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“ Networks are everywhere. The brain is a network of nerve cells connected by axons, and cells
themselves are networks of molecules connected by biochemical reactions. Societies, too, are networks of

people linked by friendships, familial relationships, and professional ties. ”

Albert-Lasz16 Barabasi (2003)
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Abstract

Money laundering, the process of disguising illegally obtained assets to appear legitimate,
poses significant social and economic challenges. It involves crimes like human trafficking and
drug dealing. Banks implicated in undetected money laundering cases face substantial fines,

underlining the necessity for effective detection mechanisms.

Detecting money laundering presents several challenges: the rarity and delayed confirmation
of such events, the tendency of criminals to mimic normal financial activities, the requirement
for interpretable evidence for suspicious transactions, processing large volumes of data, and the

need for timely event evaluation.

Current anti-money laundering (AML) solutions, predominantly rule-based, offer clear
interpretability essential for auditing but are limited by high false positive rates (FPRs) and a

narrow focus on single-entity behaviors.

This thesis pivots on the premise that graphs, with their inherent capacity to represent
and analyze interconnected systems. In essence, graphs are versatile enough to represent
datasets where relationships between entities are important, offering a powerful tool for
AML investigations. Yet, their complexity presents computational and memory challenges,

particularly in real-time applications.

This research combines graphs with AML approaches, aiming to deliver a comprehensive
solution that analyzes transactional relationships through a graph. Engineered for real-time
decision-making and optimized memory usage, this approach represents a significant advance-
ment in combating money laundering. The thesis introduces innovative methodologies that
extract knowledge from graphs and integrate it with machine learning (ML) techniques to
enhance the robustness of AML systems, establishing a framework for money laundering
detection and graph information extraction. Moreover, this study extends beyond the realm of

AML, offering broader applicability in various other sectors.

Key developments include the adoption of graph feature engineering for sophisticated
financial data representation and an ML-integrated “triage model” to reduce false positives
(FPs) in AML systems. Notably, the “"Walking-Profiles” framework employs random-walks for

graph feature engineering to enrich the “triage model”. To address latency in graph information



extraction, this thesis introduces “Graph-Sprints” and “Deep-Graph-Sprints,” harnessing real-time

feature extraction and advanced deep learning techniques, respectively.

Results indicate significant performance improvements over existing systems, demonstrating
enhanced predictive accuracy and speed by an order of magnitude compared to state-of-the-art
methods. Future work will extend these methodologies to heterogeneous networks and diverse

real-world applications, aiming to scale them for larger datasets.

Continuous time dynamic graphs, Random-walks, Machine learning, Anti-money

Laundering solutions, low-latency graph processing



Resumo

A lavagem de dinheiro, que consiste no processo de ocultagdo da obtengdo de ativos
financeiros de forma ilicita, apresenta desafios socio-econémicos significativos, pois abrange
crimes associados como o trafico de seres humanos ou o trafico de drogas. Bancos que falhem,
por negligéncia, o reporte de casos de lavagem de dinheiro, enfrentam multas substanciais e
processos judiciais, reforcando a necessidade do desenvolvimento de mecanismos de detegdo

eficazes.

A detecdo de lavagem de dinheiro apresenta desafios diversos, nomeadamante: a raridade
e a confirmacdo tardia desses eventos, a tendéncia dos criminosos em imitarem atividades
financeiras normais, a necessidade de métodos interpretaveis que justiquem a sua avali¢do
de transagdes suspeitas, o processamento de grandes volumes de dados e a necessidade de

avaliagdo atempada dos casos.

As solugdes atuais para sistemas de Anti-Money Laundering (AML), predominantemente
baseadas em regras, oferecem interpretatividade, que é essencial para o processo de auditoria,
mas sofrem de taxas altas de falsos positivos (FPRs) e estdo limitadas a detetar apenas

comportamentos de entidades individuais.

Esta tese parte do pressuposto de que redes oferecem uma base poderosa para investiga-
¢Oes de AML, pois estas possuem a capacidade inerente de representar e de serem usadas
para analisar sistemas interconectados. No entanto, a sua complexidade apresenta desafios

computacionais e de armazenamento, que sdo exacerbados em aplicagdes em tempo real.

Este doutoramento fornece uma solugdo abrangente que representa as relacdes das transacdes
financeiras usando redes. A nossa abordagem é direcionada para a tomada de decisdes em
tempo real, otimizando o uso de memodria, e representa um avango significativo no combate a
lavagem de dinheiro. A tese apresenta metodologias inovadoras que extraem conhecimento das
redes e integram-no nos métodos de machine learning (ML), melhorando, assim, a robustez dos
sistemas AML. Esta investigacdo melhora ndo apenas os mecanismos de AML, mas também

oferece uma solugdo que é aplicavel em varios dominios.

Os desenvolvimentos-chave propostos nesta tese incluem a adogdo de feature engineering

aplicado em redes para obter uma representacao sofisticada dos dados financeiros, e um modelo



de triagem que faz uso dessas representagdes em modelos de ML para reduzir falsos positivos
em sistemas AML. Em particular, a framework "Walking-Profiles” utiliza random-walks para
aprimorar o modelo de triagem. De forma a lidar com a laténcia na extracdo de features da
rede, esta tese propde "Graph-Sprints”, que apresenta feature engineering em tempo real, e
"Deep-Graph-Sprints”, que expande o trabalho anterior usando técnicas avangadas de deep

learning.

Os resultados obtidos durante este doutoramento apresentam melhorias significativas em
relacdo aos sistemas existentes, demonstrando maior precisdo preditiva e melhorias na laténcia.
O trabalho futuro estendera essas metodologias para redes heterogéneas e aplicagdes diversas

do mundo real, visando escalabilidade para conjuntos de dados maiores.

Redes dindmicos em tempo continuo, Random-walks, Machine learning,

Sistemas de Anti-Money Laundering, Processamento de redes de baixa laténcia
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Introduction

This doctoral research addresses the challenge of detecting money laundering using graph
techniques. This chapter introduces the challenges this work addresses and outlines the main

contributions. The organization of the chapter is as follows:

e Background and Motivation: Section 1.1 describes the typical money laundering process,

the limitations of current detection systems, and the motivation behind this research.
e Research Contributions: Section 1.2 lists the primary contributions of this study.

o Research Context: Section 1.3 offers an overview of the collaborative environment between
industry and academia where this research was conducted. This section elucidates the
business constraints, setting the stage for understanding the research’s practical and

theoretical implications.

e Thesis Organisation: Section 1.4 explains the structure of the thesis, detailing the contents

of each chapter.

e Bibliographic Note: Section 1.5 lists the accepted papers and patents related to this thesis.

1.1 Background and Motivation

Money laundering concerns the legitimization of criminal proceeds by concealing their origin,

resulting in around 2-5% of global GDP (€1.7-4 trillion) being laundered annually [Lannoo and
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Parlour, 2021]. Underlying crimes include drug dealing, human trafficking, fraud, tax evasion,
and corruption. Money laundering is, therefore, a severe and global problem affecting people,

economies, governments, and the social well-being [McDowell and Novis, 2001].

The process of money laundering can be divided into three fundamental stages, namely,
placement of illicit money into the financial system, then the layering phase in which criminals
try to mask the origin of the money, and finally integration of the laundered funds into the
legitimate economy. Figure 1.1 graphically represents these stages. Throughout this process,
money traverses across various accounts, financial institutions (FIs), and countries, each serving

as a step in the laundering journey.

L. (o

Purchase of Luxury Assets w Loan to
Financial Investments Company ‘Y

Industrial/Commercial

Investments INTEGRATION

o
S30) O
B [ BANK | LAYERING
N | : Dirty Money integrates into

Collection of Dirty Money the Financial System
Transfer on the bank
ﬂ ’A‘ Payment by ‘Y’ of False :41"r""f \‘r“r 0 rr( (o} m“:-:rjv X'

ElIE nvoice to Company ‘X

FIGURE 1.1: Illustration of the stages involved in money laundering.
Adapted from [The united nations office of drugs and crime, 2020]

For FIs, undetected money laundering can lead to significant fines and reputational conse-
quences. Example penalties in recent years include Deutsche Bank in 2017 with a fine of $630
million [Deutsche Bank fined $630m over Russia money laundering claims, 2017], ING Groep
NV in 2018 with $900 million [ING to Pay $900 Million to End Dutch Money Laundering Probe,
2018], Standard Chartered in 2019 with $1.1 billion [Standard Chartered fined $1.1bn for money-
laundering and sanctions breaches, 2019], Goldman Sachs in 2020 with $3.9 billion [Goldman
Sachs settles IMDB scandal with Malaysia for $3.9bn, 2020], and Danske Bank in December
2022 with $2.2 billion [Danske Bank Pleads Guilty to Fraud on U.S. Banks in Multi-Billion Dollar
Scheme to Access the U.S. Financial System, 2022].

To mitigate risks of money laundering, FIs engage compliance specialists to review and
analyze potential irregularities. Given the impracticality of manually assessing every transaction,

banks utilize automated AML solutions to support their investigation units.
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AML solutions frequently rely on rule-based systems [Li et al., 2017] to identify suspicious
cases, these systems encompass a set of rules that are set in accordance with guidelines from
international regulatory bodies like the Financial Action Task Force (FATF). To elucidate, one
of these rule paradigms is termed Rapid Movement of Funds. This specific rule raises an alert
when an account receives an amount of money surpassing a predetermined threshold and
subsequently distributes nearly all of this amount within a short period; both the temporal

window and monetary thresholds are adjustable parameters.

The complete operation of a rule-based AML system is depicted in Figure 1.2. Within
this framework, transactions are continuously monitored against these rules, leading to the
generation of alerts upon matching predefined criteria. Subsequent to the creation of an alert,
analysts conduct thorough reviews to confirm its legitimacy. Alerts are then classified as either
true positives (TPs), indicative of actual suspicious activity, or FPs, which correspond to false
alarms or non-suspicious transactions. In instances where an alert is substantiated as a TP, a

suspicious activity report (SAR) must be filed by the analysts.

- High volume Suspicious
TPs .- 7@ SAR

—— Alerts 000

Rules Human review .
3
=

FIGURE 1.2: Overview of the traditional AML rules-based system pipeline and alert processing.

Rule-based systems are valued for their interpretability, which is essential for auditing.
However, a significant limitation of these systems is their tendency to generate a high volume
of FPs, as noted by Weber et al. [2018]. In fact, FPRs in such systems are reported to be as high
as 95-98% [Lannoo and Parlour, 2021]. To comprehend this high rate of false positives, an
understanding of the nature of money laundering is essential. Money laundering is a complex
process, not a singular action. It involves a sequence of transactions strategically executed to
conceal the origins of illegal funds. Furthermore, these transactions are often structured to

simulate legitimate financial activities, thereby evading detection [Lorenz et al., 2020].

For a more effective identification of suspicious activities, it is imperative to perceive money
laundering as a continuous flow of funds. This approach captures the essence of its ongoing,
interconnected, and sometimes cyclical nature. Additionally, a comprehensive and holistic view
of financial flows is required, extending beyond isolated transactions or individual accounts, to

effectively understand the patterns indicative of money laundering.



4 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

To illustrate this concept, consider an example illustrated in Figure 1.3 involving a criminal
attempting to disguise the source of illicit funds. The individual might execute a series of
transactions, transferring money between accounts A, B, C, and D, and at times returning the
funds to A from D. When each transaction is viewed in isolation within a table, the underlying
suspicious pattern might be less detectable. However, representing these transactions as a
flow reveals a cyclic pattern, indicative of an effort to conceal the fund’s origins. This example
underscores the ability to holistically understand the flow of funds within a network can provide
valuable insights for identifying unusual patterns. Thus, to gain such a perspective, a shift is
necessary from traditional tabular data representations to more sophisticated, network-oriented

data structures like graphs.

Source Destination
A B
B C
C D
D A

FIGURE 1.3: Comparison of cycle detection in transaction tables versus networks.

Graphs (sometimes also referred to as networks), inherently, are powerful tools for represent-
ing and analyzing interconnected systems and flows. In essence, graphs are versatile enough to
depict any dataset where the significance lies in the interactions (edges) between participating
entities (nodes or vertices). Once the data finds its representation in the format of a graph,
numerous operations become feasible. For instance, one could detect suspicious cycles of money
transfers between related accounts [Qiu et al., 2018], find the structural role of an individual
within a network [Khan et al., 2010], or track money streams traversing through the network [Li
et al., 2020]. Contrastingly, achieving similar insights from tabular data presents challenges. To
illustrate, a graph can intuitively identify the k-hop neighbors of a node (entities distanced by
k steps) through iterative edge traversal. In a tabular setup, the equivalent would necessitate
join operations between tables, which tend to be computationally demanding and memory

intensive.

Within the domain of ML, one central challenge when working with graphs is to represent
or encode their structure, such that it can be harnessed effectively by ML algorithms. Certain

strategies, particularly those under graph feature engineering, rely on handcrafted heuristics to
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generate features that encapsulate the core characteristics of a graph, such as degree metrics
(elaborated upon in Section 2.1.3). Conversely, graph representation learning techniques learn
and encode graph structures autonomously, manifesting them in compact low-dimensional
embeddings. These methods harness the advancements in deep learning and nonlinear dimen-
sionality reduction techniques [Hamilton et al., 2017b] (elaborated upon in Section 2.3.2 and

Section 3.2).

1.2 Research Contributions

In the evolving landscape of financial networks, the complex money laundering schemes have
necessitated advanced techniques to monitor, trace, and flag suspicious activities. Graphs,
representing interconnected transactions and accounts, provide a compelling medium to capture
these complexities. Our work, hence, revolves around harnessing the potential of graph mining
techniques tailored specifically for continuous time dynamic graphs (CTDGs) in the AML
domain. Although our primary focus is on addressing AML challenges, it is important to
highlight that our research contributions are general enough and applicable to other domains.

The primary contributions of our research are outlined as follows:

1. Creation of a framework for graph-based feature extraction: Recognizing the significance
of the insights that could be encoded in graph data, we developed the graph feature
engineering framework, named Walking-Profiles (Section 4.2). By leveraging random-walks,
this framework extracts graph-based features, that can be later used in any downstream

system (e.g., ML model).

2. Formulating a comprehensive ML pipeline for AML systems: Addressing the issue of
false alarms in AML systems, we introduce a ML-centric methodology termed the triage
model (Section 4.3). This model processes alerts generated by pre-defined rules in AML
systems. It assigns scores to these alerts, which then either facilitate the suppression of
low-priority alerts or order the alert queue based on severity. An intrinsic advantage of
our approach is its ability to maintain compliance and offer explainability. Since every

alert originates from established rules, the process remains transparent and interpretable.

3. Design of a real-time graph feature extraction method for CTDGs: With the increasing
volume and velocity of financial transactions, it is imperative to have techniques that

are both robust and efficient. Thus, we developed Graph-Sprints (Section 5.2) a method
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optimized for CTDGs. This method minimizes computational overheads and memory
usage and makes it suitable for real-time deployment (e.g., in an AML scenario), thus

addressing a limitation of Walking-Profiles .

4. Design of a real-time graph representation learning method for CTDGs: While tradi-
tional feature extraction methods often necessitate domain-specific knowledge for effective
implementation, deep learning techniques can autonomously identify and learn relevant
information. However, a common limitation of current deep learning techniques is their
substantial latency. To address this and combine the advantages of Graph-Sprints and deep
learning paradigms, we introduced Deep-Graph-Sprints (Section 6.2), a novel low-latency

graph representation learning method for CTDGs.

5. Rigorous evaluation of the proposed frameworks: To assess the efficacy and versatility
of our approaches, we undertook a comprehensive evaluation phase. We tested the
performance of Walking-Profiles applied integrated with the triage model (Section 4.4),
Graph-Sprints (Section 5.4.3), and Deep-Graph-Sprints (Section 6.3.3) across varied AML
datasets. Further, to underscore the adaptability of our methods, we also evaluated Graph-
Sprints, and Deep-Graph-Sprints on datasets from diverse domains (Sections 5.4.2, 6.3.2),

demonstrating their utility beyond the AML domain.

1.3 Research Context

This research focuses on AML systems in the banking sector, specifically analyzing transactional
data and entity relationships. To validate our graph mining method, we utilize internal
AML datasets and publicly available datasets from different domains. Although the primary
application is in the AML domain, we also aim to contribute to graph mining in general by

introducing a low-latency graph feature extraction and graph representation learning algorithms.

Company Overview and Challenges

The research journey undertaken in this PhD thesis is a collaboration between Faculty of
Sciences at the University of Porto and Feedzai, a leading risk prevention company. Feedzai’s
core product is a risk management platform that harnesses the power of ML to detect financial
crime. Feedzai’s clients primarily encompasses banks, payment processors, and merchants,

providing them with defenses against various financial threats, ranging from illicit account
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openings and transaction fraud to the primary focus of our study: money laundering. Each
financial transaction processed is governed by rigorous service level agreements. For instance,
in fraud detection when an account initiates a transfer or procures an online service, a critical
decision - whether to approve or reject the said activity - must be rapidly executed, often within
a tight timeframe of a few milliseconds. Depending on specific use-cases and client requisites,
some transactions might have a processing window extending up to 200 milliseconds, especially
at the 99.999th percentile [Branco et al., 2020]. Throughout this document, such financial activities

are collectively referred to as transactions.

1.4 Thesis Organization

This thesis is organized into seven principal chapters. A concise overview of each chapter is

provided below:

e Introduction: This chapter sets the stage by providing the foundational context of the
study, introducing the concept of money laundering and the typical stages employed by
criminals to cleanse their illicit funds. We delve into how graph structures can adeptly
capture intricate money flows and patterns. Subsequently, primary contributions of this
work are enumerated. Furthermore, we articulate the scope, and provide an overview of
the thesis structure. Concluding this chapter, a catalogue of published works affiliated

with this research is presented.

e Background: This chapter establishes foundational knowledge in graph methodologies
central to the thesis. It covers essential terminology, graph construction constraints,
important measures, and the practical applications of graph analysis. Moreover it details
the fundamentals of ML necessary for this research. The chapter then transitions to an

overview of money laundering stages and traditional AML solutions,

e Related Work: This chapter delves deeply into the existing methodologies for extract-
ing information from graphs, categorizing them into two primary approaches: feature
engineering methods and representation learning techniques. It discusses the evolution
of these methods, providing a historical and practical perspective. Also, it details the

similarities and differences between these methods and our contributions, providing
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a comprehensive analysis. Additionally, the chapter explores the realm of modern ML-
driven AML strategies, elucidating their development and integration into current financial

systems, highlighting their weaknesses.

e Graph Feature Engineering: This chapter introduces the concept of Walking-Profiles, a
framework for graph feature engineering based on random-walk methodologies. It also
discusses a specialized adaptation of this framework, specifically designed for the AML
domain. Additionally, the chapter describes the triage model and evaluates its effectiveness
using the AML-adapted Walking-Profiles framework. This evaluation is conducted using a

real-world banking dataset.

e Graph-Sprints: This chapter presents our Graph-Sprints methodology, designed for real-
time graph feature extraction. We detail its roots in the Random-Walk based graph
feature extraction paradigm. Further, the efficacy of Graph-Sprints embeddings, when
combined with a neural network classifier, is assessed using AML datasets and datasets
from other domains, emphasizing their balance between computational efficiency and

robust predictive capabilities.

e Deep-Graph-Sprints: This chapter introduces Deep-Graph-Sprints, a representation learn-
ing method that extends the Graph-Sprints framework using deep learning techniques.
The primary objective of Deep-Graph-Sprints is to address the constraints inherent in the
original Graph-Sprints method, thereby augmenting both its utility and efficiency. The
efficacy of Deep-Graph-Sprints is empirically evaluated through its application in two tasks:
node classification and link prediction. Experimental results demonstrate that Deep-Graph-
Sprints achieves competitive performance compared to its predecessor, Graph-Sprints,

while at the same time mitigating its previously identified limitations.

e Conclusions and Future Work: This concluding chapter reflects on the research journey,

encapsulates the contributions, and potential avenues for subsequent investigations.

1.5 Bibliographic Note

Parts of the work of this thesis have already been published in international conferences, and

workshops. A list of those is given next:
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e Triage Model: (Section 4.3) This is in reference to our study titled "Anti-Money Laundering
Alert Optimization Using Machine Learning with Graphs" and related endeavors. This
research was presented at the AAAI’'s workshop on Al in Financial Services: Adaptiveness,
Resilience & Governance [Eddin et al., 2021]. Additionally, a patent associated with this
study was duly filed [Eddin et al., 2023c].

e GuiltyWalker: (Section 4.3.2) Our involvement here pertained to the patent of GuiltyWalker.
Our primary contribution revolved around enhancing GuiltyWalker for circumstances

where labels aren’t immediately accessible [Silva et al., 2022].

e Graph-Sprints: (Section 5.2) The methodology we developed for real-time graph feature
extraction was published at the KDD’s 17th International Workshop on Mining and
Learning with Graphs [Eddin et al., 2023a]. Also, an extended version of this paper that
applies Graph-Sprints to the link prediction task was accepted at the 4th ACM International
Conference on Al in Finance [Eddin et al., 2023b]. Moreover, a provisional patent about

this work was submitted.

e Deep-Graph-Sprints: (Section 6.2) About our real-time graph representation learning
methodology we are in the process of submitting a provisional patent, and after that we

plan to publish a paper.






Background

This chapter delves into the concepts and methodologies that serve as the foundation for this
thesis. The content encompasses graph theory, graph analysis measures, and tasks. Then it
delves into the ML basics necessary for this research, especially the various modes of learning in
deep learning. Subsequently, it lists possible ways to integrate graph information in ML models.
Then it concludes with an overview of money laundering phases and traditional AML solutions.

The organization of the chapter is as follows:

e Fundamentals of Graphs: In Section 2.1 we discuss graph related background information,

focusing on the following points:

— Graph concepts and terminology: Section 2.1.1 starts with an introduction to basic
graph terminologies. The narrative progresses to differentiate between various graph

types, such as static versus temporal and homogeneous versus heterogeneous graphs.

— Graph construction considerations: In Section 2.1.2, we outline the primary factors
essential for selecting an apt graph representation tailored to distinct challenges.

Then we provide a customization of these considerations in the AML use-case.

— Graph measures: Section 2.1.3 explains various measures for extracting patterns and

valuable information embedded within graph structures.

— Graph analysis tasks: Section 2.1.4 details the graph analysis tasks important for this

thesis, namely, node classification, and link prediction.

11
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— Incorporating graph data into ML models: Section 2.3 discusses two ways to
extract insights from the graphs and feed them to ML models, namely, graph feature

engineering (Section 2.3.1) and graphs representation learning (Section 2.3.2) techniques.

e Fundamentals of ML: Section 2.2 provides the fundamentals of ML necessary for this

research focusing on:

— Classification of ML methods: Section 2.2.1 provides a brief descriotion of the
ML models that will be used throughout this thesis namely tree-based models

(Section 2.2.1.1), and deep learning models 2.2.1.2.

- Learning mechanisms in deep learning: Section 2.2.2 delves into the diverse learning
paradigms employed in deep learning methods. Starts with an overview the various
types of automatic differentiation (AD) modes (Section 2.2.2.1), then it presents an
in-depth comparison of the computational and memory complexities associated with

forward-mode and reverse-mode automatic differentiation (Section 2.2.2.2).

e AML overview: Section 2.4 provides an overview of money laundering, discussing its

mechanisms and classic solutions.

— Phases of Money Laundering: An Overview: Section 2.4.1 takes a closer look at the
various stages involved in the illicit flow of money, offering an understanding of the

sequential processes.

— Traditional AML Solutions: Section 2.4.2 explores traditional AML solutions adopted
by Fls. This exploration reveals the methods and practices used to address challenges

in combating money laundering.

2.1 Fundamentals of Graphs

Networks serve as versatile representations for numerous systems across diverse fields, such
as computer science, mathematics, biology, and chemistry [Costa et al., 2007, Febrinanto et al.,
2023, Majeed and Rauf, 2020, Zhang et al., 2020b, Zhou et al., 2020]. These networks are
mathematically referred to as graphs; thus, throughout this document, we will use "network"

and "graph" interchangeably.
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2.1.1 Graph Concepts and Terminology

A graph G consists of a set V(G) of nodes (or vertices) and a set E(G) of edges (or links).
While nodes denote entities, edges signify the relationships between these entities. Edges,
often represented as vertex pairs (a,b) where a,b € V(G), can be categorized as directed or
undirected. In directed graphs, an edge (i, j) illustrates a one-way relationship from i to j, but
in undirected graphs, edges reflect a mutual relationship between the paired nodes. Both nodes
and edges may possess associated types and attributes. Furthermore, the constraints governing
the connections between nodes and edges, in conjunction with the presence or absence of types
and attributes, as well as the temporal nature of the graph (either evolving or static), collectively
determine the type of the graph. A graph adjacency matrix is a square matrix used to represent
the connectivity of finite graph in terms of its nodes and edges. The matrix allows for the
quick and concise representation and manipulation of dense graphs. The adjacency matrix is
of dimensions n x n, where n represents the number of nodes in the graph. In the case of an
undirected graph, the matrix elements a;; equal 1 if there is an edge between nodes i and j, and
0 otherwise. Due to the undirected nature of the graph, the adjacency matrix is symmetric. For
directed graphs, the elements 4;; equal 1 if there is an arrow or edge pointing from node i to
node j, and 0 otherwise. Unlike undirected graphs, the adjacency matrix for directed graphs

may not be symmetric in general.

An example is provided in Figure 2.1, the left panel displays an adjacency matrix for an
undirected graph, characterized by its symmetric pattern, indicative of bidirectional edges. The
right panel presents an adjacency matrix for a directed graph, where the asymmetry in the

matrix highlights the directionality of edges.

A Subgraph of G is represented as S, where V(Sg) C V(G) and E(Sg) € E(G). In simpler
terms, a subgraph is a smaller graph that is formed by selecting a subset of vertices and edges

from the original graph G.

G is considered a simple graph if it has no self-loops (i.e., it has no nodes connecting back to
itself) and has no more than a single connection between any pair of nodes. We can add weights
to the edges to enrich the graph — the resulting graph is called a weighted graph. To represent
the weights in the adjacency matrix, the elements 4;; represent the weight of the edge between
nodes i and j, instead of simply being 1 or 0. In the context of a social network, for instance,

friendships can be aptly represented using an undirected graph. Within this model, individual
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TO
A B C D A B c D
A 0 1 0 0 A 0 1 0 0
B 1 0 1 1 = B 0 0 0 1
o
o
Cc 0 1 0 1 “c 0 1 0 1
D 0 1 1 0 D 0 0 0 0

FIGURE 2.1: Example of adjacency matrices for undirected and directed graphs.

users are conceptualized as nodes, while the friendships between them constitute the edges.
The weight of these edges might be indicative of the duration of the relationship, thereby giving

greater importance to longstanding friendships compared to more recent ones.

When analyzing systems with a stable topology and a focus on global graph statistics,
static graphs prove to be appropriate as they depict a singular, unchanging state of the system.
However, for systems that exhibit evolution, as exemplified by the continuous formation of new
friendships and potential inclusion of new accounts in a social network, it becomes imperative
to study time-dependent patterns. These evolving structures are referred to as temporal or
dynamic graphs. Dynamic graphs can be categorized into two primary models: discrete time
dynamic draphs (DTDGs) and the continuous counterparts, CTDGs [Rossi et al., 2020]. In
the DTDG paradigm, the graph is conceptualized as a series of snapshots taken at specified
time intervals. For example, one might capture a snapshot daily, which encompasses only the
data of that day or all historical data up to that specific day. Within each individual snapshot,
the graph remains static. Conversely, under the CTDG framework, the graph is viewed as an
ongoing stream of events. An event could, for instance, constitute the addition of a new edge

to the graph, leading to the graph’s continuous evolution each time an event occurs. Typically,
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DTDG is seen as an approximation of CTDG, primarily because handling static graphs might be

computationally more efficient than dealing with their dynamic counterparts.

Graphs can be differentiated based on the distinctions in node and edge types. Within
the realm of homogeneous graphs, there is a simplicity wherein all nodes pertain to a single
category, and similarly, all edges represent just one type of relationship. For instance, in a basic
social network, if we only consider users and their mutual friendships, a homogeneous graph

suffices.

On the other hand, real-world networks often present complex interactions and relationships.
Taking the example of a social network further, one can recognize a rich diversity of interactions.
Here, entities include not just users, but also posts, comments, groups, and even events.
Relationships also diversify: users author posts, like and comment on them, join groups, or
attend events. Heterogeneous graphs are used to represent such rich systems. In heterogeneous
graphs, both nodes and edges come in various types, each capturing a different facet of
the overall network, thereby providing a more comprehensive view of the interactions and
relationships within. Das and Soylu [2023] present a complete review of higher dimensionality
graphs, including multilayer networks, multiplex graphs, colored graphs, and multipartite

graphs.

This thesis concentrates specifically on CTDGs. In our context, CTDGs are defined by
homogenous nodes, directed and timestamped edges, and the capability for both nodes and
edges to carry attributes. The construction process of these graphs is elaborated in Section 2.1.2.2,
where we detail the methodology employed to create our graph structures. These choices are
motivated by the requirements of the AML use-case, where we need to process transactions on
a streaming fashion, thus aligning with the CTDG framework. Additionally, for simplicity, we
opt for homogeneous graphs, where nodes can represent accounts or clients—a suitable starting

point for AML.

2.1.2 Graph Construction: Key Decisions and Their Impact

Graph construction is a pivotal process, significantly impacting the derivation of insights from
data. There are many possible ways to represent a real-life system using graphs, representing
different viewing angles and none is fundamentally correct or incorrect. The structural decisions

regarding nodes, edges, their attributes, and overall graph architecture are instrumental in
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effectively representing the inherent relationships and dynamics within datasets. This section

discusses these considerations before focusing on their specific application in the AML context.

2.1.2.1 General Considerations in Graph Construction

Graph construction involves important decisions that fundamentally shape its analytical efficacy:

Node Selection: Identifying entities in the dataset for node representation is fundamental

to the graph’s structure, influencing its ability to accurately model data relationships.

e Edge Definition: The choice between directed and undirected edges determines the nature
of relational dynamics represented in the graph, affecting its interpretability and analytical

value.

o Attribute Allocation: Assigning attributes to nodes and edges enriches the graph with

multidimensional data aspects, enhancing its descriptive power.

e Graph Dynamics: Opting for a static or dynamic graph affects its capacity to capture
and represent temporal changes, a decision that carries significant implications for data

analysis over time.

e Complexity Management: Balancing detail with computational feasibility is crucial for

maintaining both the graph’s representational accuracy and practical usability.

These core decisions immensely affect the graph’s potential to accurately and effectively

model data relationships, thus influencing the depth and quality of insights gained.

2.1.2.2 Graph Construction in AML: A Specific Case Study

In AML domain, graph construction is a key tool for revealing complex financial networks
and detecting suspicious patterns. Table 2.1 provides a detailed exposition of how general

considerations are applied specifically within the AML domain.

Complementing this, Figure 2.2 visually demonstrates the transformation of tabular transac-
tion data into a graph format, using a straightforward example. This transformation is pivotal in
facilitating the effective analysis of complex transactional relationships and patterns indicative

of money laundering. This section exemplifies an application of graph construction principles
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Consideration Application in AML Graph

Nodes Clients or accounts are represented as nodes, each sym-
bolizing a distinct entity in the financial network.

Edges Directed edges are utilized to represent the directional
flow of money, crucial for analyzing financial interactions.

Edge Timestamps | Timestamps on edges provide a chronological dimension,
essential for temporal analysis in AML investigations.

Edge Weights Weights on edges quantify amounts of money being trans-
terred, which is crucial information for the investigation.

Graph Dynamics | A dynamic graph model is adopted, evolving with new
transactions to accurately depict the current state of
financial activities.

TABLE 2.1: Application of graph construction principles for AML domain.

in a specialized research context, highlighting the importance of a domain knowledge informed

design towards extracting meaningful information for the AML domain.

Transaction

Time

Sender Receiver Amount

ID stamp

1 A D 1 20

2 B E 2 30

3 (¢} D 3 25 5
50

4 E A 4 40

5 B D B 50 2
30

6 (¢} A 10 45

FIGURE 2.2: Transformation of transaction data into graph representation.

2.1.3 Graph Measures

A useful approach to categorizing graph mining techniques involves considering measures at

the node-level, subgraph-level, and graph-level [Ribeiro, 2011].

2.1.3.1 Node-Level Measures

Node-Level Measures are designed to extract information specific to individual entities within

a network, namely the nodes. These measure include node centrality measures or other

measures like clustering coefficient. These measures are crucial for understanding the roles and

significance of each node in the network. Although a detailed exploration of node measures

is beyond the scope of this section, readers interested in an in-depth exploration are referred
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to [Das et al., 2018]. For the interest of this thesis we will explain one node centrality measure,

namely, the node degree.

Node degree is a fundamental metric in graph theory, quantifying the number of connections

anode has. In an undirected graph, it is mathematically defined as:

degree(v) = ) ey (2.1)

(u,0)€E

where E denotes the set of edges in the graph, and e, , represents an edge between nodes u
and v. An illustrative example of node degree is presented in Figure 2.1. In the left panel of the
figure, for instance, node B exhibits a degree of 3. The degree can be computed by summing
the elements in the corresponding row or column of the adjacency matrix. Due to the matrix’s

symmetric nature, both row and column summations yield the same result.

In the context of directed graphs, where edges have a directional attribute, the concepts
of 'in-degree” and "out-degree” are introduced. 'In-degree” pertains to the count of incoming
connections to a node, whereas ‘out-degree’ pertains to the count of outgoing connections. These

are defined as follows:

in-degree(v) = ) ey (2.2)
(u,0)€E

out-degree(v) = ) ey, (2.3)
(vu)€E

Here, E represents the set of edges in the graph, with ¢, , signifying an edge from node u to

An exemplification of in-degree and out-degree is also visible in Figure 2.1. In the right
panel, node B has an in-degree of 2, which can be determined by summing the elements in the
corresponding column in the adjacency matrix. Moreover, the out-degree of node B, whichis 1,

can be calculated by summing the elements in its respective row.

While individual metrics such as the node degree offer insight into the specific characteristics
of a node, they can also be employed more broadly to portray either the entire graph or

a designated neighborhood. This can be achieved by computing aggregations across the
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neighborhood, yielding metrics like the average or minimum degree. Extending this idea,
one can derive the distribution of a given feature (for instance, the degree distribution) across a

particular neighborhood.

2.1.3.2 Subgraph-Level Measures

Subgraph-Level metrics decompose the network into its constituent sub-components, commonly
termed as subgraphs. Instead of covering the entire graph or highlighting singular nodes, these
measures adopt an intermediary position on the analytical spectrum. Examples encompass

subgraph counting.

Subgraph Counting refers to computing the number of occurrences of subgraphs S¢ within
a graph G. This process necessitates a vertex-to-vertex mapping and edge-to-edge mapping
as well, to preserve the structural integrity of the graphs in question. Figure 2.3 illustrates the
concept: the top left panel shows a specific subgraph, the top right panel presents the main
graph for identification, and the bottom panels depict four distinct occurrences of the subgraph
within G, highlighted in green. It’s important to observe that ABC and CDE are not considered
occurrences because they have an extra edge, making them structurally different from the target

subgraph.

The significance of subgraph counting extends beyond just counting; it plays a critical role
in analyzing and deciphering the local topological characteristics of complex networks. This
method is essential in a variety of research domains and practical applications. For instance, in
graph alignment, as described by Milenkovic¢ et al. [2010], and in the context of graph comparison,
as explored in the work of Milo et al. [2004]. These diverse applications emphasize the versatility

and analytical effectiveness of subgraph counting in the study of network structures.

Nonetheless, subgraph-level measures introduce high computational complexities. Counting
subgraphs is a challenging task known to be NP-Complete. So, in practical situations, this
counting is mainly done for simpler graphs that are unweighted, static, and homogeneous.
More advanced techniques for complex graphs are detailed in [Kovanen et al., 2011, Ribeiro
and Silva, 2014]. Typically, counting subgraphs is manageable when they are relatively small,
usually containing fewer than ten nodes. For a deeper dive into subgraph counting methods,

we refer the reader to the survey by Ribeiro et al. [2021].
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Subgraph

FIGURE 2.3: Demonstration of subgraph counting within a main graph.

2.1.3.3 Graph-Level Measures

Graph-Level Measures give a big picture view of the entire graph. In this thesis, we're more
interested in features that describe the neighborhood or community surrounding a node of
interest rather than the whole graph. In this context, we will cover basic graph-level features

that offer valuable insights into our community-level analysis.
Number of Nodes and Edges function as fundamental indicators of the graph’s size.

Density quantifies the proximity of a graph to being a complete (fully connected) structure.

In directed graphs, density is determined using the formula:

m

Where D stands for the density, m is the number of edges, and n denotes the number of

nodes.

For undirected graphs, a slight modification is necessary due to the symmetry of such graphs.

In this case, the maximum number of possible edges is halved, resulting in the density formula:
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m

nx(n—1)
2

D =

(2.5)

For a more in-depth exploration of additional measures we recommend the review by [Costa

et al., 2007].

2.1.4 Graph Analysis Tasks

This section will discuss the graph analysis tasks that were used in this thesis, namely: node

classification, and link prediction.

Node Classification seeks to allocate classes to nodes within a given network [Bhagat et al.,
2011]. In applied contexts, this term class can be interpreted as the role a node assumes within a
network. As exemplified in Struc2vec [Ribeiro et al., 2017], the authors aim to distinguish the
structural role of each node in the graph via unsupervised methodologies. Within the realm of
AML, the processes can be seen as a node classification task. Specifically, given the knowledge
that a particular individual is engaged in money laundering, one might investigate whether
there are other individuals in the graph with similar topological characteristics. Then check

whether these similar individuals are involves in money laundering as well.

Link Prediction, in its essence, attempts to forecast either absent edges or potential future
edge formations within a graph [Backstrom and Leskovec, 2011]. This prediction paradigm
stands central to recommender systems, wherein the objective is to recommend new product
suggestions to users [Lu et al., 2015]. Further applications of link prediction encompass tasks
such as the completion of knowledge graphs [Wang et al., 2020], aiming to supplement sparse
knowledge bases embodied as graphs, or identifying subject-matter experts and fostering

collaborations within academic or social networks [Tang et al., 2015, Wang et al., 2015].

For additional graph analysis tasks, such as community detection and subgraph embedding,
we recommend consulting the survey by Makarov et al. [2021]. While tasks beyond node
classification and link prediction are not the primary focus of this thesis, they represent potential

future directions for applying the methods developed in this research.

2.2 Fundamentals of ML
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ML explores the development of systems that enhance their performance autonomously with
experience. It is a fast growing area that combines computer science and statistics, and forms

the backbone of artificial intelligence and data science [Jordan and Mitchell, 2015].
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2.21 Classification of ML Algorithms

ML algorithms essentially search for the optimal program, guided by training data, to maximize
performance. These algorithms can be categorized based on how they represent candidate

solutions (e.g., decision trees, neural networks), and the type of training data used.

Based on the type of training data and the use-case, key types include supervised learning,
where the model learns from labeled examples to predict labels for new data points; unsuper-
vised learning, which involves grouping or clustering similar data points without labels; and
reinforcement learning, where a model learns to make decisions to maximize rewards based on

example action sequences.

This thesis will primarily focus on supervised learning, particularly tree-based models and
neural networks. For a broader perspective on ML algorithms, we refer readers to the book

by Bishop [2006], and the review by Mahesh [2020].

2.2.1.1 Tree-Based Models in ML

Tree-based models, like decision trees [Bishop, 2006], random forests [Ho, 1995], and gradient
boosting machines like LightGBM [Ke et al., 2017], are fundamental in machine learning. They
operate using a tree-like structure, breaking complex decisions into tree-shaped decision-making
processes. Decision trees, for instance, split data on specific criteria, creating branches that show
different decision paths. Random forests enhance decision trees by combining multiple trees for
a more robust decision. Gradient boosting machines build trees in a sequence, with each new

tree fixing errors from the previous ones.

Tree-based models often outperform neural networks in medium-sized datasets and require
substantially less computational resources [Grinsztajn et al., 2022]. Additionally, the simplicity

of tree-based models makes them more interpretable compared to complex neural networks.

In this thesis, we will use tree-based methods within our triage models, as detailed in

Chapter 4.
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2.2.1.2 Neural Networks Models in ML

Neural networks, inspired by the human nervous system, form the basis of deep learning. They
use neurons or perceptrons as fundamental units to process information. Each neuron simulates

the behavior of a biological nerve cell in the human brain.

A classic example of deep learning is the multilayer perceptron, which is a mathematical
function mapping inputs to outputs. This function is formed by composing many simpler
functions (layers). Each neuron represents a mathematical function, contributing to the overall
input-to-output transformation. Each layer in the network is defined by a weight matrix and a
bias vector, whose values are learned during training, and an activation function. This learning

process is guided by the network’s hyperparameters, such as the learning rate.

These models, known as feedforward networks, facilitate a unidirectional flow of information
from the input layer, through intermediate layers, to the output, without any feedback loops
where outputs recursively influence the model itself. The inclusion of feedback connections trans-
forms these into recurrent neural networks (RNNs). Diverse deep learning architectures exist,
each with specific advantages depending on the task or data type. For example, convolutional
neural networks tend to excel in processing images and videos [Xu et al., 2014]. In contrast, for
sequential data like text and speech, RNNs often surpass other models in performance [LeCun
et al., 2015]. This research predominantly examines RNN-like structures, as transactional data
involves sequences (e.g., transactions by card) are instrumental in detecting suspicious activities

both conceptually and empirically [Branco et al., 2020].

In RNNSs, each element of the input sequence possesses a state vector, encapsulating historical
data from previous elements, when expanded temporally, RNNs resemble deep feedforward

networks with shared weights across layers.

Graph neural networks (GNNs) represent another class of neural networks, specifically
tailored to operate on graph structures. Figure 2.4 contrasts the input sequences of RNNs and
GNNs: single-entity sequences (over different timestamps) versus multiple-entity in a graph
where the k-hop neighbors of a target node are sampled and their information is aggregated and

sent to the target node.

While a comprehensive exploration of deep learning is beyond this section, essential concepts,
especially learning mechanisms, are discussed in Section 2.2.2. These foundations are crucial for

the development of our Deep-Graph-Sprints in Chapter 6.
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Same enﬁtz

FIGURE 2.4: Simplified comparison of RNNs and GNN.

For the curious reader, we recommend the book by Goodfellow et al. [2016] for more in-depth

understanding of deep learning.

2.2.1.3 Performance Measures

Accurate evaluation of ML model performance is critical for model comparison and selection.
The choice of the appropriate measure is dependent on the use case and data characteristics. For
instance, in cases of unbalanced datasets, traditional accuracy - the ratio of correctly labeled
instances to all instances - may be misleading. A model that only predicts the majority class

could appear highly accurate.

In the context of financial crime detection, such as AML or fraud detection, it is essential to
accurately identify criminal activities while avoiding the disruption of legitimate transactions,
which could result in client dissatisfaction or substantial financial losses for banks or online
merchants. The primary goal is to maximize TPs while minimizing FPs. This is often achieved by
optimizing recall (the proportion of actual positives correctly identified) at a specific FPR, such
as recall@1%FPR. However, different clients and scenarios may require the use of alternative

metrics.

A prevalent metric in the context of unbalanced data is the F1 score, which combines recall

.. . . _ Precision x Recall
and precision. The F1 score is calculated as follows: F1 score = 2 x Precision fRecall

Another critical measure is the area under the curve (AUC) of the receiver operating char-
acteristics (ROC), represents the probability that the model correctly distinguishes between a

positive and a negative example. A higher AUC indicates better model performance. It provides
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a consolidated measure of performance across different classification thresholds, making it

valuable for comparing different models.

For link prediction tasks, where we don’t have class imbalance issue, we employ the average
precision (AP) metric, which evaluate how well a classification model ranks positive examples
higher than negative ones, AP measures the model’s ability to correctly prioritize true positive
cases over the entire range of its predictions. Moreover, we measure the mean reciprocal rank
(MRR), which indicates the average rank of the positive edge. An MRR of 50% implies that the
correct edge was ranked second, while an MRR of 25% implies it was ranked third. Additionally,
we measure Recall@10, which represents the percentage of actual positive edges ranked in the

top 10 scores for every edge.

These metrics provide a comprehensive framework for assessing the performance of ML

models used in this thesis.

2.2.2 Learning Mechanisms in Deep Learning

ML algorithms depend significantly on credit assignment, a process identifying the impact
of past actions on learning signals [Minsky, 1961, Sutton, 1984]. This process is essential for
reinforcing successful behaviors and reducing unsuccessful ones. A deep understanding of
a model’s internal structure eases this task by directly linking its decisions to underlying

parameters.

2.2.2.1 Overview of Automatic Differentiation (AD) Modes

The capability of assigning credit in deep learning models hinges on the differentiability of
learning signals enabling the use of derivatives for this purpose [Cooijmans and Martens, 2019].
A key technique in this context is AD, used for computing derivatives in functions represented

as computer programs [Baydin et al., 2018].

In AD, depending on the direction of applying the chain rule, three strategies stand out:
forward mode, reverse mode (often termed backpropagation), and mixed mode. Forward mode
entails multiplying the derivatives matrices from input to output. Reverse mode, a two-phase
process, first executes the function to populate intermediate variables and map dependencies,
then calculates derivatives in reverse order from outputs to inputs [Baydin et al., 2018]. Mixed

mode combines these approaches.
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In the context of this thesis we are interested in temporal models, such as RNNs, and GNN

algorithms designed for temporal graphs.

AD, applicable in both RNNs and GNNs, automates the derivative calculation of model
parameters. Here, we focus on RNNSs to illustrate AD’s principles, although these concepts are

also applicable and more complex to illustrate in GNNs.

Backpropagation in GNNs or RNNs requires a forward pass for network evaluation and a
backward pass for gradient computation. Complex structures like large graphs or extended
sequences pose challenges, leading to techniques like truncated back propagation through
time (TBPTT) [Williams and Peng, 1990]. TBPTT eliminates the need for a complete retrace
through the whole data sequence at each stage thus offers computational benefits over full
backpropagation. However, TBPTT struggles with long-term dependencies since the parameter

updates are computed using a limited horizon in time.

An alternative, real-time recurrent learning (RTRL) (i.e., forward propagation of the gradi-
ent), facilitates online parameter updates and allows networks having recurrent connections to
learn complex tasks requiring the retention of information over time periods having either fixed
or indefinite length [Williams and Zipser, 1989]. However, its practicality is limited in large
networks due to high computational demands. More specifically, it must retain a large matrix
relating the model’s internal state to its parameters. Even when this matrix can be stored at all,
updating it is very expensive [Cooijmans and Martens, 2019], further details are discussed in

Section 2.2.2.2.

To overcome these limitations, approximations such as UORO [Tallec and Ollivier, 2017]
and KF-RTRL [Mujika et al., 2018] have been proposed. These methods aim to balance between

RTRL's theoretical strengths and the practical constraints of network size and resource demands.

2.2.2.2 Computational and Memory Complexity of AD modes

This section compares the computational and memory complexities in reverse-mode and
forward-mode AD within the context of neural networks. The explanation is based on an

illustrative example, as explained below.

Consider a function L, represented in Equation 2.6, and illustrated in Figure 2.5, encap-

sulating a neural network comprising four distinct functions f, g, h, p. These functions may
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be interpreted as individual layers in a feedforward network or as a sequence of events in a

recurrent network configuration.

L(x) = p(h(g(f(x)))) (2.6)

FIGURE 2.5: Representation of a composite function comprising four distinct functions.

For this example, we assume the following dimensional specifications:

e 3layers f, g, and h, each characterized by a weight matrix of dimensions (d x d).

e A final layer p, doing a dimensional reduction from d to a scalar value, characterized by a

weight matrix of dimensions (d x 1).

Considering the derivative of the error or loss L(x):

dL _df dg oh dp
dx 9x of 9g oh @7)
In reverse-mode AD, the sequential application of the chain rule, commencing from the

output layer towards the input, is depicted in Equation 2.8.

aL _ \of |ag [ op
dx — |ox {ﬁ [ag ah” @8)

Conversely, forward-mode AD initiates the derivative computation from the input layer, as

illustrated in Equation 2.9.

AL _ | |[or 2g) on| op
dx “ax af] ag] oh 29)

Computational Complexity:
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The associative property of matrix multiplication does not extend to computational complexity,

which is significantly influenced by the order of operations.

In reverse-mode AD, matrix multiplication operations are as follows:

e Initial operation: (d x d) - (d x 1), resulting in (d x 1) vector with d> multiplications.
e Each subsequent operation also necessitates d> multiplications.

e Cumulatively: 3d?> multiplications, for our example of a sequence with length 4. Thus,
given a sequence of length I then the total number of multiplications is (I — 1)d?. Thus the

total computational complexity is O(I x d?).
For forward-mode AD, the operations entail:

e Tirst operation: (d x d) - (d x d), culminating in (d x d) with d® multiplications.
e Second operation: Similarly, 4> multiplications.
e Final operation: (d x d) - (d x 1), totaling d> multiplications.

e Overall: 24° + d? multiplications, for our example of a sequence with length 4. Thus, given
a sequence of length I then the total number is (I — 2)d® + d?> multiplications. Thus the

total computational complexity is O(I x d°).

This analysis demonstrates the considerable disparity in computational demands between

reverse-mode and forward-mode AD in the context of a typical ML architecture with scalar loss.

By employing a practical parameter value of d = 100, it is evident that reverse-mode AD
requires significantly fewer operations (30,000) compared to forward-mode AD (2,010, 000).
This discrepancy is even more pronounced when considering longer sequences or deeper
models. For instance, with a sequence length I = 100 and d = 100, the computational load
for reverse-mode AD amounts to 990, 000 operations, whereas forward-mode AD necessitates
a staggering 98,010, 000 operations. This reveals that, in this specific example, the number of
operations needed for reverse-mode AD is approximately two orders of magnitude less than

that required for forward-mode AD, and this gap will increase with higher values of d.

Consequently, in prevalent neural network architectures within ML, which typically evolve

from larger initial layers to more compact (often scalar) output layers, reverse-mode AD emerges
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as the more efficient approach. This efficiency gain is critical in practical applications, and

explains the popularity of reverse-mode AD in ML platforms.

Memory Complexity:

Reverse-mode AD involves a two-pass approach through the computational graph: an initial
forward pass that evaluates the function L, and a subsequent backward pass that computes
the gradient 9L, as outlined in Equation 2.7. During the forward pass, it is crucial to store
intermediate outputs at each step, commonly known as activations. This is because the gradient
of the loss with respect to the input of a layer is dependent on the output of that layer, making
these intermediate values essential for the backward pass. The storage requirement scales with
the number of parameters per layer and the depth of the network. In our specific example, this
equates to storing three matrices of dimensions (d x d) and one vector of dimensions (d x 1).

Thus the total memory complexity is O(I x d?).

Conversely, forward-mode AD does not need to retain all intermediate computational values.
It primarily preserves the derivatives from the most recent computations, potentially reducing
memory demands, particularly in networks with greater depth. For our example, the memory
requisite at each step would be a matrix of derivatives having dimensions (d x d), and a vector

of dimensions (d x 1) in the final step. Thus the total memory complexity is O(d?).

Thus in our ongoing example since | = 3, then forward-mode AD requires around three
times less memory than reverse-mode AD. This disparity in memory efficiency becomes more
noticeable in models with increased I/, meaning in models with more layers or depth. For
sequence-based models, such as RNNs, | represents the sequence length, like how many
transactions a specific account has made. Therefore, forward-mode AD, which goes through the

computational graph in just one pass, offers enhanced memory efficiency.

2.3 Incorporating Graph Data into ML Models

While ML has seen many successes, a key challenge arises in integrating non-tabular, graph data
into these models. Traditional ML methods are mainly designed for tabular data, consisting of
lists of feature vectors. The question then becomes: How can graph data be effectively integrated

into ML models?
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A straightforward approach is using the graph’s adjacency matrix, where each row represents
a node’s connections. However, this approach, focusing solely on direct neighbors, can miss
broader structural patterns in the graph. Additionally, for large graphs, this method might be

too demanding computationally for the ML model.

As shown in Figure 2.6, the objective is to map nodes from high-dimensional, complex graph
structures to a lower-dimensional space. This dimensionality reduction, crucial for analyzing
complex network dynamics, can be achieved through graph feature engineering techniques or

via node representation learning methodologies, as discussed below:

‘\_‘/. Graph feature engineering

A/OC(E representation lea roing

Complex Graph Structure Featvre/Embedding Space

FIGURE 2.6: Mapping nodes from high-dimensional graphs to lower-dimensional space.

2.3.1 Graph Feature Engineering

Feature engineering uses graph metrics like node degree to enrich ML models with informative
graph-based features, as discussed in Section 2.1.3. By incorporating these metrics into feature
vectors, additional information is provided to the ML model (or rule-based systems). However,
selecting the most effective metrics remains a challenge, especially considering the computational
cost for large graphs. Feature engineering approaches, discussed in Section 3.1, aim to extract
features from tabular or graph data manually or automatically, enabling ML models to leverage
graph relationships for enhanced performance and insights. Although these approaches usually
involve manual work and /or domain knowledge, they tend to be interpretable as each bin in

the resulting vector has a specific meaning.

2.3.2 Graph Representation Learning

Graph representation learning focuses on transforming graphs or their components (nodes and
edges) into vector spaces. This transformation simplifies capturing essential graph features, to be
used in tasks such as node classification and link prediction. The graph information represented

in vector forms can be seamlessly integrated with traditional ML methods.
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Graph representation learning techniques can be categorized into matrix factorizations,
random-walk-based methods, and deep learning methods, each offering unique features.

Further details on these methods can be found in Section 3.2.

Unlike feature engineering, graph representation learning automatically derives complex
feature representations from the data itself, to capture patterns and relationships within the
graph structure. Thus, it requires less manual work and domain knowledge. However, the

resulting representation might be less interpretable.

2.4 Fundamentals of Money Laundering

In this section we explain the phases of laundering money and the traditional solutions employed

to detect it.

2.4.1 Phases of Money Laundering: An Overview

Money laundering is a carefully designed process aimed at disguising the origins of assets
obtained from illegal activities, thereby allowing them to appear as though they stem from
legitimate sources. As was illustrated in Figure 1.1, the procedure can be divided into three

fundamental stages:

1. Placement: This is the initial stage where people or groups bring in illegally obtained
money into the financial system. This money often comes from activities like drug
trafficking, human trafficking, or financial scams and is usually put into the system
through a variety of methods like cash deposits or wire transfers. By doing this, they start

the process of making the money seem legitimate.

2. Layering: Following the placement of assets, the subsequent challenge involves concealing
their illicit origins. This is achieved by engaging them in a complex web of financial
activities, including transfers between different bank accounts, transactions across various
banks or FIs, and even cross-border movements. The objective is to create a convoluted
network of transactions, making it progressively difficult to trace these assets back to their

initial illegal source.

3. Integration: This is the concluding stage, where the ‘laundered’ assets are carefully

reintroduced into the legitimate economy. At this point, they are often used to invest
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in legal business ventures, purchase assets, or fund lifestyles, all without immediately

alerting authorities due to their now seemingly legitimate appearance.

2.4.2 Traditional AML Solutions

The most common systems to detect money laundering based on transaction data employed
by banks are rule-based [Weber et al., 2018]. Such AML systems consist of a series of rules that
trigger alerts based on specific transactional behaviors, as illustrated in Figure 1.2. Following
the generation of these alerts, domain experts evaluate them to determine if they indicate
suspicious activities or are false alarms. If deemed suspicious, a SAR is submitted to the relevant
regulatory authority. However, it is noteworthy that these systems often exhibit high FPRs,
with some studies indicating rates as high as 95-98% [Lannoo and Parlour, 2021]. This not only
burdens resources but also demands significant time investment from domain experts. While
these rules are essential as they are required by regulatory bodies to ensure compliance, their
inherent rigidity can result in detection gaps. To address these constraints and enhance detection
precision, modern AML solutions are increasingly integrating ML to identify complex patterns,

enhancing their overall performance.

Later in Section 3.3 we detail advancements in AML systems that leverage ML systems.






Related Work

This chapter evaluates existing methodologies in graph information extraction and machine-
learning-driven strategies in AML, with an emphasis on their evolution, relevance to our work,
and the gaps that our research aims to fill. The discussion navigates through feature engineering,
representation learning techniques, and their applications in AML. This chapter is organized as

follows:

¢ Evolution of Feature Engineering: Section 3.1 delves into the realm of automatic feature
engineering. It is divided into two subsections: approaches for tabular data in Section 3.1.1,

and methodologies specific to graph data in Section 3.1.2.

e Graph Representation Learning: In Section 3.2 we detail the various methodologies of

graph representation learning.

e Advancements in AML Strategies: Section 3.3 describes advanced AML solutions. It
encompasses ML-based solutions in Section 3.3.1, as well as those utilizing graph tech-

nologies in Section 3.3.2.

3.1 Evolution of Feature Engineering

Feature engineering, a crucial step in building well performing machine learning pipelines, has
seen efforts to transition from manual feature crafting to more automated methods, this shift

has greatly influenced our approach to graph data in AML.

35
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3.1.1 Feature Engineering for Tabular Data

Feature engineering in tabular data has evolved significantly, incorporating a variety of advanced

techniques across several key technological fronts.

Explorekit [Katz et al., 2016] generates meta-features for both individual candidate features
and the target dataset as a whole. Examples of these meta-features include general statistics
like the number of classes and the AUC of models using each feature. A subsequent feature
selection step is applied to retain only those features that enhance the overall task performance.
Despite challenges in scalability, such approaches have set the stage for more sophisticated
feature transformation processes. This is exemplified in the learning feature engineering (LFE)
framework [Nargesian et al., 2017], which employs meta-features derived from previous tasks to
recommend new meta-feature without relying on model evaluation. The general nature of these
meta-features, which do not require domain-specific knowledge, provides valuable insights for

our Walking-Profiles framework in deciding which features to generate.

The integration of reinforcement learning and optimization techniques in automated feature
engineering is a notable trend. Learning automatic feature engineering machine (LAFEM) [Zhang
etal., 2019] is one example. Reinforcement learning is similarly employed in the SAFE method [Shi
et al., 2020] and mCAFE [Huang et al., 2022] for feature optimization. The CAFEM (cross-data
automatic feature engineering machine) [Zhang et al., 2020a] further underscores the potential
of these techniques in enhancing feature engineering processes. Aligning with LFE’s approach,
CAFEM accelerates feature engineering by applying generalized feature engineering strategies

learned from diverse datasets.

Driven by the insight that meta-features overlook feature interrelationships and that gen-
erating all possible features from existing ones leads to a feature explosion, BigFeat [Eldeeb
et al., 2022] takes a more focused approach. It evaluates the significance of existing features
using tree-based models, assigning higher weights to more important features for the creation
of new features. Additionally, BigFeat assigns importance scores to the operators themselves.
The feature generation process is controlled by a predefined time or resource budget, ensuring

efficiency and manageability.

While the aforementioned techniques tackle tabular data and thus are not directly applicable
to our graph datasets, they offer valuable insights into the necessity of computational and

space efficiency in feature engineering. Thus, we propose specific techniques to address these
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challenges in Walking-Profiles (Chapter 4) and Graph-Sprints (Chapter 5).

Furthermore, domain-specific solutions have demonstrated feature engineering’s adapt-
ability. For example, the framework by Marques et al. [2020] in the financial crime domain
creates features using semantic data labels. This underscores the importance of incorporating
domain expertise in algorithm development, inspiring the AML-specific customization in our

Walking-Profiles (Section 4.3.2).

For practitioners seeking an open-source Python library for automated feature engineering

and selection, AutoFeat [Horn et al., 2020] serves as an example tool.

Opverall, these advancements, while not directly integrated into our research, underscore the
importance of automated feature engineering. They also provide inspiration regarding existing

issues to consider in the context of automatic feature generation.

3.1.2 Feature Engineering for Graph Data

The field of feature engineering for graph data presents a fertile ground for research endeavors,

as underscored by Escalante [2021].

There have been developments enhancing automation for graph data. The automatic feature
engineering machine (AFEM) by Zhang et al. [2018] focuses on automating feature engineering
for relational and graph datasets. This approach utilizes a range of feature families, such as
social graph-based features. Similar to our method, AFEM aims to capture both the global and
local aspects of networks. However, their technique computes features independently, using
different methods, in contrast to our Walking-Profiles that relies on the same random-walks to

derive all features.

Zheng [2018] focus on network functional blocks, such as paths and subgraph-augmented
paths, for graph feature engineering. Their methods enhance semantic proximity search in
heterogeneous graphs, revealing the applicability of these techniques in diverse graph-based
applications. In our Walking-Profiles, a similar concept is employed as subgraph-based measures,

as described in Section 4.2.1.2. This approach is inspired by the concept of anonymous walks.

Anonymous walks, were used by Ivanov and Burnaev [2018], to generate feature-based
network embeddings. An anonymous walk essentially transforms a random walk by replacing

each node’s id with the position of its first appearance in the walk, as shown in Figure 3.1. This
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technique is important to Walking-Profiles, as it is utilized to generate features at the subgraph

level, further elaborated in Section 4.2.1.2.

Graph

Random Walk 1| Random Walk 2 Random Walk 3
Anonymous Walk 1 Anonymous Walk 2

0-6>6>6->60 0>60>0>60-0

FIGURE 3.1: An example of the concept of anonymous walks [I[vanov and Burnaev, 2018].

Shirbisheh [2022] introduce a local-to-global strategy in graph ML. This method develops
local features, such as betweenness centrality, and vector representations of graph nodes,
using the neighbors degree frequency (NDF) for mapping nodes into euclidean vector spaces.
This approach allows for a nuanced understanding of a node’s neighborhood, facilitating
neighborhood analysis in graph structures. Similarly, in our Walking-Profiles and Graph-Sprints,

we utilize node degrees as a key feature to capture the structural aspects of the graph.

Concurrently, Wu et al. [2022] have developed the AFGSL model, which integrates deep
learning and reinforcement learning techniques. This model converts tabular data into a
graph-structured format and introduces a feature interaction layer based on graph structure
learning. Additionally, it uses reinforcement learning to refine the graph structure. The
incorporation of deep learning in AFGSL may impact its interpretability, aligning it more
closely with representation learning methods as discussed in Section 3.2. Nonetheless, the
strategy of modifying the graph structure to enhance performance resonates with our focus on

the significance of selecting an effective structure for representing tabular data.

These developments in graph data feature engineering reflect an evolution towards more

automated and advanced processes, aligning with our research objectives. Utilizing these



3. RELATED WORK 39

insights, we aim to develop an automated graph feature engineering framework tailored to

address specific challenges in AML.

To provide an application example, the field of semantic-based image retrieval demonstrates
the utilization of graph feature engineering, as detailed by Nhi et al. [2022]. This technique
emphasizes extracting key features from complex data structures, paralleling the methodologies

employed in our AML research.

3.1.3 Connecting Tabular and Graph Data Methods

The advancements in both tabular and graph data feature engineering exemplify the industry’s
shift towards more automated, intelligent systems capable of handling complex data structures.
This evolution from manual to automated processes underpins our research approach, where we
integrate these insights to develop our general purpose graph feature engineering frameworks

and customize them into the specific context of AML domain.

3.2 Graph Representation Learning

Graph representation learning is crucial in transforming complex graph structures into usable
formats for ML models. This section discusses the evolution from matrix factorization techniques,
like GraRep and HOPE, to more sophisticated deep learning-driven approaches. While not all of
these methods are directly used in our work, understanding their limitations and strengths has
informed the development of our representation learning approach, namely, our Deep-Graph-

Sprints method, detailed in Chapter 6.

The domain of graph representation learning is at the forefront of innovative research. For
an in-depth exploration of existing methods and their applications, readers are directed to the

book by Hamilton [2020], and the survey by Makarov et al. [2021].

3.2.1 Matrix Factorization-Based Techniques for Graph Representation

Matrix factorization-based approaches, sometimes referred to as graph factorization [Ahmed
etal., 2013], provide foundational methods in the realm of node representation learning, drawing

their inspiration from traditional dimensionality reduction techniques [Hamilton et al., 2017b].
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At its core, matrix factorization decomposes a matrix into a product of several constituent
matrices, facilitating the representation of data in a reduced dimensional space [Makarov et al.,
2021]. In graph representation learning, the target matrix frequently corresponds to the graph’s
adjacency matrix or its derivatives. The main objective is to represent the underlying graph

structure in this compact form.

Key algorithms in this domain include GraRep and HOPE. The GraRep algorithm [Cao et al.,
2015] focuses on high-order graph proximities, utilizing successive powers of the adjacency
matrix to reveal node relationship patterns. In contrast, HOPE [Ou et al., 2016] employs broader
similarity metrics like Jaccard neighborhood overlaps and uses singular value decomposition
to preserve asymmetric transitivity, especially in directed graphs. This method optimizes

computational efficiency by retaining only the dominant eigenvalues.

However, the limitations of matrix factorization methods, such as their transductive nature
requiring retraining for new nodes and computational overheads for large graphs, can restrict

their applicability in dynamic graph scenarios.

For a comprehensive understanding of matrix factorization in graph representation, the

survey by Chen et al. [2020] provides an in-depth analysis.

3.2.2 Random-walk Based Techniques

A random-walk, in the context of graph theory, is a stochastic process that derives random paths
originating from a designated node. By conducting numerous such walks, one can approximate
the inherent structure of the network. Notably, if two nodes exhibit similar random-walks, it

might suggest they occupy analogous structural roles in the network.

In light of this observation, several methods proposed random-walk based approaches
to generate node embeddings like, DeepWalk [Perozzi et al., 2014], LINE [Tang et al., 2015],
Node2vec [Grover and Leskovec, 2016], Struc2vec [Ribeiro et al., 2017], Metapath2vec [Dong
et al., 2017], Role2vec [Ahmed et al., 2019]. In essence, nodes that participated in comparable
random-walks yield similar embeddings. Traditional random-walks are genuinely stochastic,
choosing a random neighbor to progress the walk at each hop. Node2vec, however, introduces
a degree of bias, using two parameters, to direct the walks to be either shallower or deeper,
therefore distinguishing community structures or node roles more effectively. It is crucial to note

that both DeepWalk and Node2vec primarily utilize topological data for their node embedding
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generation. Role2vec leverages attributed random-walks to learn embeddings for each role
within the graph based on functions that map feature vectors to roles. Thus, instead of learning
individual embeddings for each node, embeddings are learned for each role. Limitations of these
methods include their ignorance of node and edge features (except Role2vec that leverages node
attributes), and since they are designed for static graphs they disregard temporal information.
Their inherent high latency is attributable to the necessity of executing numerous walks to
derive an embedding. These limitations make them not applicable in our AML scenario. In a
subsequent advancement, Sajjad et al. [2019] adapted these random-walk techniques to DTDG.
While this adaptation introduced a degree of efficiency, it remains constrained in its applicability,
especially for CTDGs and in low-latency situations. In contrast, Node2bits [Jin et al., 2019]
integrates time-related details by separating the random walks it samples into different time
windows. It combines node attributes into histograms during these times. Node2bits closely
aligns with our Walking-Profiles, yet there are key differences. It does not account for edge features
and is designed for entity stitching rather than AML, as in our work. Unlike Walking-Profiles,
which produce interpretable aggregated features, Node2bits creates binary representations.
Additionally, Node2bits tackles space efficiency with binary hashing, whereas Walking-Profiles
employs selective feature extraction and sliding window techniques, as detailed in Section 4.2.2.
In contrast to our Graph-Sprints, all these methods, including Node2bits, demand considerable
computational resources for executing walks, making them less suitable for scenarios requiring

low latency.

Further developments, such as continuous-time dynamic node embeddings (CTDNE) [Lee
et al., 2020, Nguyen et al., 2018], were introduced to provide time-aware embeddings, aug-
menting the Node2vec paradigm for CTDGs. These methodologies treat the graph as a stream
of edges and perform temporal walks from seed nodes chosen through a temporally-biased
distribution. Hyperbolic spaces have seen the application of temporal random-walks for

embedding extraction [Wang et al., 2021a].

Moreover, the anonymous walks approach [Wang et al., 2021c] employs causal anonymized
walks to encode motif-centric data (motifs refer to subgraphs that occur within a real network
at a frequency higher than what statistical probability would typically predict [Ribeiro et al.,
2021]). In parallel, NeurTWs [Jin et al., 2022b] integrate time into the anonymous walks via
Neural Ordinary Differential Equations (NeuralODEs). It is essential to note that these methods,
similarly to our proposed walking-profile and in contrast to the our proposed graph-sprints

framework, necessitate exhaustive random-walk executions.
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Recently Vital Jr et al. [2023] investigated the performance of different random-walks in
the context of link prediction in static graphs, focusing on embedding information derived
from various node sequence generations. Four traditional random-walks and five Node2vec
configurations were examined across 37 networks. The findings showed minimal performance
differences among the random-walks for link prediction, with a mere 3-4% difference in median
AUC metrics. Exploratory walks outperformed local ones in terms of performance. Furthermore,
a strong positive correlation was observed between node similarities from different walks, even
for opposing walk types. The study emphasizes that different random-walks have similar

performances in link prediction and capture consistent node similarity information.

A major limitation of random-walk-based approaches is their time complexity. To address
efficiency, methods like B_LIN [Tong et al., 2006] have been developed. This method improves
efficiency by leveraging two prevalent characteristics found in many real-world graphs, namely,

linear correlations and community-like structures.

Apart from time complexity, random-walks also impose significant demands on main mem-
ory volume. This issue is particularly relevant as many high-speed random-walk algorithms
assume the entire graph fits within the main memory, a challenge highlighted by Xia et al. [2019].
To address this, various strategies have been developed for graph partitioning and clustering.
Notable among these are METIS [Karypis and Kumar, 1997], and RWDISK [Sarkar and Moore,
2010], which offer practical solutions for managing large-scale graphs efficiently. In Walking-
Profiles, we address this memory challenge by introducing two distributed implementations of

our method, and a sliding window approach as detailed in Section 4.2.2.

Random-walks have applications in domains such as collaborative filtering, recommender
systems, computer vision, and more. For a comprehensive review of random-walk-based

applications and the challenges they pose, the reader is directed to [Xia et al., 2019].

3.2.3 K-hop Neighborhood Based Methods

More recently, we see a surge in deep learning algorithms for graph representation learning.
Several approaches leverage GNNS to learn functions that generate node embeddings [Hamilton

etal., 2017a, Yang et al., 2020, Ying et al., 2018, Zhu et al., 2020].

Most GNN-based methods require a k-hop neighborhood on which message-passing op-

erations lead to node embeddings. To deal with CTDGs, a simple approach is to consider
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a series of discrete snapshots of the graph over time, on which static methods are applied.
Such approaches however do not take time properly into account and several works propose
techniques to alleviate this issue [Goyal et al., 2018, Jin et al., 2022a, Sankar et al., 2020]. To
better deal with CTDGs, other works focus on including time-aware features or inductive biases
into the architecture. DeepCoevolve [Dai et al., 2016] and Jodie [Kumar et al., 2019] train two
RNN s for bipartite graphs, one for each node type. Importantly, the previous hidden state of
one RNN is also added as an input to the other RNN. In this way, the two RNNs interact, in
essence performing single-hop graph aggregations. TGAT [Xu et al., 2020] proposes to include
temporal information in the form of time encodings, while TGN [Rossi et al., 2020] extends this
framework and also includes a memory module taking the form of an RNN. In [Jin et al., 2020],
the authors replace the discrete-time recurrent network of TGN with a Neural ODE modeling the

continuous dynamics of node embeddings.

APAN [Wang et al., 2021b] proposes to reduce the latency at inference time by decoupling
the more costly graph operations from the inference module. The authors propose a more
light-weight inference module that computes the predictions based on a node’s embedding as
well as the messages recently received from interacting nodes, stored in the node’s "mailbox".
The mailbox is updated asynchronously, i.e. separated from the inference module, and involves
the more expensive k-hop message passing. While APAN improves the latency at inference time,
it sacrifices some memory since each node’s state is now expanded with a mailbox, and more
importantly it potentially uses outdated information at inference time due to asynchronous
update of this mailbox. This algorithm addresses the need to generate low-latency embeddings,
similar to our Graph-Sprints and Deep-Graph-Sprints methods. However, unlike our methods,

APAN uses outdated information which could negatively affect its overall performance.

Moreover, towards reducing computational costs of GNNs, HashGNN [Wu et al., 2021]
leverages MinHash (an algorithm used to efficiently estimate the similarity between sets,
by hashing their elements into a smaller representative set of hash values) to generate node
embeddings suitable for the link prediction task, where nodes that results in the same hashed
embedding are considered similar. SGSketch [Yang et al., 2022] is a streaming node embedding
framework uses a mechanism to gradually forget outdated edges, achieving significant speedups.
Differently than our approach SGSketch uses the gradual forgetting strategy to update the

adjacency matrix and therefore only considers the graph structure.

Liu et al. [2019] propose an algorithm for graph streams that performs node representation



44 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

updates in real-time by: 1) Identifying nodes influenced by newly added nodes (e.g., one-hop
neighbors); 2) Generating embeddings for new nodes through linear summation of influenced
nodes’ embeddings; 3) Adjusting the embeddings of these influenced nodes. Therefore generat-
ing approximated embeddings in low latency. However, the embeddings depend only on the

neighbors embeddings and ignoring the target vertex attributes.

GNN s are instrumental in analyzing vast time series data, but adapting them to large datasets
is challenging due to memory constraints. While various sampling strategies exist, merging them
with temporal data remains complex. Enhancing GNN’s scalability for real-time applications is
a critical research area Jin et al. [2023]. For a comprehensive review on GNN-based approaches

for time series analysis we refer the reader to the survey by Jin et al. [2023].

To provide an application example in the realm of graph-based methodologies, these
techniques are used in areas like entity alignment in knowledge graphs and cybersecurity. CG-
MuAlign, utilizing node embeddings for entity alignment, exemplifies the efficiency of graph
convolutional networks (a type of GNNs) in this domain [Zhu et al., 2020]. In cybersecurity,
the importance of graph representations is evident in detecting complex network intrusions
and anomalies, as recent developments show [Ahmetoglu and Das, 2022]. These instances
demonstrate the capability of graph data in encapsulating complex relationships and their
broad applicability. In the area of recommendation systems, graph embeddings enhance user
experience, with Pinterest’s PinSage being a notable application [Ying et al., 2018]. These systems
harness graph data for understanding and forecasting user preferences, indicating the extensive

application of graph-based methods.

3.3 Advancements in AML Strategies

In Section 2.4, we elaborated on the traditional rule-based systems employed for AML. These
systems, while ensuring compliance and interpretability, are plagued by exceedingly high
FPRs. The primary objective of our research is to address and mitigate these FPs, all the while
preserving the rule-based structure to maintain compliance and provide clear explanations for

the system’s decisions.

Contrastingly, a considerable portion of the recent research efforts, which incorporate ML,

opt to replace these rule-based systems entirely. Such approaches aim to serve a dual purpose:
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reducing both FPs and false negatives. For an exhaustive review of ML-centric methodologies

tailored for AML, readers can consult [Chen et al., 2018, Tiwari et al., 2020].

3.3.1 AML Solutions Leveraging ML

We can divide the ML-based AML systems into unsupervised and supervised methods. The
majority use unsupervised techniques due to the lack of real-world labeled datasets available
in the money laundering domain. The typical approach is to firstly cluster events, followed
by anomaly detection. To address the lack of data, various strategies have been proposed.
Either a fully synthetic dataset is generated [Drezewski et al., 2012, Luna et al., 2018], or only
unusual accounts are simulated within a real-world dataset [Gao, 2009, Liu et al., 2008, Tang
and Yin, 2005, Wang and Dong, 2009], or one assumes that rare events within a peer group are
suspicious [Larik and Haider, 2011]. One drawback of anomaly detection approaches is the
assumption that suspicious activities are outliers, which may not always be the case since money
launderers try to simulate legitimate behavior [Lorenz et al., 2020]. Arguably, better validations
of the systems were reported in [Camino et al., 2017, Shokry et al., 2020, Yang et al., 2014] using
analyst feedback, or in [Liu and Zhang, 2010] using real labeled data and where authors report a
52% recall@5%FPR.

Several approaches leverage supervised learning, for instance, Luo [2014] generates synthetic
data and proposes a classification algorithm based on association rules to detect suspicious
events. Other researchers use real-world datasets and aim to detect suspicious behavior by
training classification algorithms like SVM [Keyan and Tingting, 2011] where authors report
64% recall@6%FPR, XGBoost [Jullum et al., 2020] obtaining an AUC of 82%, or after comparing
various algorithms [Zhang and Trubey, 2019] in which the best model was a neural network
and obtained 74% AUC. The performances of various models are hard to compare across the

studies due to their different metrics and datasets.

3.3.2 ML-Enhanced AML Solutions Using Graphs

Recent work has tried to incorporate graph information in the AML system in order to capture
network patterns. Weber et al. [2019] benchmarked graph convolutional networks against
various supervised methods and concluded that random forest algorithms provide a better

performance, despite the lack of graph-based information. Oliveira et al. [Oliveira et al., 2021]
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propose GuiltyWalker, leveraging random-walks on a cryptocurrency graph to characterize dis-
tances to previous suspicious activity. The authors reported a 5 percentage points improvement
in F1 score when including these novel features. We leveraged the GuiltyWalker method in our
research, generalizing it for cases with label delay and incorporating it into our Walking-Profiles

framework, as discussed in Section 4.3.2

Random-walks were also used in [Hu et al., 2019] on top of a transaction graph representing
the bitcoin network. Savage et al. [2016] propose a community detection approach, from which
neighborhood-centric features are extracted and ingested by a supervised ML model. On a real-

world dataset, the best model was a random forest classifier achieving over 80%recall@20%FPR.

Other works propose graph-based suspiciousness scores based on money flows [Li et al.,
2020, Sun et al., 2021]. These algorithms do not use a learning algorithm and instead build a
detection system incorporating business knowledge about money flows. The scope is to detect
novel types of money laundering activity (i.e., reducing false negatives), while our goal is to

reduce incorrectly alerted events (i.e., reducing FPs).

Drezewski et al. [2015] employed graphs to enhance the analysis of financial flows in
preventing money laundering activities. Through the creation and examination of social
networks derived from bank statements and the national court register, their system categorized
roles within these networks, identified interconnections, and employed visual representations
of the graph for analytical ease. The system’s node role assignment within the graph was

determined by the node’s graph feature values, such as PageRank [Brin and Page, 1998].

In a different approach, Savage et al. [2016] developed an automated mechanism that
identified money laundering activities by scrutinizing group behavior within transaction
networks. This method integrates network analysis with supervised learning, utilizing both
SVM and random forest algorithms. By focusing on smaller interacting groups exhibiting
suspicious collective behavior, their model harnessed a plethora of demographic, network-
centric, transaction-related, and temporal features crafted from domain expert insights. When
tested on real-world data from the Australian transaction reports and analysis centre, this model
achieved an average AUC of 92%. However, certain limitations, such as potential information
leakage due to the non-temporal formation of communities, raise concerns regarding system

compliance.

Considering the AML process as described in Chapter 1, an intuitive technique is to search
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for cyclical patterns within a graph, recognizing that money launderers typically aim to retrieve
money they’ve channeled through the network. While Alibaba group’s approach of detecting
graph cycles [Qiu et al., 2018] primarily targets fraud, it has potential applications for AML.
Nonetheless, sophisticated criminals employing varied identities could easily elude simple cycle
detection. The efficacy of this technique might be enhanced by integrating entity resolution to

pinpoint genuine entities, followed by cycle detection in the resultant enriched graph.

Further, Wagner [2019] leveraged the DeepWalk algorithm [Perozzi et al., 2014] to translate
bank transaction network graphs into latent vector representations for suspicious activity
detection linked to money laundering. Despite achieving an average AUC of 78.9% on data
from a German bank, the DeepWalk approach overlooks temporal aspects and specific attributes,

necessitating periodic retraining, thus challenging its production viability.

Lastly, Diga [Li et al., 2023] presented a probabilistic diffusion model tailored for graph
anomaly detection, targeting the AML domain within banking. The Diga model’s AML inference
system utilizes a subgraph sampler centered around a node, facilitated by a biased k-hop
PageRank. Post introducing Gaussian noise to the subgraph, it undergoes denoising through
a guiding classifier paired with a denoising network. Anomalies emerge from contrasting the
reconstruction discrepancies between the original and denoised subgraphs. Key takeaways from
this work encompass the efficacy of subgraph-level recovery on vast, sparse transaction graphs,
the merits of semi-supervised methods like Diga’s guided diffusion in amplifying performance,
and the significance of weight-sharing in conditioned graph generation to sidestep extended

training durations.






Walking-Profiles: A Framework for Graph

Feature Engineering

Integrating graphs with ML enhances our understanding of entity interactions, enhancing the
accuracy and robustness of classification models by considering both individual and collective
behaviors. This chapter delves into the Walking-Profiles framework, a graph feature extraction
approach using random-walks, provides a customization of these features to the AML domain,
and discusses how graph features are engineered and transmitted to ML models. The chapter is

structured as follows:

e Motivation: Section 4.1 explains the reasons for developing the methodologies presented

in this chapter, highlighting the gaps they address in existing literature.

e Walking-Profiles method: Section 4.2 offers an overview of the random-walk based graph
feature extraction framework. It also details our graph feature calculator, Walking-Profiles

(Section 4.2.1).

e Scalability techniques of Walking-Profiles: Section 4.2.2 introduces three strategies
specifically designed to enhance the scalability of computations and minimize memory
requirements for the Walking-Profiles framework, particularly when dealing with large-

scale datasets.

o Triage model: Customizing Walking-Profiles to the AML domain: In Section 4.3, an
adaptation of the Walking-Profiles framework to the AML domain is presented. This section

49
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introduces the triage model, an ML-based pipeline designed to decrease FPs in traditional
AML systems. The model incorporates customized Walking-Profiles features to enhance its

effectiveness in the specific context of AML.

e Results: Evaluating the Triage Model: Section 4.4 presents the research findings, empha-
sizing the effectiveness of the triage model. The model, which incorporates customized
Walking-Profiles features with a Light GBM [Ke et al., 2017] classifier, successfully reduces
FPs within the AML domain. Additionally, the section outlines the methodology employed

to explain triage model predictions at two distinct levels, as detailed in Section 4.4.7.

4.1 Motivation

As discussed in Chapters 1 and 2, graphs are a key tool for understanding interconnectedness,
especially useful in the AML domain. In Chapter 3, we reviewed how information is currently
extracted from graphs. However, for AML, where interpretability is important, existing methods
for feature engineering have gaps. They either do not fully support the temporal dynamics
of the graph, or they do not take into consideration the presence of features in both nodes
and edges, or they are hard to interpret. To tackle these issues, we propose a new framework,
Walking-Profiles. This solution is designed to automatically generate graph-based features from
temporal networks, filling the gaps in current methods. Additionally, we propose a tailored
customization of this framework for the AML domain, developed in collaboration with domain
experts. We also introduce the triage model to integrate machine learning and graphs into the
rule-based AML solutions. The following section will provide an in-depth exploration of the

Walking-Profiles framework, offering detailed insights into its structure and functionality.

4.2 Method

Walking-Profiles, our graph feature engineering framework, can be conceptualized as a modular
component, adaptable to any data workflow seeking to integrate neighborhood insights into its

decision-making process.

Upon receiving fresh data, the graph feature engineering component produces features that
encapsulate the neighborhood attributes of a certain node or edge in its graph representation.

This enriched neighborhood data subsequently augments the efficacy of the decision system,
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which may either be an ML model or a rule-based configuration. Refer to Figure 4.1 for an
example of incorporating the graph feature engineering component into a financial transaction

data processing workflow.

The graph feature engineering framework requires data to be in a graph format. Therefore,
transforming data from a tabular to a graph format is essential when it is not already in the

desired structure. This section details the two primary steps involved:

1. Graph Construction: This step is necessary only when the input data is in a tabular, or
other non-graph format. Its role is to convert this data into a graph format, which is
required for the graph feature extraction algorithm, Walking-Profiles. For construction
guidelines and considerations we refer the reader to Section 2.1.2. If the data is initially in

a graph format, this component is not needed and can be skipped.

2. Walking-Profiles: The Walking-Profiles algorithm is employed to extract relevant features
from the graph-represented data. It extracts important neighborhood information from

the target node, providing insights for the decision-making system.

This approach highlights the framework’s ability to handle different data representations,

ensuring effective processing regardless of the data’s initial format.

4.2.1 Walking-Profiles: A Random-walk-based Feature Extraction Engine

The feature extraction engine, as outlined in Algorithm 1 and Figure 4.2, processes data
structured as a graph where nodes represent entities and edges their relationships. The engine

follows a systematic approach to feature extraction, detailed through the following steps:

1. Target Node(s) Selection: Depending on the use-case, specific target node(s) are chosen
as the starting point for the random-walks. For instance, entities with recent activity or

entities of a particular interest might be selected.

2. Random-walks: This stage involves conducting random-walks starting from the selected
target node(s). These random-walks explore the graph by traversing edges. During these
walks, both node and edge features that are encountered are collected (the specific features
to be gathered, denoted as F, are hyperparameters of the method). The random-walks

allow us to capture the context and relationships of the target node(s) within the graph
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FIGURE 4.1: Simplified illustration of the Walking-Profiles component within transactional data

processing pipeline.

structure. In our feature calculator, various types of temporal random-walks are supported.
The first type (purely temporal) restricts the next explored edge in a walk to have an older
timestamp than the previous edge, similar to the approach presented in Node2bits [Jin
et al., 2019]. The second type of supported random-walks restricts the next explored edge
to have an older timestamp than the initial node’s timestamp, but not necessarily older
than the previous edge’s timestamp. To prevent leakage, edges that lie in the future of
the random-walk starting node time cannot be traversed. The graph itself can be either
undirected or directed, containing different types of nodes and edges. Depending on the
use-case, random-walks can follow edge-direction or be biased by node types, edge types,

node and edge features, or constrained by other factors, such as time.

. Summarization: The data collected during the random-walks is then summarized into a set

of relevant graph features. This summarization process processes the information gathered
during the random-walks into interpretable and informative graph features that describe
the characteristics of the target node(s) and their neighborhoods. The summarization
involves computing aggregations of the encountered features within the walks, effectively
capturing the key characteristics and patterns present in the neighborhoods of the target

node(s).
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Algorithm 1 Walking-Profiles: Random-walk based graph feature extraction engine

Require: G > Updated Graph data
Require: t_nodes > Target nodes
Require: K > Depth of random-walks
Require: N > Number of random-walks per target node
Require: F > Node features set (e.g., degree, client_age)

for each vertex v in t_nodes do
Initialize feature storage StoredFeats, = {}
forw =1to N do
current_vertex = v
for =1toKdo
Choose a random neighbor u of current_vertex
Collect features F,, into StoredFeats,
Update current_vertex = u
end for
end for

§U < Summarize features in StoredFeats, > Summarization Phase
end for

The summarization phase, plays an important role when characterizing a node’s neighbor-
hood, our engine focuses on understanding both the topology of the neighborhood (i.e., how the
relations are structured) and the distributions of node or edge features across the neighborhood.

The extracted graph features are categorized based on the following granularities:

e Node/Edge level: Data of node or edge properties traversed during random-walks starting
from a certain node are collected. These features provide insights into the local properties
of the target node(s) and the immediate relationships it shares with its neighbors. Further

details are provided in Section 4.2.1.1.

e Subgraph level: Data characterizing each individual random-walk starting from a certain
node is collected. This level of features gives a broader perspective of the graph by
capturing the paths and patterns observed during each random-walk, offering the ability
to capture specific node/edge-sequence patterns. Section 4.2.1.2 offers more detailed

insights.

e Community level: Data characterizing the collection of random-walks starting from a
certain node is gathered. These features aim to provide a higher-level abstraction of
the graph’s structure in proximity to the target node(s). More details can be found in

Section 4.2.1.3
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Figure 4.2 presents a clear example, demonstrating the Walking-Profiles framework in action.
Given a graph and a target node, labeled A, two random walks are executed. In this simplified
illustration, we focus on collecting the out-degree node feature, and the node ID. Subsequently,
during the summarization phase, we calculate three levels of graph features to encapsulate the

information gathered from these walks.

Walking-Profiles

Perform random-walbe Summarize random-walbe
WO Node-level (Degree)
Ag | Sum
5 1 6 e
000

> Subgraph-level
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FIGURE 4.2: Illustrative example of the Walking-Profiles framework in action.

In the following sections, we describe in detail the extraction process of such features,
and how they can be customized based on the application domain and specific use-cases.
Additionally, a practical example specifically tailored to the AML context will be detailed in
Section 4.3.2.

4.21.1 Node or Edge Level Features

Our engine is designed to differentiate between numerical and categorical attributes of nodes
and edges within a graph. Based on these characteristics, it computes a variety of features.
As we navigate the graph, we accumulate the values of both numerical and categorical target
features. For numerical features, in particular, we take an additional step of calculating the value

differences between each consecutive pair of nodes or edges.

During each random-walk, which extends up to K hops, we collect a series of values for each
feature of interest, resulting in a list that can contain as many as K values. Upon completing all
N random-walks, we compile a matrix with dimensions N x K, representing the values for each
feature of interest. It is important to note that a random-walk might terminate before reaching K
hops if it encounters a node without outgoing edges. In these cases, we leave the feature values
for the untraversed hops empty. This strategy is employed to prevent these partial sequences

from biasing the results of later aggregation functions.
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Subsequently, we characterize the distribution of these collected values using various
aggregations methods. These aggregations include a range of statistical measures, such as
maximum, minimum, mean, standard deviation, sum, percentiles, among others. The selection
of aggregation functions acts as hyperparameters to the algorithm, providing flexibility and

adaptability to the model based on the specific dataset and objectives.

One can either summarize the collected values by performing aggregations over the union
of values encountered over all walks or perform aggregations on the individual walks first

followed by a second aggregation over the summarized walks.

Topological information on this level can be obtained considering node degrees (or in-degree
and out-degree) as numerical node properties. Entity or relationship information on this level
can be obtained by considering features that are relevant to the use-case, for example, in financial

data one can consider account age and transaction amount.

4.2.1.2 Subgraph Level Features

Our engine focuses on using random-walks associated with categorical features to describe
distinct subgraphs and analyze the local regions around the nodes of interest. To utilize this
functionality, one or more target categorical node or edge attributes must be specified. As we
perform the random-walk, the system records the encountered values of the target attribute.
Leveraging the idea of the anonymous walk [Ivanov and Burnaev, 2018] (illustrated in Figure 3.1),
the engine represents the sequence of encountered categories (node or edge features) in an
anonymous pattern. Subsequently, we count the occurrences of each pattern in random-walks
starting from a specific node, and compute the ratio of occurrences to the total number of walks

to generate new features.

For instance, if the node identifier is the target categorical feature and we have a set
of random-walks starting at node A, suchas A—-B—-C, A—B—- A, and A —-C — D, the
corresponding anonymous walks are 1 —2 —3,1—-2 -1, and 1 — 2 — 3. We notice that the

first and third random-walks correspond to the same anonymous walk, resulting in ratios of

1-2—-3:066,and1—-2—-1:0.33.

Due to the potentially large number of anonymous walks (subgraph patterns), we can define
a reduced set of common patterns during a warm-up period or based on business knowledge.

This approach enables us to efficiently compute the ratio features described above.
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Subgraph-level features offer valuable insights into the topological and semantic characteris-
tics of the neighborhood, depending on the chosen categorical feature. For instance, considering
the node ID as the categorical node feature allows us to extract topological information, while
analyzing the transaction currency as the categorical edge property in a financial dataset provides

relevant relationship information.

Overall, our engine enables a comprehensive analysis of categorical features in random-
walks, providing valuable information about subgraphs and their associations with nodes of

interest.

4.21.3 Community Level Features

Community-level features offer valuable insights into the local regions around the target node,

based on a chosen categorical node property. The process involves two main steps:

Step 1: Community Formation: Given a certain categorical node property, we define the
community of the target node by the different values of that property encountered in all the
walks starting from this node. To ensure community relevance, we consider only values that
occur within the walks at least x times. For example, if the node property is node ID and x =1,

all nodes occurring in the walks will be considered part of the community of the target node.

Step 2: Data Collection and Feature Calculation: Community-level features require collect-
ing the chosen categorical node property of the traversed nodes during the walks. After all the
random-walks, we union the values (e.g., node IDs) that occurred, and then filter out values

that appear less than x times.

Our Walking-Profiles engine calculates two community-level features:

e Community Size: This feature represents the number of distinct values normalized by
the total number of distinct possible values in the graph. For instance, if the categorical
property is the node ID, the community size is the number of distinct nodes encountered

in the walks normalized by the total number of nodes in the graph.

e Community Sparsity: This feature is the ratio between the number of distinct values
and the total number of encountered values in the walks. In the node ID example, the

numerator and denominator represent the number of distinct nodes and the total number
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of nodes encountered in the walks, respectively. A higher sparsity indicates nodes visited

only once, while a lower sparsity suggests repeated visits to the same nodes.

Community-level features allow us to capture both topological and semantic neighborhood
information. For topological insights, we can use properties like node ID as the categorical
property. In social network scenarios, considering profession as the categorical node property

helps understand the homogeneity of the neighborhood around a specific node.

4.2.2 Scalable Walking-Profiles for Large-Scale Data Processing

Real-world graphs can be massive, exceeding the memory capacity of a single machine. Conse-
quently, scalable distributed implementations are required to efficiently perform random-walks
on such large graphs. The independence of random-walks allows for parallelization, enabling
us to propose two distinct approaches for calculating graph features in a distributed manner,

and a sliding window technique.

4221 Message-passing Approach

To compute the Random-walk-based features (Section 4.2.1), we propose using a message-
passing paradigm [Attiya and Welch, 2004]. In this approach, each target node sends a message
to its neighbors, conveying its information. Subsequently, the neighbors augment the received
message with their own information and pass it on to their respective neighbors. This process
continues iteratively for a specified depth K, representing the walk depth. After K iterations, we
collect the final messages and summarize them as features. Implementing this approach can
be achieved using Spark’s GraphX [Xin et al., 2013] module, which provides a graph-parallel

computation abstraction facilitating message passing and aggregation.

Later in Chapter 5, we propose adopting the message-passing approach with tailored
adjustments towards computing graph features in a streaming setting. Considering the dynamic
and continuous nature of streaming data, we can optimize the message-passing step by setting
it to occur only once during the walk process. By doing so, we limit the walk depth to a single
iteration (K = 1), which aligns perfectly with the streaming data paradigm. This strategic
adaptation not only ensures timely processing of streaming data but also takes inspiration from

the message-passing paradigm for effective feature computation in a streaming environment.
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As a result, our approach optimally addresses the challenges posed by streaming data, enabling

efficient and accurate graph feature extraction.

4.2.2.2 Distributed Joining Approach

Incorporating the principles of message-passing while operating independently from the GraphX
module, the distributed joining approach is detailed in Algorithm 2, and illustrated in Figure 4.3.
The methodology initiates with the construction of a distributed table, G, which is organized
into two primary columns: node, listing each graph node, and neighbors_lIst, cataloging the

direct neighbors of each node.

We also define another table, target_G, which is essentially a subset of table G. This table
contains the target nodes, those from which we intend to commence our random-walks, and
their immediate neighbors. For clarity, we rename its columns to t_node and t_neighbors_Ist.
Furthermore, an additional column, walk, is introduced to the target_G table to store the

resulting random-walk initiated from each target node.
The process is then iteratively conducted as follows:
1. Add a new column (or overwrite if it exists) to the target_G table, termed chosen, which
is populated by randomly selecting a neighbor from the t_neighbors_lst column.

2. Execute a join operation between tables target_G and G. This is accomplished by aligning
the chosen column from target_G with the node column in G. The outcome is the
augmentation of a new column, neighbors_Ist, that displays the neighbors of the nodes

featured in the chosen column.
3. Overwrite t_neighbors_Ilst with the data from neighbors_Ist.
4. Incorporate the values from the chosen column into the target node’s walk list.
5. Reinitiate from the first step.
Upon completing this cycle K times, we achieve random-walks of depth K. To conduct
N such random-walks, we can either replicate every target node across N distinct rows or

sequentially (or in parallel, given their independence) repeat the aforementioned process N

times.
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Following this merging process, we obtain the details of the random walks. Subsequently, a
step is undertaken to intersect this information with the nodes and edges features. Specifically,
for the summarization phase, the random walks resulting table is joined with the tables

containing the desired features to produce the feature matrices.

A tangible instantiation of such distributed tables would be the dataframes in Spark.

Algorithm 2 Walking-Profiles: Distributed Implementation

Require: G[node, neighbors_lst] > Graph with nodes and their neighbors
Require: target_G|t_node, t_neighbors_lst] > Target nodes subset of G
Require: K > Depth of random-walks
Require: N > Number of random-walks per target node

Add two empty column chosen, and walk to target_G
Duplicate each row in target_G N times for multiple walks
forj =1toKdo
chosen <~ Random neighbor from t_neighbors_lst
Join target_G.chosen with G.node
Update target_G.t_neighbors_lst with G.neighbors_lst
Append chosen to target_G.walk
end for

To provide a clearer visual representation, Figure 4.3 illustrates a 2-hop random-walk
originating from two distinct target nodes, 6 and 4, resulting in walks (6, 1, 2) and (4, 5, 6)

respectively.
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FIGURE 4.3: Applying distributed Walking-Profiles in a 2-hop walk example.
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4.2.2.3 Sliding Window Technique for Memory Reduction

Organizations dealing with extensive real-time data often confront the challenge of representing
a complete data history. Such representation necessitates significant memory and computational
resources. In cases where the premise that recent data holds more relevance for decision systems,

we propose the usage of a graph construction strategy anchored in the sliding window paradigm.

This method diverges from retaining the complete data chronicle in the graph. Instead, we
adopt a sliding window approach, keeping only the most recent data, typically spanning over
the last x units of time. By keeping only this recent subset, this intuitively leads to a reduction in
memory usage. Moreover, an added advantage of this strategy is the prevention of exhaustive
scans across the entire graph, which enhances computational efficiency. Consequently, this
approach ensures that organizations can manage and analyze large data streams effectively

without overburdening resources.

4.3 Triage Model: Integrating Walking-Profiles with AML

Predominantly, AML systems are composed of rule-based systems [Li et al., 2017] (depicted
as Rules in Figure 4.4.a). These systems, while transparent and interpretable, often raise
numerous false alarms that overwhelm human analysts with unnecessary workload (reported
FPRs are around 95-98% [Lannoo and Parlour, 2021]). To address this issue, we propose an
innovative ML component designed to triage alerts generated by the rules (triage model in
Figure 4.4.a). Functioning at the level of alerts, this model retains its interpretability, and its
design accommodates the inclusion of diverse features tailored to the specific demands of the
AML application. The triage model’s outcome holds a dual purpose: it can suppress alerts with
lower scores, removing them from the queue for analysis, or prioritize alerts based on their
scores, leading to an organized queue of alerts for further analysis. Importantly, given that all
alerts originate from the rule-based systems, the integration of the triage model preserves the

inherent advantage of explainability.

For an enhanced efficacy, our proposed system harnesses a spectrum of feature types, ranging
from entity-centric to neighborhood-centric (graph-features), subsequently processed by our

triage model to classify suspicious activity as shown in Figure 4.4.b.
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FIGURE 4.4: Overview of the full triage model system and details.

Subsequent subsections provide a granular exploration of the triage model, illustrating its
adaptation from our graph feature engineering framework with an emphasis on reducing FPs.
We particularly shed light on alterations made during the graph construction phase and in the

realm of feature computation.

4.3.1 Graph Construction

Financial datasets usually manifest in tabular format. However, to extract neighborhood-centric

insights we need to represent the data in a graph.

Financial transactions, mainly occurring between bank accounts, naturally suggest represent-
ing accounts as nodes, and transactions as edges between accounts. The direction of the edge
follows the direction of the money (i.e., from sender to receiver), and edge attributes include the
transaction timestamp and amount. Figure 4.5.a shows a toy example of our tabular data and
how we represent it in a graph: each entity (account in this case) is represented by a node, which
can have two types (Internal or External). Edges represent transactions between entities (i.e.,
accounts). Their direction follows the money flow, edges also have the timestamp and amount

of a transaction as attributes.

Scalability challenges emerge when dealing with large transactional data, especially for fi-
nancial titans processing millions of transactions daily. Acknowledging the decreasing relevance
of historical data, our solution pivots to a dynamic graph architecture, using sliding windows
to identify relevant data subsets. The graph undergoes an iterative update, forgetting old
edges and embracing the current day’s transactions, as detailed in Figure 4.5.b which shows an

example of a sliding window of 60 days. Therefore, every node linked to the day’s transactions
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FIGURE 4.5: Graph construction: from tabular data to graph representation.

has its graph attributes computed. While our current framework operates on a daily cycle,

adaptability remains at its core.

4.3.2 Customising Walking-Profiles for AML

As a concrete example of the features described in Section 4.2.1, we will discuss the AML
domain. Money laundering concerns disguising the origin of illegally obtained money, typically
by moving funds between various accounts and FIs creating a complex web of transactions.
Using information characterizing the transaction graph is therefore relevant in this context. We
held multiple sessions with AML domain experts to gain a deeper understanding of the problem
and the data commonly used in their investigations. Based on these collaborative interactions,

we identified the following features for computation in the AML context:

1- Node or Edge Level Features

e Degree: Based on the hypothesis that suspicious accounts tend to interact with a larger
number of counterparties, we derive in- and out-degrees for target nodes. This helps

understanding the structure of the neighborhood.

e Delta Time: We use the transaction timestamp edge feature and calculate the differences
in transaction timestamps across the walks. thereby estimating the transaction velocities

during the random-walks.

e Delta Money: By employing the transaction amount edge feature, we obtain the variance in

the transferred sums.

e Flow Position: This metric, denoted as flow position, is derived using;:
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Y ($sent) — Y- ($received)
Y ($sent) + Y. ($received)

flow position =

It ranges from —1to 1. A —1 score indicates an account primarily receiving money, whereas
a 1 indicates an account that only sends money. A 0 indicates balanced transactions, often
characterizing what are usually known as money mule accounts in laundering schemes.
For granularity, we evaluate this metric over varying durations, such as one week, and

collect these resulting flow position features within the walks.

e GuiltyWalker (GW): Recognizing the tendency of suspicious nodes to exist within criminal
networks (See example in Figure 4.7), the GuiltyWalker (GW) features [Oliveira et al., 2021]
aim to leverage this pattern. Unlike original GuiltyWalker’s random-walks that terminate
upon identifying a known illicit node, our modified approach is more generalized. We
allow random-walks to continue even after encountering a suspicious node, ensuring the
collection of other features and enriching the GuiltyWalker information. In this process,
the node label is adopted as the categorical node feature. Subsequently, we derive metrics
such as the distance to the illicit node and the total count of illicit nodes encountered
during each walk. These node labels could represent either confirmed money laundering

cases or files of SARs based on historical data.

o GuiltyWalker-delay (GWd) GuiltyWalker assumes immediate feedback, i.e., that labels
are immediately available for all past transactions. In AML, however, investigations are
lengthy, resulting in label delays. We propose an adaptation of GuiltyWalker by introducing
a waiting period. We start by training an ML model using entity profiles and degree
features on a first training set. We use the resulting model to score a second training set
and define a suitable threshold to obtain pseudo-labels. We then compute the GuiltyWalker
features using the pseudo-labels for the unlabeled transactions in the waiting period and
the actual labels otherwise. Finally, we train the triage model on the second training set,

integrating both actual and pseudo-labels.

2- Subgraph Level Features

The following categorical features are used to compute subgraph level features as described in

Section 4.2.1.2.
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e Currency patterns: By using the transaction currency edge feature as a categorical metric,
we analyze currency exchange patterns around nodes to detect potential correlations with

money laundering practices.

e Transaction patterns: We use the node ID as the categorical feature. This provides a

structural insight into the graph surrounding the target node.

3- Community Level Features

e We calculate the community size and community sparsity features leveraging node ID as

detailed in Section 4.2.1.3.

4.3.3 Triage Model

4.3.3.1 Model

Our proposed triage model is adaptable and not restricted to any particular classifier. However,
for the purpose of enhancing interpretability, we recommend utilizing tree-based models such as
random forests [Ho, 1995] or LightGBM [Ke et al., 2017]. The model is trained using raw tabular
data enriched with engineered features, encompassing entity-centric and neighborhood-centric
attributes. The model generates a score that quantifies the degree of suspicion associated with a

given transaction.

4.3.3.2 Explaining Classifier Score

The objective of this section is to explain the scores produced by our triage model for two key
audiences: human reviewers and regulatory bodies. Reviewers seek clarification on the rationale
behind raising a specific alert as suspicious, while regulators focus on justifying the exclusion of

certain alerts.

Assuming that the triage model is grounded in a tree-based classifier (e.g., LightGBM), we
employ TreeSHAP [Lundberg et al., 2020] for model interpretation due to its computational
efficiency and empirical effectiveness as validated by its developers. TreeSHAP is a model-
specific explanation method tailored for tree-based models. It computes exact Shapley values

-quantifying each feature’s impact on the final prediction- efficiently by utilizing the structure
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of these models. The algorithm involves traversing the tree from root to leaves, attributing

contributions to to each feature encountered. The process is repeated for all trees in the model.

To enhance comprehensibility, we aggregate explanations by categorizing features into
distinct semantic groups. By analyzing the features employed by the model, we group similar
attributes together. This categorization is expressed as key-value pairs, wherein keys represent
semantic groups, and corresponding values enumerate the features associated with each group

based on human interpretation.

For every event necessitating an explanation, the following procedure is undertaken:

1. Retrieve the SHAP values for the event, leveraging the TreeSHAP library.

2. Aggregate SHAP values associated with the same semantic category to form an array of
aggregated SHAP values. The aggregation function can be sum, average, or any other

aggregation function.
3. Create an illustrative visualization using the consolidated features and SHAP values.
With this procedure the reviewer will have a high level picture on what group of features is

contributing to the event being considered of high risk or low risk. Then if the reviewer wants

to see the details, they always can visualize the original shapely values of every feature.

4.4 Experiments & Results

In this section, we begin by detailing the real-world dataset employed for our experiments in

Section 4.4.1. Subsequently, we delve into experiments conducted using our proposed triage ML

model. These experiments utilize raw tabular data augmented with specific engineered features:
e Entity-centric features, as discussed in Section 4.4.3.

e Neighborhood-centric features, elaborated in Section 4.4.4.

e Features derived from the customized Walking-Profiles graph (described in Section 4.3.2),

results are covered in Section 4.4.5.
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4.4.1 Data

We utilize a real-world banking dataset for the following experiments. Due to privacy constraints,
we cannot reveal the bank’s identity nor provide exact details, but we provide approximate

metrics to characterize the data where possible.

The raw dataset encompasses around half a million transfers that were alerted by a rule-based
system (See Figure 1.2) involving 400,000 accounts and spans over approximately one year.
It distinguishes accounts based on their association with the bank can be internal or external.
Transfers occur in both directions between two internal accounts or between an external and
an internal account. The dataset is labeled on a transaction level, with a binary label indicating
whether a transaction was part of a SAR. However, we devise the proposed triage model to
generate alerts at the account level, as is typical in AML. Moreover, in our experiments, we
intend to assess accounts on a daily basis. Hence, we preprocess the raw dataset to contain
aggregated daily account features, including total sent and received amounts, the counterparties,
the associated timestamps, and the direction. We then extrapolate from the transactional labels
to infer the account labels: if there is a suspicious transaction involving an account on a specific
day, we mark that account as suspicious on that day. Importantly, this means that suspicious
accounts form connected pairs in our preprocessed dataset. Suspicious accounts comprise less

than 3% of the alerted batch, leading to an overwhelming 97% of FPs.

The dataset’s unique categorical feature indicates the account type—either external or
internal—and is binary-encoded as 0 or 1, respectively. We retain numerical features in their

original form and use this dataset as a foundation to compute all subsequent features.

To elucidate the structural differences within the dataset, Figure 4.6 demonstrates the degree
differences between legitimate and suspicious nodes in the dataset. The left subfigure details
the in-degree exploration, showing the number of incoming connections to each node. This
indicates the frequency with which different nodes receive interactions or transactions. We notice
that suspicious nodes often exhibit high in-degrees, particularly when the in-degree exceeds a
hundred, suggesting an increased likelihood of the node being suspicious. The right subfigure,
on the other hand, displays the out-degree exploration, which counts the number of outgoing
connections from each node. Similarly to the in-degree we notice that high out-degrees are
associated with suspicious nodes more commonly. This comparison between in-degree and out-
degree metrics is crucial for identifying distinct patterns in the network, thereby differentiating

between normal and potentially suspicious nodes.



4. WALKING-PROFILES: A FRAMEWORK FOR GRAPH FEATURE ENGINEERING 67

1 suspicous 4 suspicous
10 legitimate 10 legitimate
> >
g c
g 1073 g103
o (=3
@ @
s e
10-° 103
10° 10 102 10° 10 102
In-Degree Out-Degree

FIGURE 4.6: Data exploration: differences in degree between legitimate and suspicious nodes

Building upon the insights gained from the degree analysis in Figure 4.6, we now turn
our attention to Figure 4.7 for an understanding of the network’s interconnectedness in the
context of AML investigations. This figure compares two separate neighborhoods, identified as
weakly connected components in an AML investigation network. These components represent
subgraphs where each node is accessible from every other node within the same component,

ignoring edge direction, and isolated from nodes outside the component.

In Figure 4.7 blue nodes represent legitimate accounts and red nodes represent suspicious
ones (were involved in a SAR). Moreover, nodes labeled with "E” represent external accounts
to the financial institution, while those marked with ‘I’ indicate internal accounts. The upper
subfigure displays a network component composed of only legitimate accounts. This section
effectively illustrates the normal transaction and interaction patterns among these accounts,
providing a clear view of the typical functioning within the FI. In contrast, The lower subfigure,
shows a network component consisting of suspicious accounts, marked as red nodes. This
component is noteworthy for the presence of suspicious accounts showing how they are
interconnected mainly through two suspicious hubs. The differences between these two
components underscore the utility of graph-based analytical approaches in detecting criminal
networks in AML case investigations, thereby helping in the identification of potentially illicit
activities. Building on this analysis, the following discussion delves deeper into how Walking-

Profiles can leverage these patterns of connectivity to enhance AML investigations.

4.4.2 Experimental Setup

We partition the dataset temporally into three distinct intervals: the earliest 60% is earmarked
for training, the subsequent 10% for validation, and the remaining 30% for model testing. For

the GuiltyWalker with delay features (refer to Section 4.3.2), the training subset is further divided.



68 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

FIGURE 4.7: Compararing legitimate and suspicious account neighborhoods in an AML
network.

We aim to maximize the suspicious activity captured by our triage model (i.e., TPs) while
minimizing incorrect alerts (i.e., FPs). We choose our optimization objective to maximize recall
at a specific FPR. The FPR can be chosen in accordance with the client. In our experiments, we
consider Recall@20%FPR as our target metric, which translates to a reduction of the FPs by 80%
compared to the rule system itself. Moreover, because most events are legitimate, the chosen
FPR (i.e., 20%) roughly corresponds to the number of alerts to be reviewed to obtain a particular

recall.

To illustrate the relationship between our triage model and the rule-based system (depicted in
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Figure 1.2), refer to Figure 4.4. In the subsequent sections, we delve into the various features

utilized for training the triage model classifier.

4.4.3 Triage Model using Entity-centric Features

4.4.3.1 Data Preprocessing and Entity-centric Features Creation

In this experiment, we augment the raw data with entity-centric features—those that capture
the historical essence of an entity without delving into neighborhood details. Initially, the
features we engineer for our triage model are tailored to capture the transactional history unique
to each account. Following Branco et al. [2020], we term these features as profiles. Defined
more specifically, profiles are arithmetic aggregations done across a specified field and within
a given time window, for example, the total amount spent by an account over the preceding
week. Such features empower an ML model to compare an account’s long-standing history
(long windows) against its recent actions (short windows), thereby understanding patterns

indicative of suspicious activities.

For the purpose of our tests, we create roughly 400 profile features. Taking the account as
our grouping entity, we aggregate data points on the amounts sent and received. Five distinct
time frames are taken into account: a day, a week, two weeks, a month, and two months. During
the aggregation phase, we employ an array of functions—sum, mean, minimum, maximum,
and count. Additionally, we explore the comparative dynamics between two-time windows via

ratios and differences.

Subsequently, to choosing the most important features, we employ a permutation-based
feature importance method. This entails training a gradient-boosted trees model on a subset of
the training data. Our aim is to obtain set of features, which account for 90% of the performance
concerning our metric of interest (i.e., Recall@20%FPR). Consequently, we select approximately
top 100 important entity features to enrich our dataset. The entire process of profile creation is
orchestrated via our in-house platform. This platform automatically generates features based
on the semantic labels of the data fields (e.g., entity, location, date, or amount) [Marques et al.,

2020].

All experiments are executed on the real-world banking dataset, detailed in Section 4.4.1. In
these experiments, the primary entities targeted for labeling are the bank accounts. Uniformly,

every model deploys the raw features delineated in Section 4.4.1, accompanied by a suite of
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approximately 100 profiles, each grounded on the sent and received transfer amounts tied to
individual accounts. The first triage model we introduce is trained solely using the raw features

and the aforementioned entity-centric profile features.

44.3.2 Optimization

We use Optuna [Akiba et al., 2019] to optimize the hyperparameters of all models. Our focus
was on a set of machine learning models, which included Random Forest [Ho, 1995], Logistic
Regression [Dobson and Barnett, 2018], and LightGBM [Ke et al., 2017]. The process involved
training a total of 150 models, with 50 distinct models for each machine learning algorithm,
selected through random sampling. The performance of these models was then evaluated based
on their performance on a validation dataset. The optimal model was chosen based on this
performance assessment, using the Recall@20%FPR metric. Detailed information about the
algorithms used and the specific range of hyperparameters considered for each is provided in

Table 4.1.

Algorithm H Hyperparameter ‘ Range/Values ‘
Logistic Alpha [0.01 - 0.09]
Regression || Standardize numericals | [True, False]
Max depth of trees [10 - 40]
E;{leitom Number of trees [100 - 200]
Min instances for split [10 - 50]
Num of leaves [200 - 500]
LightGBM Min data in leaf [100 - 200]
Learning rate [0.01 - 0.09]

TABLE 4.1: ML algorithms and Hyperparameters ranges for triage model

4.4.3.3 Results

The top-performing model was a LightGBM, with a test performance close to 80%Recall@20%FPR.

This LightGBM model is considered as our baseline triage model in subsequent experiments.

4.4.4 Enriching Triage Model with Neighborhood-centric Features

This section investigates the potential enhancement to the triage model using graph-based features
in addition to the existing entity-centric features. We focus on three primary features: node

degree, GuiltyWalker, and GuiltyWalkerDelay.
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Our approach begins with the construction of a directed graph with accounts as nodes and
transactions between these accounts as edges. A more detailed methodology is provided in
Section 4.3.1. Given the diminishing significance of older events in current predictions, we
use a sliding window approach to ensure only the most recent transactions are considered
(Section 4.2.2.3). Pursuant to this, graph snapshots spanning 60-day intervals were formed based
on the guidance from [Jullum et al., 2020]. We also explored different intervals for suspicious

and non-suspicious activities.

The features under examination are detailed as follows:

Degree Features.

We hypothesize that the class of an account might influence its number of neighbors and
the corresponding monetary flow. We thus determine both the in-degree and out-degree for
each node and its adjacent neighbors. The neighboring degrees were aggregated using mean,
minimum, and maximum operations. In this way, we create eight new features that characterize
the number of counterparties of an account and its neighborhood. Analogously, we calculate a
weighted version of these features by using the transferred amount as the edge weight. When
these degree features were integrated into the base model, we observed an enhancement in
performance by 11.6 percentage points in Recall@20%FPR, supporting our theory (See Figure 4.8,
+Degrees). While weighted versions of these features (using transaction amounts as weights)

were developed, their efficacy remained inferior to the standard degree features.

GuiltyWalker features.

Given the complex connections often seen in money laundering schemes, we postulate a
higher likelihood of interconnected suspicious nodes. Therefore, we derived GuiltyWalker
(GW) features [Oliveira et al., 2021], which assess proximity to such suspicious nodes through
random-walks. Random-walks are generated which stop upon reaching a known illicit node
or if there are no available connections. In our implementation, we run 50 random-walks
for each target node. We then compute the features proposed in the original work, namely
features characterizing the length of the random-walks (minimum, maximum, median, mean,
standard deviation, 25th, and 75th percentile), the fraction of successful random-walks (i.e., the
"hit rate"), and the number of distinct illicit nodes encountered. The inclusion of GW features

boosted the model’s performance by 13.4 percentage points in Recall@20%FPR. Remarkably,
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FIGURE 4.8: Triage model: Impact of graph features on performance.

GW performance peaks, with up to a 38% improvement, were observed in lower FPR regions

(Figure 4.8, +GW).

In addition, we combined both degree and GuiltyWalker features with the base model to
determine if they offer complementary insights. Our findings indicated some overlap, yet the
combined model outperformed models with individual features, with an enhancement of 15.5

percentage points in Recall@20%FPR (Figure 4.8, + GW+Degrees).

GuiltyWalker-delay features (GWd).

Real-world evaluations indicate that while GW features effectively reduce FPs, the foundational
GW algorithm [Oliveira et al., 2021] presumes daily updates of previous labels—a scenario not
always feasible in real banking AML contexts. Recognizing delays in actual banking operations,
we modified the GW algorithm to utilize model scores and thresholds for generating pseudo-
labels for recent events. This is expanded upon in Section 4.3.2. Our threshold optimization
involved an extensive grid search across several values. Under a 7-day label delay, an optimum

gain in Recall@20%FPR was observed for a threshold of 0.25.

Subsequent tests with varying label delays from 1 to 30 days confirmed that reduced delays
led to superior performance. Interestingly, even with a one-month labeling delay, the GWd

features significantly augmented the baseline model’s performance (Figure 4.9).

In a final set of tests, we assessed the combined performance of degree and GWd features.
Although the degree features improved TP rates, they did not exceed the performance achieved

by solely using degree features (compare blue line in Figure 4.8 with the red line in Figure 4.9).
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FIGURE 4.9: triage model: Impact of label delay on performance.

This was consistent even when the degree features were derived from the reduced dataset
intended for GWd models. Considering the computational efficiency, the degree features emerge

as an optimal choice in such scenarios.

4.4.5 Enriching Triage Model with Walking-Profiles Features

In this section we assess the added value of enriching a baseline that uses entity-centric features
with the WalkingProfiles features detailed in Section 4.3.2 Our aim is to leverage a triage model
and perform binary classification to predict whether an alerted activity is indeed suspicious or is
an FP. We use a LightGBM [Ke et al., 2017] classifier as the triage model and Optuna [Akiba et al.,
2019] is used for hyperparameter tuning. Similary to previous experiments (Section 4.4.3.2) we

use 50 models and Recall@20%FPR as our target metric.

Similarly to previous section, our approach begins with the construction of a directed graph
with accounts as nodes and transactions between these accounts as edges. A more detailed
methodology is provided in Section 4.3.1. Given the diminishing significance of older events
in current predictions, we use a sliding window approach to ensure only the most recent
transactions are considered (Section 4.2.2.3). Pursuant to this, graph snapshots spanning 60-day

intervals were formed based on the findings from [Jullum et al., 2020].

To calculate the graph features, we use the WalkingProfiles AML customization (Section

4.3.2). We choose the number of walks equal to N = 50 and the walk depth equal to 5.

In figure 4.10, we show the difference in recall to the baseline vs. FPR. Results show that by

adding graph-based features, we obtain an improvement up to 12%Recall@20%FPR assuming a
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label delay of 1 day for the GuiltyWalker features and an improvement of 7%Recall@20%FPR
assuming a label delay of 7 days. Furthermore, we evaluate the model without using the
GuiltyWalker features and obtain an improvement of 5%Recall@20%FPR. It is important to note
that Figure 4.10 can not be directly compared with Figure 4.8, and Figure 4.9 due to the use of

two different baselines.
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FIGURE 4.10: Triage model: Impact of integrating Walking-Profiles graph features.

Finally, regarding the inference time in this setup, our model processes 20 events per second

in the used AML datasets.

4.4.6 Assessing Sliding Window Effects on Triage Model Performance

In the previous experiments, we built a dynamic graph using a sliding time window of 60
days (Section 4.3.1). We now wondered how changing this window affects the triage model
performance. Moreover, since our experiments showed that connections to known suspicious
accounts are important features, we investigate whether keeping a more extended memory
for such suspicious accounts compared to legitimate ones is helpful. To this end, we use a
different window for each event type (legitimate vs. suspicious) and retrain our best model for
a realistic case of label delays, which uses only degrees features as described in the previous
section. Similar results were obtained when retraining the best model without label delay (using
degrees+GW features, data not shown). We perform a grid search for values of these time

windows between 0 days (i.e., events are not used in the graph at all) up to 90 days. For brevity,
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FIGURE 4.11: Triage Model: Impact of varying time window size on model performance,

illustrating the balance between Time Windows for Suspicious Events (TWS) and Time Windows

for Legitimate Events (TWL). The figure highlights how different time window sizes influence
the predictive performance of the model.

we refer to the time window for legitimate events as TWL and to the time window for suspicious events
as TWS. Firstly, we find that, for any value of TWS, the best performance is achieved for a TWL
equal to one day. Secondly, the performance increases only marginally when increasing the TWS
beyond 30 days (Figure 4.11). Therefore, we can construct a good model efficiently by keeping
only one day of legitimate events and 30 days of suspicious events in our graph. Importantly,
having separate time windows for legitimate and suspicious events implies knowing the label
at least after the duration of the smallest time window. Thus, for a label delay of 7 days, the
best model we can construct efficiently would be using a TWL of 7 days and a TWS of 30 days.
Nonetheless, it is interesting that we can significantly reduce the data needed to construct the

graph without sacrificing performance.

4.4.7 Interpreting the Triage Model Through TreeSHAP

This experimental phase aims to understand the underlying mechanics of our triage model, with
a specific focus on facilitating comprehension for two pivotal stakeholders: human reviewers
and regulatory entities. To achieve this depth of insight, the TreeSHAP technique, as elucidated

in Section 4.3.3.2, is harnessed.

In order to construct semantic groups of features, a manual analysis of the enriched features

is undertaken. Some illustrative features from this analysis include:

e Receivers magnitude: Comprising features that aggregate node degrees of recipients

receiving funds from the node being studied.
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e Money sent: Including features that combine data about money leaving accounts in the
nearby area. For example, the "Average amount sent" feature reveals information about

the amount of money exchanged in the local network.

Figures 4.12 and 4.13 provide an illustrative example of the level two (aggregated) and level
one (detailed) explication processes for a suspicious case that the model accurately assigned
a high score. Figure 4.12 showcases a prominent red color, indicating heightened suspicion
stemming from variables like neighborhood magnitude, the account’s internal nature, and
substantial transactional sums within its radius. For a granular examination, refer to Figure 4.13,
which discloses specific money amount values and node degrees responsible for the elevated

model score.

higher = lower

base value output value
5.912 4912 3.912 2912 -1.912 -0.9123 0.08768 1121 2088
Receivers magnitude = 2.714 Entity_type =1 Money sent = 7.266e+4

FIGURE 4.12: Triage model: Aggregated explanation for a suspicious case.

higher = lower
base value output value
2 112 4.912 -3.912 -2.912 -1.912 -0.9123 0.08768 A1 2.088 3.088
_avg_in_degree =6 | Amount_min_sent = 7.266e+4 Amount_mean_sent = 7.266e+4 | Amount_sum_sent = 7.266e+4 Entity_type = 1 Amount_max_sent = 7.266e+4

FIGURE 4.13: Triage model: Detailed explanation for a suspicious case.

In contrast, Figures 4.14 and 4.15 illustrate the model’s reasoning for accurately assigning a
low score to a legitimate case. Figure 4.14 demonstrates how aggregated features contribute to
a decreased score, indicative of diminished suspicion (a potential FP of the rules system). For a

comprehensive exploration, delve into Figure 4.15.

higher = lower
output value base value
-3.412 -3.02: 912 2412 -1.912 412 9123 412
Money sent = 5.013e+4 Entity_type =2 Receivers magnitude = 1 | Senders magnitude = 0 | Money received = 0

FIGURE 4.14: Triage model: Aggregated explanation for a legitimate case.

higher = lower
output value basze value

2 -3.412 -3.02:12 2412 -1.912 1412
H o >

am_sent = 5.013e+4 ' Amount_mean_sent = 5.013e+4 | Entity_type =2 | Amount_max_sent = 5.013e+4 ' Amount_sum_received = 0 ' successors_num_neighbors = 1 | predecess

3.9 R

FIGURE 4.15: Triage model: Detailed explanation for a legitimate case.
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4.5 Summary

In summary, graphs play a crucial role in detecting new patterns as they supplement traditional
ML techniques by providing a more holistic view of the target entity’s behavior through
the analysis of its interactions within a network. This broader perspective can lead to more
sophisticated and insightful classification models, ultimately advancing our ability to recognize

and understand complex patterns in data.

Within this chapter, we present a dynamic graph feature engineering framework that exhibits

the following characteristics:

Works with temporal graphs (edges are timestamped)

Flexibility in considering any node or edge feature.

Customizability to suit various scenarios.

Generation of explainable features for better interpretability.

Calculation of graph features on the node, subgraph, and community levels.

Furthermore, we demonstrate the practical application of this framework in the AML domain,
working alongside rule-based systems in a novel pipeline in Section 4.3. The aim is to reduce

FPRs of rule-based systems while ensuring compliance with regulatory standards.






Graph Sprints: A Method for Low-latency

Graph Feature Engineering

Real-world datasets often have a dynamic graph structure, characterized by evolving rela-
tionships between data points, as seen in social networks, financial datasets, and biological
systems. ML models, particularly GNNSs, excel in handling these datasets, but face challenges
with CTDGs due to high computational costs in embedding computations. This chapter presents
the Graph-Sprints method, a random-walk based graph feature extraction framework designed
for low-latency solutions in large data and high-frequency contexts like financial transaction,
focusing on leveraging the latest information for enhanced capabilities. The organization of the

chapter is as follows:

e Random-walk Based Features: Section 5.1 initiates with an overview of the Random-walk

based graph feature extraction framework, as detailed in Chapter 4, Section 4.2.1.

e Graph-Sprints method: Section 5.2 elaborates on the derivation of our Graph-Sprints
method from the random-walk based framework, delving into the intricate details of the

method.

e Memory reduction techniques: Section 5.2.5 introduces two strategies tailored to minimize

the memory demands of our Graph-Sprints approach.

e Theoretical analysis: Sections 5.3.1 and 5.3.2 Undertake a rigorous theoretical analysis,

exploring its equivalence to random-walks and its complexity dynamics.

79
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e Experiments and results: Section 5.4 Culminates with a presentation of our findings,
showcasing how the Graph-Sprints features, when combined with a neural network
classifier, manage to be both time-efficient and retain robust predictive performance,

when compared against the more time-intensive GNNs.

Up-_tr?f-;iate Random-walks ~ Typical GNNs Graph-Sprints
i
Outdated Asynchronous
info embedding
updates
High latency Low latency

FIGURE 5.1: Overview of various approaches in CTDGs.
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5.1 Random-walk Based Features

Prior to delving into the intricacies of our Graph-Sprints framework, it is relevant to provide
a brief summary of the random-walk based feature extraction framework. This framework,
extensively detailed in Section 4.2.1, lays the foundation upon which our subsequent discussions
will be anchored. Following this overview, we will elucidate the efficient computational
techniques underpinning Graph-Sprints. The random-walk based feature extraction framework
essentially encompasses the following sequential steps, resulting in the creation of a node feature

vector for a specific seed node (Figure 5.2).

1. Select the seed node. This selection depends on the use-case, and for CTDGs typically
one considers entities involved in new activity, for instance if the change on the graph is
adding a new edge between two nodes, then each of these two nodes could be a candidate

for a seed node.

2. Perform random-walks starting from the seed nodes. During the random-walks, relevant
data such as node or edge features of the traversed path are collected. The type of random-
walks influences what neighborhood is summarized in the extracted features. Walks can

be (un)directed, biased, and/or temporal.

3. Summarize collected data. The data collected over walks is aggregated into a fixed set of
features, characterizing each seed node’s neighborhood. Examples of such aggregations are
the average of encountered numerical node or edge features, the maximum of encountered

out-degree, etc.

The computation of these features is costly, because multiple random-walks need to be generated
for each seed node. For CTDGs, one would have to compute such features each time an edge
arrives. This is infeasible for high-frequency use-cases such as fraud detection in financial
transactions, where a decision about a transaction needs to be made in a few milliseconds. In

the next section, we derive an efficient approximation to the above random-walk based features.
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(A) Temporal random Walk (B) Unfold Walk (C) Naive Node Embedding

FIGURE 5.2: Conversion of random-walks to histograms.

5.2 Method

In this section, we propose approximations to random-walk based features described in Sec-
tion 5.1. Our aim in this section is to optimize the computation of such features by exploiting
recurrence and eliminating the need to execute full random-walks. As shown in Figure 5.3,
given a temporal graph where edges have a timestamp feature (numbers) representing the time
that a relationship was created, the left banner of Figure 5.3 illustrates temporal random-walk is
traversed from the most recent interaction A-B towards older interactions. As shown in the right
banner, one can compute similar embeddings to the ones in Figure 5.2 in a streaming setting,

from only the new edge and the existing embeddings of the involved nodes..

4 o\zo T=0 Initialize{ @ }= HEEN

5 =2 Update { @—>@, millmill , NI } - Bl

Q Q T=4 | Update {M,i,-l}=_
O T=5| Update {M,H, _}=u

(A) Temporal random Walk (B) Streaming Node Embedding

FIGURE 5.3: Streaming histograms from temporal random-walks.

5.2.1 Assumptions

For our approximations to be reliable, we make the following assumptions: the input graph is a
CTDG with directed edges (we will relax this assumption later), edges have timestamps and the
temporal walks respect time, in the sense that the next explored edge is older than the current
edge. With these assumptions, one can unfold any directed temporal walk as a time-series

(Figure 5.2A and 5.2B).
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5.2.2 Streaming Histograms as Node Embeddings

Given the above assumptions, we now formalize the approximation of random-walk based

aggregations described in Section 5.1.

In this framework, we do not consider random-walks with a fixed number of hops, and
instead consider infinite walks, on top of which we compute embeddings analogously to
exponential moving averages. The importance of older information compared to newer is
controlled by a factor « between 0 and 1. A larger a gives more weight to features further away
in the walk (or in the past), and we can therefore consider a the parameter that replaces the
number of hops. Formally, let S; be a histogram with L bins, represented as an L-dimensional
vector and characterizing the distribution of a feature f in the neighborhood of node i. A full

infinite walk starting at node 0 computes the histogram Sp as:

So = iai(l —)d(f;) (5.1)

where ) is adding vectors, « is a discount factor between 0 and 1, controlling the importance
of distant information in the summary Sp, and i denotes the hops of the walk (i = 0 being the
newest node, or in other words the seed node of the infinite walk). f; is the feature value at node
i or edge i, and 8(f;) is an L-dimensional vector with element 5} = 1 if the feature value f; falls
within bin j and 5} = 0 for all other elements. Equation 5.1 then implements a streaming counts
per bin, where older information is gradually forgotten. If the feature f; is a node feature, then
the value is taken from the current node. If it is an edge feature, then the feature value is taken

from the edge connecting the current node and the chosen neighbor.

One could compute multiple such summaries per node, one for each node or edge feature of
interest, and together they would summarize a neighborhood. The key idea is that we can now
approximate the infinite random-walks, i.e., the infinite sum of equation 5.1, by performing only
a finite number of k > 1 hops, followed by choosing a random neighbor of the last encountered

node and choosing an available summary Sy of that neighbor randomly, where Sy is defined as

So= Y a1 - w)d(fi) (5.2)
i=0
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With this strategy, we can approximate the summary Sy from equation 5.1 recurrently using

k=1 N .
So~ Y a'(1—a)d(f;) +a*Sy (5.3)
i=0

Compared with equation 5.1, one now truncates the sum after k terms. Note that whenever
the last histogram Sy is normalized such that the bins sum to 1, e.g. using a uniform initialization
for terminal nodes, equation 5.3 guarantees that all subsequent histograms will be normalized
in the same way. Since we are interested in low-latency methods, we take the limit of k = 1 and

Equation 5.3 becomes a streaming histogram:

So — (1—a)d(fo) +aS; (5.4)

The hyperparameter a can be chosen to depend on the number of hops or on time. When
discounting by hops, this discount factor « is a fixed number between 0 and 1. When discounting
by time, the factor is made dependent on the difference in edge timestamps, for example

exponentially or hyperbolically.

Using equation 5.4, one could approximate N (biased) random-walks by sampling N
neighbors (non-uniformly), and subsequently combining the resulting histograms, e.g., by

averaging. This would require performing N 1-hop look-ups each time.

Instead of that, we can increase efficiency even further by removing any stochasticity and
updating a node’s histogram at each edge arrival, combining the histograms of the two nodes

involved in the arriving edge, as shown in equation 5.5:

So = pSo-+ (1= ) (1= 0)d(fo) + 1) 5

In this way we combine all neighbors” information implicitly using a moving average over

time.

Hyperparameter f is another discount factor between 0 and 1, controlling how much to focus
on recent information in contrast to older information and which can optionally depend on time.
In this way, we can update histograms in a fully streaming setting, using only information of

each arriving edge. We term this procedure Graph-Sprints and summarize it in algorithm 3.

Compared to equation 5.4, one can observe that the remaining sampling over single-hop
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neighbors is abolished, at the cost of imposing a more strict dependence on time. The advantage
of algorithm 3 is that no list of neighbors needs to be stored. Moreover, algorithm 3 can be
applied in parallel to both the source node and the destination node, and therefore edges are
not required to be directed. In fact, while we derived equation 5.5 from random-walks, the
attentive reader can notice that it can be interpreted as a special case of message passing where
all neighbor summaries are aggregated using a weighted average, with weights that are biased

by recency, and where the average is computed in a streaming fashion over time.

One special type of feature are the degree features (in- and out-degree). To avoid accumulat-
ing degrees over time, we propose to implement a streaming count of degrees per node. Every

time an edge involving node u arrives, we compute
dy =dyexp (—At/1y)+1 (5.6)

where d,, denotes either in- or out-degree of node u, At denotes the time differences between
the current edge involving node u and the previous one, and 7; is a timescale for the streaming

counts.

Algorithm 3 Graph-Sprints: Real-time graph feature extraction engine (Equation 5.5)

Require: EdgeStream > Stream of arriving edges ¢; ;
Require: F > Set of features for GS (e.g., node degree)
for e, ,, € EdgeStream do
GetS,, §v > Current summaries of nodes u,v
St < aS, > Multiply all bins by a
for f € F do
if value(f) in bin j then
Sy Shi+(1—a) > Add (1-a) to bin j
end if
end for
Sy BS,+ (1—B)S: > Updated summary of node u.
end for

5.2.2.1 Choosing Histogram Bins

Essential hyperparameters of this method are the choices of the boundaries of the histograms
bins. We propose to use one bin per category for categorical features. If the cardinality of a
certain feature is too high, we propose to form bins using groups of categories. For numerical

features, one can plot the distribution in the training data and choose sensible bin edges, for
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example on every 10th percentile of the distribution. The framework is not constrained by one

choice of bins, as long as they can be updated in a streaming way.

5.2.3 Streaming Community Features

In our effort to better understand the area around the target node, we introduce two distinctive
features, elucidating their integration within our framework. It is worth noting that the
computation of these features remains optional, tailored to the specific requirements of the
use-case in question. Specifically, the features under discussion are: community diversity and

community size.

Community diversity

To estimate community diversity in the streaming context, we leverage the assumption that for
more diverse community there is a higher probability that individual random-walks contain
different information. Therefore, we propose a feature that estimates the variety over the various
random-walks. The feature is similar to the inception score [Charikar, 2002] (or variety score) used

to evaluate images generated using generative adversarial networks. The score is calculated as:

1
Vscore = ;KL(M y ; pi/N) (5.7)

In other words, the variety score Vscore of a node is the average (across all random-walks)
of the KL divergence between the distribution characterizing an individual random-walk, p;, to

the average of the distributions over all random-walks, }; p;/N.

In our case, we compute the variety score between the various histogram summaries of a
node. The above metric can be generalized to use other divergence metrics, e.g. the cosine
distance between the histograms. When only a single histogram is kept per node, one can
calculate the variety score between the histograms of the direct neighbors of the node of interest.
However, if we use Equation 5.5, we only access the current node’s histogram Sy and the latest

neighbor’s histogram §1 and we can use the following streaming version of Equation 5.7:

Vscore; 1 < yVscore; + (1 —9)D(Sp, 1) (5.8)
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Here, D stands for the divergence measure used (e.g. KL divergence, cosine distance), S
approximates the average of histograms of all neighbors and the variety score is now updated

as a moving average of the divergences instead of an actual average over all neighbors.

Finally, when only hashed histograms are used (see Section 5.2.5), one can use e.g. the

Hamming, or cosine distance as a divergence metric.

Community size (Path Length)

Community size is more difficult to estimate in the streaming setting. We propose to compute a
streaming path length histogram p, which for each new node is initialized with L bins, where
the first bin has a value equal to 1 and the rest are zeros. Every time an edge e, , arrives from

node u to v, one can update the path length histogram of node u as follows

Pu < Bpu+ (1-B) (Po- U) (5.9)

This equation is very similar to equation 5.5, but the histogram p, is updated by multiplication
with an (L x L) square matrix U. The matrix U has the diagonal directly above the main diagonal
equalto 1, U;; = 6;41,, as well as U, ;. = 1. In this way, the multiplication by U moves each bin
to the right in the histogram, while the last bin acts as an absorbing state. One can then easily
verify that each hop results in a histogram with bins shifted to the right, i.e. increasing the path
length by one unit, while the last bin accounts for all paths with length larger or equal to L. As
before, § ensures that older paths are gradually forgotten and newer information dominates.
Clearly, this feature cannot be included in the proposed similarity hashing framework described

in Section 5.2.5, since the multiplication by matrix U is not compatible with the hashing method.

5.2.4 GuiltyWalker Features in Streaming Context

In some use-cases, the node features may change values without the node having activity. For
instance, in the AML use-case, one node attribute is a label stating whether a node was consid-
ered suspicious or not. This information depends on a review process that could happen many
days after the node had activity and was incorporated into the graph. GuiltyWalker [Oliveira
et al., 2021] features, leverage this label information to calculate the distance to illicit nodes
and are shown to be helpful to detect suspicious entities in the AML use-case. To deal with
this scenario we propose updating the histograms dedicated to such features of the whole

K-hop neighborhood once a change happens (e.g., a delayed label arrives), where K will be
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a hyperparameter for the GuiltyWalker feature. Concretely, the GuiltyWalker feature will be a
histogram containing two categories, legitimate and suspicious. For nodes of interest, these
histograms are updated in the usual way described in the previous section. However, once a
label arrives to an existing node, we update the K-hop neighborhood in the following way. We
apply the same update formulas and the same « that we used in the previous steps (feature
extraction step), but in the opposite direction. Instead of the target node collecting neighbors’
histograms to update its histogram, the labeled node sends its histogram to the neighbors to
update their histograms. We always maintain the same temporal order i.e., we use older nodes’

histograms to update the more recent histograms.

5.2.5 Reducing Memory Footprint
The space complexity of the Graph-Sprints approach (algorithm 3) is

M=V L (5.10)
feF

where |V| stands for the number of nodes, L stands for the number of bins of the histogram
for feature f, and F stands for the set of features chosen to collect in histograms. In case this

memory is too high, we propose the following methods to reduce memory further.

5.2.5.1 Reducing Embedding Size using Similarity Hashing

Following the similarity hashing approach proposed in Jin et al. [2019], we extend the method
to the streaming setting. All histograms as defined in the previous sections are normalized (in
the sense that bin values sum to 1), and we can concatenate them into one vector S tot- We can
now define a hash mapping by choosing k random hyperplanes in RM defined by unit vectors

-

Rij=1,...k

The inner product between the histograms vector and the k unit vectors results in a vector
of k values, each value 6; can be calculated using the dot product of the unit vector E]- and the
histogram vector Siot, as illustrated in Equation 5.11. We use the superscript ¢ to denote the

current time step.

0! = hj- Siyy (5.11)
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One can binarize the representation of the hashed vector by taking the sign of the above 9;.

Therefore, the resulting space complexity per node is k, replacing the number of bins in the

memory M by the number of hash vectors k.

Importantly, the hashed histograms can be updated without storing any of the original
histograms. Combining equations 5.4 and equation 5.11 and denoting &( f ) the concatenation of

the & vectors for all collected features, we get
01t =0 a 41 8(f) - (1—a) (5.12)
Therefore, we can compute the next hash 9;“ or sign(O;H) directly from the previous 9; and

the new incoming features & ( f ).It is also important to note that this hashing scheme is preserved

when averaging.

Below, we show that averaging various histograms followed by hashing is equivalent to
hashing histograms and averaging the hashes. Assuming N histograms with L bins S, & an

L-dimensional unit vector and € representing element-wise addition, we have

- 1 N
Savg_*@ i
N =
o 1. [N N T
=0 =h-Spg=—h-|Y si1,..., Y sir
N i=1 i=1
1 (X N
=0=_". Zhlsi,1+"'+Zthi/L
N i=1 i=1
1Y . 1Y
_lvra_lvg 5.13
=0 Ni;h S; N; (5.13)

5.2.5.2 Reducing Embedding Size using Feature Importance

One can reduce the needed memory by relying on feature importance techniques. One possibility
is to train a classifier on the raw node and/or edge features and determine feature importances,
after which only the top important features are used in the Graph-Sprints framework. Or similarly
train on all bins and decide the bins to be used based on their importance in the classification
task. Thus, either reducing the number of features, or the number of bins within the features, or

both.
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5.3 Graph-Sprints Theoretical Analysis

5.3.1 Equivalence between Graph-Sprints and Random-walks

In equation 5.3, we discussed a framework approximating random-walk based node embeddings.
We can show that this strategy indeed leads to the same result as when using random-walks in

expectation. The probability that a path passes through a node a at hop t+1 is given by

Pya(a)= Y P(sq € )72 Di(b) (5.14)

Where (a,b) € E means (a,b) is an existing edge, i.e., we sum over all neighbors of node a.
P(s, € Q)p) means the probability that the set of summaries (), of node b contain a summary
sa for which the edge (4,b) was the last added information. |();| stands for the number of
summaries stored at node b and P;(b) stands for the probability that a path passed through node
b at hop t.

The probability that a summary s, exists in the set of summaries (), of its neighbor b, is
related to the number of summaries |()| and degree of node b referred to as D), and can be

written as illustrated in equation 5.15.

9
P(ss € Q) = D:' (5.15)

Note that in the case that |();| > D,, equation 5.15 does not reflect a probability, since in
expectation multiple summaries will have node a as last added information, but the equations

still hold.

By substituting equation 5.15 in equation 5.14 we result in equation 5.16 which defines a

random-walk with unweighted edges.

Pyq(a)= Y, —=P(b) (5.16)

A weighted version can be straightforwardly implemented by choosing a neighbor not
randomly, but according to the edge weights, leading to a factor w,;, to be added in equation

5.14 and 5.16.
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5.3.2 Graph-Sprints: Complexity Analysis

In this section, we analyse the computational complexity of the proposed Graph-Sprints frame-

work.

We start with the complexity of algorithm 3. The multiplication of f vectors with a scalar
has complexity ) ¢ Ly, where Ly stands for the number of bins for feature f and is equal to the
dimensionality of the vector. The lookup of the correct bin for a value of feature f is O(log(Ly)).
This has to be repeated for each feature, resulting in a complexity of O(} f log(L f) ). Finally, the
moving average of two vectors has complexity 3) ¢ L¢. The total complexity of algorithm 3 is

therefore O (Y Ly).

Secondly, for community diversity (equation 5.8), we consider cosine distance as the diver-
gence measure as in our experiments. The cosine distance is computed by performing 3 inner

products between the } Ly dimensional vectors, and therefore has complexity O(Zf Ly).

Lastly, path lengths (equation 5.9) are computed by a matrix-vector multiplication between
an (L, x L,) dimensional matrix and a L, dimensional vector, where L, are the number of bins

summarizing the path lengths. The complexity of such multiplication is O(L%,).

Notably, one can improve upon this by parallelizing over the features f, as well as paralleliz-
ing the scalar-vector products and moving average of two vectors, resulting in O (max¢(log L¢))

for algorithm 3, O(1) for equation 5.8 and O(L;) for equation 5.9.

Once the Graph-Sprints features are computed, one needs to pass the resulting feature vector
through a classifier. The complexity will depend on the chosen classifier, for instance, in case, a
LightGBM model is used, for which O(depth) is the inference complexity where depth stands

for the cumulative depth of the decision trees.

5.4 Experiments & Results

5.4.1 Experimental Setup

We assess the quality of the graph based features generated by the Graph-Sprints framework

on two different tasks, namely, node classification and link prediction.
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5.4.1.1 Baselines

As a first baseline, we reproduce a state-of-the-art GNN model for CTDGs, the TGN [Rossi
et al., 2020], which leverages a combination of memory modules and graph-based operators to
obtain node representations. As an important note, we mention that the pytorch geometric [Fey
and Lenssen, 2019] implementation of TGN was used, for which the sampling of neighbors
uses a different strategy than the original TGN implementation. Indeed, the original paper
allowed to sample from interactions within the same batch as long as they are older, while the
pytorch geometric implementation does not allow within-batch information to be used. As
also noted in the pytorch geometric documentation, we believe the latter to be more realistic.
As a consequence, our TGN results are not directly comparable with the originally published
TGN performances. In any case, the Graph-Sprints embeddings were computed using the same
batch size and therefore also do not have access to within-batch information, allowing a fair

comparison between the algorithms.

Two variations of the TGN architecture were used. First, TGN-attn was implemented, which
was the most powerful variation in the original paper but is expected to be slower due to the
graph-attention operations. Second, TGN-ID was implemented, which is a variation of the TGN
where no graph-embedding operators are used, and only the embedding resulting from the

memory module is passed to the classification layers.

A third baseline we use is Jodie [Kumar et al., 2019]. We use the TGN implementatin of Jodie,
where instead of using Graph attention embeddings on top of the memory embedding, a time
projection embedding module is used and where the loss function is otherwise identical to the
TGN setting. For a fair comparison with TGN we use the same memory updater module, namely,

gated recurrent units.

The TGN-ID and Jodie baselines do not require sampling of neighbors, and were therefore

chosen as lower-latency baselines compared to TGN-attn.

5.4.1.2 Optimization

We use Optuna [Akiba et al., 2019] to optimize the hyperparameters of all models, conducting
100 trials with the Tree-structured Parzen Estimator (TPE) sampler and 40 initial warmup trials.
Each model trains using early stopping with a patience of 10 epochs, where the early stopping

metric computed on the validation set as AUC for node classification and AP for link prediction.
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All models were trained using a batch size of 200 edges. Table 5.1 shows the ranges of the tuned

hyperparameters.

TABLE 5.1: Hyperparameters ranges for Graph-Sprints and baseline methods.

Method Hyperparameter min | max
GS o 0.1 1
GS B 0.1 1

GNN/GS Learning rate 10~% | 10°
GNN/GS Dropout perc 01 | 03

GNN/GS Weight decay 1077 | 10°

GNN/GS | Num of dense layers | 1 3

GNN/GS | Size of dense layer 32 | 256
GNN Memory size 32 | 256
GNN Neighbors per node 5 10
GNN Num GNN layers 1 3
GNN Size GNN layer 32 | 256

5.4.1.3 Graph-Sprints and Classifier

For each arriving edge, we apply the Graph-Sprints feature update (algorithm 3) to both the
source node and the destination node in parallel. All edge features are used for the computation
of the Graph-Sprints features, and for each feature bin edges are chosen as the 10 quantiles
computed on the training data. Since the Graph-Sprints framework only creates features, a
classifier is implemented for the classification tasks. We chose to implement a neural network
consisting of dense layers, normalization layers, and skip-connections across every two dense
layers. Hyperparameter optimization proceeds in two steps. First, default parameters for the
classifier are used to optimize the discount factors of the Graph-Sprints framework, a and . For
this step, 50 models are trained. Subsequently, hyperparameter optimization of the classifier

follows same approach as TGN, training 100 models.

In all experiments, we test the following three cases. Firstly, we train the classifier using
only raw features (Raw). We then train the classifier using only the Graph-Sprints features (GS).

Finally, we train the classifier using both raw and Graph-Sprints features (GS+Raw).

5.4.1.4 Node Classification vs Link Prediction

For the node classification task on the Wikipedia, Reddit and Mooc datasets, we concatenate the
source and destination node embeddings and feed the concatenated vector to the classifier, as is

usual for datasets where labels are on the edge level.
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For the link prediction task, negative edges are generated following the same approach as
the original TGN paper [Rossi et al., 2020], a negative edge is sampled for every positive one. We
perform the link prediction task both in the transductive and inductive settings. In the transductive
setting, negative edges are sampled on the same graph used for training. Conversely, in the
inductive setting, the sampled negative edges are constrained to include at least one new node

which was not used in the training graph.

5.4.2 Public Datasets Experiments

5.4.2.1 Datasets

We use three publicly available datasets [Kumar et al., 2019] from the social and education
domains. We detail their main characteristics in Table 5.2. All datasets are CTDGs and are
labeled. Each dataset is split into train, validation, and test sets respecting time (i.e., all events in
the train are older than the events in validation, and all events in validation are older than the
events in the test set). In the public datasets, we adopt the identical data partitioning strategy

employed by the baseline methods we compare against, which also utilized these datasets.

TABLE 5.2: Information and data partitioning strategy for public datasets.

Wikipedia Mooc Reddit
#Nodes 9,227 7,047 10,984
#Edges 157,474 411,749 672,447
Label type | editing ban | student drop-out | posting ban
Positive labels 0.14% 0.98% 0.05%
Used split (%) | 70-15-15 60-20-20 70-15-15

5.4.2.2 Task Performance

In Table 5.3 we report the average test AUC + std for the Node classification task. Our
approach involved retraining the best model obtained after hyperparameter optimization,
using 10 different random seeds. Our models, Raw, GS, and GS+Raw, use the same ML classifier
but differ in the features employed for training. Raw uses raw edge features, GS uses Graph-
Sprints histograms, and GS+Raw combines both. We identify the best model and highlight the
second best model. We can observe that on all datasets, the best model for node classification
uses a variation of our Graph-Sprint framework (either GS or GS+Raw). To provide an overview,
we include a column showing the average rank in Table 5.3, which represents the mean ranking

computed from all datasets.
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TABLE 5.3: Graph-Sprints: Node classification results using public datasets.

AUC % std
Method | edia | Mooc | Reddit | -verage rank
Raw | 585222 | 628209 | 553038 6
TGN-ID | 889202 | 63.0=17 | 613220 13
Jodie | 872209 | 637167 | 619 2.0 4
TGN-attn | 86.6+28 | 75804 | 679+16 3
GS | 90.7£03 | 750£02 | 68510 16
GS+Raw | 89.2+04 | 76.5%03 | 637« 0.4 2

In table 5.4 we report the average test AUC + std, along with the AP + std for the Link
prediction task. Results were again computed after retraining the best model obtained through
hyperparameter optimization, utilizing 10 distinct random seeds. We report results on both
Transductive (T) or Inductive (I) settings. We can observe that the Graph-Sprints model is the best
for link prediction on the Mooc dataset. On the Reddit dataset, the Graph-Sprints model is best in
the transductive setting, and the second best in the inductive settings. In the Wikipedia dataset,
the performance is slightly worse than the best baselines. To offer a comprehensive view, we
have included a column in Table 5.4 that displays the average rank. This represents the mean

ranking derived from all datasets, calculated using AP.

TABLE 5.4: Graph-Sprints: Link prediction results using public datasets.

Wikipedia Mooc Reddit Average

Method AUC | AP AUC AP AUC AP | rank
TGN-ID | 956202 | 958201 | 804458 | 750461 | 94707 | 932=10| 4
Jodie 943:03 | 94503 | 851218 | 800235 |949+12 | 934<17| 3
TGN-attn | 97.0£0.3 | 973203 | 80381 | 75684 | 96104 | 95107 | 26
GS 925206 | 929207 827208 | 811207 | 961202 | 953203 | 3
GS+Raw | 921204 | 92604 | 854203 | 83.7203 | 968201 | 961202 | 23
TGN-ID | 922202 | 928402 | 685486 | 635267 | 93406 | 92208 | 36
Jodie 87006 | 89107 711222 66122992313 90819 46
TGN-attn | 945202 | 950202 | 71441 | 669=39 | 95004 | 943205 | 26
GS 920203 | 91704 | 782206 | 765206 | 927205 | 92706 | 26
GS+Raw | 914202 | 91103 | 83.020.5 | 803205 | 935204 | 922205 | 23

5.4.2.3 Inference Runtime

We compare the latency of our framework to baseline GNN architectures. For this purpose, we
run 200 batches of 200 events on the external datasets, Wikipedia, Mooc, and Reddit using the
node classification task. We compute the average time over 10 runs. Both models were running

on Linux PC with 24 Intel Xeon CPU cores (3.70GHz) and a NVIDIA GeForce RTX 2080 Ti GPU
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(11GB). As depicted in Figure 5.4, our Graph-Sprints consistently outperforms other baselines
(TGN-attn, TGN-ID, Jodie) in the node classification task while also demonstrating a significantly
lower inference latency. Compared to TGN-attn, the GS achieves better classification results but

is close to an order of magnitude faster (Figure 5.4).
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FIGURE 5.4: Graph-Sprints: Trade-off between AUC and runtime.

To investigate the impact of graph size on runtime, Figure 5.5 showcases our observations.
Notably, in the utilized datasets, TGN’s runtime increases as the number of edges in the
dataset grows, requiring more time to score 200 batches. Conversely, since GS does not
require neighborhood sampling, it exhibits constant inference time regardless of the graph
size. Furthermore, the speedups achieved by Graph-Sprints are expected to be significantly
higher in a big-data context, where the data is stored in a distributed manner rather than in
memory as in our current experiments. In such scenarios, graph operations used in graph-neural

networks like TGN-attn would incur even higher computational costs.
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FIGURE 5.5: Graph-Sprints: Speedup vs. number of edges: The speedups increase almost linearly
with the number of edges in the graph.
Recently, APAN [Wang et al., 2021b] has attempted to build a low-latency framework for
CTDGs. Their approach consisted of performing the expensive graph operations asynchronously,

out of the inference loop. In that way, they achieved inference speeds of 4.3ms per batch on the
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Wikipedia dataset, but we cannot directly compare those results with ours (GS: 1.4ms, TGN-attn:
6ms) due to the different setup and hardware. Importantly, their approach achieves low-latency
by sacrificing up-to-date information at inference time. Indeed, the inference step is performed
without access to the most recent embeddings, because the expensive graph operations to

compute the embeddings are performed asynchronously.

5.4.24 Memory Reduction

Both the Wikipedia and Reddit datasets consist of 172 edge features. By calculating Graph-Sprints
with 10 quantiles per feature, along with incorporating in/out degrees histograms and time-
difference histograms, we obtain a node embedding of 1742 features (one feature per histogram
bin). In our experimental setup, similar to state-of-the-art approaches, we concatenate the source
and destination node embeddings for source label prediction, resulting in a 3484-feature vector.
To reduce the size of the node embeddings, we propose a similarity hashing-based memory
reduction technique (Section 5.2.5)). Our experiments, as presented in Table 5.5, demonstrate
that our technique reduces storage requirements sacrificing the AUC in the node classification
task. In the Reddit dataset, storage can be reduced to 50% with a 0.6% AUC sacrifice or to 10%
with a 2% AUC sacrifice. In the Mooc dataset we can reduce necessary memory to 25% with
a 1% sacrifice in AUC. In the Wikipedia dataset, a reduction in storage to a only 0.12% of the
original features with a 4.3% AUC sacrifice. The reduction percentage can be fine-tuned as a
hyperparameter, considering the use case and dataset, to strike a balance between precision and

memory trade-off.

TABLE 5.5: Graph-Sprints: Impact of memory reduction on node classification performance.

Space used | Wikipedia | Mooc Reddit
100% 90.7+03 | 75.0+0.2 | 685 1.0
50% 90.8+0.1 | 75.0+0.1 | 679+1.1
25% 911+01 | 749+03 | 65119
10% 909+02 | 740+0.3 | 66.5+0.9
0.5% 89.7 0.3 - 58.0 £ 2.6
0.12% 86.4+0.3 - 552 +1.1

5.4.3 AML experiments

In money laundering, the criminals” objective is to hide the illegal source of their money by

moving funds between various accounts and Fls. In these experiments, our objective is to enrich
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a triage classifier (detailed in Chapter 4, Section 4.3) with graph-based features generated by our

Graph-Sprints framework.

5.4.3.1 Datasets

We evaluate the Graph-Sprints framework in the AML domain using two real-world banking
datasets. Due to privacy concerns, we can not disclose the identity of the FIs nor provide exact
details regarding the node features. We refer to the datasets as FI-A and FI-B. The graphs in this
use-case are constructed by considering the accounts as nodes and the money transfers between

accounts as edges. Table 5.6 shows approximate details of these datasets.

TABLE 5.6: Information and data partitioning strategy for AML datasets.

FI-A FI-B
#Nodes ~400000 ~10000
#Edges ~500000 ~2000000
Positive labels 2-5% 20-40%
Duration ~300 days ~600 days
Edges/day (mean + std) | 1500 + 750 3000 + 5000
Used split 60%-10%-30% | 60%-10%-30%

5.4.3.2 Task Performance

As before, we train the neural network classifier that uses raw node features only, i.e., no
graph information is present (Raw). We compare that baseline performance against models that
include only Graph-Sprints features (GS), and models that use both Graph-Sprints features and
raw features (GS+Raw). Finally, we train the same GNN architectures as in the public datasets

(TGN-ID, Jodie, and TGN-attn).

Due to privacy considerations, we are unable to disclose the actual obtained AUC values.
Instead, we present the relative improvements in AUC (AAUC) when compared to a baseline
model that does not utilize graph features. In this context, the baseline model corresponds to a
AAUC value of 0, and any increase in AUC compared to the baselines is represented by positive

values of AAUC.

Table 5.7 displays the average AAUC test values + std achieved by retraining the best model
after hyperparameter optimization using 10 random seeds. We identify the best model and
highlight the second best model. We compare our GS variations and other state-of-the-art

baselines. Our GS variations exhibit the most favorable outcomes in both datasets, with an
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approximate 3.3% improvement in AUC for the FI-A dataset and a 27.8% improvement in AUC
for the FI-B dataset. To provide an overview, we include a column showing the average rank

which represents the mean ranking computed from the two datasets.

TABLE 5.7: Graph-Sprints: Node classification results using AML datasets.

Method FI_ﬁAUC * slt:cll-B Average rank
TGN-ID | +0.1+0.1 | +244 +0.2 4
Jodie +0.0+£0.1 | +245+0.2 4
TGN-attn | +0.3 0.7 | +25.1 +0.3 2.5
GS +1.8+0.5 | +27.8 £ 0.4 1.5
GS+Raw | +3.3+£0.3 | +20.1 £3.9 3

5.5 Summary

This chapter introduced the Graph-Sprints framework, which enables the computation of time-
aware embeddings for CTDGs with minimal latency. The study demonstrates that the Graph-
Sprints features, when combined with a neural network classifier, achieve competitive predictive
performance compared to state-of-the-art methods while having a significantly faster inference

time, up to approximately an order of magnitude improvement.

In future work, it would be interesting to extend the Graph-Sprints framework to heteroge-

neous graphs, and explore how GNNs could inherit some of the strengths of Graph-Sprints.






Deep-Graph-Sprints: Low-latency Node

Representation Learning method

Our investigations in Chapters 4 and 5 have demonstrated the promising knowledge embedded
in graphs representing data. These findings underscore the importance of graph feature
engineering and representation learning in translating graph relationship information into

an embedding space, facilitating its use in ML models.

In Chapter 5, we introduced Graph-Sprints, a rapid graph feature engineering method.
Graph-Sprints, showed a high speed and competitive performance with state-of-the-art methods.
However, it is essential to address the inherent limitations associated with its feature engineering
nature. These include the requirement for distinct tuning phases for parameters and a depen-
dence on domain expertise. Furthermore, Graph-Sprints uniformly applies the same forgetting
coefficient across features, which may not be optimal. Moreover, the tendency to produce a

high-dimensional embeddings, poses a memory challenge (detailed in Section 6.1).

Deep learning emerges as a solution to these challenges, offering automatic parameter
learning, enhanced model accuracy through complex data relationship learning, and adaptability
in dynamic environments. It also simplifies model development by reducing routine extract-
transform-load tasks and infrastructure complexities, enabling direct feature extraction from

raw data.

This chapter focuses on enhancing Graph-Sprints, our graph feature engineering method

101
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discussed in Chapter 5, through the development of a deep learning-enhanced variant, Deep-
Graph-Sprints. This new iteration aims to overcome the limitations of the original method,

enhancing its practical application and effectiveness. The chapter is structured as follows:

e Graph-Sprints recap and limitations: Section 6.1 begins with a summary of Graph-Sprints

and its limitations.

e Deep-Graph-Sprints method: Section 6.2 details the development of the Deep-Graph-
Sprints method, including its architecture in Section 6.2.1, learning mechanisms in Sec-
tion 6.2.3, gradients calculation details in Section 6.2.4, and parameter updates in Sec-

tion 6.2.5.

e Experiments and results: Section 6.3 concludes with our findings, showcasing the effi-
ciency and robust performance of Deep-Graph-Sprints compared to traditional GNNs, and

its competitive edge over Graph-Sprints while addressing its limitations.

6.1 Graph-Sprints Recap and Limitations

Prior to delving into the Deep-Graph-Sprints methodology, a review of the foundational Graph-
Sprints approach, as elaborated in Chapter 5, is essential. The Graph-Sprints algorithm updates a
node’s state at time t, represented as S, by employing Formula 6.1. It integrates the previous

state of the target node (§t,1), the interacting node’s state (§;‘_1), and the new edge features (F;).

The parameters « and B serve as forgetting coefficients. Specifically, 8 modulates the balance
between a node’s past state (gt,l) and its present state, facilitating a balance between historical
and current data. Conversely, « adjusts the emphasis between self-information and neighboring
node information. Concerning the & function, it functions as an encoding mechanism. Given the
features values, § constructs a series of concatenated histograms. Each histogram corresponds
to a distinct feature, where the bin corresponding to the actual value of the feature is marked

with a '1’, other bins have a value "0’.

—

t = BSi1+ (1-B) (1 - w)d(E) +aS; ;) (6.1)
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Although Graph-Sprints exhibits rapid processing capabilities and is competitive with state-of-
the-art techniques, a critical examination of its limitations reveals several challenges in practical

applications:

e Tuning as Separate Processes: A primary challenge in Graph-Sprints is the complex
tuning required for the feature engineering parameters, particularly « and B. The process
necessitates distinct tuning phases for the feature extraction component (Graph-Sprints)
and the subsequent decision-making model, such as a neural network classifier. This
tuning involves initially adjusting the &« and B parameters of Graph-Sprints using a model
with default settings. Following this, the model is fine-tuned using the optimized a and p
values. This iterative process, due to its independence of steps, can be time-consuming and

labor-intensive. Section 6.2.2.1 explains how Deep-Graph-Sprints addresses this concern.

e Limited Model Expressivity: In Graph-Sprints, the « and  parameters (i.e., forgetting
coefficients) are scalars, leading to a uniform forgetting coefficient being applied across
all features. This uniform application potentially constrains the model’s expressivity. For
instance, in scenarios where the immediacy of information from one feature outweighs
that of another, the model’s inability to differentiate between these varying temporal
relevancies due to the scalar nature of the forgetting coefficients becomes evident. Similarly,
the differentiation between attributes of a node and those of its neighbors is limited when
only a single forgetting coefficient is employed. Such uniformity in temporal and relational
weighting diminishes the model’s capacity to distinctly represent and process the temporal
dynamics inherent in different features or relational contexts. The approach of Deep-Graph-

Sprints to this issue is explained in Section 6.2.2.2.

e Histogram Bin Edge Definition Challenges: A significant limitation within the Graph-
Sprints methodology arises from the requirement to specify bin edges for histograms in
the feature encoding function 4. This process, crucial for representing each feature accu-
rately, can be approached either by utilizing domain expertise or through an automated
tuning procedure. Regardless of the chosen method, this task proves to be particularly
burdensome in scenarios involving datasets with a high feature count. When domain
knowledge is applied, the challenge lies in accurately determining the appropriate bin
edges that meaningfully represent the feature distribution. Conversely, if an automated

tuning approach is selected, it often involves a computationally intensive process, as
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it requires iterative adjustments to find the optimal bin configuration. The technique

Deep-Graph-Sprints uses to resolve this matter is elaborated in Section 6.2.2.3.

Large State Size: The decision to employ a high number of bins per histogram in Graph-
Sprints results in substantially large node states, escalating both memory and space
requirements. Illustratively, a dataset featuring 100 distinct attributes, with each attribute
discretized into 10 bins, results in a state representation consisting of 1000 bins. This
complexity is further increased in tasks such as link prediction, wherein the states of both
source and destination nodes are requisite, effectively doubling the ML model’s input to
a 2000-dimensional vector. Moreover, managing the state size emerges as a significant
challenge, necessitating a thorough calibration of bin edges for each attribute. To mitigate
these issues, we have introduced memory reduction techniques as outlined in Section 5.2.5.
However, these techniques are not without their limitations, particularly due to the
prerequisite of forming histograms prior to executing similarity hashing. Additionally, in
the context of using feature importance to reduce dimensionality, training a model with
the complete histograms is still required to determine feature significance. The approach

of Deep-Graph-Sprints to this issue is explained in Section 6.2.2.3.

Challenges in Adapting to Heterogeneous Graphs: Adapting Graph-Sprints to hetero-
geneous graphs, which include different node and edge types, presents challenges not
addressed by the current model. These challenges include integrating states from various
types, where achieving a consistent encoding dimension and interpreting bins across
types is complex. Another challenge involves developing distinct forgetting coefficients
for each node type, coupled with a feature encoding process that depends on the node
type. This leads to an expansion in the parameter space that requires detailed tuning.
The increased parameter diversity calls for advanced tuning strategies. These challenges
limit the broader applicability of Graph-Sprints to heterogeneous graphs. We detail how
Deep-Graph-Sprints could address this in Section 6.5.

The aforementioned limitations underscore the need for an adaptation of the Graph-Sprints

methodology. Such enhancements are vital to augment its efficacy and broaden its applicability

across a spectrum of real-world scenarios. Recognizing these challenges, this chapter introduces

a significant evolution of the Graph-Sprints method: the Deep-Graph-Sprints. This adaptation is

designed to address the previously mentioned limitations, offering a more robust and versatile
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solution. In the following sections, we will delve into the details of Deep-Graph-Sprints, providing

an in-depth analysis and assessment of its architecture, functionalities, and performance.

6.2 Method

This section introduces an advanced variation of the Graph-Sprints method, leveraging deep

learning techniques to learn its parameters and address the limitations mentioned in Section 6.1.

We propose a three-step methodology, each step representing an incremental increase in
complexity. The first step aims to automate the learning of the scalar values a and B, thereby
streamlining the tuning process. In the second step, we enhance the model’s expressivity by
evolving « and  from scalars to vectors, thereby allowing a unique forgetting parameter for
each feature. This adaptation significantly increases the algorithm’s flexibility and adaptability.
The final step further extends the model’s sophistication: in addition to learning vectorized
forgetting coefficients (& and ), it replaces the encoding function  with a learnable mapping
from feature space to embedding space. This alteration not only reduces the dimensionality of
the resultant state but also eliminates the need for histogram bin edge determination, thereby
simplifying the feature engineering process and reducing the memory footprint of the model.

Section 6.2.2 details each step, explaining their methodologies and principles.

6.2.1 Architecture and Workflow

The Deep-Graph-Sprints is developed to handle a continuous flow of edge data. As shown in
Figure 6.1, the system processes each incoming edge to derive a task-specific score, applicable

for any ML task such as classification.

The Deep-Graph-Sprints method is divided into two key components:

1. Embedding Component (DGS): This segment is dedicated to representation learning,
where each node or edge in the graph is mapped from high-dimensional, complex graph
structures to a lower-dimensional embedding space. Refer to Figure 2.6 for an illustration

of node embedding.

2. Neural Network Classifier (NN): This part is responsible for decision-making processes,
such as classification. It uses the embedding provided by the DGS component to generate

a task specific score.



106 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

The DGS component is particularly noteworthy for its role in regularly updating the
embeddings of nodes or edges, thereby enriching them with detailed attributes and relationships

context within the network.

These embeddings are then input into the neural network classifier, which is tailored to
specific applications. The classifier assigns a score based on the comprehensive data contained
within the embeddings. For instance, in node classification, the network evaluates each node
associated with a new edge, with the score reflecting the network’s interpretation from the
representations provided by the DGS.
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FIGURE 6.1: Deep-Graph-Sprints: Architecture. Eq 6.6 in the figure, represents Equation 6.6

6.2.2 Deep-Graph-Sprints Approaches

The integration of deep learning into Graph-Sprints primarily aims to automate the learning of
parameters during training. This eliminates the need for manual tuning and domain-specific
knowledge for setting hyperparameter values. Referring to the Graph-Sprints formula (see

Equation 6.1), our focus is on learning the hyperparameters &, 8, and the encoding function é.

The process is categorized into three approaches, progressing from simple to complex

methods.

6.2.2.1 DGS-1: Learning Scalar Parameters « and j

This approach, aligned with the Graph-Sprints model (refer to Equation 6.1), integrates the
learning of hyperparameters & and B into the neural network training phase. This method
eliminates the need for separate tuning processes. Initially set at 0.5, both « and f are refined

during training, akin to neural network weights, to reduce loss and enhance model efficacy. As
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scalar values within the [0, 1] range, « and  maintain consistency with the Graph-Sprints method,
uniformly applying the forgetting coefficient to all features. This integration ensures that the
optimization of « and 8 occurs concurrently with the neural network’s parameter adjustments,

thereby facilitating an end-to-end training process.

6.2.2.2 DGS-2: Learning Vectorized Parameters & and f

In this advanced Deep-Graph-Sprints variant, we enhance the learning mechanism by vectorizing
« and B into & and E, thereby assigning unique forgetting coefficients to each feature. As outlined
in Equations 6.2a and 6.3a, this vectorization aligns with the feature count f, marking a departure
from the original scalar-based Graph-Sprints model. For implementation, coefficients within &
and f are repeated according to the bin count b; for each i'" feature, as shown in Equations 6.2b
and 6.3b. This ensures they are compatible with the dimensions of the state vector. Specifically,
for each feature 7, individual forgetting coefficients «;, and p; are learned and subsequently
replicated b; times, resulting in vectors «&;, and Ei. These vectors are then concatenated to form

the comprehensive forgetting coefficient vectors & and B, as detailed in Equations 6.2a and 6.3a.
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This modification allows for distinct forgetting coefficients per feature, enhancing the model’s
adaptability. The application of this refined forgetting mechanism involves an element-wise
multiplication (Hadamard product [Horn, 1990]) between &, ﬁ, and the corresponding state and

feature encodings, as described in Equation 6.4.

=S+ 1-po(1-0)eiF) +ios,) (6.4)

In this configuration, each feature retains a singular forgetting coefficient (consistent across
all its bins) to ensure that histograms within every feature sum to one, thus preserving the

integrity of the state update formula (Equation 6.1).

Analogous to the scalar learning method in DGS-1, these vectorized parameters are learned
during the training process, informed by the neural network’s loss function, thus enabling an
end-to-end training. Moreover, the added advantage of assigning different forgetting coefficients
to individual features considerably elevates the representational capacity of the embeddings.
By providing a feature-specific forgetting mechanism, it more precisely reflects the distinct
characteristics of each feature. This is especially critical in scenarios where the significance of
recent information varies distinctly among different features. Such a tailored approach ensures
that the model not only maintains its efficiency and simplicity but also gains in adaptability and

accuracy, particularly in complex data environments.

Detailed insights into the learning mechanism and the computation of gradients for these

vectorized parameters are elaborated in Sections 6.2.3 and 6.2.4.

6.2.2.3 DGS-3: Advanced Learning of Feature Embeddings W

In this advanced version of Deep-Graph-Sprints, DGS-3, the model undergoes a pivotal trans-
formation by replacing the ¢ function with an embedding matrix W. This matrix W serves to
project features into an embedding space, subsequently updating the state with these derived

embeddings.

A key aspect of this approach is ensuring that the generated embeddings are compatible with
our foundational method’s requirements. Each embedding should ideally be a set of histograms,

with each histogram’s values summing to one and remaining within the [0, 1] range.
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Considering a single histogram, traditional normalization methods like Min-Max or absolute
value normalization can maintain values within this range but do not guarantee their summation
to one. An alternative method of normalizing each element by the total sum can be employed,
yet this may not consistently preserve the 0 to 1 range, especially if negative values are present.
A preliminary normalization or adjustment by the absolute magnitude of the minimum value
could be applied, but this method might change the original meaning of the data and is affected

by outliers.

A more effective solution is the utilization of the softmax function (¢), as expressed in
Equation 6.5. The softmax function converts a vector into a probability distribution, where the
sum of all probabilities equals to one and each element lies between 0 and 1, thereby offering a

probabilistic interpretation.

In DGS-3, the softmax function is selected for its aforementioned benefits, though exploration

of other methods is reserved for future research.

F(E) = = (6.5)

DGS-3 enhances expressiveness and memory utilization by employing multiple softmax
functions, each applied to the product of a segment of the embedding matrix W; and feature
vector F;. The use of multiple softmax functions helps in reducing Jacobian dimensionality (as
elaborated in Section 6.2.4), potentially leading to improved memory efficiency. Additionally,
this approach allows for a structure where different segments of the model can respond to
various aspects of the input data. This is analogous to the way multi-head attention mechanisms
in transformers [Vaswani et al., 2017] operate, where different "heads’ learn distinct mappings
or functions based on the same input data. For a detailed understanding of how each softmax
function is applied and to visualize the parallelism in learning across these segments, readers

are directed to Section 6.2.4.3, where a comprehensive example is provided.

The count of softmax functions (x), a crucial hyperparameter, governs the transition from
feature space to embedding space (WF;). The outputs from the softmax functions are concate-
nated, forming a feature representation akin to that in DGS-1 and DGS-2, with each softmax

function now paralleling a feature.

Consistent with DGS-2, DGS-3 maintains « and f as vectors, assigning one value per softmax

function, contrasting the one value per feature in DGS-2.
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The state update mechanism is detailed in Equation 6.6, where ¢ signifies the softmax
function (utilized in a vector form notation to clarify the nature of the output), @;_; represents
concatenation of x softmax function outputs, and W;F; indicates the product of a subset of
the embedding matrix W; and the features F;. The practical application of this mechanism,
including the computation and integration of these components, is comprehensively outlined in

Algorithm 4.

St=BoS1+(1-pola-aoe éfr(wiﬂ) +AOS (6.6)

i=1
This architectural innovation addresses key limitations of the Graph-Sprints model. It removes
the dependency on domain-specific knowledge for setting bin edges and allows for more precise
control over the size of the resultant state or embedding, governed by the dimensions of the
embedding matrix W. This approach also advances adaptability and flexibility in handling
heterogeneous graph structures as discussed in Section 6.5. Algorithm 4 details state calculation

during inference.

Algorithm 4 Deep-Graph-Sprints: Graph Representation Learning (Equation 6.6)

Require: EdgeStream > Stream of arriving edges ¢; ;
Require: f > Number of input features
Require: s > Embedding size
Require: x > Number of softmax functions
Require: W(s X f] > Learnt embedding matrix
Require: @ > Learnt forgetting coefficient
Require: f > Learnt forgetting coefficient
Wieshape < W.reshape(x,s/x, f) > Reshape W for softmax application
fore,, € EdgeStream do
GetS,, §v > Summaries of nodes u, v (t — 1)
Get F; > Features of edge e,
enc_feats «— MatrixMultiply(Weshape, Ft) > Encode features
norm_feats <— 0 (enc_feats,axis = —1) > Normalize features
norm_feats <— norm_feats.reshape(s) > Reshape Normalized features

Sy BOS,+(1-B)®((1—&) ®norm_feats+&©S,) > Update node u summary
So—BOS,+(1—B) O ((1—&) ©norm_feats +& ® S, > Update node v summary
end for
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6.2.3 Learning Mechanisms in Deep-Graph-Sprints

Given the DGS-3 architecture discussed above, we will now delve into the learning mechanisms
for the Deep-Graph-Sprints parameters. As we will discuss in the next paragraphs, the Deep-

Graph-Sprints architecture allows for an efficient implementation of mixed-mode AD.

As discussed in Section 2.2.2, three strategies for AD are prominent, depending on the
application of the chain rule: forward-mode AD, reverse-mode AD (commonly known as

backpropagation), and a mixed-mode that combines elements of both.

In contexts involving temporal data, particularly with GNNSs applied to temporal graphs
or RNNs, backpropagation presents significant memory challenges. Specifically, the whole
subgraph that is in the causal past of an event (i.e. the whole subgraph that could have
influenced the current event) for GNNSs, or sequence for RNNs must be maintained in memory
to facilitate backpropagation of Jacobians. Memory usage scales with computation length,

necessitating the storage of all intermediate values.

This requirement often becomes a bottleneck in terms of memory and computational
efficiency. As a workaround, truncated backpropagation is employed, allowing the use of
only part of the sequence or graph for Jacobian propagation. Several GNN algorithms, such as
TGN [Rossi et al., 2020], implement truncated backpropagation to limit the backward phase to a
single step, covering a one-hop neighborhood. While effective in reducing memory load, this

truncation compromises the learning of long-term dependencies.

Conversely, forward-mode AD does not require tracking of intermediate values, eliminating
the need to traverse back through the entire graph or sequence. However, in typical ML
architectures where the output dimension (e.g., loss) is much smaller than the input dimension,

forward-mode AD becomes more computationally intensive than reverse-mode AD.

The complexity of forward-mode AD limits its applicability in typical ML scenarios, as
detailed in Section 2.2.2.2. Nonetheless, forward-mode AD is applicable in situations requiring a
manageable number of Jacobian computations, offering efficient Jacobian propagation through

computational graphs, and learning long term dependencies.

In the Deep-Graph-Sprints method, the feasibility of forward-mode AD is supported by
three considerations. First, in DGS-1, the scalar nature of « and B reduces computational

complexity. Second, Deep-Graph-Sprints is dominated by elementwise multiplications, where
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different elements of a state vector are not mixed together, in DGS-2 and DGS-3, each feature or
softmax function corresponds to a single scalar within & and B, constraining the dependency
of every bin in the state vector to specific bins in these vectors. Third, the implementation of
multiple softmax functions in DGS-3 limits each state element’s dependency to segments of
the embedding matrix W. The subsequent sections will address the calculation specifics and

analyze the computational and memory complexities in Section 6.2.4.

These factors collectively justify the selection of forward-mode AD for the differentiation

process in the DGS models.

Consequently, given our architecture illustrated in Section 6.2.1 and Figure 6.1, our method
consists of two components, the DGS component which could be one of the variations (DGS-
1, DGS-2, or DGS-3), and the NN classifier component. The design of Deep-Graph-Sprints
methodically incorporates forward-mode AD for learning the DGS component, aligning with
specific computational and memory considerations inherent in graph-based data contexts.
In contrast, the subsequent NN classifier component, processing the embeddings generated
by the DGS component, utilizes reverse-mode AD differentiation. This hybrid approach
effectively leverages the strengths of both paradigms, namely, learning long term dependencies,
and ensuring efficient learning while accommodating the memory constraints and structural

complexities of graph data.

Given the specific architecture, standard Jacobian tools were Insufficiently efficient especially
to calculate the Jacobians of the DGS component parameters. Consequently, we handcrafted
and implemented the Jacobians from scratch to ensure precise alignment with the model’s
requirements, optimizing both performance and computational efficiency, as detailed in the

following Section 6.2.4.

6.2.4 Gradient Calculations in Deep-Graph-Sprints

This section delves into the core computational mechanics of the Deep-Graph-Sprints methodol-
ogy, with a specific focus on the gradient calculation process integral to the optimization of the
learnable parameters. Deep-Graph-Sprints involves two components DGS and NN, as discussed

in Section 6.2.1.

In the NN classifier component, number of learnable parameters varies based on model

architecture, primarily involving the network’s weights. As discussed in Section 6.2.3, the
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parameters of the NN classifier component are optimized using backpropagation, and to
implement that we leverage the functionalities of a standard deep learning platform, namely,

PyTorch [Fey and Lenssen, 2019].

Central to the DGS model are three key parameters: «, B, and the learnable feature mapping
matrix W, which facilitates the transformation from feature space to embedding space. Notably,
this W matrix replaces the § feature encoding function utilized in the third variant of the model
(DGS-3). The optimization of these parameters is dependent upon the accurate computation
of their gradients in relation to the defined loss function, denoted as L. Therefore, it becomes
imperative to systematically compute the partial Jacobians %, Z—% and %. This process entails
the adjustment of &, B, and W after the processing of each data batch, based on their respective
gradients with respect to the loss function. Due to the specificities of the learning paradigm for
these parameters, as discussed in Section 6.2.3, we need to implement their gradient calculation
and optimization process from scratch. In the following subsections, we present a detailed
explanation for the computation of these gradients. Each parameter’s Jacobian computation
is broken down into a sequential, step-by-step process, elucidating the mathematical and
algorithmic underpinnings that facilitate the Deep-Graph-Sprints model’s learning algorithm.

This comprehensive breakdown aims to provide clarity and enhance the replicability of the

gradient calculation procedure within the Deep-Graph-Sprints method.

Importantly, in the Deep-Graph-Sprints method variations (DGS-2 and DGS-3), the parameters
& and E are conceptualized as vectors, diverging from the scalar form used in DGS-1. This
distinction is crucial, yet the foundational equations remain applicable in both scenarios. &, and
B are interpreted as an aggregation of f forgetting coefficients &;, and p;, as demonstrated in
Equations (6.2a and 6.3a), where f represents the count of input features, and «; is the associated

forgetting coefficient for the i*" feature.

This architectural choice, allocating one coefficient per feature, is an important detail for the
efficiency of Jacobian calculation, a critical aspect that enables efficient forward-mode AD with

minimized computational complexity as discussed in Section 6.2.3.

6.24.1 Alpha &)

This section focuses on the computation of the Jacobians of the parameter @ by applying the

chain rule. This fundamental concept in calculus is crucial for understanding how changes
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in & affect the loss function L, given the state S, which represents the NN model input. The

relationship is mathematically expressed in Equation 6.7.

dl.  dL dS
ﬁ —_— E, * ﬁ (6.7)

We see that the resulting Jacobian depends on two parts % representing the NN classifier

component, and g—g representing the DGS component.

For the NN classifier component, ‘% is derived using backpropagation. For practical
implementation, this derivation process is efficiently facilitated by PyTorch [Fey and Lenssen,
2019] built-in functions, allowing for streamlined computation. About the second component
(i.e.,‘;—g ) representing the DGS component, here we use the forward-mode AD to calculate the
Jacobians. As mention in Section 6.2.3, due to the specificities of our model, standard Jacobian
tools were insufficient. Consequently, we handcrafted and implemented the Jacobians from

scratch to ensure precise alighment with the model’s requirements.

As defined by our state computation formula (see Equation 6.4), the state S; is influenced
both directly and recursively by the parameters & and B, as it depends on the previous states of
the target node S t—1, and its neighbor S {1, which are in turn functions of @, B, and all preceding
states. For the sake of clarity and to avoid notational complexity, we choose to omit this recursive
dependency in the notation when computing % , as illustrated in Equation 6.8.
dS, _ dS, _dS.  dS, as; L5 ©8)

di — 45,, di ' 45y, di = o

-

The calculation of the partial Jacobians, %, is a key step in this process. This calculation,

essential for understanding the direct impact of @ on the state S;, is shown in Equation 6.9.

e =0-Po (S -dn) (69)

By integrating in the Deep-Graph-Sprints algorithm (referenced in Equation 6.4) with the
Jacobian chain rule (outlined in Equation 6.8), we arrive at a recursive formulation as depicted

in Equation 6.10.
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Sy 5 dSi, o dSp, 9§,

Finally, by substituting the values of the partial Jacobians formula (Equation 6.9, we derive

Equation 6.11.

S ~ dS,_ . _dse . .
df = ﬁ@ thzl + (1 — ‘B) ®© (IX@ d%é 1 + S:ll —(S(Ft)> (611)

Memory and Computational Complexities for @ Derivatives

Equation 6.11 underscores the recursive nature of the gradient calculation, highlighting the
necessity to maintain a historical record of the Jacobian states for each node within the graph.
Practically, to manage this, we implement a storage mechanism for the most recent Jacobian,

df;&‘l , for each node. Upon the introduction of a new edge, these stored Jacobians are utilized to

compute the updated Jacobians, which are then used to refresh the stored values. Therefore, the
storage requirement entails maintaining an n X s matrix for a graph with n nodes, each with a

state vector of length s.

About the computational complexity a key characteristic of our method is the element-
wise multiplication between the state vectors S and the parameter vectors &. This operation
significantly optimizes the computational complexity involved in the calculation of Jacobians.
For a state vector S of length s, the Jacobian with respect to & is outlined in Equation 6.12. This
process, critical for assessing the impact of changes in & on the state vector S, has a computational
complexity of O(s), a reflection of its element-wise nature. The same applies for the element

wise multiplication between the encoded features vector and «.

Conversely, if the operation were matrix multiplication, the computational complexity would
rise to O(s?). This increase is due to the more complex interdependency where each element
of the product is influenced by all the values in &. Therefore, the element-wise multiplication
approach not only simplifies the computational procedure but also improves efficiency, making

it a strategically beneficial choice for the applicability of forward-mode AD in our model.
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951
80(1
= 852
dS I
= = 12
on : (6.12)
dSs
_aas_

Therefore, the arrival of a new edge involves calculating the partial Jacobians as outlined
in (6.9) and integrating these with the pre-stored Jacobians as formulated in Equation 6.11.
The resultant computational complexity can be expressed as O(s + s + s + a), simplifying to
O(s + a), under the assumption that the encoding function & incurs a computational complexity
denoted by a. Where a=O(}_(log(Ly)), where L stands for the number of bins for feature f, as
detailed in Section 5.3.2.

This formulation not only streamlines the understanding of the recursive nature of the
gradient calculations in the Graph-Sprints method but also defines the practical aspects of

implementing such a system, particularly in terms of storage and computational complexity.

6.2.4.2 Beta (P)

In parallel to the methodology applied for &, this section is devoted to the computation of the
Jacobians of the parameter f within the Deep-Graph-Sprints method. Employing the chain rule,
we determine the impact of E on the loss function L, in relation to the state S, the input to the

model. This relationship is represented in Equation 6.13.

di _dL 45 (6.13)
dg  dS dp

The resulting Jacobian depends on two parts i representing the NN classifier component,

and Z—g representing the DGS component.

Similar to the process for @, «% is obtained through backpropagation. The term Z—g then
captures how changes in f affect the state S. We use the forward-mode AD to calculate the
Jacobians. As mention in Section 6.2.3, due to the specificities of our model, standard Jacobian
tools were insufficient. Consequently, we handcrafted and implemented the Jacobians from

scratch to ensure precise alignment with the model’s requirements.
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As per the f parameter, and given our state computation formula (see Equation 6.1), the state
§t depends on E, and also depends on the previous states of the target node and the neighbor,
S;_1and S {1, which also depend on B Thus, the Jacobian can be further expanded as shown in

Equation 6.14, which decomposes the Jacobian into more granular components.

ds s,  dS,_ ds, s, , dS,
o 2 o2y 2 o2 L 2 (6.14)
A dS,.,  dB  dS*_, dp 0

The calculation of the partial Jacobian %—% leveraging the Deep-Graph-Sprints formula (Equa-

tion 6.4) is crucial in understanding the direct influence of E on the state S;, as demonstrated in

Equation 6.15.
a5 = e s
aé =5 - (-0 eiR) +E0 5 ) (6.15)
Employing the Deep-Graph-Sprints formula (referenced in Equation 6.4), we proceed with a

45
dp

the partial Jacobians of S, as illustrated in Equation 6.16. This reformulation not only simplifies

modular-focused reformulation of the Jacobian “2. This is achieved by representing it through

the understanding but also facilitates easier application in practical scenarios.

s, - dS;,_ ds*, , dS
e fo Lt
dap dp dp ap

Finally, by substituting the values of the partial Jacobians formula (Equation 6.15, we derive

+(1-B)eEo

(6.16)

Equation 6.17.

—

dS =g —
7: - (Stl + ,B O
ap

4511 N o 5 o - L dSE
I > - ((1—a)®5(Pt)+a@st,l) +(1-f)o (a@ dtﬁl) 617)

Memory and Computational Complexities for B Derivatives

The approach for computing the Jacobians of B, as detailed in Equation 6.16, mirrors the
methodology applied to &, with a similar recursive structure necessitating the tracking of past
Jacobian states for each graph node. For operational efficiency, a storage system is employed to

retain the latest Jacobian, d?i’él , for each node. The arrival of a new edge triggers the utilization

of these stored Jacobians for the computation of updated values, subsequently updating the
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storage.

The data storage architecture remains consistent with the & Jacobian process, requiring an
(n x s) matrix corresponding to a graph of n nodes, each represented by a state vector of length

S.

The computational complexity for the B Jacobian, including feature encoding and integration

with stored Jacobians as per Equation 6.16.

Similarly to the computational complexity of @, element-wise multiplication between state
vectors S and parameters  optimizes Jacobian calculations in our method. For S of length s, the
Jacobian with respect to B (Equation 6.18) has computational complexity O(s). This also applies
to the multiplication with the encoded features vector and E In contrast, matrix multiplication

would lead to a complexity of O(s?), making element-wise multiplication a more efficient choice.

o]
dB1
= )
L 7 (6.18)
95 :
9Ss
9. |

Therefore, computing the Jacobians of ‘Z—% maintain a computational complexity of O(s +
a). This is assuming that the encoding function 5 possesses a computational complexity
characterized by a. Where a=0 () log(Ly)), where Ly stands for the number of bins for feature
f, as detailed in Section 5.3.2.

This structured approach to gradient computation for §, while akin to that of &, reinforces

the method’s coherence in handling recursive calculations.

6.2.4.3 Embedding Matrix (W)

In the third approach of the Deep-Graph-Sprints methodology, the embedding matrix parameter
W plays a pivotal role. This approach modifies the state computation formula, integrating a
learnable mapping from feature space to embedding space, as opposed to the encoding function
5. The revised state computation formula is presented in Equation 6.6, where the softmax

function is applied to the product of W and feature vector F;.
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The calculation of the Jacobians of W is essential for understanding how changes in the
embedding matrix affect the overall model. Employing the chain rule, we establish a relationship

between the loss L. and W, as defined in Equation 6.19.

dl.  dL d
TR (6.19)

The resulting Jacobian depends on two parts representmg the NN classifier component,

and representmg the DGS component.

As per the Jacobians of the loss in respect to the state (i.e., %), it is obtained using backprop-

agation, as discussed when detailing the Jacobians of the parameters &, and B.

About the second term (i.e.,%) representing the DGS component, here we use the forward-

mode AD to calculate the Jacobians.

To further elucidate the second component, % representing the relationship between W
and S}, given our state computation formula (see Equation 6.6), the state S; depends on W, and
also depends on the previous states of the target node and the neighbor, S; ; and S;_,, which
also depend on W. Thus, we decompose the Jacobian of the state S; with respect to W into more

granular components, as shown in Equation 6.20.

ds, s, dS, 4 ds; ds*, 1 dS,
== ~ —L 2
W35 O~ +d5*t_1 Ot (6.20)

Utilizing Equation 6.6, the expression of 5—5\’, is simplified through the application of the
partial Jacobians of S. This methodology yields the Jacobian of S relative to W, as detailed in
Equation 6.21.

§ L dSr, a5
+A-pOIo -+ o

=B0 (6.21)

z\&l

A critical step in this process is the calculation of the partial Jacobian giv\}, which directly
quantifies the impact of W on the state S;. This is expressed in Equation 6.22, where @;_;
represents the concatenation of the results of x softmax functions, and W;F; represents the result

of multiplying the i*" subset of W with the features.
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9(Pi1 F(WiF))

—l-(1-fol-1)o W

(6.22)

The softmax function, denoted as ¢ and applied to an input vector x, is formally defined by
Equation 6.5. This definition implies that the softmax value of each element in x is influenced by
all other elements in the vector. As a result, the Jacobian of the softmax function with respect
to its input vector forms a two-dimensional Jacobian matrix, reflecting the interdependencies
among the vector elements. The values of these Jacobians varies depending on their position
within the Jacobian matrix, specifically whether they are diagonal or off-diagonal elements, as

shown in Equation 6.23.

argg)i et (1 =o)y) ifi=j 629
J

—0(x); - o(x); ifi #j.

Memory and Computational Complexities for W Derivatives:

The Jacobian computation for the embedding matrix W, as formulated in Equation 6.21,
follows a recursive calculation parallel to that used for & and B This process entails tracking

historical Jacobian states for each node in the graph. To enhance operational efficiency, we

maintain a dedicated storage system to store the most recent Jacobian, dg{/\*,l , for each node. The
introduction of new edges activates the use of these stored Jacobians to facilitate the calculation

of updated values, which are then used to update the stored Jacobians.

Optimizing Memory Footprint and Computational Complexity Using Multiple Softmax

Functions:

Considering an embedding matrix W of dimensions s x f, where s is the embedding size and
f is the number of input features, a conventional application of a single softmax function would
typically yield Jacobians of dimensions f x s2. In our Deep-Graph-Sprints model, we address this
memory complexity issue by employing multiple softmax functions. Each softmax function is
designated to manage a segment of the resulting state, as illustrated in Equation 6.24. Utilizing
x softmax functions, each softmax corresponds to a subset of /s rows in the embedding matrix
h = s + x. Therefore, we effectively reduce the memory requirement to f x h x s. This is the
memory required per node in the graph, thus, the memory complexity for a graph with n nodes

isn x (f x h x s), each node associated with a state vector of length s, and processed using x



6. DEEP-GRAPH-SPRINTS: LOW-LATENCY NODE REPRESENTATION LEARNING METHOD 121

softmax functions.

- aSi Y . -
95 _ ) Wiy ifi & j€ samed, (6.24)
oW

0 otherwise.

To illustrate with an example, consider an input size f = 3, a state size s = 4, and a number
of softmax functions x = 2. Consequently, the number of rows in the embedding matrix W per

softmaxish = 2.

Wi Wi Wi
F
W. W W:
wo W Wa Wi Fo|p
W31 Wz Was
F
Wy Wi Wi

The calculation of @Y= &(W;F;) (done in the forward pass, when calculating the state) can be

visualized as:

& Wik + Wio b + Wiz F
x=2 WorFi + Wb + WasF3
PrWF) = - -
=1 5 W31 F1 + W, + WasF3

Wy ki + Wy b + Wy F

To calculate the Jacobians of S with respect to W, applying Equation 6.24 we get:

T oW ows oWk oW as O 0 0 0 0 0
5 _ W oW aav%s oW oWs o 0O 0 0 0 0 0
o 0 0 0 0 0 0 g gk oaws awy aws s

|00 0000 G Wh AW ows aWe oW |

The analysis of the Jacobians % reveals that they comprise a collection of x blocks, each

independent and with dimensions of h* X f.

Thus, the computational complexity for every segment is (h? x f), and given that we have
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x segments, then the total computational complexity for deriving W, as per Equation 6.21, is
O(s + (s x h x f)). It is worth noting that the calculation can be done in parallel since segments

are independent.

In conclusion, the total computational complexity is linear with respect to the state size s,
assuming a fixed h. This is desirable and similar to backpropagation. Furthermore, it is feasible

to fix h to a predetermined computational complexity.

6.2.5 Parameter Updating Mechanisms in Deep-Graph-Sprints

The Deep-Graph-Sprints method, as outlined in Section 6.2.1, integrates two components: the
DGS and the NN classifier components. Each component encompasses a set of learnable pa-
rameters, which are subject to iterative updates subsequent to the processing of each data batch.
In the context of the NN classifier component, the Adam optimizer [Kingma and Ba, 2014]—a
refined algorithm for first-order gradient-based optimization of stochastic objective functions,
predicated on adaptive estimates of lower-order moments—is employed for parameter updates.

This implementation is sourced from Pytorch [Fey and Lenssen, 2019].

In contrast, the DGS component utilizes vanilla gradient descent instead of Adam to update

the parameters.

Specifically, after processing a specific batch b, the Jacobians are calculated for the learnable

parameters based on the batch data, yielding Jacobian values %, il%’ and %, (as discussed

in Section 6.2.4). The parameter update equations are then applied: equation 6.25 for the a

parameter, equation 6.26 for the g parameter, and equation 6.27 for updating the embedding

matrix W.

Bi=a— (17 : Eif;) (6.25)
L drL,

p:=p5- (17 : Cfé’) (6.26)
W:=W-— (17 : Z;’;) (6.27)

The parameters of both the DGS and NN classifier components are updated simultaneously.
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Looking ahead, future work might involve exploring the integration of more advanced
optimization algorithms for the DGS component parameters. For instance, the adoption of the

Adam optimizer.

6.3 Experiments and Results

6.3.1 Experimental Setup

The efficacy of the Deep-Graph-Sprints methodology was evaluated through two distinct tasks:
node classification and link prediction. This evaluation utilized five datasets, comprising three

open-source external datasets and two proprietary datasets from the AML domain.

6.3.1.1 Baselines

A first basic baseline is Raw, which uses the raw edge features to train an ML classifier, aiming

to demonstrate the classifier’s performance in the absence of graph-related information.

Another pivotal baseline is Graph-Sprints, the graph feature engineering method detailed in
Chapter 5. This benchmark aims to ascertain whether Deep-Graph-Sprints maintains competitive
performance while addressing the limitations of Graph-Sprints, discussed in Section 6.1. The
comparison includes two variants: GS, which utilizes Graph-Sprints histograms, and GS+Raw,

which integrates Graph-Sprints histograms with raw edge features.

Consequently, while Raw, GS, and GS+Raw baselines employ the same machine learning
classifier types, they differ in their feature sets: Raw utilizes raw edge features, GS is based on

Graph-Sprints histograms, and GS+Raw combines both sets of features.

An additional baseline, termed Fixed-DGS, represents a variant of Deep-Graph-Sprints where
the DGS parameters remain static during training. The purpose of this baseline is to highlight

the performance enhancement attributed to the learning of DGS parameters.

Another baseline set comprises state-of-the-art GNN methods, specifically TGN [Rossi et al.,
2020] and Jodie [Kumar et al., 2019], as previously used in Graph-Sprints (Section 5.4.1.1). Our
TGN implementation, based on PyTorch Geometric [Fey and Lenssen, 2019], differs from the
original by restricting within-batch neighbor sampling. For consistency, Graph-Sprints and

Deep-Graph-Sprints also employ the same constraints.
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Two TGN variants were used: TGN-attn, alighing with the original paper’s robust variant,
and TGN-ID, a simplified version focusing solely on memory module embeddings. Jodie,
utilizing a time projection embedding with gated recurrent units. TGN-ID and Jodie baselines,
which do not necessitate neighbor sampling, were chosen for their lower-latency attributes

compared to TGN-attn.

GNN baselines (TGN-ID, TGN-attn, and Jodie) all used a node embedding size of 100

6.3.1.2 Optimization

The hyperparameter optimization process adopted a methodology parallel to that in Graph-
Sprints, utilizing Optuna [Akiba et al., 2019] for training 100 models. Initial warmup trials
were conducted through random sampling, followed by the application of the TPE sampler.
Each model incorporated an early stopping mechanism, triggered after 10 epochs without
improvement. This criterion, based on the AUC for node classification and AP for link prediction,
ensured efficient training. Table 6.1 enumerates the hyperparameters and their respective ranges
employed in the Deep-Graph-Sprints tuning process, while Table 5.1 details the ranges for the
baselines.

TABLE 6.1: Hyperparameters ranges for Deep-Graph-Sprints

Hyperparameter Min | Max
DGS learning rate () | 10~* | 10°
Number of softmaxes 10 50

Learning rate 1074 ] 10°
Dropout percentage 01 | 03
Weight decay 1077 ] 10°
Number of dense layers | 1 3
Size of dense layer 32 | 256

Importantly, for all Deep-Graph-Sprints variants (DGS-1, DGS-2, and DGS-3), the state size is
consistently set at 100, ensuring a fair comparison with other GNN baseline models (TGN-ID,
TGN-attn, and Jodie). In future experiments, we propose to maintain a constant  while varying

the number of softmaxes.
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6.3.2 Public Datasets Experiments

6.3.2.1 Datasets

This study performs the evaluation of the Deep-Graph-Sprints method using three publicly
available datasets, from social and educational domains. These datasets are identical to those

used in the assessment of Graph-Sprints, and their details are elaborated in Section 5.4.2.1.

6.3.2.2 Task Performance

In assessing our method, we focused on two tasks: node classification and link prediction.
The results for node classification are detailed in Table 6.2, displaying the average test AUC
+ std for each dataset. To obtain these figures, we retrained the best model identified through

hyperparameter optimization across 10 different random seeds.

The variations of our Deep-Graph-Sprints approach, DGS-1, DGS-2, and DGS-3, as described
in Section 6.2.2, were also evaluated. Along with these, GNN baselines (TGN-ID, TGN-attn, and
Jodie) and DGS-3 all utilized the same embedding size of 100.

We highlighted the best and second-best performing models in each dataset. Our analysis
shows that Deep-Graph-Sprints variants performed exceptionally well in the Wikipedia and Mooc
datasets, achieving the highest scores, while Graph-Sprints performed the second-best. In the
Reddit dataset, our methods ranked second, behind Graph-Sprints. To provide an overview, we
include a column showing the average rank, in Table 6.2, which represents the mean ranking

computed from all datasets.

The lower performance of DGS-3 in the Wikipedia dataset, compared to other Deep-Graph-
Sprints variations, is noteworthy. Initial analysis indicates that this is due to the data prepro-
cessing method for the Wikipedia dataset. While using a consistent standardization approach
across all datasets, omitting this step improved DGS-3’s performance to 89.2 + 1.9. Nonetheless,
for consistency in the results table, the performance with standard preprocessing is reported.
Future research will focus on understanding and resolving the factors behind this difference in

DGS-3’s performance.

For the link prediction task, average test AUC = std and AP = std are reported in Table 6.3,
achieved by retraining the hyperparameter-optimized model with 10 random seeds. We

evaluated both transductive (T) and inductive (I) settings, the former predicting future links of
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TABLE 6.2: Deep-Graph-Sprints: Node classification results using public datasets.

AUC % std
Method Iy edia | Moo | Reddit | ‘verage rank
Raw | 585+22 | 62809 | 553208 10
Fixed-DGS | 873217 | 727:03 | 645204 6.3
TGN-ID | 889202 | 63017 | 613220 6
Jodie | 872209 | 637167 | 61920 8
TGN-attn | 866+28 | 75804 | 679+16 57
GS 90.7£03 | 750+02 | 68.5% 1.0 37
GS+Raw | 892404 | 765=03 | 637« 0.4 43
DGS-1 | 882+06 | 73805 | 65808 4
DGS2 | 91003 | 75203 | 672204 3
DGS3 | 833237 | 78706 | 68.0%19 1

nodes observed during training, and the latter involved predictions for nodes not encountered

during training.
Deep-Graph-Sprints variants (DGS-1, DGS-2, and DGS-3), are detailed in Section 6.2.2.

We identified the best and second-best models. Deep-Graph-Sprints excelled in link prediction,
consistently ranking first or second across datasets and settings (T and I). Notably, in the Mooc
dataset, it outperformed the second-best model by about 7% in AP. To provide an overview, we
have included a column in Table 6.3 that displays the average rank. This represents the mean

ranking derived from all datasets, calculated using AP.

Optimized values varied depending on the use case and dataset. We discuss a few examples
focusing on three essential parameters: DGS learning rate (1), number of softmaxes, and learning
rate. Figure 6.2 presents the AP for each trained model in the Mooc dataset for the link prediction
inductive task, indicating lower values of DGS learning rate (17) generally yield better results,
contrary to the learning rate (NN classifier’s component learning rate). The optimal number of
softmax functions was found to be the minimum (10). For a comprehensive view of all tuned

parameters, refer to Figure 6.3.

In the Wikipedia dataset, used for link prediction in a transductive setting, as shown in
Figure 6.4, patterns slightly differ. Optimal DGS learning rates were around 0.5, and 20 softmax

functions seemed preferable for this dataset.
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TABLE 6.3: Deep-Graph-Sprints: Link prediction results using public datasets.

Wikipedia Mooc Reddit Average
Method AUC | AP AUC AP AUC AP | rank
TGN-ID | 95602 | 95801 | 804+58 | 750461 | 94707 | 93210 | 7
Jodie 94303 | 945203 | 851+18 | 800235 | 949=12 | 934+17 | 623
TGN-attn | 97.0£0.3 | 973203 | 803+81 | 75684 | 96104 | 95107 | 47
[ Fixed-DGS | 909+ 11 |910+12 |629+02 | 808+03 | 94601 939202 | 73
GS 905206 92907 | 827208 | 811207 | 961202 | 953+03| 5
GS+Raw | 92104 |926+04 | 854203 | 837203 | 96.8£01 | 961202 | 37
DGS-1 913204 | 913205 | 835202 | 817203 | 95602 [ 949+02| 6
DGS-2 9B5+13 | 93614 | 837 <41 | 821235 | 966=01 | 9%62£02| 3
DGS-3 964208 | 96807 | 91.7£04 | 904205 | 960402 | 95302 | 2
TGN-ID | 92202 | 928-02 | 685486 | 63567 | 934-06 | 922408 | 53
Jodie 87006 | 89107 | 711222 | 66122992313 |908+19 | 77
TGN-attn | 945202 | 950202 | 714+41 | 669+39 | 95.004 | 94305 | 33
| [ Fixed-DGS | 89.2+08 | 895+09 | 75404 | 725204 | 928+12 | 915415 57
GS 920203 | 91704 | 782406 | 765206 | 92705 | 927206 | 3
GS+Raw | 914202 | 91103 | 83.0205 | 803205 | 935+04 | 922+05 | 37
DGS-1 88807 | 885+12 | 718407 | 70013 | 90713 | 862+20| 8
DGS-2 918208 |91.6+14 | 734218 | 71.0+1.7 | 91.8+05 | 87313 | 6
DGS-3 948207 | 955207 | 90.7£05 | 89.520.5 | 93804 | 921206 | 23
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FIGURE 6.2: Example of hyperparameters’ influence on inductive link prediction in the Mooc

dataset, with the objective value measured as AP

6.3.2.3 Inference Runtime

20

In evaluating Deep-Graph-Sprints, our primary goal was to ensure inference times comparable

to Graph-Sprints while addressing its limitations. We conducted latency comparisons between

Deep-Graph-Sprints, Graph-Sprints, and baseline GNN models. This involved running 200 batches

of 200 events on each external datasets (Wikipedia, Mooc, and Reddit) for the node classification
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FIGURE 6.3: Example: Influence of all Deep-Graph-Sprints hyperparameters on link prediction in
the Mooc dataset, with the objective value measured as AP.
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FIGURE 6.4: Example of hyperparameters’ influence on transductive link prediction in the
Wikipedia dataset, with the objective value measured as AP.

task, averaging times over 10 iterations. Tests were performed on a Linux PC equipped
with 24 Intel Xeon CPU cores (3.70GHz) and an NVIDIA GeForce RTX 2080 Ti GPU (11GB).
According to Figure 6.5, Deep-Graph-Sprints not only matched but also surpassed Graph-Sprints
in inference speed, particularly in the Wikipedia and Reddit datasets (0.24 vs 0.29 seconds).
This improvement is attributed to the higher feature count (172) in these datasets, increasing
Graph-Sprints feature volume and thus, potentially, its processing time. In contrast, the Mooc

dataset, with only 7 edge features, exhibited a smaller disparity in running times (0.24 vs 0.28
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seconds), Graph-Sprints being faster.

When compared to GNN baselines (TGN-attn, TGN-ID, Jodie), Deep-Graph-Sprints demon-
strated markedly lower inference latency, being over 12 times faster than TGN-attn in the
Reddit dataset. Additionally, it delivered competitive classification performance in Reddit
and surpassed TGN-attn in Mooc. However, its unexpectedly low performance in Wikipedia

warrants further investigation.

Runtime vs AUC - Wikipedia Runtime vs AUC - Mooc Runtime vs AUC - Reddit
. 80.0 - 704
90 . 51, T
6.1x faster, +2.9 AUC ~"=® 68 ---= 2.2 faster, $O.1AUC
] 750 ®
88
» 72.5 66
Cht | B g S
2 et 2 70.01 2
841 - 5.0x faster, -3.3 AUC 675 | 641 ¢
821 65.0 62
62.5 1
80 - 60 4
02 04 06 08 10 12 0.5 10 15 1 2 3
Runtime Runtime Runtime
TGN-ID Jodie e TGN-attn e G5 e GS+Raw DGS-3

FIGURE 6.5: Deep-Graph-Sprints: Trade-off between AUC and runtime.

6.3.2.4 Analysing learning procedure

The evolution of the learning process can be seen through the visualization of parameter
adjustments across successive epochs. The figures provided elucidate the dynamic alterations

within the parameters, offering insights into the model’s convergence behavior.

Figure 6.6 illustrates the variation of the a and  scalar parameters during the learning
process in the DGS-1 approach, in the node classification task in the Mooc dataset. Initially
set at 0.5, « generally decreases over time, indicating reduced emphasis on neighboring node
information. Conversely, B tends to increase, suggesting a greater reliance on the previous state

of the target node.

In the node classification task for Mooc using the DGS-3 variant of Deep-Graph-Sprints, «
and B are vectors. Therefore, we report their average values. Figure 6.7 displays the changes in
these average parameters alongside the validation results, providing a comparison between the

adjustments in average parameters and validation performance.

This comparison reveals that on average both parameters are reducing in the initial epochs

and there is a jump close to epoch 75. However, this aggregated view is not very precise.
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FIGURE 6.6: DGS-1: Example comparing « and B parameter changes with validation
performance in node classification in the Mooc dataset.

Looking at the initial and last value within each bin of the ALPHA and BETA vectors (see
Figure 6.8), we see that almost all bins in ALPHA tend to reduce, however, in BETA we notice
that approximately half of the beta parameters increase while the other decrease. This fact

underscores the importance of the implementation of  as a vector
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FIGURE 6.7: DGS-3: Example comparing average « and § parameter changes and validation
performance in node classification in the Mooc dataset.

6.3.3 AML Experiments

In the context of money laundering, where criminals aim to conceal the unlawful origins of
their capital by transferring it through multiple accounts and Fls, our experimental focus is
specifically to elevate the efficacy of a triage model, which is comprehensively described in
Chapter 4, Section 4.3, by integrating the Deep-Graph-Sprints method. This integration involves
replacing the classifier and the graph-based feature generation steps with the capabilities of the
Deep-Graph-Sprints method. Consequently, the Deep-Graph-Sprints method is employed as the

primary triage model, a detailed architecture of which is presented in Figure 4.4.
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FIGURE 6.8: DGS-3: Evolution of per-bin & and  parameters throughout training. The x-axis
represents the 20 bins per vector, while the y-axis shows the adjusted values of these bins after
tuning. Initially, all bins start at 0.5, and then their values evolve to optimize model performance.

6.3.3.1 Datasets

We assess the Deep-Graph-Sprints method in two real-world banking datasets. These datasets are
identical to those used in the assessment of Graph-Sprints, and their details are elaborated in

Section 5.4.3.

6.3.3.2 Task Performance

In line with our Graph-Sprints experiments, we employed several baseline models for comparison.
The first baseline is a neural network classifier that relies solely on raw node features (i.e., entity-
centric features), without incorporating any graph information, termed 'Raw’. Additional
baselines include ‘GS’, utilizing exclusively Graph-Sprint features, and ‘GS+Raw’, combining
both Graph-Sprints and raw features. Furthermore, we replicated the training of three GNNs

architectures used in public datasets: TGN-ID, Jodie, and TGN-attn.

For our Deep-Graph-Sprints models, we evaluate the three distinct approaches (explained in

Section 6.2.2), labeled as DGS-1, DGS-2, and DGS-3.
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All models underwent optimization with an equal optimization budget. Following this, the
optimal hyperparameters (those yielding the best performance on the validation dataset) were
selected. Each model was then run using 10 distinct random seeds, and the average AUC along
with the standard deviation were calculated. This approach mirrors the methodology applied in
the node classification task on public datasets (as detailed in Section 6.3.2). Due to confidentiality
constraints, the specific AUC values are not disclosed. Instead, we present the relative AUC
improvements (AAUC) compared to a baseline model lacking graph features ('Raw’). In this
experiment, the baseline model is assigned a AAUC of 0, with any enhancement in recall over

the baselines indicated by positive AAUC values.

The results are summarized in Table 6.4. We marked the best and the second-best models
for clarity. This analysis includes Deep-Graph-Sprints models, Graph-Sprints variants, and other
GNNs baselines. The various Deep-Graph-Sprints approaches showed promising results, with
DGS-3 being the best model in the FI-A dataset by achieving a 3.6% increase in AUC. And a
notable 26.9% improvement in AUC for the FI-B dataset, demonstrating the effectiveness of
Deep-Graph-Sprints in this domain. To provide an overview, we include a column showing the

average rank which represents the mean ranking computed from the two datasets.

TABLE 6.4: Deep-Graph-Sprints: Node classification results using AML datasets.

Method FI_iAUC = Slt:(li_B Average rank
TGN-ID +0.1+0.1 | +244+£0.2 8
Jodie +0.0+£0.1 | +245+£0.2 8
TGN-attn | +0.3 0.7 | 425.1 £ 0.3 6.5
Fixed-DGS | +2.0+0.3 | 25.3+0.2 4.5
GS +1.8+05 | +27.8 £ 0.4 3.5
GS+Raw | +3.3+0.3 | +20.1 + 3.9 55
DGS-1 +1.8+03 | 25.8+0.7 4.5
DGS-2 +3.2+0.1 | +26.7 £ 0.2 3
DGS-3 +3.6 £0.2 | +26.9 £ 0.3 1.5

In this experiment, particularly with the FI-B dataset (Figure 6.9), higher DGS learning rates
proved beneficial up to a certain threshold, unlike the learning rate. As for the number of

softmax functions, 20 and 50 exhibited similar performance.
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FIGURE 6.9: Example of hyperparameters’ influence on node classification in FI-B dataset, with
the objective value measured as AUC.

6.4 Summary

This chapter introduced Deep-Graph-Sprints, a novel approach to representation learning in
CTDGs. This method efficiently learns time-sensitive embeddings, balancing rapid processing
with resource efficiency. A pivotal aspect of Deep-Graph-Sprints is its capability to overcome the
limitations inherent in the Graph-Sprints model, as detailed in Section 6.1. Furthermore, Deep-
Graph-Sprints successfully navigates the challenges faced by existing GNNs in learning long-term
dependencies. This is accomplished through the strategic implementation of forward-mode AD,

a significant enhancement in advancing the capabilities of GNNs.

Extensive experiments were conducted to rigorously assess Deep-Graph-Sprints. As detailed
in Tables 6.2, 6.3, and 6.4, our findings show that Deep-Graph-Sprints often surpasses both
Graph-Sprints and state-of-the-art GNN baselines in performance. This is particularly evident
in node classification and link prediction tasks, with notable results in the Mooc dataset. The
method’s performance in both transductive and inductive settings highlights its robustness and

adaptability across various CTDG scenarios.

In terms of inference speed, Deep-Graph-Sprints maintains similar or faster processing times
compared to Graph-Sprints, especially in high-feature datasets like Wikipedia and Reddit. This
efficiency is a significant advantage over slower GNN models, such as TGN-attn, with Deep-

Graph-Sprints being over an order of magnitude faster in certain cases.
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In conclusion, the Deep-Graph-Sprints method allows to achieve state-of-the-art performance
with end-to-end learning of parameters and therefore less tuning effort than the graph sprint

method, while keeping the desirable low-latency properties.

6.5 Future Work

Future developments in the Deep-Graph-Sprints method are envisioned to encompass several

pivotal areas of enhancement.

Advanced Optimization Techniques:

The incorporation of an advanced optimization algorithms such as Adam could potentially
replace the current use of stochastic gradient descent in updating the DGS parameters during
forward-mode AD. The adoption of these advanced techniques is anticipated to facilitate the

learning of optimal parameters and therefore more easily achieving good performance.

Extension to Heterogeneous Graphs:

A significant area of future research for the Deep-Graph-Sprints method is its adaptation to
heterogeneous graph structures. This evolution aims to extend the method’s applicability across
a diverse array of graph-based problem domains. One viable approach is to employ distinct
embedding matrices for different node or edge types, where each matrix maps varied input
features to a consistent embedding dimension. This method, however, presents challenges in

mini-batch training, necessitating the segregation of edges by type for effective mapping.

An alternative approach involves implementing a unique update process for each node
or edge type, resulting in the creation of multiple sub-embeddings. These sub-embeddings
would then be concatenated to form a unified final embedding. The key consideration here is
determining whether to learn a singular embedding matrix W per node or edge type, or to learn
a complete set of parameters — @, E, and W — for each type. The decision on this architecture is

likely to be dependent on the use cases.

Central to this adaptation is that the structure of the model needs to be defined, after which
the parameters are learned autonomously during training, obviating the need for manual

adjustments as required in Graph-Sprints.
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Input-Dependent Parameters:

A significant enhancement under consideration involves enabling input-dependent adaptability
for the parameters alpha (&) and beta (B). This advancement aims to amplify the model’s
responsiveness to diverse data inputs. As such, the state update equation would undergo
modification, integrating trainable matrices W;, and W, of dimension (s x f), where s represents

the embedding size and f denotes the number of input features.

To ensure the parameter values remain within the range [0, 1], a sigmoid function per feature,

denoted as 1, can be employed. The parameters are thus defined as:
52 = 1,D(W1Ft),
and

B =yp(W2F).

The revised state update formula, encapsulated in Equation 6.28, effectively integrates these

changes:

S = p(WoF) © i1+ (1 — p(WoF)) ® ((1 — p(WiF)) © F(WE) + p(WiF) © 57;‘_1) (6.28)

This modification enhances the accuracy of the Deep-Graph-Sprints model in processing

varying inputs.

These future directions represent critical steps towards augmenting the sophistication and
versatility of the Deep-Graph-Sprints model, positioning it at the forefront of graph representation

learning tools.



Conclusions and future work

Money laundering primarily seeks to hide the origins of illicit funds originating from crimes
such as drug trafficking, human trafficking, fraud, tax evasion, and corruption. This is achieved
by strategically transferring these funds through a network of interlinked accounts to represent
them as legitimate assets. An easy laundering of these funds supports underlying criminal
activities, subsequently impacting individuals, economies, governmental stability, and social

well-being [McDowell and Novis, 2001].

To incentivize Fls in their efforts against money laundering, governmental regulations outline
criteria indicating which transfers merit review. Institutions are met with rigorous sanctions for

breaches, including substantial fines for overlooked laundering activities.

In this doctoral research, we have adopted a graph-based perspective to address money
laundering detection, elucidating innovative strategies and delving into the complexities of

transaction networks.

Our journey through AML systems in banking underscored the significance of transactional
data and the relationships between entities. This exploration led to the creation of the Walking-
Profiles framework—a graph feature engineering approach grounded in the dynamics of random-

walks to extract pivotal graph-based features.

Moreover, in response to the persistent issue of false alerts in AML systems, we introduced
the triage model. This ML approach evaluates alerts against established AML criteria, assigning

them relevance scores to streamline and clarify the decision-making process.

137
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Considering the escalating volume of financial transactions, we presented Graph-Sprints,
crafted for CTDGs. Prioritizing computational efficiency, this technique is adept for real-time

implementations.

Advancing towards a comprehensive solution that overcomes the limitations of Graph-
Sprints, the Deep-Graph-Sprints methodology was created. This approach represents a low-
latency representation learning method, combining the advantages of Graph-Sprints with the

capabilities of deep learning methods.

Comprehensive evaluations across diverse datasets validated the adaptability and potency
of our methodologies. Our proposed methods, namely, Walking-Profiles, Graph-Sprints, and
Deep-Graph-Sprints were subjected to performance assessments, emphasizing their applicability

within and beyond the AML sphere.

In summation, this research contributes to the broader field of graph representation learning.
Moreover, it sets the foundation for future research to enhance these methods and explore their

application in a range of potential areas.

7.1 Main Contributions

1. Creation of a framework for Graph-based Feature Extraction: Recognizing the signifi-
cance of the insights that could be encoded in graph data, we developed the graph feature
engineering framework, named Walking-Profiles (Section 4.2). By leveraging random-walks,
this framework extracts graph-based features, that can be later used in any downstream

system (e.g., ML model).

2. Formulating a Comprehensive ML Pipeline for AML Systems: Addressing the prevalent
issue of false alerts in AML systems, we introduce an ML-centric methodology termed the
triage model (Section 4.3). This model processes alerts generated by pre-defined rules in
AML systems. It assigns scores to these alerts, which then either facilitate the suppression
of low-priority alerts or order the alert queue based on severity. An intrinsic advantage of
our approach is its ability to maintain compliance and offer clear explainability. Since every

alert originates from established rules, the process remains transparent and interpretable.

3. Design of a Real-time Graph feature engineering Approach for CTDGs: With the

increasing volume and velocity of financial transactions, it is imperative to have techniques
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that are both robust and efficient. Thus, we developed Graph-Sprints (Section 5.2) a method
optimized for CTDGs. This method minimizes computational overheads and memory

usage, making it suitable for real-time deployment (e.g., in an AML scenario).

4. Design of a Real-time Graph Representation Learning Approach for CTDGs: We
present Deep-Graph-Sprints, a pioneering approach in real-time graph representation
learning, as detailed in Section 6.2. This methodology successfully addresses the high
latency challenges of contemporary deep learning methods while eliminating the need for
manual tuning and domain-specific knowledge required by traditional feature extraction
techniques. Deep-Graph-Sprints combines the principles of Graph-sprints and deep learning,

offering an innovative solution for CTDGs.

5. Rigorous Evaluation of the Proposed Frameworks: To assess the performance and broad
applicability of our approaches, we undertook a comprehensive evaluation phase. We
tested the performance of both triage model (Section 4.4) and Graph-Sprints (Section 5.4.3)
across varied AML datasets. Further, to underscore the adaptability of our methods, we
also evaluated Graph-Sprints on datasets from diverse domains (Section 5.4.2), demonstrat-

ing its utility beyond the AML domain.

7.2 Future Research Directions

In this section, we start by enumerating the limitations of this research, followed by a discussion

on future directions to enhance and expand the utility of our methodologies.

7.2.1 Limitations

Acknowledged limitations include:

e Data Confidentiality: This research utilizes a combination of publicly accessible datasets
and proprietary datasets from Feedzai. Due to privacy constraints, specific details

pertaining to the internal AML datasets cannot be disclosed.

e Homogeneity Assumption: The methodologies proposed herein operate under the
assumption that all nodes and edges within the graph are homogenous, as elaborated in

Section 2.1.1.
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e Algorithmic Scalability: While the algorithm is designed for low latency, evaluating
its performance and efficiency on significantly large graphs (more than a million nodes)

remains a topic future work.

Further research will seek to address these limitations and enhance the framework’s adapt-

ability.

1. Expanding the scope of the Deep-Graph-Sprints framework to more complex graphs, such
as heterogeneous graphs. Given the complexity and richness of data these graphs offer,
exploring such avenue could extend the utility of our frameworks, further details in

Section 6.5.

2. Assessing the scalability and efficiency of Graph-Sprints, the Deep-Graph-Sprints when ap-
plied to larger networks could provide insights into their potential real-world applicability

across various sectors.

3. Itis crucial to explore the application of the Graph-Sprints, and Deep-Graph-Sprints frame-
works in diverse tasks, including community detection. Extending their use to other
practical domains, such as fraud detection, is important to fully leverage their potential
and broaden their applicability in graph-based research. This exploration will not only
validate their versatility but also potentially reveal new insights and improvements in

diverse areas of study.

4. Exploration of advanced optimization methods, notably the Adam algorithm, to enhance
or replace Stochastic Gradient Descent (SGD) in the Deep-Graph-Sprints framework. This
strategy is aimed at improving convergence efficiency and strengthening model robustness,

further details in Section 6.5.

5. Enhancement of the Deep-Graph-Sprints model’s responsiveness by making aandp param-

eters depend on data inputs, further details in Section 6.5.
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7.3 Closing Remarks
This Ph.D. is a collaboration between the University of Porto and Feedzai, a leading risk
prevention company.

We hope our work towards detecting money laundering leveraging graphs lays the ground

for more applications of graph-based techniques in the fight against financial crime.
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