France, June, 2007, volume 4583 of Lecture Notes in Computer Science, pages
351-365. Springer, 2007. 2.3|

Robert E. Tarjan. Amortized computational complexity. SIAM Journal on
Algebraic and Discrete Methods, 6(2):306—318, April 1985. 2.3, 3.1,%,13.2

Phil W. Trinder, Kevin Hammond, Hans-Wolfgang Loidl, and Simon Pey-
ton Jones. Algorithm + strategy = parallelism. Journal of Functional Program-
ming, 8(1):23-60, 1998. (7.3

[Vas08]

[VHO5]

[Wad88]

[Wad92]

[WH87]

FCUP
BIBLIOGRAPHY

Pedro Baltazar Vasconcelos. Space cost analysis using sized types. PhD
thesis, School of Computer Science, University of St Andrews, November 2008.

Pedro B. Vasconcelos and Kevin Hammond. Inferring Cost Equations for
Recursive, Polymorphic and Higher-Order Functional Programs. In Phil Trinder,
Greg J. Michaelson, and Ricardo Pefa, editors, Revised Papers of the
International Workshop on Implementation of Functional Languages (IFL03),
Edinburgh, UK, September, 2003, volume 3145 of Lecture Notes in Computer
Science, pages 88—101. Springer, 2005. [1

Philip Wadler. Strictness Analysis aids Time Analysis. In Proceedings of the
ACM Symposium on Principles of Programming Languages (POPL88), pages
119-132, San Diego, California, USA, January 1988. 2.2

Philip Wadler. The Essence of Functional Programming. In Proceedings of the
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL92), pages 1—14, Albuquerque, New Mexico, USA, January 1992. 2.2

Philip Wadler and John Hughes. Projections for Strictness Analysis. In
Proceedings of the ACM SIGPLAN Conference on Functional Programming
Languages and Computer Architecture (FPCA’87), Portland, Oregon, USA,
September 1987.(2.1,2.2

101

102 | FCUP
BIBLIOGRAPHY

A. A System for Eager Evaluation

A.1 Definitions and Figures

w is in whnf
H8,LH—wlwH

0gL 3,8, LU — H(0) I w, K
H,8,L — L1 w,H'[l — w]

H,8,L +— el \v.e/, H H, 8, L +— et)z] |} w,H"
H,8,L +— el | w,H

tisfresh 3|0 el/a]],8,LU{l} — e[t/x] I w', H'
H'l— w'],8,L — e[l/x] | w, H"

H,8,L +—letx=¢ine | w,H"

H,SUUL, (T IUBV(e:), L — e b 4,3
H,8,L +— exll/Th] I w, H"
H,8,L +— case e of {¢; T} ->e;}i; I w, H"

Figure A.1: Eager operational semantics

103

(WHNFy)

(VARy)

(APPy)

(EAGERLET)

(CASEy)

104 | FCUP
A. A System for Eager Evaluation

w is in whnf
H,8, L v w) w, K (WHNF c)
(gL J{szu{z}nﬂﬂ{()uw,ﬂf' (VARLG)
3,8, L = ¢ 1) w, 3 [0 — w] A
H,8,L H= el \x.e/,H H', 8, L H= €[0)x] |} w, H
H,8, L el e f L w, H (APPyc)
Cis fresh H[(— A[E/x]] LU{l} = elt)x] | w', H
H'l— w'],8,L r= e[l/x] || w, H"
— (EAGERLET ()
J{SLIL“”—“‘—le =cine | w,H"
H,SUUL, (T} UBV(e:)) , £ = e Jox £, 3
H, 8, L+ ep[0/zh] I w, H” (CASEL0)
K, 8, L rtmt case e of {¢; T > e}, I w, H” e
Figure A.2: Cost-instrumented eager operational semantics
A B,C = X — type variable
| A5B — function type
| uXAecr:(p1,B1)l -+ ley : (pn, Bn)} —datatype
with q,D15---,Pn € @E)F
Figure A.3: Annotated types
SHAREEMPTY
YAT0) (’
(SHAREVAR)
VX[X,....X)
By = pX.{er: (ply, Bu)l -+ lem : (0, Bim) }
Y(gj "7an) 221:117;]' (1§i§na 1§]§m)
— — (SHAREDAT)
A | A B | B; i > 1<i<
VA4 VBIB) aza (<isn) g oo
Y(A™ B|A1"™" By, ..., A," By)
Y(Aj|Byj, ..., Bnj) m=|A| =|B; (1<i<n, 1<j<m)
(SHAREVEC)

y(ﬁ‘él,...,én)

Figure A.4: Sharing relation

FCUP

A.1. Definitions and Figures

oA F-e: A ArArt-e: C

r & dom(T, A) Y(A|A A ¢ =0ife=cjore=\y.e
D= { p,ife=cgand A=pX.{---lc: (p/,B)l---}

0, otherwise

DA P92 oty = Eine: C

ARz A
FozAr-e: C z & dom(T") Y(I'|T,T)
I A\ze: A2 C

T e: ADC
F,y:AILq,ey:C

B=pupXA{lc:(p,A)l---}
y1:A1[B/X], ...,y Ak[B/X] H= ¢

y:B

— —
'+~e:B B=upXA{cr: (p1, A+ len s (pn, An)}

i=1,..

N (Ulll{fi}) Ndom(A) =0
n ‘A":’ﬁ’:kz /
D A B/ XLy A [B/X] K

ki

(EAGERLET)

(EAGERVAR)

(ABS)

(APP)

(CONS)

[,A ML case e of {¢; 7 -> ¢}, : C

Figure A.5: Syntax directed type rules

INa:Br-e:C A<:B
aoAr-e: C
I't¢e:B B<:C
'-e:C
F,.fAl,(L'AQ H-e: C Y(A’Al,AQ)
NaeAr-e: C

Figure A.6: Structural type rules

(CASE)

(WEAK)

(RELAX)

(SUPERTYPE)

(SUBTYPE)

(SHARE)

105

106 | FCUP
A. A System for Eager Evaluation

d(@:4) € {P+zi S P BilA/X]) WA= Xl lep B Jande=cl o

0 otherwise

63¢(T) 'S {hge(H(2):4) | :A € T} (A.2)

Figure A.7: Potential

Definition A.1 (Type Consistency of Locations). We say that location ¢ admits type A under

context I and heap configuration (3, £), and write I'; H, £ - .. ¢ : A, if one of the following

Loc
cases holds:

(Loct) H(¢)isin whnfand I" H- H(¢) : A

(Loc3) H(¢) notin whnfand ¢ € Land T =)

Definition A.2 (Type Consistency of Heaps). We say that a heap state (3, £) is consistent
with global contexts and global types, and write C k., (H,£) : M, if and only if for all
¢ € dom(H): C(£); 3, L k| oo £ : M(£) holds.

A.2 Proof of the Soundness Theorem for the Eager System

The proof of Theorem [5.18 follows by induction on the lengths of the derivations of
and ordered lexicographically, with the derivation of the evaluation taking priority over
the typing derivation. We proceed by case analysis of the typing rule used in premise (5.97),
considering just the case EAGERLET since the remaining cases are similar to (or simpler
than) the ones presented in the soundness proof of the lazy system (in Section|5.5.6.7).

Case EAGERLET: We start with hypothesis

I,A P 515 ot g =¢ine: C (5.97)
H,8, L +—letzx==¢ine || w, H" (5.98)
€ -y (96, £) - M (5.99)
Y(M[(T,A,0),¢) (5.100)

FCUP
A.2. Proof of the Soundness Theorem for the Eager System

Applying Lemma 5.2 (Substitution) to the premises of rule EAGERLET (5.97) we obtain

T, A v glt/z] - A (A.3)
A LA V- elt)z] : C (A.4)

The premises of rule EAGERLET), (5.98) instantiate as

Hq,8, L1 — /6\[5/.7}] (3 w',f]-f' (A5)
5,8, L — elt/z] I w, K" (A.6)

where £; = LU {¢}, Hy = H[{ — €[t/z]], Ho = H'[{ — w'] and ¢ is a suitably fresh
location (without loss of generality we can assume not only that ¢ is fresh by Definition 4.2
w.r.t. (5.98) but also that ¢ does not occurin T, A, ©, € nor M).

Expression e[¢/x] is either not in whnf or is in whnf. Also, if in whnf, expression e[(/x]
is either a constructor application or a A-abstraction. We proceed by considering each of

these mutually exclusive cases separately.

If €[¢/z] is not in whnf: We intend to apply the induction hypothesis twice, so we must
establish the required premises first.

To apply the induction hypothesis over the term ¢[¢/z], let €; = C[¢ — (] and M; = M[{ —
A'], for some idempotent type A" with Y(A | A, A”) provided by the premises of (5.97).

Type consistency is extended to €; ,,, (H1,£1) : My by case (Loc3) of Definition|A.2!

Compatibility Y(M; | (T, ¢:A", A, ©), €y) follows from (5.100), ¢ being suitably fresh and Def-
inition |5.12| (Global Compatibility).

From premise m >t + 14+ ¢ + ¢+ p+ ¢ (T, A) + ¢4:(0) (5.101) we derive my > (t + 1 +
q+p) +q + ¢g (T, L:A") 4 ¢g, (A, ©), Observing that ¢4 (I, A, 0) = ¢4, (I', A, ©) (since ¢
is suitably fresh) and p = 0 = ¢q, (£:A’) (since e[¢/x] is not in whnf).

We can now apply the first induction hypothesis, obtaining m/, T}, €}, M} and m{ such that:

M- w:A (A7)
H1, S, Ly F2C g[t/a] b, H (A.8)

My <: M, (A.9)

107

108

FCUP
A. A System for Eager Evaluation

€,y (L L1) M, (A.10)

YV (I, A,0),€7) (A.11)

my > (t+ 1+ q+p) + dgo (W A) + d90 (A, O) (A.12)
my —m} >mf (A.13)

In order to extend type consistency (A.10) to Ho, let Co = € [¢ —] and My = M) [¢ — A].
Note that €} (¢) = 0 from case (Loc3) of (A.10) and that M/ (¢) = A’ from (A.9) and the
definition of M;. From and case (Loc1) of Definition|A.2 (Type Consistency of Heaps)
C2 Fyen (Hea, £) : M holds.

From (A.11) we extend global compatibility to Y(M; | (A, ¢:A, ©), C2) which holds by Defini-
tion 5.12 since eventual types (A, ©)[, U Cof, are idempotent (A.9).

From we derive mg > (t+1+p)+q+oq, (A, L:A)+¢q, (0), observing that ¢q (w':A)+
P30 (A, 0) = g, (W':A)+ g, (A, O©) (if the update I, introduced new cycles we would apply
Lemma [5.17/ (Idempotent Cycles) and, since any new cycles must include the updated
location ¢, this would imply type A is idempotent and the potential of idempotent types
Py, (A, ©)],) is zero) and that ¢y, (w':A) = ¢y, (€:A) (by Figure|A.7| (Potential)).

We have all the premises required to apply the second induction hypothesis, obtaining

mb, I, C,, M5 and mf such that:

I K w:C (A.14)

Ha, 8, L FL e[t/x] I w, H” (A.15)

My <: M, (A.16)

C) Fuey (H, L) : M) (A17)

Y(M5, [(I3, 0), €5) (A.18)

my > (t+ 1+ p) + ¢g0 (0:C) + dgen(O) (A.19)
my — ml > mj (A.20)

Let IV = I'), M' = M}, and €' = €. Equations (A.14) (A.17) (A.18) directly establish the
proof obligations (5.102) (5.105) (5.106) respectively.

Conclusion (5.104) follows by (A.16) and the transitivity of subtyping.

FCUP
A.2. Proof of the Soundness Theorem for the Eager System

By applying rule EAGERLET ¢ with premises (A.8), (A.15) and [being fresh, we establish
proof obligation (5.103), yielding

H,8, L ™ otz =Cine) w, H”

If we choose m' = t + ¢gn(w:C) + ¢g0,(O) all we need to complete the proof of case

EAGERLET is to show that m — m/ > 1+ (m1 — m}) + (ma — mb) (> 1+ mf] +m4 =m").

m—m' > 14 (my —m}) + (ma — mj)
==t — Gyr (W:C) — by (©) = 14y — My +ma —t — 1 — p— den (wiC) — oy ()
= { p = 0 by premise of EAGERLET (5.97), since ¢[¢/z] is not in whnf }
m > mq —m} + mo
= t+1+d +q+p+ oy, A) +dy(0)
>t+1+q+p+q + g, (T, 0:A) + g, (A, 0) —m +my
= 631, A) + ¢5(0) = by, (T GA") + g, (A, 0) — iy +ma

> { ¢g¢, (£:A") = 0 since type A’ is idempotent by premise of EAGERLET (5.97) }
G9¢(L, A) + ¢530(©) > ¢ge, (T) + g, (A, ©) —m + ma

— { ¢5(T, A, ©) = oy, (T, A, ©) since ¢ is suitably fresh }
my > mo

= t+1+q+p+ oy (WiA) + Ggu(A,0) > L+ 1+ p+ g+ do, (A, LA) + ¢y, (O)

= G (W'A) + by (A, 0) = 6y, (A, 6:A) + e, (O)

— { dg0 (W' A) + 30 (A, 0) = ¢ge, (W' A) + ¢g¢, (A, ©) by Lemmal5.17 (Id. Cycles) }
P, (W' A) + D3¢, (A, 0) = dyg, (A, £:A) + gy, (O)

= Gy, (w34) 2 g, (0:4)

This last inequality is in fact an equality since ¢4, (:A) = ¢y, (w':A) by the definition of
potential (Figure A.7).

This concludes the proof of case EAGERLET when ¢[¢/z] is not in whnf.

109

110

FCUP
A. A System for Eager Evaluation

If e[¢/x] is in whnf: Evaluation (A.5) terminates immediately by WHNF; and we have
w' =e[l/z] and H{; = H' = IH,. We use rule WEAK ¢ to obtain

Hy,8,L1 H-elt/z] |} w', 3 (A.21)
We intend to apply the induction hypothesis over the term e[¢/z], so we must establish the
required premises first.
Let Co = C[¢{ — T, £:A’] and My = M|l — A].

Type consistency (5.99) is extended to Cy by, (Ho, L) : My by case (Loc1) of Defini-
tion A.2, using (A.3) and the fact that ¢’ = 0 from premise of rule EAGERLET (5.97).

Compatibility Y(Ma | (A, £:A,0), Cy) follows from (5.100), ¢ being suitably fresh, Y(A| A, A")
from premise of rule EAGERLET (5.97), and Definition[5.12 (Global Compatibility).

Since expression e[¢/x] is in whnf, it can either be a constructor application or a A-abstraction.
We now consider each case separately.

If ¢[¢/x] is in whnf and ¢[¢/x] = cy: Frompremise m >t + 1+ ¢ +q+p+ ¢qc(T, A) +
$4(©) (5.101) we want to derive my > (t + 1+ ¢') + q + @3, (A, L:A) + ¢4, (O) and for
that purpose we have to show t + 1+ ¢ + ¢+ p + ¢5(T, A) + ¢4(0) > (t+ 1+ ¢') + g +
By, (A, L:A) + ¢4, (O), or equivalently p + ¢gc(T', A) + ¢4(©) > ¢q¢, (A, £:A) + dge, (). First
note that ¢4, (', A, ©) = ¢4, (I'; A, ©) since £ is suitably fresh, and thus we just have to show
P+ ¢5,(T) > g, (:A). Since type A’ is idempotent by premise of EAGERLET (5.97), we
have ¢4, (£:A’) = 0 and thus p + ¢y, (I') = p + ¢, (T, £:A"). From Lemma 5.3 (CONS In-
version) applied to (A.3) we obtain Y(T, (:A" | y1:A1[B/X], ..., yx:Ax[B/X]). By Lemmal5.7
generalised to contexts, we then have ¢q, (T',:A") > ¢4, (y1:A1[B/X], ..., yp: AR[B/X])
and thus p + ¢q, (T', £:A") > p + ¢g¢, (y1: A1[B/X], . . ., yr:Ax[B/ X]). Finally, by the definition
of potential (Figure |A.7) we have ¢4, (¢:A) = p + ¢y, (y1:A1[B/X], ..., yx:Ax[B/X]) and
thus obtain what was needed to prove p + ¢4, (I') > ¢q, (£:A).

We have all the premises required to apply the induction hypothesis over e[¢/z], obtaining

mb, ', €, M, and mf such that:

T, K w:C (A.22)
Ho, 8, L FE eft/z] | w, H" (A.23)

FCUP
A.2. Proof of the Soundness Theorem for the Eager System

My <: M) (A.24)

Ch Fyey (F7, L) = M} (A.25)

V(M5 | (T, 0),Ch) (A.26)

my > (t+ 14 q') + g0 (w:C) + d300(O) (A.27)
my —ml > m} (A.28)

Let IV = I',, M' = M}, and €’ = C}. Equations (A.22) (A.25) (A.26) directly establish the
proof obligations (5.102) (5.105) (5.106) respectively.

Conclusion (5.104) follows by (A.24) and the transitivity of subtyping.

By applying rule EAGERLET ¢ with premises (A.21), (A.23) and [being fresh, we establish
proof obligation (5.103), yielding

H, 8, L "2 letz=¢ine | w, H"

If we choose m’ = t + ¢y (w:C) + ¢g0(O) all we need to complete the proof of case
EAGERLET is to show that m — m’ > 1+ (mg — mb) (> 1+ mfj = m”).

m—m' > 1+ (my —mp)

=t = Gyr (W) = by (©) = 1+ mz — t — 1 — ¢ — g (wiC) — G0 (©)

= { ¢ = 0 by premise of EAGERLET (5.97), since ¢[¢/z] is in whnf }
m 2> msa

S t+14+¢ 4+ q+p+ (T, A) + 05(0) >t + 14 ¢ + g+ ¢ge, (A, L:A) + g, (O)

Note though that we already showed this last inequality is true, when we established the
induction premise (5.101).

This concludes the proof of case EAGERLET when e[¢/x] is in whnf and e[¢/z] = ¢ §.

If e[¢/z] is in whnf and €[¢/x] = \y.¢/: Frompremise m >t+1+4+¢ +q+p+ ¢ (T, A) +
$4¢(©) (5.101) we want to derive my > (t + 14 ¢ + p) + q + by, (A, L:A) + ¢4, (©) and for
that purpose we have to show t + 1+ ¢ + ¢+ p + @5 (T, A) + ¢5(0) > (t + 1+ ¢ +p) +
q+ bac, (A, L:A) + g, (O), or equivalently ¢q (T, A) + ¢4¢(©) > ¢qe, (A, £:A) + ¢4, (0). Note

111

112

FCUP
A. A System for Eager Evaluation

that ¢4¢(T', A, ©) = ¢4, (T, A, ©) since £ is suitably fresh, and thus we just have to show
by, () > g, (£:A). This inequality holds, since by the definition of potential (Figure A.7)
we have ¢4, (£:A) = 0, given that 3>(¢) is a A-abstraction.

We have all the premises required to apply the induction hypothesis over e[¢/z], obtaining

mb, I, C,, M5 and mf such that:

I K w:C (A.29)

Ho, 8, L V2 eft/z] | w, H" (A.30)

My <: M) (A.31)

C) Fuey (H, L) : M), (A.32)

Y(M5 [(19, 0),€5) (A.33)

my > (t+ 1+ ¢ +p) + ¢y (w:C) + dgen(O) (A.34)
My — my > my (A.39)

Let IV = T, M’ = M}, and €’ = €. Equations (A.29) (A.32) (A.33) directly establish the
proof obligations (5.102) (5.105) (5.106) respectively.

Conclusion (5.104) follows by (A.31) and the transitivity of subtyping.

By applying rule EAGERLET ¢ with premises (A.21), (A.30) and [being fresh, we establish
proof obligation (5.103), yielding

H, 8, L "2 letz =¢ine | w, H"

If we choose m’' = t + ¢ (w:C) + ¢40,(©) all we need to complete the proof of case
EAGERLET is to show that m —m/ > 1+ (mg — mb) (> 1+ mf4 = m”).

m—m' > 1+ (my — mb)

=t = o (wiC) = Gy (©) = 14 ma — £ — 1 — ¢ — den (w:C) — e (O)

= { ¢ = 0 by premise of EAGERLET (5.97), since ¢[¢/z] is in whnf }
m 2> ma

= t+14+¢ +q+p+ dp(T,A) + ¢9(O) Zt+1+q/+p+q+¢%2(A,E:A)+¢g{2(@)

FCUP
A.2. Proof of the Soundness Theorem for the Eager System

Note though that we already showed this last inequality is true, when we established the

induction premise (5.101).

This last sub-case concludes the proof of case EAGERLET and since the remaining cases
are similar to (or simpler than) the ones presented in the soundness proof of the lazy system
(in Section 5.5.6.7) this also concludes the proof of the soundness theorem for the eager

system.

113

114 | FCUP
A. A System for Eager Evaluation

B. Complete Derivations

B.1 Simple Example: Analysing Call-By-Need

VAR

y:TY{B) +~y: B
0 \y.y:TYB) = B
X:Tq”(A,) - A\y.y : TYB) = B
0 K- AxAyy:T9(A) = TYB) = B
z:TqH(A/) Mz A VAR z:TqH(A/) K- (Ax.\y.y)z: TYB) = B

q

D H-letz=zin (Ax.\y.y)z: TY{B) — B

ABS

WEAK

ABS

APP
LET

where Y(A'| A, A7)

Figure B.1: Type derivation for a non-strict evaluation example

115

116 | FCUP
B. Complete Derivations

((Figure|B.1, where g=0)
£:THTYB) = B) - letz=zin (Ax.\y.y) z: TY(B) — B

WEAK

- 5 VAR
£T9TYB) = B) - £:TYB) — B A
PP
£ TTYB) = B), i:T%(B) ¥~ £i: B

0 0 VAR

£T9TYB) 2> B) - £: TY{B) — B A
PP

£:TOTYB) = B), vTB) ¥~ fv: B Ler
£ TO(TYB) = B),
£T0(TYB) 2 B), 1T0(B) H- letv=fiinfv: B
£:TTYB) = B),i:T%B) - letv=fiinfv:B

0 - PREPAY
£:THTYB) = B), i:T%(B) = letv=fiinfv:B Lot
£:TH(TYB) = B) - leti = Ax.x in B et

D r-letf=(letz==zin (Ax.\y.y)z)inleti = x.xinletv=fiinfv: DB

/

where B=TY(C) = C

Figure B.2: Type derivation for a lazy-evaluation example

FCUP
B.2. Higher-Order Functions: map

B.2 Higher-Order Functions: map

(Figure B.4)
map:T0<T0(A 45 B) 2 T (L) 22 Lout) L £ TO(AS B)
F- A\xs.case xs of Nil -> let nil = Nil in nil,
Cons xxs' ->lety =£f xin
let ys’ = map f xs’ in
let ys = Cons y ys’ in ys

ABS

: TO(Liy) ~2 L
(:Ln) out ABS

map:T0<TO(A 55 B) 2 To(Lyy) 2 Lout)
F- \f.\xs.case xs of Nil -> let nil = Nil innil,
Cons x xs' > lety = f xin
let ys’ = map £ xs’ in
let ys = Cons y ys’ in ys
TO(A B) ™ T (Liy) ™ Lous

map:—l'O(T0 (A—5 B) = T (Lin) =7 Lout)
H-map : TO(A~" B) = TO(Liy) ™ Loy
() H- let map = A\f.\xs.case xs of Nil -> let nil = Nil innil,
Cons xxs’' > lety = £ xin
let ys’ = map £ xs’ in
let ys = Cons y ys' inys
inmap : TO(A~5 B) ™ T®(Lin) ™ Loue

LET

where
Lin = L% (34+-qs+q 4+, 1+p,, A)
0111‘- - Lo(pc,pn, TO(B)>
=L1%(0,0,A"), with Y(A| A, A")
L;ut =12(0,0,T%(B")), with Y(B| B, B")
q = max(qo, qt)

Figure B.3: Type derivation for map applied to a list with potential

117

118 | FCUP
B. Complete Derivations

VAR

xs:T%(Lip) H- xs : Lig

I CONS
Fo Nil o Loge
— o WEAK
nil:TO(L) & Nil : Loy

— — VAR
nil:T"(Loys) F= nil @ Loy LET

0 P2 et nil = Nilinnil : Loy

WEAK
0
map:T0<TO(A L B) = T%(Ljp) - Lout>
22 et nil = Nilinnil @ Lo
WEAK

map;TO(TO(A <55 By Ta0(Lyy) 2 Lout> , £ TO(A5 B)

|1+_P;z letnil = Nilinnil : Lout

VAR

£T0AD B -t : ADB
f:TO(Ai> B), xxArF-fx : B
£:TOAD B), A, yTY(B) L £x : B

ApPp

WEAK

(Figure|B.5) LET
map: T TO(A 5 B) 5 T (Lin) * Lows)
£:TOA5 B), £:TY(A5 B), x:A4, xs':T%(Lyy)
Pratatee e y=~fxin

let ys’ = map £ xs’ in

let ys = Cons y ys’ inys : Loyt

SHARE
map:TO(TO(A =L B) = T (Lip) -5 Lout))
f:TO(Ai> B), x:A, xs":T%(Lyy)
Pt ot y=1~fxin

let ys’ = map £ xs’ in

let ys = Cons y ys' inys : Loyt

CASE
map:TO(TO(A “5 B) = Tao (Lin) = Lout> , £:TO(A5 B), xs:T9(Lyy)
H2 case xs Of Nil -> let nil = Nil in nil,
Cons x xs' > lety = £ xin
let ys’ = map f xs’ in
let ys = Cons y ys’ inys : Lot

Figure B.4: Auxiliary type derivation for map applied to a list with potential

FCUP
B.2. Higher-Order Functions: map

(VAR
map:T0<TO(A 55 B) 2 TO(Lin) “ Low
K- map : TO(A " B) ™ T9(Lig) ™ Lot App
map:TO(TO(A <5 By T (L) Lout> L £:TO(AD B)
Femap £ @ T%(Li,) ~ Loy
P (Lsn) i SUBTYPE
0
map:TO(TO(A 45 By D Tao(Lyy) 22 Lout> , £ T0(AD B)
F- map £ TmR(90:00) (L) = Loyy .
map:T0<T0(A 5 B) 2 T (Lyy) 22 Lout) £ T4 B),
xs/: Tmin(00:90) (L; 1) H2 map £ xs' : Loy
() P t WEAK
0
nap: T(TO(A =5 B) = T (Lyp) * Lows) , £T0(4~5 B),
xs/: Tmin(0,90) (L), ys': TO(L!) F map £ xs’ : Lout
(5 = - - CONS
y:TY(B), ys':T(Lowt) F= Cons y ys' : Loy WEAK
y:TOB), y8":T(Lowt), ys:T(L,,.) F- Cons y ys' : Lout
5 - VAR
yS: T (Lout) M= ys : Lout LET
y:TY(B), ys':T(Loue) H2= letys = Cons y ys' inys : Loyt
.TO B /,qu 1+q0+pl. I o /5 . PREPAY
y:TY(B), ys':T?(Loyy) H——= let ys = Cons y ys' inys : Loyt LET
map:TO(TO(A 5 B) 2 T90(Lyy) 22 Lout> L £:T0(AD B),
xs’:Tmin(qo’qt)(Lin), y:TO(B)
Pratre |t ys' =map f xs’ inlet ys = Cons y ys' inys : Loyt PREPAY*
map:T0<T0(A 5 B) 2 To0(Lyy) 22 Lout) L £:T0(A B),
xs':T9(Liy), y:TO(B)
Pratre et ys' =map f xs’ inlet ys = Cons y ys' inys : Loyt PREPAY
map:T0<T0(A 5 B) 2 To0(Lyy) 22 Lout) L £:T0(A B),
xs/: T4 <Lifl)’ y: T4 (B)
P tatbe ot ys' = map £ xs’ inletys = Cons y ys' inys : Loue

Note that rule PREPAY justifies the typing xs’:T% (Ls,) from xs’:T™(90.a)(L;)
by prepaying the amount max(g; —qo, 0).

Figure B.5: Auxiliary type derivation for map applied to a list with potential (cont.)

119

120 | FCUP
B. Complete Derivations

((Figure(B.7) A
BS
of ~0/ 11 4t 0 , 3+qs+q; +max(pl, pl, —2) 0/ A7 _af
map:T (T (A5 By Ta(L,) Lout) L £:TOA D B)
F- Axs.case xs of Nil -> letnil = Nil in nil,
Cons x xs' ->lety = f xin
let ys’ = map £ xs’ in
let ys = Cons y ys' inys
3+aqy+q+max(pl, pj, —2),
s Ta(L) Lout ABS
map TO(TO(A/ 4 B) 0 T (1) =i g,)
- A\f.\xs.case xs of Nil -> let nil = Nil in nil,
Cons x xs' > lety = f xin
let ys’ = map £ xs’ in
let ys = Cons y ys’ in ys
L TO(A 25 By Ta(,) Srutatelar =2,y
: VAR
3+4q ¢+ q; +max(/F, ;’72
map:TO(TO(A’ <5 B) " Ta(L)) et Lout)
H- map : TO(A' 5 B) Ly Ta (L) Sraplonmsipe 2 Lout LET
0 +- let map = \f.\xs.case xs of Nil -> let nil = Nil innil,

Cons xxs’ ->lety =f xin
let ys’ = map £ xs’ in
let ys = Cons y ys’ in ys

3+qs+q +max(pl, pl, —2)

inmap : TO(4 & B) = Ta(L),) Lout

where
L, =L%(0,0,4), with Y(A"| A", A")
Lou‘c — L%Qfﬂlﬂé(pé’p%,To(B))
L, . = L¥artat? (0,0, TO(B')), with Y(B| B, B)

¢ = max(qo, q¢)

Figure B.6: Type derivation for map applied to a list with no potential

FCUP
B.2. Higher-Order Functions: map

VAR
xs: T4 (L},) - xs @ L,
(e CONS
Fo Nil : Lot
— o WEAK

nil:TO(L)) K= Nil @ Loy
— — VAR
(nil:T (Lowy) = nil : Loy LET

0 K22 Jetnil = Nilinnil : Loy

WEAK

3+4q ¢+ q; +max(/C, ;1—2)
nap TO(TO(A' 5 B) & Tai(1,) SHEHetmebst g)

FE2 et nil = Nilinnil @ Lo

WEAK

3+qf+q +max(pl,, pj, —2)

map:TO(TO(A’ Ly B) = Ta (L))

Lout) , £:T0(A 5 B)
HE22 et nil = Nilinnil @ Log

RELAX

3+q¢+q; +max(pl, pl, —2)

map:TO(TO(A’ 5 B) = Ta (L))

| 34ay +max(pl., P},
I

Lout) , £:T0(A 5 B)
~2 letnil = Nilinnil : Loy

- - VAR
£TOA L Byt A5 B

£:T0A "5 B), A’ VL £x : B
f:TO(A/% B), x: A, y:qu(B/) L fx @ B

ApPP

WEAK

| (Figure B.8) LET

map:TO(TO(A’ Ay B) = Ta (L) prosta et =2, L°“t> ’
£:TOA 5 B), £:TOA 75 B), x:A’, xs':T(L,,)
=3+Qf+max(p::1p'ln,72) lety = £ xin

let ys’ = map £ xs’ in

let ys = Cons y ys'inys : Lout

SHARE

3 max(p’., ;72
map: TO(TO(A' 5 B) & Tan(L),) =i)
f:TO(A'% B), x:A', xs":Tu(L,,)
R y==£fxin
let ys’ = map £ xs’ in
let ys = Cons y ys' inys : Lout

CASE

map: TO(TO(4' 5 B) & T (L)

£:TOA 5 B), xs:T4(L),)

pratateelre = case xs of Nil -> letnil = Nil in nil,
Cons x xs’ ->lety =f xin

3+aqy +q+max(pl, pj, —2),
out | »

let ys’ = map £ xs’ in
let ys = Cons y ys'inys : Lout

Figure B.7: Auxiliary type derivation for map applied to a list with no potential

121

122

FCUP
B. Complete Derivations

VAR

3+qs+q; +max(pl, p,, —2)

map:T0<TO(A’ L B) = Tu(L,)) Lout)

3+qs+q +max(pl,, p, —2)

K- map @ TO(A 5 B) = Ta (L)) Lout

ApPP

map TO(TO(A/ 25 B) 0 T (L) =By gy
£:TO(A" 5 B) ¥ map £ : TU(L}) S Lout
map:T()(TO(A/ EAN B) 2y Ta (L) > Lout) ,

q 3 max(p’,, ;1—2
£:T0(A =5 B), xs/:Ta (L)) Prutat @e?n " pap £ xs’ ¢ Loyt

AppP

3+qs+q +max(pl, pj, —2)

WEAK

map:T0<T0(A/ =5 B) = Ta(LY,)
£:T0(A 5 B), xs:T9(LY,),
ysl:T3+qf+qZ+maX(P/c7p§ﬁ2)(

3+qs+q +max(pl, pj, —2)
Lout)

) | 3+q s +q; +max(pl,, pj, —2)

/ /.
Lout map f xs" : Loyt

(; CONS
y:TB), ys' T30 TatPe (L) K& Cons y ys' : Lo

yTO(B), ys/ T3TUHatPe Loy), ys:TO(Ly,) H- Cons ¥ ys' ¢ Lout

WEAK

VAR

ys:TO(Lout) F-ys : Lout
y:TO(B), ys': T3Hartatpe(r) H2= let ys = Cons y ys' inys : Lowt
y:TO(B), YS/:T3+q‘f+q1+maX(p/c,pfn72) (Lout)

1+max(pl, pj, —2)

p——ren— et ys = Cons y ys’ inys : Loyt

LET

PREPAY*

LET

3+qs+q +max(pl, pj, —2)

map:T0<T0(A’ “5 B) = T (L)
xs": T(L,), y:TY(B)

Pree?u =) ot ys' = map £ xs’ inlet ys = Cons y ys' inys : Lout

Lout)) f:TO(A/ % B)7

PREPAY

3+qs+q; +max(pl, p,, —2)

map:TO(TO(A’ 5 B) = T (L))
xs":Tu(LL)), y:T¥(B)

 2+q5+max(pl, p),
I

Lows) . £TO(A' 5 B),

2 letys’ =map £ xs’ inletys = Cons y ys' iNys : Lout

Note that rule PREPAY justifies the typing ys’: T3 +as tartmax(®lrn=2) (1,)
from ys':T3+ar+a+7: (L.) by prepaying the amount max(p/, —2—p., 0).

Figure B.8: Auxiliary type derivation for map applied to a list with no potential (cont.)

	Resumo
	Abstract
	List of Figures
	List of Theorems and Definitions
	Introduction
	Contributions
	Overview

	Related Work
	Semantics for Lazy Evaluation
	Resource Analyses for Lazy Evaluation
	Amortised Analyses
	Other Heap Analyses for Eager Evaluation

	Amortisation
	Classical Amortisation Technique
	Example: Analysing a Stack

	Automatic Amortised Analysis
	Informal Description

	Cost Model
	Language Syntax
	Operational Semantics
	Cost-instrumented Operational Semantics
	Example: Modelling Call-By-Need

	Amortised Analysis
	Types and Typing Contexts
	Sharing Relation
	Subtyping Relation
	Idempotent Types

	Typing Judgements
	Example: Analysing Call-By-Need
	Non-Strict Evaluation
	Lazy Evaluation

	Soundness
	Auxiliary Lemmas
	Global Types, Contexts and Balance
	Potential
	Consistency and Compatibility
	Soundness of the Proof System
	Detailed Proofs
	Minor Lemmas
	Inversion Lemma for Constructors
	Inversion Lemma for -abstractions
	Context Splitting Lemma
	Potential Splitting Lemma
	Idempotent Cycles
	Proof of the Soundness Theorem

	A System for Eager Evaluation
	Summary

	Experimental Results
	Higher-Order Functions: map
	List Fusion: map/map
	Infinite Data Structures: cycle
	Nested Data Structures: concat
	Known Limitation with Co-Recursive Definitions: fibs
	Summary

	Conclusion
	Assessment of Achievements
	Limitations and Further Work
	Final Remark

	Bibliography
	A System for Eager Evaluation
	Definitions and Figures
	Proof of the Soundness Theorem for the Eager System

	Complete Derivations
	Simple Example: Analysing Call-By-Need
	Higher-Order Functions: map

