
Anti-money
Laundering using
Graph Techniques
Ahmad Naser eddin
Doctoral Program in Computer Science
Computer Science Department
2024

Supervisor
Pedro Ribeiro, Assistant Professor, Faculty of Sciences of the University of Porto

Co-supervisors
Jacopo Bono, Research Data Scientist, Feedzai
David Oliveira Aparício, Machine Learning Scientist, Zendesk

UNIVERSIDADE DO PORTO

DOCTORAL THESIS

Anti-money Laundering using Graph
Techniques

Author:

Ahmad NASER EDDIN

Supervisor:

Pedro RIBEIRO

Co-supervisor:

Jacopo BONO

David APARÍCIO

A thesis submitted in fulfilment of the requirements

for the degree of Ph.D. in Computer Science

at the

Faculdade de Ciências da Universidade do Porto

2024

mailto:ahmad.eddin@feedzai.com
mailto:pribeiro@dcc.fc.up.pt
mailto:jacopo.bono@feedzai.com
mailto:jacopo.bono@feedzai.com

“ Networks are everywhere. The brain is a network of nerve cells connected by axons, and cells

themselves are networks of molecules connected by biochemical reactions. Societies, too, are networks of

people linked by friendships, familial relationships, and professional ties. "

Albert-László Barabási (2003)

Acknowledgements

I extend my deepest gratitude to my supervisors, Professor Pedro Ribeiro, Dr. Jacopo Bono,

and Dr. David Apáricio, for their invaluable help throughout my PhD. Professor Ribeiro’s

constant motivation has been a guiding light in tough times. Dr. Bono’s sharp insights and

thorough problem-solving have been crucial. Also, Dr. Apáricio’s ongoing support, even after

leaving Feedzai, with regular discussions and feedback, has been essential.

I am very thankful to Feedzai for providing a great environment for my PhD research. The

chance to solve real-world problems here, along with access to lots of data, computational

resources, and domain experts, has been key to my research success. I am particularly grateful

to Pedro Bizarro for his support during my PhD. My gratitude also goes to my managers, Joao

Ascensão and Hugo Ferreira, for their invaluable guidance and the impact they had on my

professional growth. To my colleagues at Feedzai, especially the research team, product-AI

team, and the domain experts for the valuable discussions that have significantly enriched this

research and immensely aided in both my professional and personal development.

To my dear friends in Syria and Portugal your companionship and support are incredible.

Also, to my colleagues from DCC for creating a supportive academic and social environment.

A special acknowledgment goes to my beloved wife, Hadeel, for her enduring love, unwa-

vering support, and extreme patience enriching every step of my journey.

Finally, I am extremely grateful to my parents and siblings for their unconditional love and

steady support, which has been the foundation of my strength and determination.

Abstract

Money laundering, the process of disguising illegally obtained assets to appear legitimate,

poses significant social and economic challenges. It involves crimes like human trafficking and

drug dealing. Banks implicated in undetected money laundering cases face substantial fines,

underlining the necessity for effective detection mechanisms.

Detecting money laundering presents several challenges: the rarity and delayed confirmation

of such events, the tendency of criminals to mimic normal financial activities, the requirement

for interpretable evidence for suspicious transactions, processing large volumes of data, and the

need for timely event evaluation.

Current anti-money laundering (AML) solutions, predominantly rule-based, offer clear

interpretability essential for auditing but are limited by high false positive rates (FPRs) and a

narrow focus on single-entity behaviors.

This thesis pivots on the premise that graphs, with their inherent capacity to represent

and analyze interconnected systems. In essence, graphs are versatile enough to represent

datasets where relationships between entities are important, offering a powerful tool for

AML investigations. Yet, their complexity presents computational and memory challenges,

particularly in real-time applications.

This research combines graphs with AML approaches, aiming to deliver a comprehensive

solution that analyzes transactional relationships through a graph. Engineered for real-time

decision-making and optimized memory usage, this approach represents a significant advance-

ment in combating money laundering. The thesis introduces innovative methodologies that

extract knowledge from graphs and integrate it with machine learning (ML) techniques to

enhance the robustness of AML systems, establishing a framework for money laundering

detection and graph information extraction. Moreover, this study extends beyond the realm of

AML, offering broader applicability in various other sectors.

Key developments include the adoption of graph feature engineering for sophisticated

financial data representation and an ML-integrated "triage model" to reduce false positives

(FPs) in AML systems. Notably, the "Walking-Profiles" framework employs random-walks for

graph feature engineering to enrich the "triage model". To address latency in graph information

extraction, this thesis introduces "Graph-Sprints" and "Deep-Graph-Sprints," harnessing real-time

feature extraction and advanced deep learning techniques, respectively.

Results indicate significant performance improvements over existing systems, demonstrating

enhanced predictive accuracy and speed by an order of magnitude compared to state-of-the-art

methods. Future work will extend these methodologies to heterogeneous networks and diverse

real-world applications, aiming to scale them for larger datasets.

Keywords: Continuous time dynamic graphs, Random-walks, Machine learning, Anti-money

Laundering solutions, low-latency graph processing

Resumo

A lavagem de dinheiro, que consiste no processo de ocultação da obtenção de ativos

financeiros de forma ilícita, apresenta desafios socio-económicos significativos, pois abrange

crimes associados como o tráfico de seres humanos ou o tráfico de drogas. Bancos que falhem,

por negligência, o reporte de casos de lavagem de dinheiro, enfrentam multas substanciais e

processos judiciais, reforçando a necessidade do desenvolvimento de mecanismos de deteção

eficazes.

A deteção de lavagem de dinheiro apresenta desafios diversos, nomeadamante: a raridade

e a confirmação tardia desses eventos, a tendência dos criminosos em imitarem atividades

financeiras normais, a necessidade de métodos interpretáveis que justiquem a sua avalição

de transações suspeitas, o processamento de grandes volumes de dados e a necessidade de

avaliação atempada dos casos.

As soluções atuais para sistemas de Anti-Money Laundering (AML), predominantemente

baseadas em regras, oferecem interpretatividade, que é essencial para o processo de auditoria,

mas sofrem de taxas altas de falsos positivos (FPRs) e estão limitadas a detetar apenas

comportamentos de entidades individuais.

Esta tese parte do pressuposto de que redes oferecem uma base poderosa para investiga-

ções de AML, pois estas possuem a capacidade inerente de representar e de serem usadas

para analisar sistemas interconectados. No entanto, a sua complexidade apresenta desafios

computacionais e de armazenamento, que são exacerbados em aplicações em tempo real.

Este doutoramento fornece uma solução abrangente que representa as relações das transações

financeiras usando redes. A nossa abordagem é direcionada para a tomada de decisões em

tempo real, otimizando o uso de memória, e representa um avanço significativo no combate à

lavagem de dinheiro. A tese apresenta metodologias inovadoras que extraem conhecimento das

redes e integram-no nos métodos de machine learning (ML), melhorando, assim, a robustez dos

sistemas AML. Esta investigação melhora não apenas os mecanismos de AML, mas também

oferece uma solução que é aplicável em vários domínios.

Os desenvolvimentos-chave propostos nesta tese incluem a adoção de feature engineering

aplicado em redes para obter uma representação sofisticada dos dados financeiros, e um modelo

de triagem que faz uso dessas representações em modelos de ML para reduzir falsos positivos

em sistemas AML. Em particular, a framework "Walking-Profiles" utiliza random-walks para

aprimorar o modelo de triagem. De forma a lidar com a latência na extração de features da

rede, esta tese propõe "Graph-Sprints", que apresenta feature engineering em tempo real, e

"Deep-Graph-Sprints", que expande o trabalho anterior usando técnicas avançadas de deep

learning.

Os resultados obtidos durante este doutoramento apresentam melhorias significativas em

relação aos sistemas existentes, demonstrando maior precisão preditiva e melhorias na latência.

O trabalho futuro estenderá essas metodologias para redes heterogéneas e aplicações diversas

do mundo real, visando escalabilidade para conjuntos de dados maiores.

Palavras-chave: Redes dinâmicos em tempo contínuo, Random-walks, Machine learning,

Sistemas de Anti-Money Laundering, Processamento de redes de baixa latência

Contents

Acknowledgements v

Abstract vii

Resumo ix

Contents xv

List of Tables xv

List of Figures xix

List of Algorithms xxi

Glossary xxi

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Research Contributions . 5

1.3 Research Context . 6

1.4 Thesis Organization . 7

xi

xii ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

1.5 Bibliographic Note . 8

2 Background 11

2.1 Fundamentals of Graphs . 12

2.1.1 Graph Concepts and Terminology . 13

2.1.2 Graph Construction: Key Decisions and Their Impact 15

2.1.3 Graph Measures . 17

2.1.4 Graph Analysis Tasks . 21

2.2 Fundamentals of ML . 22

2.2.1 Classification of ML Algorithms . 23

2.2.2 Learning Mechanisms in Deep Learning 26

2.3 Incorporating Graph Data into ML Models . 30

2.3.1 Graph Feature Engineering . 31

2.3.2 Graph Representation Learning . 31

2.4 Fundamentals of Money Laundering . 32

2.4.1 Phases of Money Laundering: An Overview 32

2.4.2 Traditional AML Solutions . 33

3 Related Work 35

3.1 Evolution of Feature Engineering . 35

3.1.1 Feature Engineering for Tabular Data . 36

3.1.2 Feature Engineering for Graph Data . 37

3.1.3 Connecting Tabular and Graph Data Methods 39

3.2 Graph Representation Learning . 39

3.2.1 Matrix Factorization-Based Techniques for Graph Representation 39

CONTENTS xiii

3.2.2 Random-walk Based Techniques . 40

3.2.3 K-hop Neighborhood Based Methods . 42

3.3 Advancements in AML Strategies . 44

3.3.1 AML Solutions Leveraging ML . 45

3.3.2 ML-Enhanced AML Solutions Using Graphs 45

4 Walking-Profiles: A Framework for Graph Feature Engineering 49

4.1 Motivation . 50

4.2 Method . 50

4.2.1 Walking-Profiles: A Random-walk-based Feature Extraction Engine . . . 51

4.2.2 Scalable Walking-Profiles for Large-Scale Data Processing 57

4.3 Triage Model: Integrating Walking-Profiles with AML 60

4.3.1 Graph Construction . 61

4.3.2 Customising Walking-Profiles for AML . 62

4.3.3 Triage Model . 64

4.4 Experiments & Results . 65

4.4.1 Data . 66

4.4.2 Experimental Setup . 67

4.4.3 Triage Model using Entity-centric Features 69

4.4.4 Enriching Triage Model with Neighborhood-centric Features 70

4.4.5 Enriching Triage Model with Walking-Profiles Features 73

4.4.6 Assessing Sliding Window Effects on Triage Model Performance 74

4.4.7 Interpreting the Triage Model Through TreeSHAP 75

4.5 Summary . 77

xiv ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

5 Graph Sprints: A Method for Low-latency Graph Feature Engineering 79

5.1 Random-walk Based Features . 81

5.2 Method . 82

5.2.1 Assumptions . 82

5.2.2 Streaming Histograms as Node Embeddings 83

5.2.3 Streaming Community Features . 86

5.2.4 GuiltyWalker Features in Streaming Context 87

5.2.5 Reducing Memory Footprint . 88

5.3 Graph-Sprints Theoretical Analysis . 90

5.3.1 Equivalence between Graph-Sprints and Random-walks 90

5.3.2 Graph-Sprints: Complexity Analysis . 91

5.4 Experiments & Results . 91

5.4.1 Experimental Setup . 91

5.4.2 Public Datasets Experiments . 94

5.4.3 AML experiments . 97

5.5 Summary . 99

6 Deep-Graph-Sprints: Low-latency Node Representation Learning method 101

6.1 Graph-Sprints Recap and Limitations . 102

6.2 Method . 105

6.2.1 Architecture and Workflow . 105

6.2.2 Deep-Graph-Sprints Approaches . 106

6.2.3 Learning Mechanisms in Deep-Graph-Sprints 111

6.2.4 Gradient Calculations in Deep-Graph-Sprints 112

LIST OF TABLES xv

6.2.5 Parameter Updating Mechanisms in Deep-Graph-Sprints 122

6.3 Experiments and Results . 123

6.3.1 Experimental Setup . 123

6.3.2 Public Datasets Experiments . 125

6.3.3 AML Experiments . 131

6.4 Summary . 134

6.5 Future Work . 135

7 Conclusions and future work 137

7.1 Main Contributions . 138

7.2 Future Research Directions . 139

7.2.1 Limitations . 139

7.3 Closing Remarks . 141

Bibliography 143

List of Tables

2.1 Application of graph construction principles for AML domain. 17

4.1 ML algorithms and Hyperparameters ranges for triage model 70

5.1 Hyperparameters ranges for Graph-Sprints and baseline methods. 93
5.2 Information and data partitioning strategy for public datasets. 94
5.3 Graph-Sprints: Node classification results using public datasets. 95
5.4 Graph-Sprints: Link prediction results using public datasets. 95
5.5 Graph-Sprints: Impact of memory reduction on performance. 97
5.6 Information and data partitioning strategy for AML datasets. 98
5.7 Graph-Sprints: Node classification results using AML datasets. 99

6.1 Hyperparameters ranges for Deep-Graph-Sprints 124
6.2 Deep-Graph-Sprints: Node classification results using public datasets. 126
6.3 Deep-Graph-Sprints: Link prediction results using public datasets. 127
6.4 Deep-Graph-Sprints: Node classification results using AML datasets. 133

xvii

List of Figures

1.1 Illustration of the stages involved in money laundering. 2
1.2 Overview of the traditional AML rules-based system pipeline and alert processing. 3
1.3 Comparison of cycle detection in transaction tables versus networks. 4

2.1 Example of adjacency matrices for undirected and directed graphs. 14
2.2 Transformation of transaction data into graph representation. 17
2.3 Demonstration of subgraph counting within a main graph. 20
2.4 Simplified comparison of RNNs and GNNs. 25
2.5 Representation of a composite function comprising four distinct functions. 28
2.6 Mapping nodes from high-dimensional graphs to lower-dimensional space. . . . 31

3.1 An example of the concept of anonymous walks. 38

4.1 Illustration of the Walking-Profiles component within a data pipeline. 52
4.2 Illustrative example of the Walking-Profiles framework in action. 54
4.3 Applying distributed Walking-Profiles in a 2-hop walk example. 59
4.4 Overview of the full triage model system and details. 61
4.5 Graph construction: from tabular data to graph representation. 62
4.6 Data exploration: differences in degree between legitimate and suspicious nodes 67
4.7 Compararing legitimate and suspicious account neighborhoods in an AML network. 68
4.8 Triage model: Impact of graph features on performance. 72
4.9 triage model: Impact of label delay on performance. 73
4.10 Triage model: Impact of integrating Walking-Profiles graph features. 74
4.11 Triage Model: Impact of Varying Time Window Size on Performance. 75
4.12 Triage model: Aggregated explanation for a suspicious case. 76
4.13 Triage model: Detailed explanation for a suspicious case. 76
4.14 Triage model: Aggregated explanation for a legitimate case. 76
4.15 Triage model: Detailed explanation for a legitimate case. 76

5.1 Overview of various approaches in CTDGs. 80
5.2 Conversion of random-walks to histograms. 82
5.3 Streaming histograms from temporal random-walks. 82
5.4 Graph-Sprints: Trade-off between AUC and runtime. 96
5.5 Graph-Sprints: Speedup vs. number of edges . 96

6.1 Deep-Graph-Sprints: Architecture. 106
6.2 Example of hyperparameters’ influence on inductive link prediction 127
6.3 Example: Influence of all Deep-Graph-Sprints hyperparameters on link prediction. 128

xix

xx ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

6.4 Example of hyperparameters’ influence on transductive link prediction. 128
6.5 Deep-Graph-Sprints: Trade-off between AUC and runtime. 129
6.6 DGS-1: Example comparing parameters’ changes with performance. 130
6.7 DGS-3: Example comparing average parameter changes with performance. . . . 131
6.8 DGS-3: Evolution of Parameters During Training 132
6.9 Example of hyperparameters’ influence on node classification. 134

List of Algorithms

1 Walking-Profiles: Random-walk based graph feature extraction engine 53

2 Walking-Profiles: Distributed Implementation . 59

3 Graph-Sprints: Real-time graph feature extraction engine (Equation 5.5) 85

4 Deep-Graph-Sprints: Graph Representation Learning (Equation 6.6) 110

xxi

Glossary

AD Automatic Differentiation

AML Anti-Money Laundering

AP Average Precision

AUC Area Under Receiver Operating Characteristic Curve

CTDG Continuous Time Dynamic Graph

DTDG Discrete Time Dynamic Graphs

FI Financial Institution

FP False Positive

FPR False Positive Rate

GNN Graph Neural Network

ML Machine Learning

RNN Recurrent Neural Networks

RTRL Real-Time Recurrent Learning

SAR Suspicious Activity Report

TP True Positive

xxiii

Chapter | 1
Introduction

This doctoral research addresses the challenge of detecting money laundering using graph

techniques. This chapter introduces the challenges this work addresses and outlines the main

contributions. The organization of the chapter is as follows:

• Background and Motivation: Section 1.1 describes the typical money laundering process,

the limitations of current detection systems, and the motivation behind this research.

• Research Contributions: Section 1.2 lists the primary contributions of this study.

• Research Context: Section 1.3 offers an overview of the collaborative environment between

industry and academia where this research was conducted. This section elucidates the

business constraints, setting the stage for understanding the research’s practical and

theoretical implications.

• Thesis Organisation: Section 1.4 explains the structure of the thesis, detailing the contents

of each chapter.

• Bibliographic Note: Section 1.5 lists the accepted papers and patents related to this thesis.

1.1 Background and Motivation

Money laundering concerns the legitimization of criminal proceeds by concealing their origin,

resulting in around 2-5% of global GDP (€1.7-4 trillion) being laundered annually [Lannoo and

1

2 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

Parlour, 2021]. Underlying crimes include drug dealing, human trafficking, fraud, tax evasion,

and corruption. Money laundering is, therefore, a severe and global problem affecting people,

economies, governments, and the social well-being [McDowell and Novis, 2001].

The process of money laundering can be divided into three fundamental stages, namely,

placement of illicit money into the financial system, then the layering phase in which criminals

try to mask the origin of the money, and finally integration of the laundered funds into the

legitimate economy. Figure 1.1 graphically represents these stages. Throughout this process,

money traverses across various accounts, financial institutions (FIs), and countries, each serving

as a step in the laundering journey.

FIGURE 1.1: Illustration of the stages involved in money laundering.
Adapted from [The united nations office of drugs and crime, 2020]

For FIs, undetected money laundering can lead to significant fines and reputational conse-

quences. Example penalties in recent years include Deutsche Bank in 2017 with a fine of $630

million [Deutsche Bank fined $630m over Russia money laundering claims, 2017], ING Groep

NV in 2018 with $900 million [ING to Pay $900 Million to End Dutch Money Laundering Probe,

2018], Standard Chartered in 2019 with $1.1 billion [Standard Chartered fined $1.1bn for money-

laundering and sanctions breaches, 2019], Goldman Sachs in 2020 with $3.9 billion [Goldman

Sachs settles 1MDB scandal with Malaysia for $3.9bn, 2020], and Danske Bank in December

2022 with $2.2 billion [Danske Bank Pleads Guilty to Fraud on U.S. Banks in Multi-Billion Dollar

Scheme to Access the U.S. Financial System, 2022].

To mitigate risks of money laundering, FIs engage compliance specialists to review and

analyze potential irregularities. Given the impracticality of manually assessing every transaction,

banks utilize automated AML solutions to support their investigation units.

1. INTRODUCTION 3

AML solutions frequently rely on rule-based systems [Li et al., 2017] to identify suspicious

cases, these systems encompass a set of rules that are set in accordance with guidelines from

international regulatory bodies like the Financial Action Task Force (FATF). To elucidate, one

of these rule paradigms is termed Rapid Movement of Funds. This specific rule raises an alert

when an account receives an amount of money surpassing a predetermined threshold and

subsequently distributes nearly all of this amount within a short period; both the temporal

window and monetary thresholds are adjustable parameters.

The complete operation of a rule-based AML system is depicted in Figure 1.2. Within

this framework, transactions are continuously monitored against these rules, leading to the

generation of alerts upon matching predefined criteria. Subsequent to the creation of an alert,

analysts conduct thorough reviews to confirm its legitimacy. Alerts are then classified as either

true positives (TPs), indicative of actual suspicious activity, or FPs, which correspond to false

alarms or non-suspicious transactions. In instances where an alert is substantiated as a TP, a

suspicious activity report (SAR) must be filed by the analysts.

FIGURE 1.2: Overview of the traditional AML rules-based system pipeline and alert processing.

Rule-based systems are valued for their interpretability, which is essential for auditing.

However, a significant limitation of these systems is their tendency to generate a high volume

of FPs, as noted by Weber et al. [2018]. In fact, FPRs in such systems are reported to be as high

as 95–98% [Lannoo and Parlour, 2021]. To comprehend this high rate of false positives, an

understanding of the nature of money laundering is essential. Money laundering is a complex

process, not a singular action. It involves a sequence of transactions strategically executed to

conceal the origins of illegal funds. Furthermore, these transactions are often structured to

simulate legitimate financial activities, thereby evading detection [Lorenz et al., 2020].

For a more effective identification of suspicious activities, it is imperative to perceive money

laundering as a continuous flow of funds. This approach captures the essence of its ongoing,

interconnected, and sometimes cyclical nature. Additionally, a comprehensive and holistic view

of financial flows is required, extending beyond isolated transactions or individual accounts, to

effectively understand the patterns indicative of money laundering.

4 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

To illustrate this concept, consider an example illustrated in Figure 1.3 involving a criminal

attempting to disguise the source of illicit funds. The individual might execute a series of

transactions, transferring money between accounts A, B, C, and D, and at times returning the

funds to A from D. When each transaction is viewed in isolation within a table, the underlying

suspicious pattern might be less detectable. However, representing these transactions as a

flow reveals a cyclic pattern, indicative of an effort to conceal the fund’s origins. This example

underscores the ability to holistically understand the flow of funds within a network can provide

valuable insights for identifying unusual patterns. Thus, to gain such a perspective, a shift is

necessary from traditional tabular data representations to more sophisticated, network-oriented

data structures like graphs.

FIGURE 1.3: Comparison of cycle detection in transaction tables versus networks.

Graphs (sometimes also referred to as networks), inherently, are powerful tools for represent-

ing and analyzing interconnected systems and flows. In essence, graphs are versatile enough to

depict any dataset where the significance lies in the interactions (edges) between participating

entities (nodes or vertices). Once the data finds its representation in the format of a graph,

numerous operations become feasible. For instance, one could detect suspicious cycles of money

transfers between related accounts [Qiu et al., 2018], find the structural role of an individual

within a network [Khan et al., 2010], or track money streams traversing through the network [Li

et al., 2020]. Contrastingly, achieving similar insights from tabular data presents challenges. To

illustrate, a graph can intuitively identify the k-hop neighbors of a node (entities distanced by

k steps) through iterative edge traversal. In a tabular setup, the equivalent would necessitate

join operations between tables, which tend to be computationally demanding and memory

intensive.

Within the domain of ML, one central challenge when working with graphs is to represent

or encode their structure, such that it can be harnessed effectively by ML algorithms. Certain

strategies, particularly those under graph feature engineering, rely on handcrafted heuristics to

1. INTRODUCTION 5

generate features that encapsulate the core characteristics of a graph, such as degree metrics

(elaborated upon in Section 2.1.3). Conversely, graph representation learning techniques learn

and encode graph structures autonomously, manifesting them in compact low-dimensional

embeddings. These methods harness the advancements in deep learning and nonlinear dimen-

sionality reduction techniques [Hamilton et al., 2017b] (elaborated upon in Section 2.3.2 and

Section 3.2).

1.2 Research Contributions

In the evolving landscape of financial networks, the complex money laundering schemes have

necessitated advanced techniques to monitor, trace, and flag suspicious activities. Graphs,

representing interconnected transactions and accounts, provide a compelling medium to capture

these complexities. Our work, hence, revolves around harnessing the potential of graph mining

techniques tailored specifically for continuous time dynamic graphs (CTDGs) in the AML

domain. Although our primary focus is on addressing AML challenges, it is important to

highlight that our research contributions are general enough and applicable to other domains.

The primary contributions of our research are outlined as follows:

1. Creation of a framework for graph-based feature extraction: Recognizing the significance

of the insights that could be encoded in graph data, we developed the graph feature

engineering framework, named Walking-Profiles (Section 4.2). By leveraging random-walks,

this framework extracts graph-based features, that can be later used in any downstream

system (e.g., ML model).

2. Formulating a comprehensive ML pipeline for AML systems: Addressing the issue of

false alarms in AML systems, we introduce a ML-centric methodology termed the triage

model (Section 4.3). This model processes alerts generated by pre-defined rules in AML

systems. It assigns scores to these alerts, which then either facilitate the suppression of

low-priority alerts or order the alert queue based on severity. An intrinsic advantage of

our approach is its ability to maintain compliance and offer explainability. Since every

alert originates from established rules, the process remains transparent and interpretable.

3. Design of a real-time graph feature extraction method for CTDGs: With the increasing

volume and velocity of financial transactions, it is imperative to have techniques that

are both robust and efficient. Thus, we developed Graph-Sprints (Section 5.2) a method

6 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

optimized for CTDGs. This method minimizes computational overheads and memory

usage and makes it suitable for real-time deployment (e.g., in an AML scenario), thus

addressing a limitation of Walking-Profiles .

4. Design of a real-time graph representation learning method for CTDGs: While tradi-

tional feature extraction methods often necessitate domain-specific knowledge for effective

implementation, deep learning techniques can autonomously identify and learn relevant

information. However, a common limitation of current deep learning techniques is their

substantial latency. To address this and combine the advantages of Graph-Sprints and deep

learning paradigms, we introduced Deep-Graph-Sprints (Section 6.2), a novel low-latency

graph representation learning method for CTDGs.

5. Rigorous evaluation of the proposed frameworks: To assess the efficacy and versatility

of our approaches, we undertook a comprehensive evaluation phase. We tested the

performance of Walking-Profiles applied integrated with the triage model (Section 4.4),

Graph-Sprints (Section 5.4.3), and Deep-Graph-Sprints (Section 6.3.3) across varied AML

datasets. Further, to underscore the adaptability of our methods, we also evaluated Graph-

Sprints, and Deep-Graph-Sprints on datasets from diverse domains (Sections 5.4.2, 6.3.2),

demonstrating their utility beyond the AML domain.

1.3 Research Context

This research focuses on AML systems in the banking sector, specifically analyzing transactional

data and entity relationships. To validate our graph mining method, we utilize internal

AML datasets and publicly available datasets from different domains. Although the primary

application is in the AML domain, we also aim to contribute to graph mining in general by

introducing a low-latency graph feature extraction and graph representation learning algorithms.

Company Overview and Challenges

The research journey undertaken in this PhD thesis is a collaboration between Faculty of

Sciences at the University of Porto and Feedzai, a leading risk prevention company. Feedzai’s

core product is a risk management platform that harnesses the power of ML to detect financial

crime. Feedzai’s clients primarily encompasses banks, payment processors, and merchants,

providing them with defenses against various financial threats, ranging from illicit account

1. INTRODUCTION 7

openings and transaction fraud to the primary focus of our study: money laundering. Each

financial transaction processed is governed by rigorous service level agreements. For instance,

in fraud detection when an account initiates a transfer or procures an online service, a critical

decision - whether to approve or reject the said activity - must be rapidly executed, often within

a tight timeframe of a few milliseconds. Depending on specific use-cases and client requisites,

some transactions might have a processing window extending up to 200 milliseconds, especially

at the 99.999th percentile [Branco et al., 2020]. Throughout this document, such financial activities

are collectively referred to as transactions.

1.4 Thesis Organization

This thesis is organized into seven principal chapters. A concise overview of each chapter is

provided below:

• Introduction: This chapter sets the stage by providing the foundational context of the

study, introducing the concept of money laundering and the typical stages employed by

criminals to cleanse their illicit funds. We delve into how graph structures can adeptly

capture intricate money flows and patterns. Subsequently, primary contributions of this

work are enumerated. Furthermore, we articulate the scope, and provide an overview of

the thesis structure. Concluding this chapter, a catalogue of published works affiliated

with this research is presented.

• Background: This chapter establishes foundational knowledge in graph methodologies

central to the thesis. It covers essential terminology, graph construction constraints,

important measures, and the practical applications of graph analysis. Moreover it details

the fundamentals of ML necessary for this research. The chapter then transitions to an

overview of money laundering stages and traditional AML solutions,

• Related Work: This chapter delves deeply into the existing methodologies for extract-

ing information from graphs, categorizing them into two primary approaches: feature

engineering methods and representation learning techniques. It discusses the evolution

of these methods, providing a historical and practical perspective. Also, it details the

similarities and differences between these methods and our contributions, providing

8 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

a comprehensive analysis. Additionally, the chapter explores the realm of modern ML-

driven AML strategies, elucidating their development and integration into current financial

systems, highlighting their weaknesses.

• Graph Feature Engineering: This chapter introduces the concept of Walking-Profiles, a

framework for graph feature engineering based on random-walk methodologies. It also

discusses a specialized adaptation of this framework, specifically designed for the AML

domain. Additionally, the chapter describes the triage model and evaluates its effectiveness

using the AML-adapted Walking-Profiles framework. This evaluation is conducted using a

real-world banking dataset.

• Graph-Sprints: This chapter presents our Graph-Sprints methodology, designed for real-

time graph feature extraction. We detail its roots in the Random-Walk based graph

feature extraction paradigm. Further, the efficacy of Graph-Sprints embeddings, when

combined with a neural network classifier, is assessed using AML datasets and datasets

from other domains, emphasizing their balance between computational efficiency and

robust predictive capabilities.

• Deep-Graph-Sprints: This chapter introduces Deep-Graph-Sprints, a representation learn-

ing method that extends the Graph-Sprints framework using deep learning techniques.

The primary objective of Deep-Graph-Sprints is to address the constraints inherent in the

original Graph-Sprints method, thereby augmenting both its utility and efficiency. The

efficacy of Deep-Graph-Sprints is empirically evaluated through its application in two tasks:

node classification and link prediction. Experimental results demonstrate that Deep-Graph-

Sprints achieves competitive performance compared to its predecessor, Graph-Sprints,

while at the same time mitigating its previously identified limitations.

• Conclusions and Future Work: This concluding chapter reflects on the research journey,

encapsulates the contributions, and potential avenues for subsequent investigations.

1.5 Bibliographic Note

Parts of the work of this thesis have already been published in international conferences, and

workshops. A list of those is given next:

1. INTRODUCTION 9

• Triage Model: (Section 4.3) This is in reference to our study titled "Anti-Money Laundering

Alert Optimization Using Machine Learning with Graphs" and related endeavors. This

research was presented at the AAAI’s workshop on AI in Financial Services: Adaptiveness,

Resilience & Governance [Eddin et al., 2021]. Additionally, a patent associated with this

study was duly filed [Eddin et al., 2023c].

• GuiltyWalker: (Section 4.3.2) Our involvement here pertained to the patent of GuiltyWalker.

Our primary contribution revolved around enhancing GuiltyWalker for circumstances

where labels aren’t immediately accessible [Silva et al., 2022].

• Graph-Sprints: (Section 5.2) The methodology we developed for real-time graph feature

extraction was published at the KDD’s 17th International Workshop on Mining and

Learning with Graphs [Eddin et al., 2023a]. Also, an extended version of this paper that

applies Graph-Sprints to the link prediction task was accepted at the 4th ACM International

Conference on AI in Finance [Eddin et al., 2023b]. Moreover, a provisional patent about

this work was submitted.

• Deep-Graph-Sprints: (Section 6.2) About our real-time graph representation learning

methodology we are in the process of submitting a provisional patent, and after that we

plan to publish a paper.

Chapter | 2
Background

This chapter delves into the concepts and methodologies that serve as the foundation for this

thesis. The content encompasses graph theory, graph analysis measures, and tasks. Then it

delves into the ML basics necessary for this research, especially the various modes of learning in

deep learning. Subsequently, it lists possible ways to integrate graph information in ML models.

Then it concludes with an overview of money laundering phases and traditional AML solutions.

The organization of the chapter is as follows:

• Fundamentals of Graphs: In Section 2.1 we discuss graph related background information,

focusing on the following points:

– Graph concepts and terminology: Section 2.1.1 starts with an introduction to basic

graph terminologies. The narrative progresses to differentiate between various graph

types, such as static versus temporal and homogeneous versus heterogeneous graphs.

– Graph construction considerations: In Section 2.1.2, we outline the primary factors

essential for selecting an apt graph representation tailored to distinct challenges.

Then we provide a customization of these considerations in the AML use-case.

– Graph measures: Section 2.1.3 explains various measures for extracting patterns and

valuable information embedded within graph structures.

– Graph analysis tasks: Section 2.1.4 details the graph analysis tasks important for this

thesis, namely, node classification, and link prediction.

11

12 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

– Incorporating graph data into ML models: Section 2.3 discusses two ways to

extract insights from the graphs and feed them to ML models, namely, graph feature

engineering (Section 2.3.1) and graphs representation learning (Section 2.3.2) techniques.

• Fundamentals of ML: Section 2.2 provides the fundamentals of ML necessary for this

research focusing on:

– Classification of ML methods: Section 2.2.1 provides a brief descriotion of the

ML models that will be used throughout this thesis namely tree-based models

(Section 2.2.1.1), and deep learning models 2.2.1.2.

– Learning mechanisms in deep learning: Section 2.2.2 delves into the diverse learning

paradigms employed in deep learning methods. Starts with an overview the various

types of automatic differentiation (AD) modes (Section 2.2.2.1), then it presents an

in-depth comparison of the computational and memory complexities associated with

forward-mode and reverse-mode automatic differentiation (Section 2.2.2.2).

• AML overview: Section 2.4 provides an overview of money laundering, discussing its

mechanisms and classic solutions.

– Phases of Money Laundering: An Overview: Section 2.4.1 takes a closer look at the

various stages involved in the illicit flow of money, offering an understanding of the

sequential processes.

– Traditional AML Solutions: Section 2.4.2 explores traditional AML solutions adopted

by FIs. This exploration reveals the methods and practices used to address challenges

in combating money laundering.

2.1 Fundamentals of Graphs

Networks serve as versatile representations for numerous systems across diverse fields, such

as computer science, mathematics, biology, and chemistry [Costa et al., 2007, Febrinanto et al.,

2023, Majeed and Rauf, 2020, Zhang et al., 2020b, Zhou et al., 2020]. These networks are

mathematically referred to as graphs; thus, throughout this document, we will use "network"

and "graph" interchangeably.

2. BACKGROUND 13

2.1.1 Graph Concepts and Terminology

A graph G consists of a set V(G) of nodes (or vertices) and a set E(G) of edges (or links).

While nodes denote entities, edges signify the relationships between these entities. Edges,

often represented as vertex pairs (a, b) where a, b ∈ V(G), can be categorized as directed or

undirected. In directed graphs, an edge (i, j) illustrates a one-way relationship from i to j, but

in undirected graphs, edges reflect a mutual relationship between the paired nodes. Both nodes

and edges may possess associated types and attributes. Furthermore, the constraints governing

the connections between nodes and edges, in conjunction with the presence or absence of types

and attributes, as well as the temporal nature of the graph (either evolving or static), collectively

determine the type of the graph. A graph adjacency matrix is a square matrix used to represent

the connectivity of finite graph in terms of its nodes and edges. The matrix allows for the

quick and concise representation and manipulation of dense graphs. The adjacency matrix is

of dimensions n× n, where n represents the number of nodes in the graph. In the case of an

undirected graph, the matrix elements aij equal 1 if there is an edge between nodes i and j, and

0 otherwise. Due to the undirected nature of the graph, the adjacency matrix is symmetric. For

directed graphs, the elements aij equal 1 if there is an arrow or edge pointing from node i to

node j, and 0 otherwise. Unlike undirected graphs, the adjacency matrix for directed graphs

may not be symmetric in general.

An example is provided in Figure 2.1, the left panel displays an adjacency matrix for an

undirected graph, characterized by its symmetric pattern, indicative of bidirectional edges. The

right panel presents an adjacency matrix for a directed graph, where the asymmetry in the

matrix highlights the directionality of edges.

A Subgraph of G is represented as SG, where V(SG) ⊆ V(G) and E(SG) ⊆ E(G). In simpler

terms, a subgraph is a smaller graph that is formed by selecting a subset of vertices and edges

from the original graph G.

G is considered a simple graph if it has no self-loops (i.e., it has no nodes connecting back to

itself) and has no more than a single connection between any pair of nodes. We can add weights

to the edges to enrich the graph – the resulting graph is called a weighted graph. To represent

the weights in the adjacency matrix, the elements aij represent the weight of the edge between

nodes i and j, instead of simply being 1 or 0. In the context of a social network, for instance,

friendships can be aptly represented using an undirected graph. Within this model, individual

14 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

FIGURE 2.1: Example of adjacency matrices for undirected and directed graphs.

users are conceptualized as nodes, while the friendships between them constitute the edges.

The weight of these edges might be indicative of the duration of the relationship, thereby giving

greater importance to longstanding friendships compared to more recent ones.

When analyzing systems with a stable topology and a focus on global graph statistics,

static graphs prove to be appropriate as they depict a singular, unchanging state of the system.

However, for systems that exhibit evolution, as exemplified by the continuous formation of new

friendships and potential inclusion of new accounts in a social network, it becomes imperative

to study time-dependent patterns. These evolving structures are referred to as temporal or

dynamic graphs. Dynamic graphs can be categorized into two primary models: discrete time

dynamic draphs (DTDGs) and the continuous counterparts, CTDGs [Rossi et al., 2020]. In

the DTDG paradigm, the graph is conceptualized as a series of snapshots taken at specified

time intervals. For example, one might capture a snapshot daily, which encompasses only the

data of that day or all historical data up to that specific day. Within each individual snapshot,

the graph remains static. Conversely, under the CTDG framework, the graph is viewed as an

ongoing stream of events. An event could, for instance, constitute the addition of a new edge

to the graph, leading to the graph’s continuous evolution each time an event occurs. Typically,

2. BACKGROUND 15

DTDG is seen as an approximation of CTDG, primarily because handling static graphs might be

computationally more efficient than dealing with their dynamic counterparts.

Graphs can be differentiated based on the distinctions in node and edge types. Within

the realm of homogeneous graphs, there is a simplicity wherein all nodes pertain to a single

category, and similarly, all edges represent just one type of relationship. For instance, in a basic

social network, if we only consider users and their mutual friendships, a homogeneous graph

suffices.

On the other hand, real-world networks often present complex interactions and relationships.

Taking the example of a social network further, one can recognize a rich diversity of interactions.

Here, entities include not just users, but also posts, comments, groups, and even events.

Relationships also diversify: users author posts, like and comment on them, join groups, or

attend events. Heterogeneous graphs are used to represent such rich systems. In heterogeneous

graphs, both nodes and edges come in various types, each capturing a different facet of

the overall network, thereby providing a more comprehensive view of the interactions and

relationships within. Das and Soylu [2023] present a complete review of higher dimensionality

graphs, including multilayer networks, multiplex graphs, colored graphs, and multipartite

graphs.

This thesis concentrates specifically on CTDGs. In our context, CTDGs are defined by

homogenous nodes, directed and timestamped edges, and the capability for both nodes and

edges to carry attributes. The construction process of these graphs is elaborated in Section 2.1.2.2,

where we detail the methodology employed to create our graph structures. These choices are

motivated by the requirements of the AML use-case, where we need to process transactions on

a streaming fashion, thus aligning with the CTDG framework. Additionally, for simplicity, we

opt for homogeneous graphs, where nodes can represent accounts or clients—a suitable starting

point for AML.

2.1.2 Graph Construction: Key Decisions and Their Impact

Graph construction is a pivotal process, significantly impacting the derivation of insights from

data. There are many possible ways to represent a real-life system using graphs, representing

different viewing angles and none is fundamentally correct or incorrect. The structural decisions

regarding nodes, edges, their attributes, and overall graph architecture are instrumental in

16 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

effectively representing the inherent relationships and dynamics within datasets. This section

discusses these considerations before focusing on their specific application in the AML context.

2.1.2.1 General Considerations in Graph Construction

Graph construction involves important decisions that fundamentally shape its analytical efficacy:

• Node Selection: Identifying entities in the dataset for node representation is fundamental

to the graph’s structure, influencing its ability to accurately model data relationships.

• Edge Definition: The choice between directed and undirected edges determines the nature

of relational dynamics represented in the graph, affecting its interpretability and analytical

value.

• Attribute Allocation: Assigning attributes to nodes and edges enriches the graph with

multidimensional data aspects, enhancing its descriptive power.

• Graph Dynamics: Opting for a static or dynamic graph affects its capacity to capture

and represent temporal changes, a decision that carries significant implications for data

analysis over time.

• Complexity Management: Balancing detail with computational feasibility is crucial for

maintaining both the graph’s representational accuracy and practical usability.

These core decisions immensely affect the graph’s potential to accurately and effectively

model data relationships, thus influencing the depth and quality of insights gained.

2.1.2.2 Graph Construction in AML: A Specific Case Study

In AML domain, graph construction is a key tool for revealing complex financial networks

and detecting suspicious patterns. Table 2.1 provides a detailed exposition of how general

considerations are applied specifically within the AML domain.

Complementing this, Figure 2.2 visually demonstrates the transformation of tabular transac-

tion data into a graph format, using a straightforward example. This transformation is pivotal in

facilitating the effective analysis of complex transactional relationships and patterns indicative

of money laundering. This section exemplifies an application of graph construction principles

2. BACKGROUND 17

Consideration Application in AML Graph
Nodes Clients or accounts are represented as nodes, each sym-

bolizing a distinct entity in the financial network.
Edges Directed edges are utilized to represent the directional

flow of money, crucial for analyzing financial interactions.
Edge Timestamps Timestamps on edges provide a chronological dimension,

essential for temporal analysis in AML investigations.
Edge Weights Weights on edges quantify amounts of money being trans-

ferred, which is crucial information for the investigation.
Graph Dynamics A dynamic graph model is adopted, evolving with new

transactions to accurately depict the current state of
financial activities.

TABLE 2.1: Application of graph construction principles for AML domain.

in a specialized research context, highlighting the importance of a domain knowledge informed

design towards extracting meaningful information for the AML domain.

FIGURE 2.2: Transformation of transaction data into graph representation.

2.1.3 Graph Measures

A useful approach to categorizing graph mining techniques involves considering measures at

the node-level, subgraph-level, and graph-level [Ribeiro, 2011].

2.1.3.1 Node-Level Measures

Node-Level Measures are designed to extract information specific to individual entities within

a network, namely the nodes. These measure include node centrality measures or other

measures like clustering coefficient. These measures are crucial for understanding the roles and

significance of each node in the network. Although a detailed exploration of node measures

is beyond the scope of this section, readers interested in an in-depth exploration are referred

18 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

to [Das et al., 2018]. For the interest of this thesis we will explain one node centrality measure,

namely, the node degree.

Node degree is a fundamental metric in graph theory, quantifying the number of connections

a node has. In an undirected graph, it is mathematically defined as:

degree(v) = ∑
(u,v)∈E

eu,v (2.1)

where E denotes the set of edges in the graph, and eu,v represents an edge between nodes u

and v. An illustrative example of node degree is presented in Figure 2.1. In the left panel of the

figure, for instance, node B exhibits a degree of 3. The degree can be computed by summing

the elements in the corresponding row or column of the adjacency matrix. Due to the matrix’s

symmetric nature, both row and column summations yield the same result.

In the context of directed graphs, where edges have a directional attribute, the concepts

of ’in-degree’ and ’out-degree’ are introduced. ’In-degree’ pertains to the count of incoming

connections to a node, whereas ’out-degree’ pertains to the count of outgoing connections. These

are defined as follows:

in-degree(v) = ∑
(u,v)∈E

eu,v (2.2)

out-degree(v) = ∑
(v,u)∈E

ev,u (2.3)

Here, E represents the set of edges in the graph, with eu,v signifying an edge from node u to

v.

An exemplification of in-degree and out-degree is also visible in Figure 2.1. In the right

panel, node B has an in-degree of 2, which can be determined by summing the elements in the

corresponding column in the adjacency matrix. Moreover, the out-degree of node B, which is 1,

can be calculated by summing the elements in its respective row.

While individual metrics such as the node degree offer insight into the specific characteristics

of a node, they can also be employed more broadly to portray either the entire graph or

a designated neighborhood. This can be achieved by computing aggregations across the

2. BACKGROUND 19

neighborhood, yielding metrics like the average or minimum degree. Extending this idea,

one can derive the distribution of a given feature (for instance, the degree distribution) across a

particular neighborhood.

2.1.3.2 Subgraph-Level Measures

Subgraph-Level metrics decompose the network into its constituent sub-components, commonly

termed as subgraphs. Instead of covering the entire graph or highlighting singular nodes, these

measures adopt an intermediary position on the analytical spectrum. Examples encompass

subgraph counting.

Subgraph Counting refers to computing the number of occurrences of subgraphs SG within

a graph G. This process necessitates a vertex-to-vertex mapping and edge-to-edge mapping

as well, to preserve the structural integrity of the graphs in question. Figure 2.3 illustrates the

concept: the top left panel shows a specific subgraph, the top right panel presents the main

graph for identification, and the bottom panels depict four distinct occurrences of the subgraph

within G, highlighted in green. It’s important to observe that ABC and CDE are not considered

occurrences because they have an extra edge, making them structurally different from the target

subgraph.

The significance of subgraph counting extends beyond just counting; it plays a critical role

in analyzing and deciphering the local topological characteristics of complex networks. This

method is essential in a variety of research domains and practical applications. For instance, in

graph alignment, as described by Milenković et al. [2010], and in the context of graph comparison,

as explored in the work of Milo et al. [2004]. These diverse applications emphasize the versatility

and analytical effectiveness of subgraph counting in the study of network structures.

Nonetheless, subgraph-level measures introduce high computational complexities. Counting

subgraphs is a challenging task known to be NP-Complete. So, in practical situations, this

counting is mainly done for simpler graphs that are unweighted, static, and homogeneous.

More advanced techniques for complex graphs are detailed in [Kovanen et al., 2011, Ribeiro

and Silva, 2014]. Typically, counting subgraphs is manageable when they are relatively small,

usually containing fewer than ten nodes. For a deeper dive into subgraph counting methods,

we refer the reader to the survey by Ribeiro et al. [2021].

20 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

FIGURE 2.3: Demonstration of subgraph counting within a main graph.

2.1.3.3 Graph-Level Measures

Graph-Level Measures give a big picture view of the entire graph. In this thesis, we’re more

interested in features that describe the neighborhood or community surrounding a node of

interest rather than the whole graph. In this context, we will cover basic graph-level features

that offer valuable insights into our community-level analysis.

Number of Nodes and Edges function as fundamental indicators of the graph’s size.

Density quantifies the proximity of a graph to being a complete (fully connected) structure.

In directed graphs, density is determined using the formula:

D =
m

n× (n− 1)
(2.4)

Where D stands for the density, m is the number of edges, and n denotes the number of

nodes.

For undirected graphs, a slight modification is necessary due to the symmetry of such graphs.

In this case, the maximum number of possible edges is halved, resulting in the density formula:

2. BACKGROUND 21

D =
m

n×(n−1)
2

(2.5)

For a more in-depth exploration of additional measures we recommend the review by [Costa

et al., 2007].

2.1.4 Graph Analysis Tasks

This section will discuss the graph analysis tasks that were used in this thesis, namely: node

classification, and link prediction.

Node Classification seeks to allocate classes to nodes within a given network [Bhagat et al.,

2011]. In applied contexts, this term class can be interpreted as the role a node assumes within a

network. As exemplified in Struc2vec [Ribeiro et al., 2017], the authors aim to distinguish the

structural role of each node in the graph via unsupervised methodologies. Within the realm of

AML, the processes can be seen as a node classification task. Specifically, given the knowledge

that a particular individual is engaged in money laundering, one might investigate whether

there are other individuals in the graph with similar topological characteristics. Then check

whether these similar individuals are involves in money laundering as well.

Link Prediction, in its essence, attempts to forecast either absent edges or potential future

edge formations within a graph [Backstrom and Leskovec, 2011]. This prediction paradigm

stands central to recommender systems, wherein the objective is to recommend new product

suggestions to users [Lu et al., 2015]. Further applications of link prediction encompass tasks

such as the completion of knowledge graphs [Wang et al., 2020], aiming to supplement sparse

knowledge bases embodied as graphs, or identifying subject-matter experts and fostering

collaborations within academic or social networks [Tang et al., 2015, Wang et al., 2015].

For additional graph analysis tasks, such as community detection and subgraph embedding,

we recommend consulting the survey by Makarov et al. [2021]. While tasks beyond node

classification and link prediction are not the primary focus of this thesis, they represent potential

future directions for applying the methods developed in this research.

2.2 Fundamentals of ML

22 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

ML explores the development of systems that enhance their performance autonomously with

experience. It is a fast growing area that combines computer science and statistics, and forms

the backbone of artificial intelligence and data science [Jordan and Mitchell, 2015].

2. BACKGROUND 23

2.2.1 Classification of ML Algorithms

ML algorithms essentially search for the optimal program, guided by training data, to maximize

performance. These algorithms can be categorized based on how they represent candidate

solutions (e.g., decision trees, neural networks), and the type of training data used.

Based on the type of training data and the use-case, key types include supervised learning,

where the model learns from labeled examples to predict labels for new data points; unsuper-

vised learning, which involves grouping or clustering similar data points without labels; and

reinforcement learning, where a model learns to make decisions to maximize rewards based on

example action sequences.

This thesis will primarily focus on supervised learning, particularly tree-based models and

neural networks. For a broader perspective on ML algorithms, we refer readers to the book

by Bishop [2006], and the review by Mahesh [2020].

2.2.1.1 Tree-Based Models in ML

Tree-based models, like decision trees [Bishop, 2006], random forests [Ho, 1995], and gradient

boosting machines like LightGBM [Ke et al., 2017], are fundamental in machine learning. They

operate using a tree-like structure, breaking complex decisions into tree-shaped decision-making

processes. Decision trees, for instance, split data on specific criteria, creating branches that show

different decision paths. Random forests enhance decision trees by combining multiple trees for

a more robust decision. Gradient boosting machines build trees in a sequence, with each new

tree fixing errors from the previous ones.

Tree-based models often outperform neural networks in medium-sized datasets and require

substantially less computational resources [Grinsztajn et al., 2022]. Additionally, the simplicity

of tree-based models makes them more interpretable compared to complex neural networks.

In this thesis, we will use tree-based methods within our triage models, as detailed in

Chapter 4.

24 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

2.2.1.2 Neural Networks Models in ML

Neural networks, inspired by the human nervous system, form the basis of deep learning. They

use neurons or perceptrons as fundamental units to process information. Each neuron simulates

the behavior of a biological nerve cell in the human brain.

A classic example of deep learning is the multilayer perceptron, which is a mathematical

function mapping inputs to outputs. This function is formed by composing many simpler

functions (layers). Each neuron represents a mathematical function, contributing to the overall

input-to-output transformation. Each layer in the network is defined by a weight matrix and a

bias vector, whose values are learned during training, and an activation function. This learning

process is guided by the network’s hyperparameters, such as the learning rate.

These models, known as feedforward networks, facilitate a unidirectional flow of information

from the input layer, through intermediate layers, to the output, without any feedback loops

where outputs recursively influence the model itself. The inclusion of feedback connections trans-

forms these into recurrent neural networks (RNNs). Diverse deep learning architectures exist,

each with specific advantages depending on the task or data type. For example, convolutional

neural networks tend to excel in processing images and videos [Xu et al., 2014]. In contrast, for

sequential data like text and speech, RNNs often surpass other models in performance [LeCun

et al., 2015]. This research predominantly examines RNN-like structures, as transactional data

involves sequences (e.g., transactions by card) are instrumental in detecting suspicious activities

both conceptually and empirically [Branco et al., 2020].

In RNNs, each element of the input sequence possesses a state vector, encapsulating historical

data from previous elements, when expanded temporally, RNNs resemble deep feedforward

networks with shared weights across layers.

Graph neural networks (GNNs) represent another class of neural networks, specifically

tailored to operate on graph structures. Figure 2.4 contrasts the input sequences of RNNs and

GNNs: single-entity sequences (over different timestamps) versus multiple-entity in a graph

where the k-hop neighbors of a target node are sampled and their information is aggregated and

sent to the target node.

While a comprehensive exploration of deep learning is beyond this section, essential concepts,

especially learning mechanisms, are discussed in Section 2.2.2. These foundations are crucial for

the development of our Deep-Graph-Sprints in Chapter 6.

2. BACKGROUND 25

FIGURE 2.4: Simplified comparison of RNNs and GNNs.

For the curious reader, we recommend the book by Goodfellow et al. [2016] for more in-depth

understanding of deep learning.

2.2.1.3 Performance Measures

Accurate evaluation of ML model performance is critical for model comparison and selection.

The choice of the appropriate measure is dependent on the use case and data characteristics. For

instance, in cases of unbalanced datasets, traditional accuracy - the ratio of correctly labeled

instances to all instances - may be misleading. A model that only predicts the majority class

could appear highly accurate.

In the context of financial crime detection, such as AML or fraud detection, it is essential to

accurately identify criminal activities while avoiding the disruption of legitimate transactions,

which could result in client dissatisfaction or substantial financial losses for banks or online

merchants. The primary goal is to maximize TPs while minimizing FPs. This is often achieved by

optimizing recall (the proportion of actual positives correctly identified) at a specific FPR, such

as recall@1%FPR. However, different clients and scenarios may require the use of alternative

metrics.

A prevalent metric in the context of unbalanced data is the F1 score, which combines recall

and precision. The F1 score is calculated as follows: F1 score = 2× Precision×Recall
Precision+Recall .

Another critical measure is the area under the curve (AUC) of the receiver operating char-

acteristics (ROC), represents the probability that the model correctly distinguishes between a

positive and a negative example. A higher AUC indicates better model performance. It provides

26 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

a consolidated measure of performance across different classification thresholds, making it

valuable for comparing different models.

For link prediction tasks, where we don’t have class imbalance issue, we employ the average

precision (AP) metric, which evaluate how well a classification model ranks positive examples

higher than negative ones, AP measures the model’s ability to correctly prioritize true positive

cases over the entire range of its predictions. Moreover, we measure the mean reciprocal rank

(MRR), which indicates the average rank of the positive edge. An MRR of 50% implies that the

correct edge was ranked second, while an MRR of 25% implies it was ranked third. Additionally,

we measure Recall@10, which represents the percentage of actual positive edges ranked in the

top 10 scores for every edge.

These metrics provide a comprehensive framework for assessing the performance of ML

models used in this thesis.

2.2.2 Learning Mechanisms in Deep Learning

ML algorithms depend significantly on credit assignment, a process identifying the impact

of past actions on learning signals [Minsky, 1961, Sutton, 1984]. This process is essential for

reinforcing successful behaviors and reducing unsuccessful ones. A deep understanding of

a model’s internal structure eases this task by directly linking its decisions to underlying

parameters.

2.2.2.1 Overview of Automatic Differentiation (AD) Modes

The capability of assigning credit in deep learning models hinges on the differentiability of

learning signals enabling the use of derivatives for this purpose [Cooijmans and Martens, 2019].

A key technique in this context is AD, used for computing derivatives in functions represented

as computer programs [Baydin et al., 2018].

In AD, depending on the direction of applying the chain rule, three strategies stand out:

forward mode, reverse mode (often termed backpropagation), and mixed mode. Forward mode

entails multiplying the derivatives matrices from input to output. Reverse mode, a two-phase

process, first executes the function to populate intermediate variables and map dependencies,

then calculates derivatives in reverse order from outputs to inputs [Baydin et al., 2018]. Mixed

mode combines these approaches.

2. BACKGROUND 27

In the context of this thesis we are interested in temporal models, such as RNNs, and GNN

algorithms designed for temporal graphs.

AD, applicable in both RNNs and GNNs, automates the derivative calculation of model

parameters. Here, we focus on RNNs to illustrate AD’s principles, although these concepts are

also applicable and more complex to illustrate in GNNs.

Backpropagation in GNNs or RNNs requires a forward pass for network evaluation and a

backward pass for gradient computation. Complex structures like large graphs or extended

sequences pose challenges, leading to techniques like truncated back propagation through

time (TBPTT) [Williams and Peng, 1990]. TBPTT eliminates the need for a complete retrace

through the whole data sequence at each stage thus offers computational benefits over full

backpropagation. However, TBPTT struggles with long-term dependencies since the parameter

updates are computed using a limited horizon in time.

An alternative, real-time recurrent learning (RTRL) (i.e., forward propagation of the gradi-

ent), facilitates online parameter updates and allows networks having recurrent connections to

learn complex tasks requiring the retention of information over time periods having either fixed

or indefinite length [Williams and Zipser, 1989]. However, its practicality is limited in large

networks due to high computational demands. More specifically, it must retain a large matrix

relating the model’s internal state to its parameters. Even when this matrix can be stored at all,

updating it is very expensive [Cooijmans and Martens, 2019], further details are discussed in

Section 2.2.2.2.

To overcome these limitations, approximations such as UORO [Tallec and Ollivier, 2017]

and KF-RTRL [Mujika et al., 2018] have been proposed. These methods aim to balance between

RTRL’s theoretical strengths and the practical constraints of network size and resource demands.

2.2.2.2 Computational and Memory Complexity of AD modes

This section compares the computational and memory complexities in reverse-mode and

forward-mode AD within the context of neural networks. The explanation is based on an

illustrative example, as explained below.

Consider a function L, represented in Equation 2.6, and illustrated in Figure 2.5, encap-

sulating a neural network comprising four distinct functions f , g, h, p. These functions may

28 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

be interpreted as individual layers in a feedforward network or as a sequence of events in a

recurrent network configuration.

L(x) = p(h(g(f (x)))) (2.6)

FIGURE 2.5: Representation of a composite function comprising four distinct functions.

For this example, we assume the following dimensional specifications:

• 3 layers f , g, and h, each characterized by a weight matrix of dimensions (d× d).

• A final layer p, doing a dimensional reduction from d to a scalar value, characterized by a

weight matrix of dimensions (d× 1).

Considering the derivative of the error or loss L(x):

dL
dx

=
∂ f
∂x
· ∂g

∂ f
· ∂h

∂g
· ∂p

∂h
(2.7)

In reverse-mode AD, the sequential application of the chain rule, commencing from the

output layer towards the input, is depicted in Equation 2.8.

dL
dx

=

∂ f
∂x
·

∂g
∂ f
·
[

∂h
∂g
· ∂p

∂h

]
 (2.8)

Conversely, forward-mode AD initiates the derivative computation from the input layer, as

illustrated in Equation 2.9.

dL
dx

=


[∂ f

∂x
· ∂g

∂ f

]
· ∂h

∂g

 · ∂p
∂h

 (2.9)

Computational Complexity:

2. BACKGROUND 29

The associative property of matrix multiplication does not extend to computational complexity,

which is significantly influenced by the order of operations.

In reverse-mode AD, matrix multiplication operations are as follows:

• Initial operation: (d× d) · (d× 1), resulting in (d× 1) vector with d2 multiplications.

• Each subsequent operation also necessitates d2 multiplications.

• Cumulatively: 3d2 multiplications, for our example of a sequence with length 4. Thus,

given a sequence of length l then the total number of multiplications is (l − 1)d2. Thus the

total computational complexity is O(l × d2).

For forward-mode AD, the operations entail:

• First operation: (d× d) · (d× d), culminating in (d× d) with d3 multiplications.

• Second operation: Similarly, d3 multiplications.

• Final operation: (d× d) · (d× 1), totaling d2 multiplications.

• Overall: 2d3 + d2 multiplications, for our example of a sequence with length 4. Thus, given

a sequence of length l then the total number is (l − 2)d3 + d2 multiplications. Thus the

total computational complexity is O(l × d3).

This analysis demonstrates the considerable disparity in computational demands between

reverse-mode and forward-mode AD in the context of a typical ML architecture with scalar loss.

By employing a practical parameter value of d = 100, it is evident that reverse-mode AD

requires significantly fewer operations (30, 000) compared to forward-mode AD (2, 010, 000).

This discrepancy is even more pronounced when considering longer sequences or deeper

models. For instance, with a sequence length l = 100 and d = 100, the computational load

for reverse-mode AD amounts to 990, 000 operations, whereas forward-mode AD necessitates

a staggering 98, 010, 000 operations. This reveals that, in this specific example, the number of

operations needed for reverse-mode AD is approximately two orders of magnitude less than

that required for forward-mode AD, and this gap will increase with higher values of d.

Consequently, in prevalent neural network architectures within ML, which typically evolve

from larger initial layers to more compact (often scalar) output layers, reverse-mode AD emerges

30 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

as the more efficient approach. This efficiency gain is critical in practical applications, and

explains the popularity of reverse-mode AD in ML platforms.

Memory Complexity:

Reverse-mode AD involves a two-pass approach through the computational graph: an initial

forward pass that evaluates the function L, and a subsequent backward pass that computes

the gradient dL
dx , as outlined in Equation 2.7. During the forward pass, it is crucial to store

intermediate outputs at each step, commonly known as activations. This is because the gradient

of the loss with respect to the input of a layer is dependent on the output of that layer, making

these intermediate values essential for the backward pass. The storage requirement scales with

the number of parameters per layer and the depth of the network. In our specific example, this

equates to storing three matrices of dimensions (d× d) and one vector of dimensions (d× 1).

Thus the total memory complexity is O(l × d2).

Conversely, forward-mode AD does not need to retain all intermediate computational values.

It primarily preserves the derivatives from the most recent computations, potentially reducing

memory demands, particularly in networks with greater depth. For our example, the memory

requisite at each step would be a matrix of derivatives having dimensions (d× d), and a vector

of dimensions (d× 1) in the final step. Thus the total memory complexity is O(d2).

Thus in our ongoing example since l = 3, then forward-mode AD requires around three

times less memory than reverse-mode AD. This disparity in memory efficiency becomes more

noticeable in models with increased l, meaning in models with more layers or depth. For

sequence-based models, such as RNNs, l represents the sequence length, like how many

transactions a specific account has made. Therefore, forward-mode AD, which goes through the

computational graph in just one pass, offers enhanced memory efficiency.

2.3 Incorporating Graph Data into ML Models

While ML has seen many successes, a key challenge arises in integrating non-tabular, graph data

into these models. Traditional ML methods are mainly designed for tabular data, consisting of

lists of feature vectors. The question then becomes: How can graph data be effectively integrated

into ML models?

2. BACKGROUND 31

A straightforward approach is using the graph’s adjacency matrix, where each row represents

a node’s connections. However, this approach, focusing solely on direct neighbors, can miss

broader structural patterns in the graph. Additionally, for large graphs, this method might be

too demanding computationally for the ML model.

As shown in Figure 2.6, the objective is to map nodes from high-dimensional, complex graph

structures to a lower-dimensional space. This dimensionality reduction, crucial for analyzing

complex network dynamics, can be achieved through graph feature engineering techniques or

via node representation learning methodologies, as discussed below:

FIGURE 2.6: Mapping nodes from high-dimensional graphs to lower-dimensional space.

2.3.1 Graph Feature Engineering

Feature engineering uses graph metrics like node degree to enrich ML models with informative

graph-based features, as discussed in Section 2.1.3. By incorporating these metrics into feature

vectors, additional information is provided to the ML model (or rule-based systems). However,

selecting the most effective metrics remains a challenge, especially considering the computational

cost for large graphs. Feature engineering approaches, discussed in Section 3.1, aim to extract

features from tabular or graph data manually or automatically, enabling ML models to leverage

graph relationships for enhanced performance and insights. Although these approaches usually

involve manual work and/or domain knowledge, they tend to be interpretable as each bin in

the resulting vector has a specific meaning.

2.3.2 Graph Representation Learning

Graph representation learning focuses on transforming graphs or their components (nodes and

edges) into vector spaces. This transformation simplifies capturing essential graph features, to be

used in tasks such as node classification and link prediction. The graph information represented

in vector forms can be seamlessly integrated with traditional ML methods.

32 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

Graph representation learning techniques can be categorized into matrix factorizations,

random-walk-based methods, and deep learning methods, each offering unique features.

Further details on these methods can be found in Section 3.2.

Unlike feature engineering, graph representation learning automatically derives complex

feature representations from the data itself, to capture patterns and relationships within the

graph structure. Thus, it requires less manual work and domain knowledge. However, the

resulting representation might be less interpretable.

2.4 Fundamentals of Money Laundering

In this section we explain the phases of laundering money and the traditional solutions employed

to detect it.

2.4.1 Phases of Money Laundering: An Overview

Money laundering is a carefully designed process aimed at disguising the origins of assets

obtained from illegal activities, thereby allowing them to appear as though they stem from

legitimate sources. As was illustrated in Figure 1.1, the procedure can be divided into three

fundamental stages:

1. Placement: This is the initial stage where people or groups bring in illegally obtained

money into the financial system. This money often comes from activities like drug

trafficking, human trafficking, or financial scams and is usually put into the system

through a variety of methods like cash deposits or wire transfers. By doing this, they start

the process of making the money seem legitimate.

2. Layering: Following the placement of assets, the subsequent challenge involves concealing

their illicit origins. This is achieved by engaging them in a complex web of financial

activities, including transfers between different bank accounts, transactions across various

banks or FIs, and even cross-border movements. The objective is to create a convoluted

network of transactions, making it progressively difficult to trace these assets back to their

initial illegal source.

3. Integration: This is the concluding stage, where the ’laundered’ assets are carefully

reintroduced into the legitimate economy. At this point, they are often used to invest

2. BACKGROUND 33

in legal business ventures, purchase assets, or fund lifestyles, all without immediately

alerting authorities due to their now seemingly legitimate appearance.

2.4.2 Traditional AML Solutions

The most common systems to detect money laundering based on transaction data employed

by banks are rule-based [Weber et al., 2018]. Such AML systems consist of a series of rules that

trigger alerts based on specific transactional behaviors, as illustrated in Figure 1.2. Following

the generation of these alerts, domain experts evaluate them to determine if they indicate

suspicious activities or are false alarms. If deemed suspicious, a SAR is submitted to the relevant

regulatory authority. However, it is noteworthy that these systems often exhibit high FPRs,

with some studies indicating rates as high as 95–98% [Lannoo and Parlour, 2021]. This not only

burdens resources but also demands significant time investment from domain experts. While

these rules are essential as they are required by regulatory bodies to ensure compliance, their

inherent rigidity can result in detection gaps. To address these constraints and enhance detection

precision, modern AML solutions are increasingly integrating ML to identify complex patterns,

enhancing their overall performance.

Later in Section 3.3 we detail advancements in AML systems that leverage ML systems.

Chapter | 3
Related Work

This chapter evaluates existing methodologies in graph information extraction and machine-

learning-driven strategies in AML, with an emphasis on their evolution, relevance to our work,

and the gaps that our research aims to fill. The discussion navigates through feature engineering,

representation learning techniques, and their applications in AML. This chapter is organized as

follows:

• Evolution of Feature Engineering: Section 3.1 delves into the realm of automatic feature

engineering. It is divided into two subsections: approaches for tabular data in Section 3.1.1,

and methodologies specific to graph data in Section 3.1.2.

• Graph Representation Learning: In Section 3.2 we detail the various methodologies of

graph representation learning.

• Advancements in AML Strategies: Section 3.3 describes advanced AML solutions. It

encompasses ML-based solutions in Section 3.3.1, as well as those utilizing graph tech-

nologies in Section 3.3.2.

3.1 Evolution of Feature Engineering

Feature engineering, a crucial step in building well performing machine learning pipelines, has

seen efforts to transition from manual feature crafting to more automated methods, this shift

has greatly influenced our approach to graph data in AML.

35

36 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

3.1.1 Feature Engineering for Tabular Data

Feature engineering in tabular data has evolved significantly, incorporating a variety of advanced

techniques across several key technological fronts.

Explorekit [Katz et al., 2016] generates meta-features for both individual candidate features

and the target dataset as a whole. Examples of these meta-features include general statistics

like the number of classes and the AUC of models using each feature. A subsequent feature

selection step is applied to retain only those features that enhance the overall task performance.

Despite challenges in scalability, such approaches have set the stage for more sophisticated

feature transformation processes. This is exemplified in the learning feature engineering (LFE)

framework [Nargesian et al., 2017], which employs meta-features derived from previous tasks to

recommend new meta-feature without relying on model evaluation. The general nature of these

meta-features, which do not require domain-specific knowledge, provides valuable insights for

our Walking-Profiles framework in deciding which features to generate.

The integration of reinforcement learning and optimization techniques in automated feature

engineering is a notable trend. Learning automatic feature engineering machine (LAFEM) [Zhang

et al., 2019] is one example. Reinforcement learning is similarly employed in the SAFE method [Shi

et al., 2020] and mCAFE [Huang et al., 2022] for feature optimization. The CAFEM (cross-data

automatic feature engineering machine) [Zhang et al., 2020a] further underscores the potential

of these techniques in enhancing feature engineering processes. Aligning with LFE’s approach,

CAFEM accelerates feature engineering by applying generalized feature engineering strategies

learned from diverse datasets.

Driven by the insight that meta-features overlook feature interrelationships and that gen-

erating all possible features from existing ones leads to a feature explosion, BigFeat [Eldeeb

et al., 2022] takes a more focused approach. It evaluates the significance of existing features

using tree-based models, assigning higher weights to more important features for the creation

of new features. Additionally, BigFeat assigns importance scores to the operators themselves.

The feature generation process is controlled by a predefined time or resource budget, ensuring

efficiency and manageability.

While the aforementioned techniques tackle tabular data and thus are not directly applicable

to our graph datasets, they offer valuable insights into the necessity of computational and

space efficiency in feature engineering. Thus, we propose specific techniques to address these

3. RELATED WORK 37

challenges in Walking-Profiles (Chapter 4) and Graph-Sprints (Chapter 5).

Furthermore, domain-specific solutions have demonstrated feature engineering’s adapt-

ability. For example, the framework by Marques et al. [2020] in the financial crime domain

creates features using semantic data labels. This underscores the importance of incorporating

domain expertise in algorithm development, inspiring the AML-specific customization in our

Walking-Profiles (Section 4.3.2).

For practitioners seeking an open-source Python library for automated feature engineering

and selection, AutoFeat [Horn et al., 2020] serves as an example tool.

Overall, these advancements, while not directly integrated into our research, underscore the

importance of automated feature engineering. They also provide inspiration regarding existing

issues to consider in the context of automatic feature generation.

3.1.2 Feature Engineering for Graph Data

The field of feature engineering for graph data presents a fertile ground for research endeavors,

as underscored by Escalante [2021].

There have been developments enhancing automation for graph data. The automatic feature

engineering machine (AFEM) by Zhang et al. [2018] focuses on automating feature engineering

for relational and graph datasets. This approach utilizes a range of feature families, such as

social graph-based features. Similar to our method, AFEM aims to capture both the global and

local aspects of networks. However, their technique computes features independently, using

different methods, in contrast to our Walking-Profiles that relies on the same random-walks to

derive all features.

Zheng [2018] focus on network functional blocks, such as paths and subgraph-augmented

paths, for graph feature engineering. Their methods enhance semantic proximity search in

heterogeneous graphs, revealing the applicability of these techniques in diverse graph-based

applications. In our Walking-Profiles, a similar concept is employed as subgraph-based measures,

as described in Section 4.2.1.2. This approach is inspired by the concept of anonymous walks.

Anonymous walks, were used by Ivanov and Burnaev [2018], to generate feature-based

network embeddings. An anonymous walk essentially transforms a random walk by replacing

each node’s id with the position of its first appearance in the walk, as shown in Figure 3.1. This

38 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

technique is important to Walking-Profiles, as it is utilized to generate features at the subgraph

level, further elaborated in Section 4.2.1.2.

FIGURE 3.1: An example of the concept of anonymous walks [Ivanov and Burnaev, 2018].

Shirbisheh [2022] introduce a local-to-global strategy in graph ML. This method develops

local features, such as betweenness centrality, and vector representations of graph nodes,

using the neighbors degree frequency (NDF) for mapping nodes into euclidean vector spaces.

This approach allows for a nuanced understanding of a node’s neighborhood, facilitating

neighborhood analysis in graph structures. Similarly, in our Walking-Profiles and Graph-Sprints,

we utilize node degrees as a key feature to capture the structural aspects of the graph.

Concurrently, Wu et al. [2022] have developed the AFGSL model, which integrates deep

learning and reinforcement learning techniques. This model converts tabular data into a

graph-structured format and introduces a feature interaction layer based on graph structure

learning. Additionally, it uses reinforcement learning to refine the graph structure. The

incorporation of deep learning in AFGSL may impact its interpretability, aligning it more

closely with representation learning methods as discussed in Section 3.2. Nonetheless, the

strategy of modifying the graph structure to enhance performance resonates with our focus on

the significance of selecting an effective structure for representing tabular data.

These developments in graph data feature engineering reflect an evolution towards more

automated and advanced processes, aligning with our research objectives. Utilizing these

3. RELATED WORK 39

insights, we aim to develop an automated graph feature engineering framework tailored to

address specific challenges in AML.

To provide an application example, the field of semantic-based image retrieval demonstrates

the utilization of graph feature engineering, as detailed by Nhi et al. [2022]. This technique

emphasizes extracting key features from complex data structures, paralleling the methodologies

employed in our AML research.

3.1.3 Connecting Tabular and Graph Data Methods

The advancements in both tabular and graph data feature engineering exemplify the industry’s

shift towards more automated, intelligent systems capable of handling complex data structures.

This evolution from manual to automated processes underpins our research approach, where we

integrate these insights to develop our general purpose graph feature engineering frameworks

and customize them into the specific context of AML domain.

3.2 Graph Representation Learning

Graph representation learning is crucial in transforming complex graph structures into usable

formats for ML models. This section discusses the evolution from matrix factorization techniques,

like GraRep and HOPE, to more sophisticated deep learning-driven approaches. While not all of

these methods are directly used in our work, understanding their limitations and strengths has

informed the development of our representation learning approach, namely, our Deep-Graph-

Sprints method, detailed in Chapter 6.

The domain of graph representation learning is at the forefront of innovative research. For

an in-depth exploration of existing methods and their applications, readers are directed to the

book by Hamilton [2020], and the survey by Makarov et al. [2021].

3.2.1 Matrix Factorization-Based Techniques for Graph Representation

Matrix factorization-based approaches, sometimes referred to as graph factorization [Ahmed

et al., 2013], provide foundational methods in the realm of node representation learning, drawing

their inspiration from traditional dimensionality reduction techniques [Hamilton et al., 2017b].

40 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

At its core, matrix factorization decomposes a matrix into a product of several constituent

matrices, facilitating the representation of data in a reduced dimensional space [Makarov et al.,

2021]. In graph representation learning, the target matrix frequently corresponds to the graph’s

adjacency matrix or its derivatives. The main objective is to represent the underlying graph

structure in this compact form.

Key algorithms in this domain include GraRep and HOPE. The GraRep algorithm [Cao et al.,

2015] focuses on high-order graph proximities, utilizing successive powers of the adjacency

matrix to reveal node relationship patterns. In contrast, HOPE [Ou et al., 2016] employs broader

similarity metrics like Jaccard neighborhood overlaps and uses singular value decomposition

to preserve asymmetric transitivity, especially in directed graphs. This method optimizes

computational efficiency by retaining only the dominant eigenvalues.

However, the limitations of matrix factorization methods, such as their transductive nature

requiring retraining for new nodes and computational overheads for large graphs, can restrict

their applicability in dynamic graph scenarios.

For a comprehensive understanding of matrix factorization in graph representation, the

survey by Chen et al. [2020] provides an in-depth analysis.

3.2.2 Random-walk Based Techniques

A random-walk, in the context of graph theory, is a stochastic process that derives random paths

originating from a designated node. By conducting numerous such walks, one can approximate

the inherent structure of the network. Notably, if two nodes exhibit similar random-walks, it

might suggest they occupy analogous structural roles in the network.

In light of this observation, several methods proposed random-walk based approaches

to generate node embeddings like, DeepWalk [Perozzi et al., 2014], LINE [Tang et al., 2015],

Node2vec [Grover and Leskovec, 2016], Struc2vec [Ribeiro et al., 2017], Metapath2vec [Dong

et al., 2017], Role2vec [Ahmed et al., 2019]. In essence, nodes that participated in comparable

random-walks yield similar embeddings. Traditional random-walks are genuinely stochastic,

choosing a random neighbor to progress the walk at each hop. Node2vec, however, introduces

a degree of bias, using two parameters, to direct the walks to be either shallower or deeper,

therefore distinguishing community structures or node roles more effectively. It is crucial to note

that both DeepWalk and Node2vec primarily utilize topological data for their node embedding

3. RELATED WORK 41

generation. Role2vec leverages attributed random-walks to learn embeddings for each role

within the graph based on functions that map feature vectors to roles. Thus, instead of learning

individual embeddings for each node, embeddings are learned for each role. Limitations of these

methods include their ignorance of node and edge features (except Role2vec that leverages node

attributes), and since they are designed for static graphs they disregard temporal information.

Their inherent high latency is attributable to the necessity of executing numerous walks to

derive an embedding. These limitations make them not applicable in our AML scenario. In a

subsequent advancement, Sajjad et al. [2019] adapted these random-walk techniques to DTDG.

While this adaptation introduced a degree of efficiency, it remains constrained in its applicability,

especially for CTDGs and in low-latency situations. In contrast, Node2bits [Jin et al., 2019]

integrates time-related details by separating the random walks it samples into different time

windows. It combines node attributes into histograms during these times. Node2bits closely

aligns with our Walking-Profiles, yet there are key differences. It does not account for edge features

and is designed for entity stitching rather than AML, as in our work. Unlike Walking-Profiles,

which produce interpretable aggregated features, Node2bits creates binary representations.

Additionally, Node2bits tackles space efficiency with binary hashing, whereas Walking-Profiles

employs selective feature extraction and sliding window techniques, as detailed in Section 4.2.2.

In contrast to our Graph-Sprints, all these methods, including Node2bits, demand considerable

computational resources for executing walks, making them less suitable for scenarios requiring

low latency.

Further developments, such as continuous-time dynamic node embeddings (CTDNE) [Lee

et al., 2020, Nguyen et al., 2018], were introduced to provide time-aware embeddings, aug-

menting the Node2vec paradigm for CTDGs. These methodologies treat the graph as a stream

of edges and perform temporal walks from seed nodes chosen through a temporally-biased

distribution. Hyperbolic spaces have seen the application of temporal random-walks for

embedding extraction [Wang et al., 2021a].

Moreover, the anonymous walks approach [Wang et al., 2021c] employs causal anonymized

walks to encode motif-centric data (motifs refer to subgraphs that occur within a real network

at a frequency higher than what statistical probability would typically predict [Ribeiro et al.,

2021]). In parallel, NeurTWs [Jin et al., 2022b] integrate time into the anonymous walks via

Neural Ordinary Differential Equations (NeuralODEs). It is essential to note that these methods,

similarly to our proposed walking-profile and in contrast to the our proposed graph-sprints

framework, necessitate exhaustive random-walk executions.

42 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

Recently Vital Jr et al. [2023] investigated the performance of different random-walks in

the context of link prediction in static graphs, focusing on embedding information derived

from various node sequence generations. Four traditional random-walks and five Node2vec

configurations were examined across 37 networks. The findings showed minimal performance

differences among the random-walks for link prediction, with a mere 3-4% difference in median

AUC metrics. Exploratory walks outperformed local ones in terms of performance. Furthermore,

a strong positive correlation was observed between node similarities from different walks, even

for opposing walk types. The study emphasizes that different random-walks have similar

performances in link prediction and capture consistent node similarity information.

A major limitation of random-walk-based approaches is their time complexity. To address

efficiency, methods like B_LIN [Tong et al., 2006] have been developed. This method improves

efficiency by leveraging two prevalent characteristics found in many real-world graphs, namely,

linear correlations and community-like structures.

Apart from time complexity, random-walks also impose significant demands on main mem-

ory volume. This issue is particularly relevant as many high-speed random-walk algorithms

assume the entire graph fits within the main memory, a challenge highlighted by Xia et al. [2019].

To address this, various strategies have been developed for graph partitioning and clustering.

Notable among these are METIS [Karypis and Kumar, 1997], and RWDISK [Sarkar and Moore,

2010], which offer practical solutions for managing large-scale graphs efficiently. In Walking-

Profiles, we address this memory challenge by introducing two distributed implementations of

our method, and a sliding window approach as detailed in Section 4.2.2.

Random-walks have applications in domains such as collaborative filtering, recommender

systems, computer vision, and more. For a comprehensive review of random-walk-based

applications and the challenges they pose, the reader is directed to [Xia et al., 2019].

3.2.3 K-hop Neighborhood Based Methods

More recently, we see a surge in deep learning algorithms for graph representation learning.

Several approaches leverage GNNs to learn functions that generate node embeddings [Hamilton

et al., 2017a, Yang et al., 2020, Ying et al., 2018, Zhu et al., 2020].

Most GNN-based methods require a k-hop neighborhood on which message-passing op-

erations lead to node embeddings. To deal with CTDGs, a simple approach is to consider

3. RELATED WORK 43

a series of discrete snapshots of the graph over time, on which static methods are applied.

Such approaches however do not take time properly into account and several works propose

techniques to alleviate this issue [Goyal et al., 2018, Jin et al., 2022a, Sankar et al., 2020]. To

better deal with CTDGs, other works focus on including time-aware features or inductive biases

into the architecture. DeepCoevolve [Dai et al., 2016] and Jodie [Kumar et al., 2019] train two

RNNs for bipartite graphs, one for each node type. Importantly, the previous hidden state of

one RNN is also added as an input to the other RNN. In this way, the two RNNs interact, in

essence performing single-hop graph aggregations. TGAT [Xu et al., 2020] proposes to include

temporal information in the form of time encodings, while TGN [Rossi et al., 2020] extends this

framework and also includes a memory module taking the form of an RNN. In [Jin et al., 2020],

the authors replace the discrete-time recurrent network of TGN with a NeuralODE modeling the

continuous dynamics of node embeddings.

APAN [Wang et al., 2021b] proposes to reduce the latency at inference time by decoupling

the more costly graph operations from the inference module. The authors propose a more

light-weight inference module that computes the predictions based on a node’s embedding as

well as the messages recently received from interacting nodes, stored in the node’s "mailbox".

The mailbox is updated asynchronously, i.e. separated from the inference module, and involves

the more expensive k-hop message passing. While APAN improves the latency at inference time,

it sacrifices some memory since each node’s state is now expanded with a mailbox, and more

importantly it potentially uses outdated information at inference time due to asynchronous

update of this mailbox. This algorithm addresses the need to generate low-latency embeddings,

similar to our Graph-Sprints and Deep-Graph-Sprints methods. However, unlike our methods,

APAN uses outdated information which could negatively affect its overall performance.

Moreover, towards reducing computational costs of GNNs, HashGNN [Wu et al., 2021]

leverages MinHash (an algorithm used to efficiently estimate the similarity between sets,

by hashing their elements into a smaller representative set of hash values) to generate node

embeddings suitable for the link prediction task, where nodes that results in the same hashed

embedding are considered similar. SGSketch [Yang et al., 2022] is a streaming node embedding

framework uses a mechanism to gradually forget outdated edges, achieving significant speedups.

Differently than our approach SGSketch uses the gradual forgetting strategy to update the

adjacency matrix and therefore only considers the graph structure.

Liu et al. [2019] propose an algorithm for graph streams that performs node representation

44 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

updates in real-time by: 1) Identifying nodes influenced by newly added nodes (e.g., one-hop

neighbors); 2) Generating embeddings for new nodes through linear summation of influenced

nodes’ embeddings; 3) Adjusting the embeddings of these influenced nodes. Therefore generat-

ing approximated embeddings in low latency. However, the embeddings depend only on the

neighbors embeddings and ignoring the target vertex attributes.

GNNs are instrumental in analyzing vast time series data, but adapting them to large datasets

is challenging due to memory constraints. While various sampling strategies exist, merging them

with temporal data remains complex. Enhancing GNN’s scalability for real-time applications is

a critical research area Jin et al. [2023]. For a comprehensive review on GNN-based approaches

for time series analysis we refer the reader to the survey by Jin et al. [2023].

To provide an application example in the realm of graph-based methodologies, these

techniques are used in areas like entity alignment in knowledge graphs and cybersecurity. CG-

MuAlign, utilizing node embeddings for entity alignment, exemplifies the efficiency of graph

convolutional networks (a type of GNNs) in this domain [Zhu et al., 2020]. In cybersecurity,

the importance of graph representations is evident in detecting complex network intrusions

and anomalies, as recent developments show [Ahmetoglu and Das, 2022]. These instances

demonstrate the capability of graph data in encapsulating complex relationships and their

broad applicability. In the area of recommendation systems, graph embeddings enhance user

experience, with Pinterest’s PinSage being a notable application [Ying et al., 2018]. These systems

harness graph data for understanding and forecasting user preferences, indicating the extensive

application of graph-based methods.

3.3 Advancements in AML Strategies

In Section 2.4, we elaborated on the traditional rule-based systems employed for AML. These

systems, while ensuring compliance and interpretability, are plagued by exceedingly high

FPRs. The primary objective of our research is to address and mitigate these FPs, all the while

preserving the rule-based structure to maintain compliance and provide clear explanations for

the system’s decisions.

Contrastingly, a considerable portion of the recent research efforts, which incorporate ML,

opt to replace these rule-based systems entirely. Such approaches aim to serve a dual purpose:

3. RELATED WORK 45

reducing both FPs and false negatives. For an exhaustive review of ML-centric methodologies

tailored for AML, readers can consult [Chen et al., 2018, Tiwari et al., 2020].

3.3.1 AML Solutions Leveraging ML

We can divide the ML-based AML systems into unsupervised and supervised methods. The

majority use unsupervised techniques due to the lack of real-world labeled datasets available

in the money laundering domain. The typical approach is to firstly cluster events, followed

by anomaly detection. To address the lack of data, various strategies have been proposed.

Either a fully synthetic dataset is generated [Dreżewski et al., 2012, Luna et al., 2018], or only

unusual accounts are simulated within a real-world dataset [Gao, 2009, Liu et al., 2008, Tang

and Yin, 2005, Wang and Dong, 2009], or one assumes that rare events within a peer group are

suspicious [Larik and Haider, 2011]. One drawback of anomaly detection approaches is the

assumption that suspicious activities are outliers, which may not always be the case since money

launderers try to simulate legitimate behavior [Lorenz et al., 2020]. Arguably, better validations

of the systems were reported in [Camino et al., 2017, Shokry et al., 2020, Yang et al., 2014] using

analyst feedback, or in [Liu and Zhang, 2010] using real labeled data and where authors report a

52% recall@5%FPR.

Several approaches leverage supervised learning, for instance, Luo [2014] generates synthetic

data and proposes a classification algorithm based on association rules to detect suspicious

events. Other researchers use real-world datasets and aim to detect suspicious behavior by

training classification algorithms like SVM [Keyan and Tingting, 2011] where authors report

64% recall@6%FPR, XGBoost [Jullum et al., 2020] obtaining an AUC of 82%, or after comparing

various algorithms [Zhang and Trubey, 2019] in which the best model was a neural network

and obtained 74% AUC. The performances of various models are hard to compare across the

studies due to their different metrics and datasets.

3.3.2 ML-Enhanced AML Solutions Using Graphs

Recent work has tried to incorporate graph information in the AML system in order to capture

network patterns. Weber et al. [2019] benchmarked graph convolutional networks against

various supervised methods and concluded that random forest algorithms provide a better

performance, despite the lack of graph-based information. Oliveira et al. [Oliveira et al., 2021]

46 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

propose GuiltyWalker, leveraging random-walks on a cryptocurrency graph to characterize dis-

tances to previous suspicious activity. The authors reported a 5 percentage points improvement

in F1 score when including these novel features. We leveraged the GuiltyWalker method in our

research, generalizing it for cases with label delay and incorporating it into our Walking-Profiles

framework, as discussed in Section 4.3.2

Random-walks were also used in [Hu et al., 2019] on top of a transaction graph representing

the bitcoin network. Savage et al. [2016] propose a community detection approach, from which

neighborhood-centric features are extracted and ingested by a supervised ML model. On a real-

world dataset, the best model was a random forest classifier achieving over 80%recall@20%FPR.

Other works propose graph-based suspiciousness scores based on money flows [Li et al.,

2020, Sun et al., 2021]. These algorithms do not use a learning algorithm and instead build a

detection system incorporating business knowledge about money flows. The scope is to detect

novel types of money laundering activity (i.e., reducing false negatives), while our goal is to

reduce incorrectly alerted events (i.e., reducing FPs).

Dreżewski et al. [2015] employed graphs to enhance the analysis of financial flows in

preventing money laundering activities. Through the creation and examination of social

networks derived from bank statements and the national court register, their system categorized

roles within these networks, identified interconnections, and employed visual representations

of the graph for analytical ease. The system’s node role assignment within the graph was

determined by the node’s graph feature values, such as PageRank [Brin and Page, 1998].

In a different approach, Savage et al. [2016] developed an automated mechanism that

identified money laundering activities by scrutinizing group behavior within transaction

networks. This method integrates network analysis with supervised learning, utilizing both

SVM and random forest algorithms. By focusing on smaller interacting groups exhibiting

suspicious collective behavior, their model harnessed a plethora of demographic, network-

centric, transaction-related, and temporal features crafted from domain expert insights. When

tested on real-world data from the Australian transaction reports and analysis centre, this model

achieved an average AUC of 92%. However, certain limitations, such as potential information

leakage due to the non-temporal formation of communities, raise concerns regarding system

compliance.

Considering the AML process as described in Chapter 1, an intuitive technique is to search

3. RELATED WORK 47

for cyclical patterns within a graph, recognizing that money launderers typically aim to retrieve

money they’ve channeled through the network. While Alibaba group’s approach of detecting

graph cycles [Qiu et al., 2018] primarily targets fraud, it has potential applications for AML.

Nonetheless, sophisticated criminals employing varied identities could easily elude simple cycle

detection. The efficacy of this technique might be enhanced by integrating entity resolution to

pinpoint genuine entities, followed by cycle detection in the resultant enriched graph.

Further, Wagner [2019] leveraged the DeepWalk algorithm [Perozzi et al., 2014] to translate

bank transaction network graphs into latent vector representations for suspicious activity

detection linked to money laundering. Despite achieving an average AUC of 78.9% on data

from a German bank, the DeepWalk approach overlooks temporal aspects and specific attributes,

necessitating periodic retraining, thus challenging its production viability.

Lastly, Diga [Li et al., 2023] presented a probabilistic diffusion model tailored for graph

anomaly detection, targeting the AML domain within banking. The Diga model’s AML inference

system utilizes a subgraph sampler centered around a node, facilitated by a biased k-hop

PageRank. Post introducing Gaussian noise to the subgraph, it undergoes denoising through

a guiding classifier paired with a denoising network. Anomalies emerge from contrasting the

reconstruction discrepancies between the original and denoised subgraphs. Key takeaways from

this work encompass the efficacy of subgraph-level recovery on vast, sparse transaction graphs,

the merits of semi-supervised methods like Diga’s guided diffusion in amplifying performance,

and the significance of weight-sharing in conditioned graph generation to sidestep extended

training durations.

Chapter | 4
Walking-Profiles: A Framework for Graph

Feature Engineering

Integrating graphs with ML enhances our understanding of entity interactions, enhancing the

accuracy and robustness of classification models by considering both individual and collective

behaviors. This chapter delves into the Walking-Profiles framework, a graph feature extraction

approach using random-walks, provides a customization of these features to the AML domain,

and discusses how graph features are engineered and transmitted to ML models. The chapter is

structured as follows:

• Motivation: Section 4.1 explains the reasons for developing the methodologies presented

in this chapter, highlighting the gaps they address in existing literature.

• Walking-Profiles method: Section 4.2 offers an overview of the random-walk based graph

feature extraction framework. It also details our graph feature calculator, Walking-Profiles

(Section 4.2.1).

• Scalability techniques of Walking-Profiles: Section 4.2.2 introduces three strategies

specifically designed to enhance the scalability of computations and minimize memory

requirements for the Walking-Profiles framework, particularly when dealing with large-

scale datasets.

• Triage model: Customizing Walking-Profiles to the AML domain: In Section 4.3, an

adaptation of the Walking-Profiles framework to the AML domain is presented. This section

49

50 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

introduces the triage model, an ML-based pipeline designed to decrease FPs in traditional

AML systems. The model incorporates customized Walking-Profiles features to enhance its

effectiveness in the specific context of AML.

• Results: Evaluating the Triage Model: Section 4.4 presents the research findings, empha-

sizing the effectiveness of the triage model. The model, which incorporates customized

Walking-Profiles features with a LightGBM [Ke et al., 2017] classifier, successfully reduces

FPs within the AML domain. Additionally, the section outlines the methodology employed

to explain triage model predictions at two distinct levels, as detailed in Section 4.4.7.

4.1 Motivation

As discussed in Chapters 1 and 2, graphs are a key tool for understanding interconnectedness,

especially useful in the AML domain. In Chapter 3, we reviewed how information is currently

extracted from graphs. However, for AML, where interpretability is important, existing methods

for feature engineering have gaps. They either do not fully support the temporal dynamics

of the graph, or they do not take into consideration the presence of features in both nodes

and edges, or they are hard to interpret. To tackle these issues, we propose a new framework,

Walking-Profiles. This solution is designed to automatically generate graph-based features from

temporal networks, filling the gaps in current methods. Additionally, we propose a tailored

customization of this framework for the AML domain, developed in collaboration with domain

experts. We also introduce the triage model to integrate machine learning and graphs into the

rule-based AML solutions. The following section will provide an in-depth exploration of the

Walking-Profiles framework, offering detailed insights into its structure and functionality.

4.2 Method

Walking-Profiles, our graph feature engineering framework, can be conceptualized as a modular

component, adaptable to any data workflow seeking to integrate neighborhood insights into its

decision-making process.

Upon receiving fresh data, the graph feature engineering component produces features that

encapsulate the neighborhood attributes of a certain node or edge in its graph representation.

This enriched neighborhood data subsequently augments the efficacy of the decision system,

4. WALKING-PROFILES: A FRAMEWORK FOR GRAPH FEATURE ENGINEERING 51

which may either be an ML model or a rule-based configuration. Refer to Figure 4.1 for an

example of incorporating the graph feature engineering component into a financial transaction

data processing workflow.

The graph feature engineering framework requires data to be in a graph format. Therefore,

transforming data from a tabular to a graph format is essential when it is not already in the

desired structure. This section details the two primary steps involved:

1. Graph Construction: This step is necessary only when the input data is in a tabular, or

other non-graph format. Its role is to convert this data into a graph format, which is

required for the graph feature extraction algorithm, Walking-Profiles. For construction

guidelines and considerations we refer the reader to Section 2.1.2. If the data is initially in

a graph format, this component is not needed and can be skipped.

2. Walking-Profiles: The Walking-Profiles algorithm is employed to extract relevant features

from the graph-represented data. It extracts important neighborhood information from

the target node, providing insights for the decision-making system.

This approach highlights the framework’s ability to handle different data representations,

ensuring effective processing regardless of the data’s initial format.

4.2.1 Walking-Profiles: A Random-walk-based Feature Extraction Engine

The feature extraction engine, as outlined in Algorithm 1 and Figure 4.2, processes data

structured as a graph where nodes represent entities and edges their relationships. The engine

follows a systematic approach to feature extraction, detailed through the following steps:

1. Target Node(s) Selection: Depending on the use-case, specific target node(s) are chosen

as the starting point for the random-walks. For instance, entities with recent activity or

entities of a particular interest might be selected.

2. Random-walks: This stage involves conducting random-walks starting from the selected

target node(s). These random-walks explore the graph by traversing edges. During these

walks, both node and edge features that are encountered are collected (the specific features

to be gathered, denoted as F , are hyperparameters of the method). The random-walks

allow us to capture the context and relationships of the target node(s) within the graph

52 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

FIGURE 4.1: Simplified illustration of the Walking-Profiles component within transactional data
processing pipeline.

structure. In our feature calculator, various types of temporal random-walks are supported.

The first type (purely temporal) restricts the next explored edge in a walk to have an older

timestamp than the previous edge, similar to the approach presented in Node2bits [Jin

et al., 2019]. The second type of supported random-walks restricts the next explored edge

to have an older timestamp than the initial node’s timestamp, but not necessarily older

than the previous edge’s timestamp. To prevent leakage, edges that lie in the future of

the random-walk starting node time cannot be traversed. The graph itself can be either

undirected or directed, containing different types of nodes and edges. Depending on the

use-case, random-walks can follow edge-direction or be biased by node types, edge types,

node and edge features, or constrained by other factors, such as time.

3. Summarization: The data collected during the random-walks is then summarized into a set

of relevant graph features. This summarization process processes the information gathered

during the random-walks into interpretable and informative graph features that describe

the characteristics of the target node(s) and their neighborhoods. The summarization

involves computing aggregations of the encountered features within the walks, effectively

capturing the key characteristics and patterns present in the neighborhoods of the target

node(s).

4. WALKING-PROFILES: A FRAMEWORK FOR GRAPH FEATURE ENGINEERING 53

Algorithm 1 Walking-Profiles: Random-walk based graph feature extraction engine

Require: G ▷ Updated Graph data
Require: t_nodes ▷ Target nodes
Require: K ▷ Depth of random-walks
Require: N ▷ Number of random-walks per target node
Require: F ▷ Node features set (e.g., degree, client_age)

for each vertex v in t_nodes do
Initialize feature storage StoredFeatsv = {}
for w = 1 to N do

current_vertex = v
for l = 1 to K do

Choose a random neighbor u of current_vertex
Collect features Fu into StoredFeatsv
Update current_vertex = u

end for
end for

S⃗v ← Summarize features in StoredFeatsv ▷ Summarization Phase
end for

The summarization phase, plays an important role when characterizing a node’s neighbor-

hood, our engine focuses on understanding both the topology of the neighborhood (i.e., how the

relations are structured) and the distributions of node or edge features across the neighborhood.

The extracted graph features are categorized based on the following granularities:

• Node/Edge level: Data of node or edge properties traversed during random-walks starting

from a certain node are collected. These features provide insights into the local properties

of the target node(s) and the immediate relationships it shares with its neighbors. Further

details are provided in Section 4.2.1.1.

• Subgraph level: Data characterizing each individual random-walk starting from a certain

node is collected. This level of features gives a broader perspective of the graph by

capturing the paths and patterns observed during each random-walk, offering the ability

to capture specific node/edge-sequence patterns. Section 4.2.1.2 offers more detailed

insights.

• Community level: Data characterizing the collection of random-walks starting from a

certain node is gathered. These features aim to provide a higher-level abstraction of

the graph’s structure in proximity to the target node(s). More details can be found in

Section 4.2.1.3

54 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

Figure 4.2 presents a clear example, demonstrating the Walking-Profiles framework in action.

Given a graph and a target node, labeled A, two random walks are executed. In this simplified

illustration, we focus on collecting the out-degree node feature, and the node ID. Subsequently,

during the summarization phase, we calculate three levels of graph features to encapsulate the

information gathered from these walks.

FIGURE 4.2: Illustrative example of the Walking-Profiles framework in action.

In the following sections, we describe in detail the extraction process of such features,

and how they can be customized based on the application domain and specific use-cases.

Additionally, a practical example specifically tailored to the AML context will be detailed in

Section 4.3.2.

4.2.1.1 Node or Edge Level Features

Our engine is designed to differentiate between numerical and categorical attributes of nodes

and edges within a graph. Based on these characteristics, it computes a variety of features.

As we navigate the graph, we accumulate the values of both numerical and categorical target

features. For numerical features, in particular, we take an additional step of calculating the value

differences between each consecutive pair of nodes or edges.

During each random-walk, which extends up to K hops, we collect a series of values for each

feature of interest, resulting in a list that can contain as many as K values. Upon completing all

N random-walks, we compile a matrix with dimensions N × K, representing the values for each

feature of interest. It is important to note that a random-walk might terminate before reaching K

hops if it encounters a node without outgoing edges. In these cases, we leave the feature values

for the untraversed hops empty. This strategy is employed to prevent these partial sequences

from biasing the results of later aggregation functions.

4. WALKING-PROFILES: A FRAMEWORK FOR GRAPH FEATURE ENGINEERING 55

Subsequently, we characterize the distribution of these collected values using various

aggregations methods. These aggregations include a range of statistical measures, such as

maximum, minimum, mean, standard deviation, sum, percentiles, among others. The selection

of aggregation functions acts as hyperparameters to the algorithm, providing flexibility and

adaptability to the model based on the specific dataset and objectives.

One can either summarize the collected values by performing aggregations over the union

of values encountered over all walks or perform aggregations on the individual walks first

followed by a second aggregation over the summarized walks.

Topological information on this level can be obtained considering node degrees (or in-degree

and out-degree) as numerical node properties. Entity or relationship information on this level

can be obtained by considering features that are relevant to the use-case, for example, in financial

data one can consider account age and transaction amount.

4.2.1.2 Subgraph Level Features

Our engine focuses on using random-walks associated with categorical features to describe

distinct subgraphs and analyze the local regions around the nodes of interest. To utilize this

functionality, one or more target categorical node or edge attributes must be specified. As we

perform the random-walk, the system records the encountered values of the target attribute.

Leveraging the idea of the anonymous walk [Ivanov and Burnaev, 2018] (illustrated in Figure 3.1),

the engine represents the sequence of encountered categories (node or edge features) in an

anonymous pattern. Subsequently, we count the occurrences of each pattern in random-walks

starting from a specific node, and compute the ratio of occurrences to the total number of walks

to generate new features.

For instance, if the node identifier is the target categorical feature and we have a set

of random-walks starting at node A, such as A − B − C, A − B − A, and A − C − D, the

corresponding anonymous walks are 1− 2− 3, 1− 2− 1, and 1− 2− 3. We notice that the

first and third random-walks correspond to the same anonymous walk, resulting in ratios of

1− 2− 3 : 0.66, and 1− 2− 1 : 0.33.

Due to the potentially large number of anonymous walks (subgraph patterns), we can define

a reduced set of common patterns during a warm-up period or based on business knowledge.

This approach enables us to efficiently compute the ratio features described above.

56 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

Subgraph-level features offer valuable insights into the topological and semantic characteris-

tics of the neighborhood, depending on the chosen categorical feature. For instance, considering

the node ID as the categorical node feature allows us to extract topological information, while

analyzing the transaction currency as the categorical edge property in a financial dataset provides

relevant relationship information.

Overall, our engine enables a comprehensive analysis of categorical features in random-

walks, providing valuable information about subgraphs and their associations with nodes of

interest.

4.2.1.3 Community Level Features

Community-level features offer valuable insights into the local regions around the target node,

based on a chosen categorical node property. The process involves two main steps:

Step 1: Community Formation: Given a certain categorical node property, we define the

community of the target node by the different values of that property encountered in all the

walks starting from this node. To ensure community relevance, we consider only values that

occur within the walks at least x times. For example, if the node property is node ID and x = 1,

all nodes occurring in the walks will be considered part of the community of the target node.

Step 2: Data Collection and Feature Calculation: Community-level features require collect-

ing the chosen categorical node property of the traversed nodes during the walks. After all the

random-walks, we union the values (e.g., node IDs) that occurred, and then filter out values

that appear less than x times.

Our Walking-Profiles engine calculates two community-level features:

• Community Size: This feature represents the number of distinct values normalized by

the total number of distinct possible values in the graph. For instance, if the categorical

property is the node ID, the community size is the number of distinct nodes encountered

in the walks normalized by the total number of nodes in the graph.

• Community Sparsity: This feature is the ratio between the number of distinct values

and the total number of encountered values in the walks. In the node ID example, the

numerator and denominator represent the number of distinct nodes and the total number

4. WALKING-PROFILES: A FRAMEWORK FOR GRAPH FEATURE ENGINEERING 57

of nodes encountered in the walks, respectively. A higher sparsity indicates nodes visited

only once, while a lower sparsity suggests repeated visits to the same nodes.

Community-level features allow us to capture both topological and semantic neighborhood

information. For topological insights, we can use properties like node ID as the categorical

property. In social network scenarios, considering profession as the categorical node property

helps understand the homogeneity of the neighborhood around a specific node.

4.2.2 Scalable Walking-Profiles for Large-Scale Data Processing

Real-world graphs can be massive, exceeding the memory capacity of a single machine. Conse-

quently, scalable distributed implementations are required to efficiently perform random-walks

on such large graphs. The independence of random-walks allows for parallelization, enabling

us to propose two distinct approaches for calculating graph features in a distributed manner,

and a sliding window technique.

4.2.2.1 Message-passing Approach

To compute the Random-walk-based features (Section 4.2.1), we propose using a message-

passing paradigm [Attiya and Welch, 2004]. In this approach, each target node sends a message

to its neighbors, conveying its information. Subsequently, the neighbors augment the received

message with their own information and pass it on to their respective neighbors. This process

continues iteratively for a specified depth K, representing the walk depth. After K iterations, we

collect the final messages and summarize them as features. Implementing this approach can

be achieved using Spark’s GraphX [Xin et al., 2013] module, which provides a graph-parallel

computation abstraction facilitating message passing and aggregation.

Later in Chapter 5, we propose adopting the message-passing approach with tailored

adjustments towards computing graph features in a streaming setting. Considering the dynamic

and continuous nature of streaming data, we can optimize the message-passing step by setting

it to occur only once during the walk process. By doing so, we limit the walk depth to a single

iteration (K = 1), which aligns perfectly with the streaming data paradigm. This strategic

adaptation not only ensures timely processing of streaming data but also takes inspiration from

the message-passing paradigm for effective feature computation in a streaming environment.

58 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

As a result, our approach optimally addresses the challenges posed by streaming data, enabling

efficient and accurate graph feature extraction.

4.2.2.2 Distributed Joining Approach

Incorporating the principles of message-passing while operating independently from the GraphX

module, the distributed joining approach is detailed in Algorithm 2, and illustrated in Figure 4.3.

The methodology initiates with the construction of a distributed table, G, which is organized

into two primary columns: node, listing each graph node, and neighbors_lst, cataloging the

direct neighbors of each node.

We also define another table, target_G, which is essentially a subset of table G. This table

contains the target nodes, those from which we intend to commence our random-walks, and

their immediate neighbors. For clarity, we rename its columns to t_node and t_neighbors_lst.

Furthermore, an additional column, walk, is introduced to the target_G table to store the

resulting random-walk initiated from each target node.

The process is then iteratively conducted as follows:

1. Add a new column (or overwrite if it exists) to the target_G table, termed chosen, which

is populated by randomly selecting a neighbor from the t_neighbors_lst column.

2. Execute a join operation between tables target_G and G. This is accomplished by aligning

the chosen column from target_G with the node column in G. The outcome is the

augmentation of a new column, neighbors_lst, that displays the neighbors of the nodes

featured in the chosen column.

3. Overwrite t_neighbors_lst with the data from neighbors_lst.

4. Incorporate the values from the chosen column into the target node’s walk list.

5. Reinitiate from the first step.

Upon completing this cycle K times, we achieve random-walks of depth K. To conduct

N such random-walks, we can either replicate every target node across N distinct rows or

sequentially (or in parallel, given their independence) repeat the aforementioned process N

times.

4. WALKING-PROFILES: A FRAMEWORK FOR GRAPH FEATURE ENGINEERING 59

Following this merging process, we obtain the details of the random walks. Subsequently, a

step is undertaken to intersect this information with the nodes and edges features. Specifically,

for the summarization phase, the random walks resulting table is joined with the tables

containing the desired features to produce the feature matrices.

A tangible instantiation of such distributed tables would be the dataframes in Spark.

Algorithm 2 Walking-Profiles: Distributed Implementation

Require: G[node, neighbors_lst] ▷ Graph with nodes and their neighbors
Require: target_G[t_node, t_neighbors_lst] ▷ Target nodes subset of G
Require: K ▷ Depth of random-walks
Require: N ▷ Number of random-walks per target node

Add two empty column chosen, and walk to target_G
Duplicate each row in target_G N times for multiple walks
for j = 1 to K do

chosen← Random neighbor from t_neighbors_lst
Join target_G.chosen with G.node
Update target_G.t_neighbors_lst with G.neighbors_lst
Append chosen to target_G.walk

end for

To provide a clearer visual representation, Figure 4.3 illustrates a 2-hop random-walk

originating from two distinct target nodes, 6 and 4, resulting in walks (6, 1, 2) and (4, 5, 6)

respectively.

FIGURE 4.3: Applying distributed Walking-Profiles in a 2-hop walk example.

60 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

4.2.2.3 Sliding Window Technique for Memory Reduction

Organizations dealing with extensive real-time data often confront the challenge of representing

a complete data history. Such representation necessitates significant memory and computational

resources. In cases where the premise that recent data holds more relevance for decision systems,

we propose the usage of a graph construction strategy anchored in the sliding window paradigm.

This method diverges from retaining the complete data chronicle in the graph. Instead, we

adopt a sliding window approach, keeping only the most recent data, typically spanning over

the last x units of time. By keeping only this recent subset, this intuitively leads to a reduction in

memory usage. Moreover, an added advantage of this strategy is the prevention of exhaustive

scans across the entire graph, which enhances computational efficiency. Consequently, this

approach ensures that organizations can manage and analyze large data streams effectively

without overburdening resources.

4.3 Triage Model: Integrating Walking-Profiles with AML

Predominantly, AML systems are composed of rule-based systems [Li et al., 2017] (depicted

as Rules in Figure 4.4.a). These systems, while transparent and interpretable, often raise

numerous false alarms that overwhelm human analysts with unnecessary workload (reported

FPRs are around 95–98% [Lannoo and Parlour, 2021]). To address this issue, we propose an

innovative ML component designed to triage alerts generated by the rules (triage model in

Figure 4.4.a). Functioning at the level of alerts, this model retains its interpretability, and its

design accommodates the inclusion of diverse features tailored to the specific demands of the

AML application. The triage model’s outcome holds a dual purpose: it can suppress alerts with

lower scores, removing them from the queue for analysis, or prioritize alerts based on their

scores, leading to an organized queue of alerts for further analysis. Importantly, given that all

alerts originate from the rule-based systems, the integration of the triage model preserves the

inherent advantage of explainability.

For an enhanced efficacy, our proposed system harnesses a spectrum of feature types, ranging

from entity-centric to neighborhood-centric (graph-features), subsequently processed by our

triage model to classify suspicious activity as shown in Figure 4.4.b.

4. WALKING-PROFILES: A FRAMEWORK FOR GRAPH FEATURE ENGINEERING 61

FIGURE 4.4: Overview of the full triage model system and details.

Subsequent subsections provide a granular exploration of the triage model, illustrating its

adaptation from our graph feature engineering framework with an emphasis on reducing FPs.

We particularly shed light on alterations made during the graph construction phase and in the

realm of feature computation.

4.3.1 Graph Construction

Financial datasets usually manifest in tabular format. However, to extract neighborhood-centric

insights we need to represent the data in a graph.

Financial transactions, mainly occurring between bank accounts, naturally suggest represent-

ing accounts as nodes, and transactions as edges between accounts. The direction of the edge

follows the direction of the money (i.e., from sender to receiver), and edge attributes include the

transaction timestamp and amount. Figure 4.5.a shows a toy example of our tabular data and

how we represent it in a graph: each entity (account in this case) is represented by a node, which

can have two types (Internal or External). Edges represent transactions between entities (i.e.,

accounts). Their direction follows the money flow, edges also have the timestamp and amount

of a transaction as attributes.

Scalability challenges emerge when dealing with large transactional data, especially for fi-

nancial titans processing millions of transactions daily. Acknowledging the decreasing relevance

of historical data, our solution pivots to a dynamic graph architecture, using sliding windows

to identify relevant data subsets. The graph undergoes an iterative update, forgetting old

edges and embracing the current day’s transactions, as detailed in Figure 4.5.b which shows an

example of a sliding window of 60 days. Therefore, every node linked to the day’s transactions

62 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

FIGURE 4.5: Graph construction: from tabular data to graph representation.

has its graph attributes computed. While our current framework operates on a daily cycle,

adaptability remains at its core.

4.3.2 Customising Walking-Profiles for AML

As a concrete example of the features described in Section 4.2.1, we will discuss the AML

domain. Money laundering concerns disguising the origin of illegally obtained money, typically

by moving funds between various accounts and FIs creating a complex web of transactions.

Using information characterizing the transaction graph is therefore relevant in this context. We

held multiple sessions with AML domain experts to gain a deeper understanding of the problem

and the data commonly used in their investigations. Based on these collaborative interactions,

we identified the following features for computation in the AML context:

1- Node or Edge Level Features

• Degree: Based on the hypothesis that suspicious accounts tend to interact with a larger

number of counterparties, we derive in- and out-degrees for target nodes. This helps

understanding the structure of the neighborhood.

• Delta Time: We use the transaction timestamp edge feature and calculate the differences

in transaction timestamps across the walks. thereby estimating the transaction velocities

during the random-walks.

• Delta Money: By employing the transaction amount edge feature, we obtain the variance in

the transferred sums.

• Flow Position: This metric, denoted as flow position, is derived using:

4. WALKING-PROFILES: A FRAMEWORK FOR GRAPH FEATURE ENGINEERING 63

f low position =
∑($sent)−∑($received)
∑($sent) + ∑($received)

It ranges from−1 to 1. A−1 score indicates an account primarily receiving money, whereas

a 1 indicates an account that only sends money. A 0 indicates balanced transactions, often

characterizing what are usually known as money mule accounts in laundering schemes.

For granularity, we evaluate this metric over varying durations, such as one week, and

collect these resulting flow position features within the walks.

• GuiltyWalker (GW): Recognizing the tendency of suspicious nodes to exist within criminal

networks (See example in Figure 4.7), the GuiltyWalker (GW) features [Oliveira et al., 2021]

aim to leverage this pattern. Unlike original GuiltyWalker’s random-walks that terminate

upon identifying a known illicit node, our modified approach is more generalized. We

allow random-walks to continue even after encountering a suspicious node, ensuring the

collection of other features and enriching the GuiltyWalker information. In this process,

the node label is adopted as the categorical node feature. Subsequently, we derive metrics

such as the distance to the illicit node and the total count of illicit nodes encountered

during each walk. These node labels could represent either confirmed money laundering

cases or files of SARs based on historical data.

• GuiltyWalker-delay (GWd) GuiltyWalker assumes immediate feedback, i.e., that labels

are immediately available for all past transactions. In AML, however, investigations are

lengthy, resulting in label delays. We propose an adaptation of GuiltyWalker by introducing

a waiting period. We start by training an ML model using entity profiles and degree

features on a first training set. We use the resulting model to score a second training set

and define a suitable threshold to obtain pseudo-labels. We then compute the GuiltyWalker

features using the pseudo-labels for the unlabeled transactions in the waiting period and

the actual labels otherwise. Finally, we train the triage model on the second training set,

integrating both actual and pseudo-labels.

2- Subgraph Level Features

The following categorical features are used to compute subgraph level features as described in

Section 4.2.1.2.

64 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

• Currency patterns: By using the transaction currency edge feature as a categorical metric,

we analyze currency exchange patterns around nodes to detect potential correlations with

money laundering practices.

• Transaction patterns: We use the node ID as the categorical feature. This provides a

structural insight into the graph surrounding the target node.

3- Community Level Features

• We calculate the community size and community sparsity features leveraging node ID as

detailed in Section 4.2.1.3.

4.3.3 Triage Model

4.3.3.1 Model

Our proposed triage model is adaptable and not restricted to any particular classifier. However,

for the purpose of enhancing interpretability, we recommend utilizing tree-based models such as

random forests [Ho, 1995] or LightGBM [Ke et al., 2017]. The model is trained using raw tabular

data enriched with engineered features, encompassing entity-centric and neighborhood-centric

attributes. The model generates a score that quantifies the degree of suspicion associated with a

given transaction.

4.3.3.2 Explaining Classifier Score

The objective of this section is to explain the scores produced by our triage model for two key

audiences: human reviewers and regulatory bodies. Reviewers seek clarification on the rationale

behind raising a specific alert as suspicious, while regulators focus on justifying the exclusion of

certain alerts.

Assuming that the triage model is grounded in a tree-based classifier (e.g., LightGBM), we

employ TreeSHAP [Lundberg et al., 2020] for model interpretation due to its computational

efficiency and empirical effectiveness as validated by its developers. TreeSHAP is a model-

specific explanation method tailored for tree-based models. It computes exact Shapley values

-quantifying each feature’s impact on the final prediction- efficiently by utilizing the structure

4. WALKING-PROFILES: A FRAMEWORK FOR GRAPH FEATURE ENGINEERING 65

of these models. The algorithm involves traversing the tree from root to leaves, attributing

contributions to to each feature encountered. The process is repeated for all trees in the model.

To enhance comprehensibility, we aggregate explanations by categorizing features into

distinct semantic groups. By analyzing the features employed by the model, we group similar

attributes together. This categorization is expressed as key-value pairs, wherein keys represent

semantic groups, and corresponding values enumerate the features associated with each group

based on human interpretation.

For every event necessitating an explanation, the following procedure is undertaken:

1. Retrieve the SHAP values for the event, leveraging the TreeSHAP library.

2. Aggregate SHAP values associated with the same semantic category to form an array of

aggregated SHAP values. The aggregation function can be sum, average, or any other

aggregation function.

3. Create an illustrative visualization using the consolidated features and SHAP values.

With this procedure the reviewer will have a high level picture on what group of features is

contributing to the event being considered of high risk or low risk. Then if the reviewer wants

to see the details, they always can visualize the original shapely values of every feature.

4.4 Experiments & Results

In this section, we begin by detailing the real-world dataset employed for our experiments in

Section 4.4.1. Subsequently, we delve into experiments conducted using our proposed triage ML

model. These experiments utilize raw tabular data augmented with specific engineered features:

• Entity-centric features, as discussed in Section 4.4.3.

• Neighborhood-centric features, elaborated in Section 4.4.4.

• Features derived from the customized Walking-Profiles graph (described in Section 4.3.2),

results are covered in Section 4.4.5.

66 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

4.4.1 Data

We utilize a real-world banking dataset for the following experiments. Due to privacy constraints,

we cannot reveal the bank’s identity nor provide exact details, but we provide approximate

metrics to characterize the data where possible.

The raw dataset encompasses around half a million transfers that were alerted by a rule-based

system (See Figure 1.2) involving 400,000 accounts and spans over approximately one year.

It distinguishes accounts based on their association with the bank can be internal or external.

Transfers occur in both directions between two internal accounts or between an external and

an internal account. The dataset is labeled on a transaction level, with a binary label indicating

whether a transaction was part of a SAR. However, we devise the proposed triage model to

generate alerts at the account level, as is typical in AML. Moreover, in our experiments, we

intend to assess accounts on a daily basis. Hence, we preprocess the raw dataset to contain

aggregated daily account features, including total sent and received amounts, the counterparties,

the associated timestamps, and the direction. We then extrapolate from the transactional labels

to infer the account labels: if there is a suspicious transaction involving an account on a specific

day, we mark that account as suspicious on that day. Importantly, this means that suspicious

accounts form connected pairs in our preprocessed dataset. Suspicious accounts comprise less

than 3% of the alerted batch, leading to an overwhelming 97% of FPs.

The dataset’s unique categorical feature indicates the account type—either external or

internal—and is binary-encoded as 0 or 1, respectively. We retain numerical features in their

original form and use this dataset as a foundation to compute all subsequent features.

To elucidate the structural differences within the dataset, Figure 4.6 demonstrates the degree

differences between legitimate and suspicious nodes in the dataset. The left subfigure details

the in-degree exploration, showing the number of incoming connections to each node. This

indicates the frequency with which different nodes receive interactions or transactions. We notice

that suspicious nodes often exhibit high in-degrees, particularly when the in-degree exceeds a

hundred, suggesting an increased likelihood of the node being suspicious. The right subfigure,

on the other hand, displays the out-degree exploration, which counts the number of outgoing

connections from each node. Similarly to the in-degree we notice that high out-degrees are

associated with suspicious nodes more commonly. This comparison between in-degree and out-

degree metrics is crucial for identifying distinct patterns in the network, thereby differentiating

between normal and potentially suspicious nodes.

4. WALKING-PROFILES: A FRAMEWORK FOR GRAPH FEATURE ENGINEERING 67

FIGURE 4.6: Data exploration: differences in degree between legitimate and suspicious nodes

Building upon the insights gained from the degree analysis in Figure 4.6, we now turn

our attention to Figure 4.7 for an understanding of the network’s interconnectedness in the

context of AML investigations. This figure compares two separate neighborhoods, identified as

weakly connected components in an AML investigation network. These components represent

subgraphs where each node is accessible from every other node within the same component,

ignoring edge direction, and isolated from nodes outside the component.

In Figure 4.7 blue nodes represent legitimate accounts and red nodes represent suspicious

ones (were involved in a SAR). Moreover, nodes labeled with ’E’ represent external accounts

to the financial institution, while those marked with ’I’ indicate internal accounts. The upper

subfigure displays a network component composed of only legitimate accounts. This section

effectively illustrates the normal transaction and interaction patterns among these accounts,

providing a clear view of the typical functioning within the FI. In contrast, The lower subfigure,

shows a network component consisting of suspicious accounts, marked as red nodes. This

component is noteworthy for the presence of suspicious accounts showing how they are

interconnected mainly through two suspicious hubs. The differences between these two

components underscore the utility of graph-based analytical approaches in detecting criminal

networks in AML case investigations, thereby helping in the identification of potentially illicit

activities. Building on this analysis, the following discussion delves deeper into how Walking-

Profiles can leverage these patterns of connectivity to enhance AML investigations.

4.4.2 Experimental Setup

We partition the dataset temporally into three distinct intervals: the earliest 60% is earmarked

for training, the subsequent 10% for validation, and the remaining 30% for model testing. For

the GuiltyWalker with delay features (refer to Section 4.3.2), the training subset is further divided.

68 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

FIGURE 4.7: Compararing legitimate and suspicious account neighborhoods in an AML
network.

We aim to maximize the suspicious activity captured by our triage model (i.e., TPs) while

minimizing incorrect alerts (i.e., FPs). We choose our optimization objective to maximize recall

at a specific FPR. The FPR can be chosen in accordance with the client. In our experiments, we

consider Recall@20%FPR as our target metric, which translates to a reduction of the FPs by 80%

compared to the rule system itself. Moreover, because most events are legitimate, the chosen

FPR (i.e., 20%) roughly corresponds to the number of alerts to be reviewed to obtain a particular

recall.

To illustrate the relationship between our triage model and the rule-based system (depicted in

4. WALKING-PROFILES: A FRAMEWORK FOR GRAPH FEATURE ENGINEERING 69

Figure 1.2), refer to Figure 4.4. In the subsequent sections, we delve into the various features

utilized for training the triage model classifier.

4.4.3 Triage Model using Entity-centric Features

4.4.3.1 Data Preprocessing and Entity-centric Features Creation

In this experiment, we augment the raw data with entity-centric features—those that capture

the historical essence of an entity without delving into neighborhood details. Initially, the

features we engineer for our triage model are tailored to capture the transactional history unique

to each account. Following Branco et al. [2020], we term these features as profiles. Defined

more specifically, profiles are arithmetic aggregations done across a specified field and within

a given time window, for example, the total amount spent by an account over the preceding

week. Such features empower an ML model to compare an account’s long-standing history

(long windows) against its recent actions (short windows), thereby understanding patterns

indicative of suspicious activities.

For the purpose of our tests, we create roughly 400 profile features. Taking the account as

our grouping entity, we aggregate data points on the amounts sent and received. Five distinct

time frames are taken into account: a day, a week, two weeks, a month, and two months. During

the aggregation phase, we employ an array of functions—sum, mean, minimum, maximum,

and count. Additionally, we explore the comparative dynamics between two-time windows via

ratios and differences.

Subsequently, to choosing the most important features, we employ a permutation-based

feature importance method. This entails training a gradient-boosted trees model on a subset of

the training data. Our aim is to obtain set of features, which account for 90% of the performance

concerning our metric of interest (i.e., Recall@20%FPR). Consequently, we select approximately

top 100 important entity features to enrich our dataset. The entire process of profile creation is

orchestrated via our in-house platform. This platform automatically generates features based

on the semantic labels of the data fields (e.g., entity, location, date, or amount) [Marques et al.,

2020].

All experiments are executed on the real-world banking dataset, detailed in Section 4.4.1. In

these experiments, the primary entities targeted for labeling are the bank accounts. Uniformly,

every model deploys the raw features delineated in Section 4.4.1, accompanied by a suite of

70 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

approximately 100 profiles, each grounded on the sent and received transfer amounts tied to

individual accounts. The first triage model we introduce is trained solely using the raw features

and the aforementioned entity-centric profile features.

4.4.3.2 Optimization

We use Optuna [Akiba et al., 2019] to optimize the hyperparameters of all models. Our focus

was on a set of machine learning models, which included Random Forest [Ho, 1995], Logistic

Regression [Dobson and Barnett, 2018], and LightGBM [Ke et al., 2017]. The process involved

training a total of 150 models, with 50 distinct models for each machine learning algorithm,

selected through random sampling. The performance of these models was then evaluated based

on their performance on a validation dataset. The optimal model was chosen based on this

performance assessment, using the Recall@20%FPR metric. Detailed information about the

algorithms used and the specific range of hyperparameters considered for each is provided in

Table 4.1.

Algorithm Hyperparameter Range/Values

Logistic
Regression

Alpha [0.01 - 0.09]
Standardize numericals [True, False]

Random
Forest

Max depth of trees [10 - 40]
Number of trees [100 - 200]

Min instances for split [10 - 50]

LightGBM
Num of leaves [200 - 500]

Min data in leaf [100 - 200]
Learning rate [0.01 - 0.09]

TABLE 4.1: ML algorithms and Hyperparameters ranges for triage model

4.4.3.3 Results

The top-performing model was a LightGBM, with a test performance close to 80%Recall@20%FPR.

This LightGBM model is considered as our baseline triage model in subsequent experiments.

4.4.4 Enriching Triage Model with Neighborhood-centric Features

This section investigates the potential enhancement to the triage model using graph-based features

in addition to the existing entity-centric features. We focus on three primary features: node

degree, GuiltyWalker, and GuiltyWalkerDelay.

4. WALKING-PROFILES: A FRAMEWORK FOR GRAPH FEATURE ENGINEERING 71

Our approach begins with the construction of a directed graph with accounts as nodes and

transactions between these accounts as edges. A more detailed methodology is provided in

Section 4.3.1. Given the diminishing significance of older events in current predictions, we

use a sliding window approach to ensure only the most recent transactions are considered

(Section 4.2.2.3). Pursuant to this, graph snapshots spanning 60-day intervals were formed based

on the guidance from [Jullum et al., 2020]. We also explored different intervals for suspicious

and non-suspicious activities.

The features under examination are detailed as follows:

Degree Features.

We hypothesize that the class of an account might influence its number of neighbors and

the corresponding monetary flow. We thus determine both the in-degree and out-degree for

each node and its adjacent neighbors. The neighboring degrees were aggregated using mean,

minimum, and maximum operations. In this way, we create eight new features that characterize

the number of counterparties of an account and its neighborhood. Analogously, we calculate a

weighted version of these features by using the transferred amount as the edge weight. When

these degree features were integrated into the base model, we observed an enhancement in

performance by 11.6 percentage points in Recall@20%FPR, supporting our theory (See Figure 4.8,

+Degrees). While weighted versions of these features (using transaction amounts as weights)

were developed, their efficacy remained inferior to the standard degree features.

GuiltyWalker features.

Given the complex connections often seen in money laundering schemes, we postulate a

higher likelihood of interconnected suspicious nodes. Therefore, we derived GuiltyWalker

(GW) features [Oliveira et al., 2021], which assess proximity to such suspicious nodes through

random-walks. Random-walks are generated which stop upon reaching a known illicit node

or if there are no available connections. In our implementation, we run 50 random-walks

for each target node. We then compute the features proposed in the original work, namely

features characterizing the length of the random-walks (minimum, maximum, median, mean,

standard deviation, 25th, and 75th percentile), the fraction of successful random-walks (i.e., the

"hit rate"), and the number of distinct illicit nodes encountered. The inclusion of GW features

boosted the model’s performance by 13.4 percentage points in Recall@20%FPR. Remarkably,

72 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

0 20 40 60 80 100
FPR

0
5

10
15
20
25
30
35
40

Δr
ec

al
l

+Degrees
+WeightedΔDegrees
+GW
+GW+Degrees
+GWdΔ(7ΔdaysΔdelay)

FIGURE 4.8: Triage model: Impact of graph features on performance.

GW performance peaks, with up to a 38% improvement, were observed in lower FPR regions

(Figure 4.8, +GW).

In addition, we combined both degree and GuiltyWalker features with the base model to

determine if they offer complementary insights. Our findings indicated some overlap, yet the

combined model outperformed models with individual features, with an enhancement of 15.5

percentage points in Recall@20%FPR (Figure 4.8, +GW+Degrees).

GuiltyWalker-delay features (GWd).

Real-world evaluations indicate that while GW features effectively reduce FPs, the foundational

GW algorithm [Oliveira et al., 2021] presumes daily updates of previous labels—a scenario not

always feasible in real banking AML contexts. Recognizing delays in actual banking operations,

we modified the GW algorithm to utilize model scores and thresholds for generating pseudo-

labels for recent events. This is expanded upon in Section 4.3.2. Our threshold optimization

involved an extensive grid search across several values. Under a 7-day label delay, an optimum

gain in Recall@20%FPR was observed for a threshold of 0.25.

Subsequent tests with varying label delays from 1 to 30 days confirmed that reduced delays

led to superior performance. Interestingly, even with a one-month labeling delay, the GWd

features significantly augmented the baseline model’s performance (Figure 4.9).

In a final set of tests, we assessed the combined performance of degree and GWd features.

Although the degree features improved TP rates, they did not exceed the performance achieved

by solely using degree features (compare blue line in Figure 4.8 with the red line in Figure 4.9).

4. WALKING-PROFILES: A FRAMEWORK FOR GRAPH FEATURE ENGINEERING 73

0 20 40 60 80 100
FPR

0
5

10
15
20
25
30
35
40

Δr
ec

al
l

GWdΔΔ0Δdays
GWdΔΔ3Δdays
GWdΔΔ7Δdays
GWdΔΔ30Δdays
GWdΔΔ7ΔΔdaysΔ+ΔDegrees

FIGURE 4.9: triage model: Impact of label delay on performance.

This was consistent even when the degree features were derived from the reduced dataset

intended for GWd models. Considering the computational efficiency, the degree features emerge

as an optimal choice in such scenarios.

4.4.5 Enriching Triage Model with Walking-Profiles Features

In this section we assess the added value of enriching a baseline that uses entity-centric features

with the WalkingProfiles features detailed in Section 4.3.2 Our aim is to leverage a triage model

and perform binary classification to predict whether an alerted activity is indeed suspicious or is

an FP. We use a LightGBM [Ke et al., 2017] classifier as the triage model and Optuna [Akiba et al.,

2019] is used for hyperparameter tuning. Similary to previous experiments (Section 4.4.3.2) we

use 50 models and Recall@20%FPR as our target metric.

Similarly to previous section, our approach begins with the construction of a directed graph

with accounts as nodes and transactions between these accounts as edges. A more detailed

methodology is provided in Section 4.3.1. Given the diminishing significance of older events

in current predictions, we use a sliding window approach to ensure only the most recent

transactions are considered (Section 4.2.2.3). Pursuant to this, graph snapshots spanning 60-day

intervals were formed based on the findings from [Jullum et al., 2020].

To calculate the graph features, we use the WalkingProfiles AML customization (Section

4.3.2). We choose the number of walks equal to N = 50 and the walk depth equal to 5.

In figure 4.10, we show the difference in recall to the baseline vs. FPR. Results show that by

adding graph-based features, we obtain an improvement up to 12%Recall@20%FPR assuming a

74 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

label delay of 1 day for the GuiltyWalker features and an improvement of 7%Recall@20%FPR

assuming a label delay of 7 days. Furthermore, we evaluate the model without using the

GuiltyWalker features and obtain an improvement of 5%Recall@20%FPR. It is important to note

that Figure 4.10 can not be directly compared with Figure 4.8, and Figure 4.9 due to the use of

two different baselines.

FIGURE 4.10: Triage model: Impact of integrating Walking-Profiles graph features.

Finally, regarding the inference time in this setup, our model processes 20 events per second

in the used AML datasets.

4.4.6 Assessing Sliding Window Effects on Triage Model Performance

In the previous experiments, we built a dynamic graph using a sliding time window of 60

days (Section 4.3.1). We now wondered how changing this window affects the triage model

performance. Moreover, since our experiments showed that connections to known suspicious

accounts are important features, we investigate whether keeping a more extended memory

for such suspicious accounts compared to legitimate ones is helpful. To this end, we use a

different window for each event type (legitimate vs. suspicious) and retrain our best model for

a realistic case of label delays, which uses only degrees features as described in the previous

section. Similar results were obtained when retraining the best model without label delay (using

degrees+GW features, data not shown). We perform a grid search for values of these time

windows between 0 days (i.e., events are not used in the graph at all) up to 90 days. For brevity,

4. WALKING-PROFILES: A FRAMEWORK FOR GRAPH FEATURE ENGINEERING 75

0 10 20 30 40 50 60 70 80 90
TWS

4

6

8

10

12

14

16

Δr
ec

al
l

TWL:Δ0Δday
TWL:Δ1Δday
TWL:Δ2Δdays
TWL:Δ3Δdays
TWL:Δ7Δdays
TWL:Δ14Δdays
TWL:Δ21Δdays
TWL:Δ30Δdays
TWL:Δ60Δdays

FIGURE 4.11: Triage Model: Impact of varying time window size on model performance,
illustrating the balance between Time Windows for Suspicious Events (TWS) and Time Windows
for Legitimate Events (TWL). The figure highlights how different time window sizes influence

the predictive performance of the model.

we refer to the time window for legitimate events as TWL and to the time window for suspicious events

as TWS. Firstly, we find that, for any value of TWS, the best performance is achieved for a TWL

equal to one day. Secondly, the performance increases only marginally when increasing the TWS

beyond 30 days (Figure 4.11). Therefore, we can construct a good model efficiently by keeping

only one day of legitimate events and 30 days of suspicious events in our graph. Importantly,

having separate time windows for legitimate and suspicious events implies knowing the label

at least after the duration of the smallest time window. Thus, for a label delay of 7 days, the

best model we can construct efficiently would be using a TWL of 7 days and a TWS of 30 days.

Nonetheless, it is interesting that we can significantly reduce the data needed to construct the

graph without sacrificing performance.

4.4.7 Interpreting the Triage Model Through TreeSHAP

This experimental phase aims to understand the underlying mechanics of our triage model, with

a specific focus on facilitating comprehension for two pivotal stakeholders: human reviewers

and regulatory entities. To achieve this depth of insight, the TreeSHAP technique, as elucidated

in Section 4.3.3.2, is harnessed.

In order to construct semantic groups of features, a manual analysis of the enriched features

is undertaken. Some illustrative features from this analysis include:

• Receivers magnitude: Comprising features that aggregate node degrees of recipients

receiving funds from the node being studied.

76 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

• Money sent: Including features that combine data about money leaving accounts in the

nearby area. For example, the "Average amount sent" feature reveals information about

the amount of money exchanged in the local network.

Figures 4.12 and 4.13 provide an illustrative example of the level two (aggregated) and level

one (detailed) explication processes for a suspicious case that the model accurately assigned

a high score. Figure 4.12 showcases a prominent red color, indicating heightened suspicion

stemming from variables like neighborhood magnitude, the account’s internal nature, and

substantial transactional sums within its radius. For a granular examination, refer to Figure 4.13,

which discloses specific money amount values and node degrees responsible for the elevated

model score.

FIGURE 4.12: Triage model: Aggregated explanation for a suspicious case.

FIGURE 4.13: Triage model: Detailed explanation for a suspicious case.

In contrast, Figures 4.14 and 4.15 illustrate the model’s reasoning for accurately assigning a

low score to a legitimate case. Figure 4.14 demonstrates how aggregated features contribute to

a decreased score, indicative of diminished suspicion (a potential FP of the rules system). For a

comprehensive exploration, delve into Figure 4.15.

FIGURE 4.14: Triage model: Aggregated explanation for a legitimate case.

FIGURE 4.15: Triage model: Detailed explanation for a legitimate case.

4. WALKING-PROFILES: A FRAMEWORK FOR GRAPH FEATURE ENGINEERING 77

4.5 Summary

In summary, graphs play a crucial role in detecting new patterns as they supplement traditional

ML techniques by providing a more holistic view of the target entity’s behavior through

the analysis of its interactions within a network. This broader perspective can lead to more

sophisticated and insightful classification models, ultimately advancing our ability to recognize

and understand complex patterns in data.

Within this chapter, we present a dynamic graph feature engineering framework that exhibits

the following characteristics:

• Works with temporal graphs (edges are timestamped)

• Flexibility in considering any node or edge feature.

• Customizability to suit various scenarios.

• Generation of explainable features for better interpretability.

• Calculation of graph features on the node, subgraph, and community levels.

Furthermore, we demonstrate the practical application of this framework in the AML domain,

working alongside rule-based systems in a novel pipeline in Section 4.3. The aim is to reduce

FPRs of rule-based systems while ensuring compliance with regulatory standards.

Chapter | 5
Graph Sprints: A Method for Low-latency

Graph Feature Engineering

Real-world datasets often have a dynamic graph structure, characterized by evolving rela-

tionships between data points, as seen in social networks, financial datasets, and biological

systems. ML models, particularly GNNs, excel in handling these datasets, but face challenges

with CTDGs due to high computational costs in embedding computations. This chapter presents

the Graph-Sprints method, a random-walk based graph feature extraction framework designed

for low-latency solutions in large data and high-frequency contexts like financial transaction,

focusing on leveraging the latest information for enhanced capabilities. The organization of the

chapter is as follows:

• Random-walk Based Features: Section 5.1 initiates with an overview of the Random-walk

based graph feature extraction framework, as detailed in Chapter 4, Section 4.2.1.

• Graph-Sprints method: Section 5.2 elaborates on the derivation of our Graph-Sprints

method from the random-walk based framework, delving into the intricate details of the

method.

• Memory reduction techniques: Section 5.2.5 introduces two strategies tailored to minimize

the memory demands of our Graph-Sprints approach.

• Theoretical analysis: Sections 5.3.1 and 5.3.2 Undertake a rigorous theoretical analysis,

exploring its equivalence to random-walks and its complexity dynamics.

79

80 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

• Experiments and results: Section 5.4 Culminates with a presentation of our findings,

showcasing how the Graph-Sprints features, when combined with a neural network

classifier, manage to be both time-efficient and retain robust predictive performance,

when compared against the more time-intensive GNNs.

FIGURE 5.1: Overview of various approaches in CTDGs.

5. GRAPH SPRINTS: A METHOD FOR LOW-LATENCY GRAPH FEATURE ENGINEERING 81

5.1 Random-walk Based Features

Prior to delving into the intricacies of our Graph-Sprints framework, it is relevant to provide

a brief summary of the random-walk based feature extraction framework. This framework,

extensively detailed in Section 4.2.1, lays the foundation upon which our subsequent discussions

will be anchored. Following this overview, we will elucidate the efficient computational

techniques underpinning Graph-Sprints. The random-walk based feature extraction framework

essentially encompasses the following sequential steps, resulting in the creation of a node feature

vector for a specific seed node (Figure 5.2).

1. Select the seed node. This selection depends on the use-case, and for CTDGs typically

one considers entities involved in new activity, for instance if the change on the graph is

adding a new edge between two nodes, then each of these two nodes could be a candidate

for a seed node.

2. Perform random-walks starting from the seed nodes. During the random-walks, relevant

data such as node or edge features of the traversed path are collected. The type of random-

walks influences what neighborhood is summarized in the extracted features. Walks can

be (un)directed, biased, and/or temporal.

3. Summarize collected data. The data collected over walks is aggregated into a fixed set of

features, characterizing each seed node’s neighborhood. Examples of such aggregations are

the average of encountered numerical node or edge features, the maximum of encountered

out-degree, etc.

The computation of these features is costly, because multiple random-walks need to be generated

for each seed node. For CTDGs, one would have to compute such features each time an edge

arrives. This is infeasible for high-frequency use-cases such as fraud detection in financial

transactions, where a decision about a transaction needs to be made in a few milliseconds. In

the next section, we derive an efficient approximation to the above random-walk based features.

82 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

FIGURE 5.2: Conversion of random-walks to histograms.

5.2 Method

In this section, we propose approximations to random-walk based features described in Sec-

tion 5.1. Our aim in this section is to optimize the computation of such features by exploiting

recurrence and eliminating the need to execute full random-walks. As shown in Figure 5.3,

given a temporal graph where edges have a timestamp feature (numbers) representing the time

that a relationship was created, the left banner of Figure 5.3 illustrates temporal random-walk is

traversed from the most recent interaction A-B towards older interactions. As shown in the right

banner, one can compute similar embeddings to the ones in Figure 5.2 in a streaming setting,

from only the new edge and the existing embeddings of the involved nodes..

FIGURE 5.3: Streaming histograms from temporal random-walks.

5.2.1 Assumptions

For our approximations to be reliable, we make the following assumptions: the input graph is a

CTDG with directed edges (we will relax this assumption later), edges have timestamps and the

temporal walks respect time, in the sense that the next explored edge is older than the current

edge. With these assumptions, one can unfold any directed temporal walk as a time-series

(Figure 5.2A and 5.2B).

5. GRAPH SPRINTS: A METHOD FOR LOW-LATENCY GRAPH FEATURE ENGINEERING 83

5.2.2 Streaming Histograms as Node Embeddings

Given the above assumptions, we now formalize the approximation of random-walk based

aggregations described in Section 5.1.

In this framework, we do not consider random-walks with a fixed number of hops, and

instead consider infinite walks, on top of which we compute embeddings analogously to

exponential moving averages. The importance of older information compared to newer is

controlled by a factor α between 0 and 1. A larger α gives more weight to features further away

in the walk (or in the past), and we can therefore consider α the parameter that replaces the

number of hops. Formally, let S⃗i be a histogram with L bins, represented as an L-dimensional

vector and characterizing the distribution of a feature f in the neighborhood of node i. A full

infinite walk starting at node 0 computes the histogram S⃗0 as:

S⃗0 =
∞

∑
i=0

αi(1− α)⃗δ(fi) (5.1)

where ∑ is adding vectors, α is a discount factor between 0 and 1, controlling the importance

of distant information in the summary S⃗0, and i denotes the hops of the walk (i = 0 being the

newest node, or in other words the seed node of the infinite walk). fi is the feature value at node

i or edge i, and δ⃗(fi) is an L-dimensional vector with element δ⃗j = 1 if the feature value fi falls

within bin j and δ⃗j = 0 for all other elements. Equation 5.1 then implements a streaming counts

per bin, where older information is gradually forgotten. If the feature fi is a node feature, then

the value is taken from the current node. If it is an edge feature, then the feature value is taken

from the edge connecting the current node and the chosen neighbor.

One could compute multiple such summaries per node, one for each node or edge feature of

interest, and together they would summarize a neighborhood. The key idea is that we can now

approximate the infinite random-walks, i.e., the infinite sum of equation 5.1, by performing only

a finite number of k ≥ 1 hops, followed by choosing a random neighbor of the last encountered

node and choosing an available summary S⃗k of that neighbor randomly, where S⃗k is defined as

S⃗k =
∞

∑
i=0

αi(1− α)⃗δ(fi+k) (5.2)

84 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

With this strategy, we can approximate the summary S⃗0 from equation 5.1 recurrently using

S⃗0 ≈
k−1

∑
i=0

αi(1− α)⃗δ(fi) + αkS⃗k (5.3)

Compared with equation 5.1, one now truncates the sum after k terms. Note that whenever

the last histogram S⃗k is normalized such that the bins sum to 1, e.g. using a uniform initialization

for terminal nodes, equation 5.3 guarantees that all subsequent histograms will be normalized

in the same way. Since we are interested in low-latency methods, we take the limit of k = 1 and

Equation 5.3 becomes a streaming histogram:

S⃗0 ← (1− α)⃗δ(f0) + αS⃗1 (5.4)

The hyperparameter α can be chosen to depend on the number of hops or on time. When

discounting by hops, this discount factor α is a fixed number between 0 and 1. When discounting

by time, the factor is made dependent on the difference in edge timestamps, for example

exponentially or hyperbolically.

Using equation 5.4, one could approximate N (biased) random-walks by sampling N

neighbors (non-uniformly), and subsequently combining the resulting histograms, e.g., by

averaging. This would require performing N 1-hop look-ups each time.

Instead of that, we can increase efficiency even further by removing any stochasticity and

updating a node’s histogram at each edge arrival, combining the histograms of the two nodes

involved in the arriving edge, as shown in equation 5.5:

S⃗0 ← βS⃗0 + (1− β)
(
(1− α)⃗δ(f0) + αS⃗1

)
(5.5)

In this way we combine all neighbors’ information implicitly using a moving average over

time.

Hyperparameter β is another discount factor between 0 and 1, controlling how much to focus

on recent information in contrast to older information and which can optionally depend on time.

In this way, we can update histograms in a fully streaming setting, using only information of

each arriving edge. We term this procedure Graph-Sprints and summarize it in algorithm 3.

Compared to equation 5.4, one can observe that the remaining sampling over single-hop

5. GRAPH SPRINTS: A METHOD FOR LOW-LATENCY GRAPH FEATURE ENGINEERING 85

neighbors is abolished, at the cost of imposing a more strict dependence on time. The advantage

of algorithm 3 is that no list of neighbors needs to be stored. Moreover, algorithm 3 can be

applied in parallel to both the source node and the destination node, and therefore edges are

not required to be directed. In fact, while we derived equation 5.5 from random-walks, the

attentive reader can notice that it can be interpreted as a special case of message passing where

all neighbor summaries are aggregated using a weighted average, with weights that are biased

by recency, and where the average is computed in a streaming fashion over time.

One special type of feature are the degree features (in- and out-degree). To avoid accumulat-

ing degrees over time, we propose to implement a streaming count of degrees per node. Every

time an edge involving node u arrives, we compute

du = du exp (−∆t/τd) + 1 (5.6)

where du denotes either in- or out-degree of node u, ∆t denotes the time differences between

the current edge involving node u and the previous one, and τd is a timescale for the streaming

counts.

Algorithm 3 Graph-Sprints: Real-time graph feature extraction engine (Equation 5.5)

Require: EdgeStream ▷ Stream of arriving edges ei,j
Require: F ▷ Set of features for GS (e.g., node degree)

for ev,u ∈ EdgeStream do
Get S⃗u, S⃗v ▷ Current summaries of nodes u,v
S⃗⋆

v ← αS⃗v ▷ Multiply all bins by α
for f ∈ F do

if value(f) in bin j then
S⃗⋆

vj ← S⃗⋆
vj + (1− α) ▷ Add (1-α) to bin j

end if
end for
S⃗u ← βS⃗u + (1− β)S⃗⋆

v ▷ Updated summary of node u.
end for

5.2.2.1 Choosing Histogram Bins

Essential hyperparameters of this method are the choices of the boundaries of the histograms

bins. We propose to use one bin per category for categorical features. If the cardinality of a

certain feature is too high, we propose to form bins using groups of categories. For numerical

features, one can plot the distribution in the training data and choose sensible bin edges, for

86 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

example on every 10th percentile of the distribution. The framework is not constrained by one

choice of bins, as long as they can be updated in a streaming way.

5.2.3 Streaming Community Features

In our effort to better understand the area around the target node, we introduce two distinctive

features, elucidating their integration within our framework. It is worth noting that the

computation of these features remains optional, tailored to the specific requirements of the

use-case in question. Specifically, the features under discussion are: community diversity and

community size.

Community diversity

To estimate community diversity in the streaming context, we leverage the assumption that for

more diverse community there is a higher probability that individual random-walks contain

different information. Therefore, we propose a feature that estimates the variety over the various

random-walks. The feature is similar to the inception score [Charikar, 2002] (or variety score) used

to evaluate images generated using generative adversarial networks. The score is calculated as:

Vscore =
1
N ∑

i
KL(pi||∑

i
pi/N) (5.7)

In other words, the variety score Vscore of a node is the average (across all random-walks)

of the KL divergence between the distribution characterizing an individual random-walk, pi, to

the average of the distributions over all random-walks, ∑i pi/N.

In our case, we compute the variety score between the various histogram summaries of a

node. The above metric can be generalized to use other divergence metrics, e.g. the cosine

distance between the histograms. When only a single histogram is kept per node, one can

calculate the variety score between the histograms of the direct neighbors of the node of interest.

However, if we use Equation 5.5, we only access the current node’s histogram S⃗0 and the latest

neighbor’s histogram S⃗1 and we can use the following streaming version of Equation 5.7:

Vscoret+1 ← γVscoret + (1− γ)D(S⃗0, S⃗1) (5.8)

5. GRAPH SPRINTS: A METHOD FOR LOW-LATENCY GRAPH FEATURE ENGINEERING 87

Here, D stands for the divergence measure used (e.g. KL divergence, cosine distance), S⃗0

approximates the average of histograms of all neighbors and the variety score is now updated

as a moving average of the divergences instead of an actual average over all neighbors.

Finally, when only hashed histograms are used (see Section 5.2.5), one can use e.g. the

Hamming, or cosine distance as a divergence metric.

Community size (Path Length)

Community size is more difficult to estimate in the streaming setting. We propose to compute a

streaming path length histogram p⃗, which for each new node is initialized with L bins, where

the first bin has a value equal to 1 and the rest are zeros. Every time an edge eu,v arrives from

node u to v, one can update the path length histogram of node u as follows

p⃗u ← β p⃗u + (1− β)
(

p⃗v ·U
)

(5.9)

This equation is very similar to equation 5.5, but the histogram p⃗v is updated by multiplication

with an (L× L) square matrix U. The matrix U has the diagonal directly above the main diagonal

equal to 1, Ui,j = δi+1,j, as well as UL,L = 1. In this way, the multiplication by U moves each bin

to the right in the histogram, while the last bin acts as an absorbing state. One can then easily

verify that each hop results in a histogram with bins shifted to the right, i.e. increasing the path

length by one unit, while the last bin accounts for all paths with length larger or equal to L. As

before, β ensures that older paths are gradually forgotten and newer information dominates.

Clearly, this feature cannot be included in the proposed similarity hashing framework described

in Section 5.2.5, since the multiplication by matrix U is not compatible with the hashing method.

5.2.4 GuiltyWalker Features in Streaming Context

In some use-cases, the node features may change values without the node having activity. For

instance, in the AML use-case, one node attribute is a label stating whether a node was consid-

ered suspicious or not. This information depends on a review process that could happen many

days after the node had activity and was incorporated into the graph. GuiltyWalker [Oliveira

et al., 2021] features, leverage this label information to calculate the distance to illicit nodes

and are shown to be helpful to detect suspicious entities in the AML use-case. To deal with

this scenario we propose updating the histograms dedicated to such features of the whole

K-hop neighborhood once a change happens (e.g., a delayed label arrives), where K will be

88 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

a hyperparameter for the GuiltyWalker feature. Concretely, the GuiltyWalker feature will be a

histogram containing two categories, legitimate and suspicious. For nodes of interest, these

histograms are updated in the usual way described in the previous section. However, once a

label arrives to an existing node, we update the K-hop neighborhood in the following way. We

apply the same update formulas and the same α that we used in the previous steps (feature

extraction step), but in the opposite direction. Instead of the target node collecting neighbors’

histograms to update its histogram, the labeled node sends its histogram to the neighbors to

update their histograms. We always maintain the same temporal order i.e., we use older nodes’

histograms to update the more recent histograms.

5.2.5 Reducing Memory Footprint

The space complexity of the Graph-Sprints approach (algorithm 3) is

M = |V| ∑
f∈F

L f (5.10)

where |V| stands for the number of nodes, L f stands for the number of bins of the histogram

for feature f , and F stands for the set of features chosen to collect in histograms. In case this

memory is too high, we propose the following methods to reduce memory further.

5.2.5.1 Reducing Embedding Size using Similarity Hashing

Following the similarity hashing approach proposed in Jin et al. [2019], we extend the method

to the streaming setting. All histograms as defined in the previous sections are normalized (in

the sense that bin values sum to 1), and we can concatenate them into one vector S⃗tot. We can

now define a hash mapping by choosing k random hyperplanes in RM defined by unit vectors

h⃗j, j = 1, . . . , k.

The inner product between the histograms vector and the k unit vectors results in a vector

of k values, each value θj can be calculated using the dot product of the unit vector h⃗j and the

histogram vector S⃗tot, as illustrated in Equation 5.11. We use the superscript t to denote the

current time step.

θt
j = h⃗j · S⃗t

tot (5.11)

5. GRAPH SPRINTS: A METHOD FOR LOW-LATENCY GRAPH FEATURE ENGINEERING 89

One can binarize the representation of the hashed vector by taking the sign of the above θt
j .

Therefore, the resulting space complexity per node is k, replacing the number of bins in the

memory M by the number of hash vectors k.

Importantly, the hashed histograms can be updated without storing any of the original

histograms. Combining equations 5.4 and equation 5.11 and denoting δ⃗(f⃗) the concatenation of

the δ⃗ vectors for all collected features, we get

θt+1
j = θt

j · α + h⃗j · δ⃗(f⃗) · (1− α) (5.12)

Therefore, we can compute the next hash θt+1
j or sign(θt+1

j) directly from the previous θt
j and

the new incoming features δ⃗(f⃗).It is also important to note that this hashing scheme is preserved

when averaging.

Below, we show that averaging various histograms followed by hashing is equivalent to

hashing histograms and averaging the hashes. Assuming N histograms with L bins S⃗i, h an

L-dimensional unit vector and
⊕

representing element-wise addition, we have

S⃗avg =
1
N

N⊕
i=1

S⃗i

⇒ θ = h⃗ · S⃗avg =
1
N

h⃗ ·
[

N

∑
i=1

si,1, . . . ,
N

∑
i=1

si,L

]T

⇒ θ =
1
N
·
(

N

∑
i=1

h1si,1 + · · ·+
N

∑
i=1

hLsi,L

)

⇒ θ =
1
N

N

∑
i=1

h⃗ · S⃗i =
1
N

N

∑
i=1

θi (5.13)

5.2.5.2 Reducing Embedding Size using Feature Importance

One can reduce the needed memory by relying on feature importance techniques. One possibility

is to train a classifier on the raw node and/or edge features and determine feature importances,

after which only the top important features are used in the Graph-Sprints framework. Or similarly

train on all bins and decide the bins to be used based on their importance in the classification

task. Thus, either reducing the number of features, or the number of bins within the features, or

both.

90 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

5.3 Graph-Sprints Theoretical Analysis

5.3.1 Equivalence between Graph-Sprints and Random-walks

In equation 5.3, we discussed a framework approximating random-walk based node embeddings.

We can show that this strategy indeed leads to the same result as when using random-walks in

expectation. The probability that a path passes through a node a at hop t+1 is given by

Pt+1(a) = ∑
b|(a,b)∈E

P(sa ∈ Ωb)
1
|Ωb|

Pt(b) (5.14)

Where (a, b) ∈ E means (a, b) is an existing edge, i.e., we sum over all neighbors of node a.

P(sa ∈ Ωb) means the probability that the set of summaries Ωb of node b contain a summary

sa for which the edge (a, b) was the last added information. |Ωb| stands for the number of

summaries stored at node b and Pt(b) stands for the probability that a path passed through node

b at hop t.

The probability that a summary sa exists in the set of summaries Ωb of its neighbor b, is

related to the number of summaries |Ωb| and degree of node b referred to as Db and can be

written as illustrated in equation 5.15.

P(sa ∈ Ωb) =
|Ωb|
Db

(5.15)

Note that in the case that |Ωb| > Db, equation 5.15 does not reflect a probability, since in

expectation multiple summaries will have node a as last added information, but the equations

still hold.

By substituting equation 5.15 in equation 5.14 we result in equation 5.16 which defines a

random-walk with unweighted edges.

Pt+1(a) = ∑
b|(a,b)∈E

1
Db

Pt(b) (5.16)

A weighted version can be straightforwardly implemented by choosing a neighbor not

randomly, but according to the edge weights, leading to a factor wab to be added in equation

5.14 and 5.16.

5. GRAPH SPRINTS: A METHOD FOR LOW-LATENCY GRAPH FEATURE ENGINEERING 91

5.3.2 Graph-Sprints: Complexity Analysis

In this section, we analyse the computational complexity of the proposed Graph-Sprints frame-

work.

We start with the complexity of algorithm 3. The multiplication of f vectors with a scalar

has complexity ∑ f L f , where L f stands for the number of bins for feature f and is equal to the

dimensionality of the vector. The lookup of the correct bin for a value of feature f is O(log(L f)).

This has to be repeated for each feature, resulting in a complexity of O(∑ f log(L f)). Finally, the

moving average of two vectors has complexity 3 ∑ f L f . The total complexity of algorithm 3 is

therefore O(∑f Lf).

Secondly, for community diversity (equation 5.8), we consider cosine distance as the diver-

gence measure as in our experiments. The cosine distance is computed by performing 3 inner

products between the ∑ f L f dimensional vectors, and therefore has complexity O(∑ f L f).

Lastly, path lengths (equation 5.9) are computed by a matrix-vector multiplication between

an (Lp × Lp) dimensional matrix and a Lp dimensional vector, where Lp are the number of bins

summarizing the path lengths. The complexity of such multiplication is O(L2
p).

Notably, one can improve upon this by parallelizing over the features f , as well as paralleliz-

ing the scalar-vector products and moving average of two vectors, resulting inO
(
maxf(log Lf)

)
for algorithm 3, O(1) for equation 5.8 and O(Lp) for equation 5.9.

Once the Graph-Sprints features are computed, one needs to pass the resulting feature vector

through a classifier. The complexity will depend on the chosen classifier, for instance, in case, a

LightGBM model is used, for which O(depth) is the inference complexity where depth stands

for the cumulative depth of the decision trees.

5.4 Experiments & Results

5.4.1 Experimental Setup

We assess the quality of the graph based features generated by the Graph-Sprints framework

on two different tasks, namely, node classification and link prediction.

92 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

5.4.1.1 Baselines

As a first baseline, we reproduce a state-of-the-art GNN model for CTDGs, the TGN [Rossi

et al., 2020], which leverages a combination of memory modules and graph-based operators to

obtain node representations. As an important note, we mention that the pytorch geometric [Fey

and Lenssen, 2019] implementation of TGN was used, for which the sampling of neighbors

uses a different strategy than the original TGN implementation. Indeed, the original paper

allowed to sample from interactions within the same batch as long as they are older, while the

pytorch geometric implementation does not allow within-batch information to be used. As

also noted in the pytorch geometric documentation, we believe the latter to be more realistic.

As a consequence, our TGN results are not directly comparable with the originally published

TGN performances. In any case, the Graph-Sprints embeddings were computed using the same

batch size and therefore also do not have access to within-batch information, allowing a fair

comparison between the algorithms.

Two variations of the TGN architecture were used. First, TGN-attn was implemented, which

was the most powerful variation in the original paper but is expected to be slower due to the

graph-attention operations. Second, TGN-ID was implemented, which is a variation of the TGN

where no graph-embedding operators are used, and only the embedding resulting from the

memory module is passed to the classification layers.

A third baseline we use is Jodie [Kumar et al., 2019]. We use the TGN implementatin of Jodie,

where instead of using Graph attention embeddings on top of the memory embedding, a time

projection embedding module is used and where the loss function is otherwise identical to the

TGN setting. For a fair comparison with TGN we use the same memory updater module, namely,

gated recurrent units.

The TGN-ID and Jodie baselines do not require sampling of neighbors, and were therefore

chosen as lower-latency baselines compared to TGN-attn.

5.4.1.2 Optimization

We use Optuna [Akiba et al., 2019] to optimize the hyperparameters of all models, conducting

100 trials with the Tree-structured Parzen Estimator (TPE) sampler and 40 initial warmup trials.

Each model trains using early stopping with a patience of 10 epochs, where the early stopping

metric computed on the validation set as AUC for node classification and AP for link prediction.

5. GRAPH SPRINTS: A METHOD FOR LOW-LATENCY GRAPH FEATURE ENGINEERING 93

All models were trained using a batch size of 200 edges. Table 5.1 shows the ranges of the tuned

hyperparameters.

TABLE 5.1: Hyperparameters ranges for Graph-Sprints and baseline methods.

Method Hyperparameter min max
GS α 0.1 1
GS β 0.1 1

GNN/GS Learning rate 10−4 102

GNN/GS Dropout perc 0.1 0.3
GNN/GS Weight decay 10−9 103

GNN/GS Num of dense layers 1 3
GNN/GS Size of dense layer 32 256

GNN Memory size 32 256
GNN Neighbors per node 5 10
GNN Num GNN layers 1 3
GNN Size GNN layer 32 256

5.4.1.3 Graph-Sprints and Classifier

For each arriving edge, we apply the Graph-Sprints feature update (algorithm 3) to both the

source node and the destination node in parallel. All edge features are used for the computation

of the Graph-Sprints features, and for each feature bin edges are chosen as the 10 quantiles

computed on the training data. Since the Graph-Sprints framework only creates features, a

classifier is implemented for the classification tasks. We chose to implement a neural network

consisting of dense layers, normalization layers, and skip-connections across every two dense

layers. Hyperparameter optimization proceeds in two steps. First, default parameters for the

classifier are used to optimize the discount factors of the Graph-Sprints framework, α and β. For

this step, 50 models are trained. Subsequently, hyperparameter optimization of the classifier

follows same approach as TGN, training 100 models.

In all experiments, we test the following three cases. Firstly, we train the classifier using

only raw features (Raw). We then train the classifier using only the Graph-Sprints features (GS).

Finally, we train the classifier using both raw and Graph-Sprints features (GS+Raw).

5.4.1.4 Node Classification vs Link Prediction

For the node classification task on the Wikipedia, Reddit and Mooc datasets, we concatenate the

source and destination node embeddings and feed the concatenated vector to the classifier, as is

usual for datasets where labels are on the edge level.

94 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

For the link prediction task, negative edges are generated following the same approach as

the original TGN paper [Rossi et al., 2020], a negative edge is sampled for every positive one. We

perform the link prediction task both in the transductive and inductive settings. In the transductive

setting, negative edges are sampled on the same graph used for training. Conversely, in the

inductive setting, the sampled negative edges are constrained to include at least one new node

which was not used in the training graph.

5.4.2 Public Datasets Experiments

5.4.2.1 Datasets

We use three publicly available datasets [Kumar et al., 2019] from the social and education

domains. We detail their main characteristics in Table 5.2. All datasets are CTDGs and are

labeled. Each dataset is split into train, validation, and test sets respecting time (i.e., all events in

the train are older than the events in validation, and all events in validation are older than the

events in the test set). In the public datasets, we adopt the identical data partitioning strategy

employed by the baseline methods we compare against, which also utilized these datasets.

TABLE 5.2: Information and data partitioning strategy for public datasets.

Wikipedia Mooc Reddit
#Nodes 9,227 7,047 10,984
#Edges 157,474 411,749 672,447

Label type editing ban student drop-out posting ban
Positive labels 0.14% 0.98% 0.05%
Used split (%) 70-15-15 60-20-20 70-15-15

5.4.2.2 Task Performance

In Table 5.3 we report the average test AUC ± std for the Node classification task. Our

approach involved retraining the best model obtained after hyperparameter optimization,

using 10 different random seeds. Our models, Raw, GS, and GS+Raw, use the same ML classifier

but differ in the features employed for training. Raw uses raw edge features, GS uses Graph-

Sprints histograms, and GS+Raw combines both. We identify the best model and highlight the

second best model. We can observe that on all datasets, the best model for node classification

uses a variation of our Graph-Sprint framework (either GS or GS+Raw). To provide an overview,

we include a column showing the average rank in Table 5.3, which represents the mean ranking

computed from all datasets.

5. GRAPH SPRINTS: A METHOD FOR LOW-LATENCY GRAPH FEATURE ENGINEERING 95

TABLE 5.3: Graph-Sprints: Node classification results using public datasets.

Method
AUC ± std

Average rank
Wikipedia Mooc Reddit

Raw 58.5 ± 2.2 62.8 ± 0.9 55.3 ± 0.8 6
TGN-ID 88.9 ± 0.2 63.0 ± 17 61.3 ± 2.0 4.3

Jodie 87.2 ± 0.9 63.7 ± 16.7 61.9 ± 2.0 4
TGN-attn 86.6 ± 2.8 75.8 ± 0.4 67.9 ± 1.6 3

GS 90.7 ± 0.3 75.0 ± 0.2 68.5 ± 1.0 1.6
GS+Raw 89.2 ± 0.4 76.5 ± 0.3 63.7 ± 0.4 2

In table 5.4 we report the average test AUC ± std, along with the AP ± std for the Link

prediction task. Results were again computed after retraining the best model obtained through

hyperparameter optimization, utilizing 10 distinct random seeds. We report results on both

Transductive (T) or Inductive (I) settings. We can observe that the Graph-Sprints model is the best

for link prediction on the Mooc dataset. On the Reddit dataset, the Graph-Sprints model is best in

the transductive setting, and the second best in the inductive settings. In the Wikipedia dataset,

the performance is slightly worse than the best baselines. To offer a comprehensive view, we

have included a column in Table 5.4 that displays the average rank. This represents the mean

ranking derived from all datasets, calculated using AP.

TABLE 5.4: Graph-Sprints: Link prediction results using public datasets.

Method
Wikipedia Mooc Reddit Average

rankAUC AP AUC AP AUC AP

T

TGN-ID 95.6 ± 0.2 95.8 ± 0.1 80.4 ± 5.8 75.0 ± 6.1 94.7 ± 0.7 93.2 ± 1.0 4
Jodie 94.3 ± 0.3 94.5 ± 0.3 85.1 ± 1.8 80.0 ± 3.5 94.9 ± 1.2 93.4 ± 1.7 3
TGN-attn 97.0 ± 0.3 97.3 ± 0.3 80.3 ± 8.1 75.6 ± 8.4 96.1 ± 0.4 95.1 ± 0.7 2.6
GS 92.5 ± 0.6 92.9 ± 0.7 82.7 ± 0.8 81.1 ± 0.7 96.1 ± 0.2 95.3 ± 0.3 3
GS+Raw 92.1 ± 0.4 92.6 ± 0.4 85.4 ± 0.3 83.7 ± 0.3 96.8 ± 0.1 96.1 ± 0.2 2.3

I

TGN-ID 92.2 ± 0.2 92.8 ± 0.2 68.5 ± 8.6 63.5 ± 6.7 93.4 ± 0.6 92.2 ± 0.8 3.6
Jodie 87.0 ± 0.6 89.1 ± 0.7 71.1 ± 2.2 66.1 ± 2.9 92.3 ± 1.3 90.8 ± 1.9 4.6
TGN-attn 94.5 ± 0.2 95.0 ± 0.2 71.4 ± 4.1 66.9 ± 3.9 95.0 ± 0.4 94.3 ± 0.5 2.6
GS 92.0 ± 0.3 91.7 ± 0.4 78.2 ± 0.6 76.5 ± 0.6 92.7 ± 0.5 92.7 ± 0.6 2.6
GS+Raw 91.4 ± 0.2 91.1 ± 0.3 83.0 ± 0.5 80.3 ± 0.5 93.5 ± 0.4 92.2 ± 0.5 2.3

5.4.2.3 Inference Runtime

We compare the latency of our framework to baseline GNN architectures. For this purpose, we

run 200 batches of 200 events on the external datasets, Wikipedia, Mooc, and Reddit using the

node classification task. We compute the average time over 10 runs. Both models were running

on Linux PC with 24 Intel Xeon CPU cores (3.70GHz) and a NVIDIA GeForce RTX 2080 Ti GPU

96 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

(11GB). As depicted in Figure 5.4, our Graph-Sprints consistently outperforms other baselines

(TGN-attn, TGN-ID, Jodie) in the node classification task while also demonstrating a significantly

lower inference latency. Compared to TGN-attn, the GS achieves better classification results but

is close to an order of magnitude faster (Figure 5.4).

FIGURE 5.4: Graph-Sprints: Trade-off between AUC and runtime.

To investigate the impact of graph size on runtime, Figure 5.5 showcases our observations.

Notably, in the utilized datasets, TGN’s runtime increases as the number of edges in the

dataset grows, requiring more time to score 200 batches. Conversely, since GS does not

require neighborhood sampling, it exhibits constant inference time regardless of the graph

size. Furthermore, the speedups achieved by Graph-Sprints are expected to be significantly

higher in a big-data context, where the data is stored in a distributed manner rather than in

memory as in our current experiments. In such scenarios, graph operations used in graph-neural

networks like TGN-attn would incur even higher computational costs.

FIGURE 5.5: Graph-Sprints: Speedup vs. number of edges: The speedups increase almost linearly
with the number of edges in the graph.

Recently, APAN [Wang et al., 2021b] has attempted to build a low-latency framework for

CTDGs. Their approach consisted of performing the expensive graph operations asynchronously,

out of the inference loop. In that way, they achieved inference speeds of 4.3ms per batch on the

5. GRAPH SPRINTS: A METHOD FOR LOW-LATENCY GRAPH FEATURE ENGINEERING 97

Wikipedia dataset, but we cannot directly compare those results with ours (GS: 1.4ms, TGN-attn:

6ms) due to the different setup and hardware. Importantly, their approach achieves low-latency

by sacrificing up-to-date information at inference time. Indeed, the inference step is performed

without access to the most recent embeddings, because the expensive graph operations to

compute the embeddings are performed asynchronously.

5.4.2.4 Memory Reduction

Both the Wikipedia and Reddit datasets consist of 172 edge features. By calculating Graph-Sprints

with 10 quantiles per feature, along with incorporating in/out degrees histograms and time-

difference histograms, we obtain a node embedding of 1742 features (one feature per histogram

bin). In our experimental setup, similar to state-of-the-art approaches, we concatenate the source

and destination node embeddings for source label prediction, resulting in a 3484-feature vector.

To reduce the size of the node embeddings, we propose a similarity hashing-based memory

reduction technique (Section 5.2.5)). Our experiments, as presented in Table 5.5, demonstrate

that our technique reduces storage requirements sacrificing the AUC in the node classification

task. In the Reddit dataset, storage can be reduced to 50% with a 0.6% AUC sacrifice or to 10%

with a 2% AUC sacrifice. In the Mooc dataset we can reduce necessary memory to 25% with

a 1% sacrifice in AUC. In the Wikipedia dataset, a reduction in storage to a only 0.12% of the

original features with a 4.3% AUC sacrifice. The reduction percentage can be fine-tuned as a

hyperparameter, considering the use case and dataset, to strike a balance between precision and

memory trade-off.

TABLE 5.5: Graph-Sprints: Impact of memory reduction on node classification performance.

Space used Wikipedia Mooc Reddit
100% 90.7 ± 0.3 75.0 ± 0.2 68.5 ± 1.0
50% 90.8 ± 0.1 75.0 ± 0.1 67.9 ± 1.1
25% 91.1 ± 0.1 74.9 ± 0.3 65.1 ± 1.9
10% 90.9 ± 0.2 74.0 ± 0.3 66.5 ± 0.9
0.5% 89.7 ± 0.3 - 58.0 ± 2.6
0.12% 86.4 ± 0.3 - 55.2 ± 1.1

5.4.3 AML experiments

In money laundering, the criminals’ objective is to hide the illegal source of their money by

moving funds between various accounts and FIs. In these experiments, our objective is to enrich

98 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

a triage classifier (detailed in Chapter 4, Section 4.3) with graph-based features generated by our

Graph-Sprints framework.

5.4.3.1 Datasets

We evaluate the Graph-Sprints framework in the AML domain using two real-world banking

datasets. Due to privacy concerns, we can not disclose the identity of the FIs nor provide exact

details regarding the node features. We refer to the datasets as FI-A and FI-B. The graphs in this

use-case are constructed by considering the accounts as nodes and the money transfers between

accounts as edges. Table 5.6 shows approximate details of these datasets.

TABLE 5.6: Information and data partitioning strategy for AML datasets.

FI-A FI-B
#Nodes ≈400000 ≈10000
#Edges ≈500000 ≈2000000

Positive labels 2-5% 20-40%
Duration ≈300 days ≈600 days

Edges/day (mean ± std) 1500 ± 750 3000 ± 5000
Used split 60%-10%-30% 60%-10%-30%

5.4.3.2 Task Performance

As before, we train the neural network classifier that uses raw node features only, i.e., no

graph information is present (Raw). We compare that baseline performance against models that

include only Graph-Sprints features (GS), and models that use both Graph-Sprints features and

raw features (GS+Raw). Finally, we train the same GNN architectures as in the public datasets

(TGN-ID, Jodie, and TGN-attn).

Due to privacy considerations, we are unable to disclose the actual obtained AUC values.

Instead, we present the relative improvements in AUC (∆AUC) when compared to a baseline

model that does not utilize graph features. In this context, the baseline model corresponds to a

∆AUC value of 0, and any increase in AUC compared to the baselines is represented by positive

values of ∆AUC.

Table 5.7 displays the average ∆AUC test values ± std achieved by retraining the best model

after hyperparameter optimization using 10 random seeds. We identify the best model and

highlight the second best model. We compare our GS variations and other state-of-the-art

baselines. Our GS variations exhibit the most favorable outcomes in both datasets, with an

5. GRAPH SPRINTS: A METHOD FOR LOW-LATENCY GRAPH FEATURE ENGINEERING 99

approximate 3.3% improvement in AUC for the FI-A dataset and a 27.8% improvement in AUC

for the FI-B dataset. To provide an overview, we include a column showing the average rank

which represents the mean ranking computed from the two datasets.

TABLE 5.7: Graph-Sprints: Node classification results using AML datasets.

Method
∆AUC ± std

Average rank
FI-A FI-B

TGN-ID +0.1 ± 0.1 +24.4 ± 0.2 4
Jodie +0.0 ± 0.1 +24.5 ± 0.2 4

TGN-attn +0.3 ± 0.7 +25.1 ± 0.3 2.5
GS +1.8 ± 0.5 +27.8 ± 0.4 1.5

GS+Raw +3.3 ± 0.3 +20.1 ± 3.9 3

5.5 Summary

This chapter introduced the Graph-Sprints framework, which enables the computation of time-

aware embeddings for CTDGs with minimal latency. The study demonstrates that the Graph-

Sprints features, when combined with a neural network classifier, achieve competitive predictive

performance compared to state-of-the-art methods while having a significantly faster inference

time, up to approximately an order of magnitude improvement.

In future work, it would be interesting to extend the Graph-Sprints framework to heteroge-

neous graphs, and explore how GNNs could inherit some of the strengths of Graph-Sprints.

Chapter | 6
Deep-Graph-Sprints: Low-latency Node

Representation Learning method

Our investigations in Chapters 4 and 5 have demonstrated the promising knowledge embedded

in graphs representing data. These findings underscore the importance of graph feature

engineering and representation learning in translating graph relationship information into

an embedding space, facilitating its use in ML models.

In Chapter 5, we introduced Graph-Sprints, a rapid graph feature engineering method.

Graph-Sprints, showed a high speed and competitive performance with state-of-the-art methods.

However, it is essential to address the inherent limitations associated with its feature engineering

nature. These include the requirement for distinct tuning phases for parameters and a depen-

dence on domain expertise. Furthermore, Graph-Sprints uniformly applies the same forgetting

coefficient across features, which may not be optimal. Moreover, the tendency to produce a

high-dimensional embeddings, poses a memory challenge (detailed in Section 6.1).

Deep learning emerges as a solution to these challenges, offering automatic parameter

learning, enhanced model accuracy through complex data relationship learning, and adaptability

in dynamic environments. It also simplifies model development by reducing routine extract-

transform-load tasks and infrastructure complexities, enabling direct feature extraction from

raw data.

This chapter focuses on enhancing Graph-Sprints, our graph feature engineering method

101

102 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

discussed in Chapter 5, through the development of a deep learning-enhanced variant, Deep-

Graph-Sprints. This new iteration aims to overcome the limitations of the original method,

enhancing its practical application and effectiveness. The chapter is structured as follows:

• Graph-Sprints recap and limitations: Section 6.1 begins with a summary of Graph-Sprints

and its limitations.

• Deep-Graph-Sprints method: Section 6.2 details the development of the Deep-Graph-

Sprints method, including its architecture in Section 6.2.1, learning mechanisms in Sec-

tion 6.2.3, gradients calculation details in Section 6.2.4, and parameter updates in Sec-

tion 6.2.5.

• Experiments and results: Section 6.3 concludes with our findings, showcasing the effi-

ciency and robust performance of Deep-Graph-Sprints compared to traditional GNNs, and

its competitive edge over Graph-Sprints while addressing its limitations.

6.1 Graph-Sprints Recap and Limitations

Prior to delving into the Deep-Graph-Sprints methodology, a review of the foundational Graph-

Sprints approach, as elaborated in Chapter 5, is essential. The Graph-Sprints algorithm updates a

node’s state at time t, represented as S⃗t, by employing Formula 6.1. It integrates the previous

state of the target node (S⃗t−1), the interacting node’s state (S⃗∗t−1), and the new edge features (Ft).

The parameters α and β serve as forgetting coefficients. Specifically, β modulates the balance

between a node’s past state (S⃗t−1) and its present state, facilitating a balance between historical

and current data. Conversely, α adjusts the emphasis between self-information and neighboring

node information. Concerning the δ⃗ function, it functions as an encoding mechanism. Given the

features values, δ⃗ constructs a series of concatenated histograms. Each histogram corresponds

to a distinct feature, where the bin corresponding to the actual value of the feature is marked

with a ’1’, other bins have a value ’0’.

S⃗t = βS⃗t−1 + (1− β)
(
(1− α)⃗δ(Ft) + αS⃗∗t−1

)
(6.1)

6. DEEP-GRAPH-SPRINTS: LOW-LATENCY NODE REPRESENTATION LEARNING METHOD 103

Although Graph-Sprints exhibits rapid processing capabilities and is competitive with state-of-

the-art techniques, a critical examination of its limitations reveals several challenges in practical

applications:

• Tuning as Separate Processes: A primary challenge in Graph-Sprints is the complex

tuning required for the feature engineering parameters, particularly α and β. The process

necessitates distinct tuning phases for the feature extraction component (Graph-Sprints)

and the subsequent decision-making model, such as a neural network classifier. This

tuning involves initially adjusting the α and β parameters of Graph-Sprints using a model

with default settings. Following this, the model is fine-tuned using the optimized α and β

values. This iterative process, due to its independence of steps, can be time-consuming and

labor-intensive. Section 6.2.2.1 explains how Deep-Graph-Sprints addresses this concern.

• Limited Model Expressivity: In Graph-Sprints, the α and β parameters (i.e., forgetting

coefficients) are scalars, leading to a uniform forgetting coefficient being applied across

all features. This uniform application potentially constrains the model’s expressivity. For

instance, in scenarios where the immediacy of information from one feature outweighs

that of another, the model’s inability to differentiate between these varying temporal

relevancies due to the scalar nature of the forgetting coefficients becomes evident. Similarly,

the differentiation between attributes of a node and those of its neighbors is limited when

only a single forgetting coefficient is employed. Such uniformity in temporal and relational

weighting diminishes the model’s capacity to distinctly represent and process the temporal

dynamics inherent in different features or relational contexts. The approach of Deep-Graph-

Sprints to this issue is explained in Section 6.2.2.2.

• Histogram Bin Edge Definition Challenges: A significant limitation within the Graph-

Sprints methodology arises from the requirement to specify bin edges for histograms in

the feature encoding function δ⃗. This process, crucial for representing each feature accu-

rately, can be approached either by utilizing domain expertise or through an automated

tuning procedure. Regardless of the chosen method, this task proves to be particularly

burdensome in scenarios involving datasets with a high feature count. When domain

knowledge is applied, the challenge lies in accurately determining the appropriate bin

edges that meaningfully represent the feature distribution. Conversely, if an automated

tuning approach is selected, it often involves a computationally intensive process, as

104 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

it requires iterative adjustments to find the optimal bin configuration. The technique

Deep-Graph-Sprints uses to resolve this matter is elaborated in Section 6.2.2.3.

• Large State Size: The decision to employ a high number of bins per histogram in Graph-

Sprints results in substantially large node states, escalating both memory and space

requirements. Illustratively, a dataset featuring 100 distinct attributes, with each attribute

discretized into 10 bins, results in a state representation consisting of 1000 bins. This

complexity is further increased in tasks such as link prediction, wherein the states of both

source and destination nodes are requisite, effectively doubling the ML model’s input to

a 2000-dimensional vector. Moreover, managing the state size emerges as a significant

challenge, necessitating a thorough calibration of bin edges for each attribute. To mitigate

these issues, we have introduced memory reduction techniques as outlined in Section 5.2.5.

However, these techniques are not without their limitations, particularly due to the

prerequisite of forming histograms prior to executing similarity hashing. Additionally, in

the context of using feature importance to reduce dimensionality, training a model with

the complete histograms is still required to determine feature significance. The approach

of Deep-Graph-Sprints to this issue is explained in Section 6.2.2.3.

• Challenges in Adapting to Heterogeneous Graphs: Adapting Graph-Sprints to hetero-

geneous graphs, which include different node and edge types, presents challenges not

addressed by the current model. These challenges include integrating states from various

types, where achieving a consistent encoding dimension and interpreting bins across

types is complex. Another challenge involves developing distinct forgetting coefficients

for each node type, coupled with a feature encoding process that depends on the node

type. This leads to an expansion in the parameter space that requires detailed tuning.

The increased parameter diversity calls for advanced tuning strategies. These challenges

limit the broader applicability of Graph-Sprints to heterogeneous graphs. We detail how

Deep-Graph-Sprints could address this in Section 6.5.

The aforementioned limitations underscore the need for an adaptation of the Graph-Sprints

methodology. Such enhancements are vital to augment its efficacy and broaden its applicability

across a spectrum of real-world scenarios. Recognizing these challenges, this chapter introduces

a significant evolution of the Graph-Sprints method: the Deep-Graph-Sprints. This adaptation is

designed to address the previously mentioned limitations, offering a more robust and versatile

6. DEEP-GRAPH-SPRINTS: LOW-LATENCY NODE REPRESENTATION LEARNING METHOD 105

solution. In the following sections, we will delve into the details of Deep-Graph-Sprints, providing

an in-depth analysis and assessment of its architecture, functionalities, and performance.

6.2 Method

This section introduces an advanced variation of the Graph-Sprints method, leveraging deep

learning techniques to learn its parameters and address the limitations mentioned in Section 6.1.

We propose a three-step methodology, each step representing an incremental increase in

complexity. The first step aims to automate the learning of the scalar values α and β, thereby

streamlining the tuning process. In the second step, we enhance the model’s expressivity by

evolving α and β from scalars to vectors, thereby allowing a unique forgetting parameter for

each feature. This adaptation significantly increases the algorithm’s flexibility and adaptability.

The final step further extends the model’s sophistication: in addition to learning vectorized

forgetting coefficients (⃗α and β⃗), it replaces the encoding function δ⃗ with a learnable mapping

from feature space to embedding space. This alteration not only reduces the dimensionality of

the resultant state but also eliminates the need for histogram bin edge determination, thereby

simplifying the feature engineering process and reducing the memory footprint of the model.

Section 6.2.2 details each step, explaining their methodologies and principles.

6.2.1 Architecture and Workflow

The Deep-Graph-Sprints is developed to handle a continuous flow of edge data. As shown in

Figure 6.1, the system processes each incoming edge to derive a task-specific score, applicable

for any ML task such as classification.

The Deep-Graph-Sprints method is divided into two key components:

1. Embedding Component (DGS): This segment is dedicated to representation learning,

where each node or edge in the graph is mapped from high-dimensional, complex graph

structures to a lower-dimensional embedding space. Refer to Figure 2.6 for an illustration

of node embedding.

2. Neural Network Classifier (NN): This part is responsible for decision-making processes,

such as classification. It uses the embedding provided by the DGS component to generate

a task specific score.

106 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

The DGS component is particularly noteworthy for its role in regularly updating the

embeddings of nodes or edges, thereby enriching them with detailed attributes and relationships

context within the network.

These embeddings are then input into the neural network classifier, which is tailored to

specific applications. The classifier assigns a score based on the comprehensive data contained

within the embeddings. For instance, in node classification, the network evaluates each node

associated with a new edge, with the score reflecting the network’s interpretation from the

representations provided by the DGS.

FIGURE 6.1: Deep-Graph-Sprints: Architecture. Eq 6.6 in the figure, represents Equation 6.6

6.2.2 Deep-Graph-Sprints Approaches

The integration of deep learning into Graph-Sprints primarily aims to automate the learning of

parameters during training. This eliminates the need for manual tuning and domain-specific

knowledge for setting hyperparameter values. Referring to the Graph-Sprints formula (see

Equation 6.1), our focus is on learning the hyperparameters α, β, and the encoding function δ⃗.

The process is categorized into three approaches, progressing from simple to complex

methods.

6.2.2.1 DGS-1: Learning Scalar Parameters α and β

This approach, aligned with the Graph-Sprints model (refer to Equation 6.1), integrates the

learning of hyperparameters α and β into the neural network training phase. This method

eliminates the need for separate tuning processes. Initially set at 0.5, both α and β are refined

during training, akin to neural network weights, to reduce loss and enhance model efficacy. As

6. DEEP-GRAPH-SPRINTS: LOW-LATENCY NODE REPRESENTATION LEARNING METHOD 107

scalar values within the [0, 1] range, α and β maintain consistency with the Graph-Sprints method,

uniformly applying the forgetting coefficient to all features. This integration ensures that the

optimization of α and β occurs concurrently with the neural network’s parameter adjustments,

thereby facilitating an end-to-end training process.

6.2.2.2 DGS-2: Learning Vectorized Parameters α⃗ and β⃗

In this advanced Deep-Graph-Sprints variant, we enhance the learning mechanism by vectorizing

α and β into α⃗ and β⃗, thereby assigning unique forgetting coefficients to each feature. As outlined

in Equations 6.2a and 6.3a, this vectorization aligns with the feature count f , marking a departure

from the original scalar-based Graph-Sprints model. For implementation, coefficients within α⃗

and β⃗ are repeated according to the bin count bi for each ith feature, as shown in Equations 6.2b

and 6.3b. This ensures they are compatible with the dimensions of the state vector. Specifically,

for each feature i, individual forgetting coefficients αi, and βi are learned and subsequently

replicated bi times, resulting in vectors α⃗i, and β⃗i. These vectors are then concatenated to form

the comprehensive forgetting coefficient vectors α⃗ and β⃗, as detailed in Equations 6.2a and 6.3a.

α⃗ =
f⊕

i=1

α⃗i (6.2a)

α⃗i = αi ·


1

1
...

1


bi×1

(6.2b)

β⃗ =
f⊕

i=1

β⃗i (6.3a)

β⃗i = βi ·


1

1
...

1


bi×1

(6.3b)

108 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

This modification allows for distinct forgetting coefficients per feature, enhancing the model’s

adaptability. The application of this refined forgetting mechanism involves an element-wise

multiplication (Hadamard product [Horn, 1990]) between α⃗, β⃗, and the corresponding state and

feature encodings, as described in Equation 6.4.

S⃗t = β⃗⊙ S⃗t−1 + (1− β⃗)⊙
(
(1− α⃗)⊙ δ⃗(Ft) + α⃗⊙ S⃗∗t−1

)
(6.4)

In this configuration, each feature retains a singular forgetting coefficient (consistent across

all its bins) to ensure that histograms within every feature sum to one, thus preserving the

integrity of the state update formula (Equation 6.1).

Analogous to the scalar learning method in DGS-1, these vectorized parameters are learned

during the training process, informed by the neural network’s loss function, thus enabling an

end-to-end training. Moreover, the added advantage of assigning different forgetting coefficients

to individual features considerably elevates the representational capacity of the embeddings.

By providing a feature-specific forgetting mechanism, it more precisely reflects the distinct

characteristics of each feature. This is especially critical in scenarios where the significance of

recent information varies distinctly among different features. Such a tailored approach ensures

that the model not only maintains its efficiency and simplicity but also gains in adaptability and

accuracy, particularly in complex data environments.

Detailed insights into the learning mechanism and the computation of gradients for these

vectorized parameters are elaborated in Sections 6.2.3 and 6.2.4.

6.2.2.3 DGS-3: Advanced Learning of Feature Embeddings W

In this advanced version of Deep-Graph-Sprints, DGS-3, the model undergoes a pivotal trans-

formation by replacing the δ⃗ function with an embedding matrix W. This matrix W serves to

project features into an embedding space, subsequently updating the state with these derived

embeddings.

A key aspect of this approach is ensuring that the generated embeddings are compatible with

our foundational method’s requirements. Each embedding should ideally be a set of histograms,

with each histogram’s values summing to one and remaining within the [0, 1] range.

6. DEEP-GRAPH-SPRINTS: LOW-LATENCY NODE REPRESENTATION LEARNING METHOD 109

Considering a single histogram, traditional normalization methods like Min-Max or absolute

value normalization can maintain values within this range but do not guarantee their summation

to one. An alternative method of normalizing each element by the total sum can be employed,

yet this may not consistently preserve the 0 to 1 range, especially if negative values are present.

A preliminary normalization or adjustment by the absolute magnitude of the minimum value

could be applied, but this method might change the original meaning of the data and is affected

by outliers.

A more effective solution is the utilization of the softmax function (⃗σ), as expressed in

Equation 6.5. The softmax function converts a vector into a probability distribution, where the

sum of all probabilities equals to one and each element lies between 0 and 1, thereby offering a

probabilistic interpretation.

In DGS-3, the softmax function is selected for its aforementioned benefits, though exploration

of other methods is reserved for future research.

σ⃗(x⃗)i =
exi

∑j exj
(6.5)

DGS-3 enhances expressiveness and memory utilization by employing multiple softmax

functions, each applied to the product of a segment of the embedding matrix Wi and feature

vector Ft. The use of multiple softmax functions helps in reducing Jacobian dimensionality (as

elaborated in Section 6.2.4), potentially leading to improved memory efficiency. Additionally,

this approach allows for a structure where different segments of the model can respond to

various aspects of the input data. This is analogous to the way multi-head attention mechanisms

in transformers [Vaswani et al., 2017] operate, where different ’heads’ learn distinct mappings

or functions based on the same input data. For a detailed understanding of how each softmax

function is applied and to visualize the parallelism in learning across these segments, readers

are directed to Section 6.2.4.3, where a comprehensive example is provided.

The count of softmax functions (x), a crucial hyperparameter, governs the transition from

feature space to embedding space (WFt). The outputs from the softmax functions are concate-

nated, forming a feature representation akin to that in DGS-1 and DGS-2, with each softmax

function now paralleling a feature.

Consistent with DGS-2, DGS-3 maintains α and β as vectors, assigning one value per softmax

function, contrasting the one value per feature in DGS-2.

110 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

The state update mechanism is detailed in Equation 6.6, where σ⃗ signifies the softmax

function (utilized in a vector form notation to clarify the nature of the output),
⊕x

i=1 represents

concatenation of x softmax function outputs, and WiFt indicates the product of a subset of

the embedding matrix Wi and the features Ft. The practical application of this mechanism,

including the computation and integration of these components, is comprehensively outlined in

Algorithm 4.

S⃗t = β⃗⊙ S⃗t−1 + (1− β⃗)⊙

(1− α⃗)⊙

 x⊕
i=1

σ⃗(WiFt)

+ α⃗⊙ S⃗∗t−1

 (6.6)

This architectural innovation addresses key limitations of the Graph-Sprints model. It removes

the dependency on domain-specific knowledge for setting bin edges and allows for more precise

control over the size of the resultant state or embedding, governed by the dimensions of the

embedding matrix W. This approach also advances adaptability and flexibility in handling

heterogeneous graph structures as discussed in Section 6.5. Algorithm 4 details state calculation

during inference.

Algorithm 4 Deep-Graph-Sprints: Graph Representation Learning (Equation 6.6)

Require: EdgeStream ▷ Stream of arriving edges ei,j
Require: f ▷ Number of input features
Require: s ▷ Embedding size
Require: x ▷ Number of softmax functions
Require: W[s× f] ▷ Learnt embedding matrix
Require: α⃗ ▷ Learnt forgetting coefficient
Require: β⃗ ▷ Learnt forgetting coefficient

Wreshape ←W.reshape(x, s/x, f) ▷ Reshape W for softmax application
for ev,u ∈ EdgeStream do

Get S⃗u, S⃗v ▷ Summaries of nodes u, v (t− 1)
Get Ft ▷ Features of edge ev,u
enc_ f eats←MatrixMultiply(Wreshape, Ft) ▷ Encode features
norm_ f eats← σ⃗(enc_ f eats, axis = −1) ▷ Normalize features
norm_ f eats← norm_ f eats.reshape(s) ▷ Reshape Normalized features
S⃗u ← β⃗⊙ S⃗u + (1− β⃗)⊙ ((1− α⃗)⊙ norm_ f eats + α⃗⊙ S⃗v) ▷ Update node u summary
S⃗v ← β⃗⊙ S⃗v + (1− β⃗)⊙ ((1− α⃗)⊙ norm_ f eats + α⃗⊙ S⃗u) ▷ Update node v summary

end for

6. DEEP-GRAPH-SPRINTS: LOW-LATENCY NODE REPRESENTATION LEARNING METHOD 111

6.2.3 Learning Mechanisms in Deep-Graph-Sprints

Given the DGS-3 architecture discussed above, we will now delve into the learning mechanisms

for the Deep-Graph-Sprints parameters. As we will discuss in the next paragraphs, the Deep-

Graph-Sprints architecture allows for an efficient implementation of mixed-mode AD.

As discussed in Section 2.2.2, three strategies for AD are prominent, depending on the

application of the chain rule: forward-mode AD, reverse-mode AD (commonly known as

backpropagation), and a mixed-mode that combines elements of both.

In contexts involving temporal data, particularly with GNNs applied to temporal graphs

or RNNs, backpropagation presents significant memory challenges. Specifically, the whole

subgraph that is in the causal past of an event (i.e. the whole subgraph that could have

influenced the current event) for GNNs, or sequence for RNNs must be maintained in memory

to facilitate backpropagation of Jacobians. Memory usage scales with computation length,

necessitating the storage of all intermediate values.

This requirement often becomes a bottleneck in terms of memory and computational

efficiency. As a workaround, truncated backpropagation is employed, allowing the use of

only part of the sequence or graph for Jacobian propagation. Several GNN algorithms, such as

TGN [Rossi et al., 2020], implement truncated backpropagation to limit the backward phase to a

single step, covering a one-hop neighborhood. While effective in reducing memory load, this

truncation compromises the learning of long-term dependencies.

Conversely, forward-mode AD does not require tracking of intermediate values, eliminating

the need to traverse back through the entire graph or sequence. However, in typical ML

architectures where the output dimension (e.g., loss) is much smaller than the input dimension,

forward-mode AD becomes more computationally intensive than reverse-mode AD.

The complexity of forward-mode AD limits its applicability in typical ML scenarios, as

detailed in Section 2.2.2.2. Nonetheless, forward-mode AD is applicable in situations requiring a

manageable number of Jacobian computations, offering efficient Jacobian propagation through

computational graphs, and learning long term dependencies.

In the Deep-Graph-Sprints method, the feasibility of forward-mode AD is supported by

three considerations. First, in DGS-1, the scalar nature of α and β reduces computational

complexity. Second, Deep-Graph-Sprints is dominated by elementwise multiplications, where

112 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

different elements of a state vector are not mixed together, in DGS-2 and DGS-3, each feature or

softmax function corresponds to a single scalar within α⃗ and β⃗, constraining the dependency

of every bin in the state vector to specific bins in these vectors. Third, the implementation of

multiple softmax functions in DGS-3 limits each state element’s dependency to segments of

the embedding matrix W. The subsequent sections will address the calculation specifics and

analyze the computational and memory complexities in Section 6.2.4.

These factors collectively justify the selection of forward-mode AD for the differentiation

process in the DGS models.

Consequently, given our architecture illustrated in Section 6.2.1 and Figure 6.1, our method

consists of two components, the DGS component which could be one of the variations (DGS-

1, DGS-2, or DGS-3), and the NN classifier component. The design of Deep-Graph-Sprints

methodically incorporates forward-mode AD for learning the DGS component, aligning with

specific computational and memory considerations inherent in graph-based data contexts.

In contrast, the subsequent NN classifier component, processing the embeddings generated

by the DGS component, utilizes reverse-mode AD differentiation. This hybrid approach

effectively leverages the strengths of both paradigms, namely, learning long term dependencies,

and ensuring efficient learning while accommodating the memory constraints and structural

complexities of graph data.

Given the specific architecture, standard Jacobian tools were Insufficiently efficient especially

to calculate the Jacobians of the DGS component parameters. Consequently, we handcrafted

and implemented the Jacobians from scratch to ensure precise alignment with the model’s

requirements, optimizing both performance and computational efficiency, as detailed in the

following Section 6.2.4.

6.2.4 Gradient Calculations in Deep-Graph-Sprints

This section delves into the core computational mechanics of the Deep-Graph-Sprints methodol-

ogy, with a specific focus on the gradient calculation process integral to the optimization of the

learnable parameters. Deep-Graph-Sprints involves two components DGS and NN, as discussed

in Section 6.2.1.

In the NN classifier component, number of learnable parameters varies based on model

architecture, primarily involving the network’s weights. As discussed in Section 6.2.3, the

6. DEEP-GRAPH-SPRINTS: LOW-LATENCY NODE REPRESENTATION LEARNING METHOD 113

parameters of the NN classifier component are optimized using backpropagation, and to

implement that we leverage the functionalities of a standard deep learning platform, namely,

PyTorch [Fey and Lenssen, 2019].

Central to the DGS model are three key parameters: α, β, and the learnable feature mapping

matrix W, which facilitates the transformation from feature space to embedding space. Notably,

this W matrix replaces the δ⃗ feature encoding function utilized in the third variant of the model

(DGS-3). The optimization of these parameters is dependent upon the accurate computation

of their gradients in relation to the defined loss function, denoted as L⃗. Therefore, it becomes

imperative to systematically compute the partial Jacobians d⃗L
d⃗α , d⃗L

dβ⃗
, and d⃗L

dW . This process entails

the adjustment of α⃗, β⃗, and W after the processing of each data batch, based on their respective

gradients with respect to the loss function. Due to the specificities of the learning paradigm for

these parameters, as discussed in Section 6.2.3, we need to implement their gradient calculation

and optimization process from scratch. In the following subsections, we present a detailed

explanation for the computation of these gradients. Each parameter’s Jacobian computation

is broken down into a sequential, step-by-step process, elucidating the mathematical and

algorithmic underpinnings that facilitate the Deep-Graph-Sprints model’s learning algorithm.

This comprehensive breakdown aims to provide clarity and enhance the replicability of the

gradient calculation procedure within the Deep-Graph-Sprints method.

Importantly, in the Deep-Graph-Sprints method variations (DGS-2 and DGS-3), the parameters

α⃗ and β⃗ are conceptualized as vectors, diverging from the scalar form used in DGS-1. This

distinction is crucial, yet the foundational equations remain applicable in both scenarios. α⃗, and

β⃗ are interpreted as an aggregation of f forgetting coefficients αi, and βi, as demonstrated in

Equations (6.2a and 6.3a), where f represents the count of input features, and αi is the associated

forgetting coefficient for the ith feature.

This architectural choice, allocating one coefficient per feature, is an important detail for the

efficiency of Jacobian calculation, a critical aspect that enables efficient forward-mode AD with

minimized computational complexity as discussed in Section 6.2.3.

6.2.4.1 Alpha (⃗α)

This section focuses on the computation of the Jacobians of the parameter α⃗ by applying the

chain rule. This fundamental concept in calculus is crucial for understanding how changes

114 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

in α⃗ affect the loss function L⃗, given the state S⃗, which represents the NN model input. The

relationship is mathematically expressed in Equation 6.7.

d⃗L
d⃗α

=
d⃗L
dS⃗
· dS⃗

d⃗α
(6.7)

We see that the resulting Jacobian depends on two parts d⃗L
dS⃗

representing the NN classifier

component, and dS⃗
d⃗α representing the DGS component.

For the NN classifier component, d⃗L
dS⃗

is derived using backpropagation. For practical

implementation, this derivation process is efficiently facilitated by PyTorch [Fey and Lenssen,

2019] built-in functions, allowing for streamlined computation. About the second component

(i.e., dS⃗
d⃗α) representing the DGS component, here we use the forward-mode AD to calculate the

Jacobians. As mention in Section 6.2.3, due to the specificities of our model, standard Jacobian

tools were insufficient. Consequently, we handcrafted and implemented the Jacobians from

scratch to ensure precise alignment with the model’s requirements.

As defined by our state computation formula (see Equation 6.4), the state S⃗t is influenced

both directly and recursively by the parameters α⃗ and β⃗, as it depends on the previous states of

the target node S⃗t−1, and its neighbor S⃗∗t−1, which are in turn functions of α⃗, β⃗, and all preceding

states. For the sake of clarity and to avoid notational complexity, we choose to omit this recursive

dependency in the notation when computing dS⃗
d⃗α , as illustrated in Equation 6.8.

dS⃗t

d⃗α
=

dS⃗t

dS⃗t−1
⊙ dS⃗t−1

d⃗α
+

dS⃗t

dS⃗∗t−1

⊙
dS⃗∗t−1

d⃗α
+

∂S⃗t

∂⃗α
(6.8)

The calculation of the partial Jacobians, ∂S⃗t
∂⃗α , is a key step in this process. This calculation,

essential for understanding the direct impact of α⃗ on the state St, is shown in Equation 6.9.

∂S⃗t

∂⃗α
= (1− β⃗)⊙

(
S⃗∗t−1 − δ⃗(Ft)

)
(6.9)

By integrating in the Deep-Graph-Sprints algorithm (referenced in Equation 6.4) with the

Jacobian chain rule (outlined in Equation 6.8), we arrive at a recursive formulation as depicted

in Equation 6.10.

6. DEEP-GRAPH-SPRINTS: LOW-LATENCY NODE REPRESENTATION LEARNING METHOD 115

dS⃗t

d⃗α
= β⃗⊙ dS⃗t−1

d⃗α
+ (1− β⃗)⊙ α⃗⊙

dS⃗∗t−1

d⃗α
+

∂S⃗t

∂⃗α
(6.10)

Finally, by substituting the values of the partial Jacobians formula (Equation 6.9, we derive

Equation 6.11.

dS⃗
d⃗α

= β⃗⊙ dS⃗t−1

d⃗α
+ (1− β⃗)⊙

(⃗
α⊙

dS⃗∗t−1

d⃗α
+ S⃗∗t−1 − δ⃗(Ft)

)
(6.11)

Memory and Computational Complexities for α⃗ Derivatives

Equation 6.11 underscores the recursive nature of the gradient calculation, highlighting the

necessity to maintain a historical record of the Jacobian states for each node within the graph.

Practically, to manage this, we implement a storage mechanism for the most recent Jacobian,
dS⃗t−1

d⃗α , for each node. Upon the introduction of a new edge, these stored Jacobians are utilized to

compute the updated Jacobians, which are then used to refresh the stored values. Therefore, the

storage requirement entails maintaining an n× s matrix for a graph with n nodes, each with a

state vector of length s.

About the computational complexity a key characteristic of our method is the element-

wise multiplication between the state vectors S⃗ and the parameter vectors α⃗. This operation

significantly optimizes the computational complexity involved in the calculation of Jacobians.

For a state vector S⃗ of length s, the Jacobian with respect to α⃗ is outlined in Equation 6.12. This

process, critical for assessing the impact of changes in α⃗ on the state vector S⃗, has a computational

complexity of O(s), a reflection of its element-wise nature. The same applies for the element

wise multiplication between the encoded features vector and α⃗.

Conversely, if the operation were matrix multiplication, the computational complexity would

rise to O(s2). This increase is due to the more complex interdependency where each element

of the product is influenced by all the values in α⃗. Therefore, the element-wise multiplication

approach not only simplifies the computational procedure but also improves efficiency, making

it a strategically beneficial choice for the applicability of forward-mode AD in our model.

116 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

∂S⃗
∂⃗α

=



∂S1
∂α1

∂S2
∂α2
...

∂Ss
∂αs


(6.12)

Therefore, the arrival of a new edge involves calculating the partial Jacobians as outlined

in (6.9) and integrating these with the pre-stored Jacobians as formulated in Equation 6.11.

The resultant computational complexity can be expressed as O(s + s + s + a), simplifying to

O(s + a), under the assumption that the encoding function δ⃗ incurs a computational complexity

denoted by a. Where a=O(∑ f log(L f)), where L f stands for the number of bins for feature f , as

detailed in Section 5.3.2.

This formulation not only streamlines the understanding of the recursive nature of the

gradient calculations in the Graph-Sprints method but also defines the practical aspects of

implementing such a system, particularly in terms of storage and computational complexity.

6.2.4.2 Beta (β⃗)

In parallel to the methodology applied for α⃗, this section is devoted to the computation of the

Jacobians of the parameter β⃗ within the Deep-Graph-Sprints method. Employing the chain rule,

we determine the impact of β⃗ on the loss function L⃗, in relation to the state S⃗, the input to the

model. This relationship is represented in Equation 6.13.

d⃗L
dβ⃗

=
d⃗L
dS⃗
· dS⃗

dβ⃗
(6.13)

The resulting Jacobian depends on two parts d⃗L
dS⃗

representing the NN classifier component,

and dS⃗
dβ⃗

representing the DGS component.

Similar to the process for α⃗, d⃗L
dS⃗

is obtained through backpropagation. The term dS⃗
dβ⃗

then

captures how changes in β⃗ affect the state S⃗. We use the forward-mode AD to calculate the

Jacobians. As mention in Section 6.2.3, due to the specificities of our model, standard Jacobian

tools were insufficient. Consequently, we handcrafted and implemented the Jacobians from

scratch to ensure precise alignment with the model’s requirements.

6. DEEP-GRAPH-SPRINTS: LOW-LATENCY NODE REPRESENTATION LEARNING METHOD 117

As per the β⃗ parameter, and given our state computation formula (see Equation 6.1), the state

S⃗t depends on β⃗, and also depends on the previous states of the target node and the neighbor,

S⃗t−1 and S⃗∗t−1, which also depend on β⃗. Thus, the Jacobian can be further expanded as shown in

Equation 6.14, which decomposes the Jacobian into more granular components.

dS⃗t

dβ⃗
=

dS⃗t

dS⃗t−1
⊙ dS⃗t−1

dβ⃗
+

dS⃗t

dS⃗∗t−1
⊙ dS⃗∗t−1

dβ⃗
+

∂S⃗t

∂β⃗
(6.14)

The calculation of the partial Jacobian ∂S⃗t
∂β⃗

leveraging the Deep-Graph-Sprints formula (Equa-

tion 6.4) is crucial in understanding the direct influence of β⃗ on the state St, as demonstrated in

Equation 6.15.

∂S⃗t

∂β⃗
= S⃗t−1 −

(
(1− α⃗)⊙ δ⃗(Ft) + α⃗⊙ S⃗∗t−1

)
(6.15)

Employing the Deep-Graph-Sprints formula (referenced in Equation 6.4), we proceed with a

modular-focused reformulation of the Jacobian dS⃗t
dβ⃗

. This is achieved by representing it through

the partial Jacobians of S⃗, as illustrated in Equation 6.16. This reformulation not only simplifies

the understanding but also facilitates easier application in practical scenarios.

dS⃗t

dβ⃗
= β⃗⊙ dS⃗t−1

dβ⃗
+ (1− β⃗)⊙ α⃗⊙ dS⃗∗t−1

dβ⃗
+

∂S⃗t

∂β⃗
(6.16)

Finally, by substituting the values of the partial Jacobians formula (Equation 6.15, we derive

Equation 6.17.

dS⃗t

dβ⃗
=

(
S⃗t−1 + β⃗⊙ dS⃗t−1

dβ⃗

)
−
(
(1− α⃗)⊙ δ⃗(Ft) + α⃗⊙ S⃗∗t−1

)
+ (1− β⃗)⊙

(⃗
α⊙

dS⃗∗t−1

dβ⃗

)
(6.17)

Memory and Computational Complexities for β⃗ Derivatives

The approach for computing the Jacobians of β⃗, as detailed in Equation 6.16, mirrors the

methodology applied to α⃗, with a similar recursive structure necessitating the tracking of past

Jacobian states for each graph node. For operational efficiency, a storage system is employed to

retain the latest Jacobian, dS⃗t−1

dβ⃗
, for each node. The arrival of a new edge triggers the utilization

of these stored Jacobians for the computation of updated values, subsequently updating the

118 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

storage.

The data storage architecture remains consistent with the α⃗ Jacobian process, requiring an

(n× s) matrix corresponding to a graph of n nodes, each represented by a state vector of length

s.

The computational complexity for the β⃗ Jacobian, including feature encoding and integration

with stored Jacobians as per Equation 6.16.

Similarly to the computational complexity of α⃗, element-wise multiplication between state

vectors S⃗ and parameters β⃗ optimizes Jacobian calculations in our method. For S⃗ of length s, the

Jacobian with respect to β⃗ (Equation 6.18) has computational complexity O(s). This also applies

to the multiplication with the encoded features vector and β⃗. In contrast, matrix multiplication

would lead to a complexity ofO(s2), making element-wise multiplication a more efficient choice.

∂S⃗
∂β⃗

=



∂S1
∂β1

∂S2
∂β2
...

∂Ss
∂βs


(6.18)

Therefore, computing the Jacobians of dS⃗t
dβ⃗

maintain a computational complexity of O(s +

a). This is assuming that the encoding function δ⃗ possesses a computational complexity

characterized by a. Where a=O(∑ f log(L f)), where L f stands for the number of bins for feature

f , as detailed in Section 5.3.2.

This structured approach to gradient computation for β⃗, while akin to that of α⃗, reinforces

the method’s coherence in handling recursive calculations.

6.2.4.3 Embedding Matrix (W)

In the third approach of the Deep-Graph-Sprints methodology, the embedding matrix parameter

W plays a pivotal role. This approach modifies the state computation formula, integrating a

learnable mapping from feature space to embedding space, as opposed to the encoding function

δ⃗. The revised state computation formula is presented in Equation 6.6, where the softmax

function is applied to the product of W and feature vector Ft.

6. DEEP-GRAPH-SPRINTS: LOW-LATENCY NODE REPRESENTATION LEARNING METHOD 119

The calculation of the Jacobians of W is essential for understanding how changes in the

embedding matrix affect the overall model. Employing the chain rule, we establish a relationship

between the loss L⃗ and W, as defined in Equation 6.19.

d⃗L
dW

=
d⃗L
dS⃗
· dS⃗

dW
(6.19)

The resulting Jacobian depends on two parts d⃗L
dS⃗

representing the NN classifier component,

and dS⃗
dW representing the DGS component.

As per the Jacobians of the loss in respect to the state (i.e., d⃗L
dS⃗

), it is obtained using backprop-

agation, as discussed when detailing the Jacobians of the parameters α⃗, and β⃗.

About the second term (i.e., dS⃗
dW) representing the DGS component, here we use the forward-

mode AD to calculate the Jacobians.

To further elucidate the second component, dS⃗
dW representing the relationship between W

and S⃗t, given our state computation formula (see Equation 6.6), the state S⃗t depends on W, and

also depends on the previous states of the target node and the neighbor, S⃗t−1 and S⃗∗t−1, which

also depend on W. Thus, we decompose the Jacobian of the state S⃗t with respect to W into more

granular components, as shown in Equation 6.20.

dS⃗t

dW
=

dS⃗t

dS⃗t−1
⊙ dS⃗t−1

dW
+

dS⃗t

dS⃗∗t−1
⊙ dS⃗∗t−1

dW
+

∂S⃗t

∂W
(6.20)

Utilizing Equation 6.6, the expression of dS⃗t
dW is simplified through the application of the

partial Jacobians of S⃗. This methodology yields the Jacobian of S⃗ relative to W, as detailed in

Equation 6.21.

dS⃗t

dW
= β⃗⊙ dS⃗t−1

dW
+ (1− β⃗)⊙ α⃗⊙

dS⃗∗t−1

dW
+

∂S⃗t

∂W
(6.21)

A critical step in this process is the calculation of the partial Jacobian ∂S⃗t
∂W , which directly

quantifies the impact of W on the state St. This is expressed in Equation 6.22, where
⊕x

i=1

represents the concatenation of the results of x softmax functions, and WiFt represents the result

of multiplying the ith subset of W with the features.

120 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

∂S⃗t

∂W
= (1− β⃗)⊙ (1− α⃗)⊙

∂
(⊕x

i=1 σ⃗(WiFt)
)

∂W
(6.22)

The softmax function, denoted as σ⃗ and applied to an input vector x, is formally defined by

Equation 6.5. This definition implies that the softmax value of each element in x is influenced by

all other elements in the vector. As a result, the Jacobian of the softmax function with respect

to its input vector forms a two-dimensional Jacobian matrix, reflecting the interdependencies

among the vector elements. The values of these Jacobians varies depending on their position

within the Jacobian matrix, specifically whether they are diagonal or off-diagonal elements, as

shown in Equation 6.23.

∂⃗σ(x⃗)i

∂xj
=


σ(x)i · (1− σ(x)j) if i = j,

−σ(x)i · σ(x)j if i ̸= j.
(6.23)

Memory and Computational Complexities for W Derivatives:

The Jacobian computation for the embedding matrix W, as formulated in Equation 6.21,

follows a recursive calculation parallel to that used for α⃗ and β⃗. This process entails tracking

historical Jacobian states for each node in the graph. To enhance operational efficiency, we

maintain a dedicated storage system to store the most recent Jacobian, dS⃗t−1
dW , for each node. The

introduction of new edges activates the use of these stored Jacobians to facilitate the calculation

of updated values, which are then used to update the stored Jacobians.

Optimizing Memory Footprint and Computational Complexity Using Multiple Softmax

Functions:

Considering an embedding matrix W of dimensions s× f , where s is the embedding size and

f is the number of input features, a conventional application of a single softmax function would

typically yield Jacobians of dimensions f × s2. In our Deep-Graph-Sprints model, we address this

memory complexity issue by employing multiple softmax functions. Each softmax function is

designated to manage a segment of the resulting state, as illustrated in Equation 6.24. Utilizing

x softmax functions, each softmax corresponds to a subset of h rows in the embedding matrix

h = s÷ x. Therefore, we effectively reduce the memory requirement to f × h× s. This is the

memory required per node in the graph, thus, the memory complexity for a graph with n nodes

is n× (f × h× s), each node associated with a state vector of length s, and processed using x

6. DEEP-GRAPH-SPRINTS: LOW-LATENCY NODE REPRESENTATION LEARNING METHOD 121

softmax functions.

∂S⃗
∂W

=


∂S⃗i

∂Wj// f ,j% f
if i & j ∈ same σ⃗,

0 otherwise.
(6.24)

To illustrate with an example, consider an input size f = 3, a state size s = 4, and a number

of softmax functions x = 2. Consequently, the number of rows in the embedding matrix W per

softmax is h = 2.

W =


W11 W12 W13

W21 W22 W23

W31 W32 W33

W41 W42 W43


, F =


F1

F2

F3


The calculation of

⊕x=2
i=1 σ⃗(WiFt) (done in the forward pass, when calculating the state) can be

visualized as:

x=2⊕
i=1

σ⃗(WiFt) =



σ⃗


W11F1 + W12F2 + W13F3

W21F1 + W22F2 + W23F3




σ⃗


W31F1 + W32F2 + W33F3

W41F1 + W42F2 + W43F3





To calculate the Jacobians of S with respect to W, applying Equation 6.24 we get:

∂S⃗
∂W

=



∂S1
∂W11

∂S1
∂W12

∂S1
∂W13

∂S1
∂W21

∂S1
∂W22

∂S1
∂W23

0 0 0 0 0 0
∂S2

∂W11

∂S2
∂W12

∂S2
∂W13

∂S2
∂W21

∂S2
∂W22

∂S2
∂W23

0 0 0 0 0 0

0 0 0 0 0 0 ∂S3
∂W31

∂S3
∂W32

∂S3
∂W33

∂S3
∂W41

∂S3
∂W42

∂S3
∂W43

0 0 0 0 0 0 ∂S4
∂W31

∂S4
∂W32

∂S4
∂W33

∂S4
∂W41

∂S4
∂W42

∂S4
∂W43



The analysis of the Jacobians ∂S⃗
∂W reveals that they comprise a collection of x blocks, each

independent and with dimensions of h2 × f .

Thus, the computational complexity for every segment is (h2 × f), and given that we have

122 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

x segments, then the total computational complexity for deriving W, as per Equation 6.21, is

O(s + (s× h× f)). It is worth noting that the calculation can be done in parallel since segments

are independent.

In conclusion, the total computational complexity is linear with respect to the state size s,

assuming a fixed h. This is desirable and similar to backpropagation. Furthermore, it is feasible

to fix h to a predetermined computational complexity.

6.2.5 Parameter Updating Mechanisms in Deep-Graph-Sprints

The Deep-Graph-Sprints method, as outlined in Section 6.2.1, integrates two components: the

DGS and the NN classifier components. Each component encompasses a set of learnable pa-

rameters, which are subject to iterative updates subsequent to the processing of each data batch.

In the context of the NN classifier component, the Adam optimizer [Kingma and Ba, 2014]—a

refined algorithm for first-order gradient-based optimization of stochastic objective functions,

predicated on adaptive estimates of lower-order moments—is employed for parameter updates.

This implementation is sourced from Pytorch [Fey and Lenssen, 2019].

In contrast, the DGS component utilizes vanilla gradient descent instead of Adam to update

the parameters.

Specifically, after processing a specific batch b, the Jacobians are calculated for the learnable

parameters based on the batch data, yielding Jacobian values dL⃗b
d⃗α , dL⃗b

dβ⃗
, and dL⃗b

dW , (as discussed

in Section 6.2.4). The parameter update equations are then applied: equation 6.25 for the α

parameter, equation 6.26 for the β parameter, and equation 6.27 for updating the embedding

matrix W.

α⃗ := α⃗−
(

η · dL⃗b

d⃗α

)
(6.25)

β⃗ := β⃗−
(

η · dL⃗b

dβ⃗

)
(6.26)

W := W −
(

η · dL⃗b

dW

)
(6.27)

The parameters of both the DGS and NN classifier components are updated simultaneously.

6. DEEP-GRAPH-SPRINTS: LOW-LATENCY NODE REPRESENTATION LEARNING METHOD 123

Looking ahead, future work might involve exploring the integration of more advanced

optimization algorithms for the DGS component parameters. For instance, the adoption of the

Adam optimizer.

6.3 Experiments and Results

6.3.1 Experimental Setup

The efficacy of the Deep-Graph-Sprints methodology was evaluated through two distinct tasks:

node classification and link prediction. This evaluation utilized five datasets, comprising three

open-source external datasets and two proprietary datasets from the AML domain.

6.3.1.1 Baselines

A first basic baseline is Raw, which uses the raw edge features to train an ML classifier, aiming

to demonstrate the classifier’s performance in the absence of graph-related information.

Another pivotal baseline is Graph-Sprints, the graph feature engineering method detailed in

Chapter 5. This benchmark aims to ascertain whether Deep-Graph-Sprints maintains competitive

performance while addressing the limitations of Graph-Sprints, discussed in Section 6.1. The

comparison includes two variants: GS, which utilizes Graph-Sprints histograms, and GS+Raw,

which integrates Graph-Sprints histograms with raw edge features.

Consequently, while Raw, GS, and GS+Raw baselines employ the same machine learning

classifier types, they differ in their feature sets: Raw utilizes raw edge features, GS is based on

Graph-Sprints histograms, and GS+Raw combines both sets of features.

An additional baseline, termed Fixed-DGS, represents a variant of Deep-Graph-Sprints where

the DGS parameters remain static during training. The purpose of this baseline is to highlight

the performance enhancement attributed to the learning of DGS parameters.

Another baseline set comprises state-of-the-art GNN methods, specifically TGN [Rossi et al.,

2020] and Jodie [Kumar et al., 2019], as previously used in Graph-Sprints (Section 5.4.1.1). Our

TGN implementation, based on PyTorch Geometric [Fey and Lenssen, 2019], differs from the

original by restricting within-batch neighbor sampling. For consistency, Graph-Sprints and

Deep-Graph-Sprints also employ the same constraints.

124 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

Two TGN variants were used: TGN-attn, aligning with the original paper’s robust variant,

and TGN-ID, a simplified version focusing solely on memory module embeddings. Jodie,

utilizing a time projection embedding with gated recurrent units. TGN-ID and Jodie baselines,

which do not necessitate neighbor sampling, were chosen for their lower-latency attributes

compared to TGN-attn.

GNN baselines (TGN-ID, TGN-attn, and Jodie) all used a node embedding size of 100

6.3.1.2 Optimization

The hyperparameter optimization process adopted a methodology parallel to that in Graph-

Sprints, utilizing Optuna [Akiba et al., 2019] for training 100 models. Initial warmup trials

were conducted through random sampling, followed by the application of the TPE sampler.

Each model incorporated an early stopping mechanism, triggered after 10 epochs without

improvement. This criterion, based on the AUC for node classification and AP for link prediction,

ensured efficient training. Table 6.1 enumerates the hyperparameters and their respective ranges

employed in the Deep-Graph-Sprints tuning process, while Table 5.1 details the ranges for the

baselines.

TABLE 6.1: Hyperparameters ranges for Deep-Graph-Sprints

Hyperparameter Min Max
DGS learning rate (η) 10−4 103

Number of softmaxes 10 50
Learning rate 10−4 102

Dropout percentage 0.1 0.3
Weight decay 10−9 103

Number of dense layers 1 3
Size of dense layer 32 256

Importantly, for all Deep-Graph-Sprints variants (DGS-1, DGS-2, and DGS-3), the state size is

consistently set at 100, ensuring a fair comparison with other GNN baseline models (TGN-ID,

TGN-attn, and Jodie). In future experiments, we propose to maintain a constant h while varying

the number of softmaxes.

6. DEEP-GRAPH-SPRINTS: LOW-LATENCY NODE REPRESENTATION LEARNING METHOD 125

6.3.2 Public Datasets Experiments

6.3.2.1 Datasets

This study performs the evaluation of the Deep-Graph-Sprints method using three publicly

available datasets, from social and educational domains. These datasets are identical to those

used in the assessment of Graph-Sprints, and their details are elaborated in Section 5.4.2.1.

6.3.2.2 Task Performance

In assessing our method, we focused on two tasks: node classification and link prediction.

The results for node classification are detailed in Table 6.2, displaying the average test AUC

± std for each dataset. To obtain these figures, we retrained the best model identified through

hyperparameter optimization across 10 different random seeds.

The variations of our Deep-Graph-Sprints approach, DGS-1, DGS-2, and DGS-3, as described

in Section 6.2.2, were also evaluated. Along with these, GNN baselines (TGN-ID, TGN-attn, and

Jodie) and DGS-3 all utilized the same embedding size of 100.

We highlighted the best and second-best performing models in each dataset. Our analysis

shows that Deep-Graph-Sprints variants performed exceptionally well in the Wikipedia and Mooc

datasets, achieving the highest scores, while Graph-Sprints performed the second-best. In the

Reddit dataset, our methods ranked second, behind Graph-Sprints. To provide an overview, we

include a column showing the average rank, in Table 6.2, which represents the mean ranking

computed from all datasets.

The lower performance of DGS-3 in the Wikipedia dataset, compared to other Deep-Graph-

Sprints variations, is noteworthy. Initial analysis indicates that this is due to the data prepro-

cessing method for the Wikipedia dataset. While using a consistent standardization approach

across all datasets, omitting this step improved DGS-3’s performance to 89.2± 1.9. Nonetheless,

for consistency in the results table, the performance with standard preprocessing is reported.

Future research will focus on understanding and resolving the factors behind this difference in

DGS-3’s performance.

For the link prediction task, average test AUC ± std and AP ± std are reported in Table 6.3,

achieved by retraining the hyperparameter-optimized model with 10 random seeds. We

evaluated both transductive (T) and inductive (I) settings, the former predicting future links of

126 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

TABLE 6.2: Deep-Graph-Sprints: Node classification results using public datasets.

Method
AUC ± std

Average rank
Wikipedia Mooc Reddit

Raw 58.5 ± 2.2 62.8 ± 0.9 55.3 ± 0.8 10
Fixed-DGS 87.3 ± 1.7 72.7 ± 0.3 64.5 ± 0.4 6.3

TGN-ID 88.9 ± 0.2 63.0 ± 17 61.3 ± 2.0 6
Jodie 87.2 ± 0.9 63.7 ± 16.7 61.9 ± 2.0 8

TGN-attn 86.6 ± 2.8 75.8 ± 0.4 67.9 ± 1.6 5.7
GS 90.7 ± 0.3 75.0 ± 0.2 68.5 ± 1.0 3.7

GS+Raw 89.2 ± 0.4 76.5 ± 0.3 63.7 ± 0.4 4.3
DGS-1 88.2 ± 0.6 73.8 ± 0.5 65.8 ± 0.8 4
DGS-2 91.0 ± 0.3 75.2 ± 0.3 67.2 ± 0.4 3
DGS-3 83.3 ± 3.7 78.7 ± 0.6 68.0 ± 1.9 4

nodes observed during training, and the latter involved predictions for nodes not encountered

during training.

Deep-Graph-Sprints variants (DGS-1, DGS-2, and DGS-3), are detailed in Section 6.2.2.

We identified the best and second-best models. Deep-Graph-Sprints excelled in link prediction,

consistently ranking first or second across datasets and settings (T and I). Notably, in the Mooc

dataset, it outperformed the second-best model by about 7% in AP. To provide an overview, we

have included a column in Table 6.3 that displays the average rank. This represents the mean

ranking derived from all datasets, calculated using AP.

Optimized values varied depending on the use case and dataset. We discuss a few examples

focusing on three essential parameters: DGS learning rate (η), number of softmaxes, and learning

rate. Figure 6.2 presents the AP for each trained model in the Mooc dataset for the link prediction

inductive task, indicating lower values of DGS learning rate (η) generally yield better results,

contrary to the learning rate (NN classifier’s component learning rate). The optimal number of

softmax functions was found to be the minimum (10). For a comprehensive view of all tuned

parameters, refer to Figure 6.3.

In the Wikipedia dataset, used for link prediction in a transductive setting, as shown in

Figure 6.4, patterns slightly differ. Optimal DGS learning rates were around 0.5, and 20 softmax

functions seemed preferable for this dataset.

6. DEEP-GRAPH-SPRINTS: LOW-LATENCY NODE REPRESENTATION LEARNING METHOD 127

TABLE 6.3: Deep-Graph-Sprints: Link prediction results using public datasets.

Method
Wikipedia Mooc Reddit Average

rankAUC AP AUC AP AUC AP

T

TGN-ID 95.6 ± 0.2 95.8 ± 0.1 80.4 ± 5.8 75.0 ± 6.1 94.7 ± 0.7 93.2 ± 1.0 7
Jodie 94.3 ± 0.3 94.5 ± 0.3 85.1 ± 1.8 80.0 ± 3.5 94.9 ± 1.2 93.4 ± 1.7 6.3
TGN-attn 97.0 ± 0.3 97.3 ± 0.3 80.3 ± 8.1 75.6 ± 8.4 96.1 ± 0.4 95.1 ± 0.7 4.7
Fixed-DGS 90.9 ± 1.1 91.0 ± 1.2 82.9 ± 0.2 80.8 ± 0.3 94.6 ± 0.1 93.9 ± 0.2 7.3
GS 92.5 ± 0.6 92.9 ± 0.7 82.7 ± 0.8 81.1 ± 0.7 96.1 ± 0.2 95.3 ± 0.3 5
GS+Raw 92.1 ± 0.4 92.6 ± 0.4 85.4 ± 0.3 83.7 ± 0.3 96.8 ± 0.1 96.1 ± 0.2 3.7
DGS-1 91.3 ± 0.4 91.3 ± 0.5 83.5 ± 0.2 81.7 ± 0.3 95.6 ± 0.2 94.9 ± 0.2 6
DGS-2 93.5 ± 1.3 93.6 ± 1.4 83.7 ± 4.1 82.1 ± 3.5 96.6 ± 0.1 96.2 ± 0.2 3
DGS-3 96.4 ± 0.8 96.8 ± 0.7 91.7 ± 0.4 90.4 ± 0.5 96.0 ± 0.2 95.3 ± 0.2 2

I

TGN-ID 92.2 ± 0.2 92.8 ± 0.2 68.5 ± 8.6 63.5 ± 6.7 93.4 ± 0.6 92.2 ± 0.8 5.3
Jodie 87.0 ± 0.6 89.1 ± 0.7 71.1 ± 2.2 66.1 ± 2.9 92.3 ± 1.3 90.8 ± 1.9 7.7
TGN-attn 94.5 ± 0.2 95.0 ± 0.2 71.4 ± 4.1 66.9 ± 3.9 95.0 ± 0.4 94.3 ± 0.5 3.3
Fixed-DGS 89.2 ± 0.8 89.8 ± 0.9 75.4 ± 0.4 72.5 ± 0.4 92.8 ± 1.2 91.5 ± 1.5 5.7
GS 92.0 ± 0.3 91.7 ± 0.4 78.2 ± 0.6 76.5 ± 0.6 92.7 ± 0.5 92.7 ± 0.6 3
GS+Raw 91.4 ± 0.2 91.1 ± 0.3 83.0 ± 0.5 80.3 ± 0.5 93.5 ± 0.4 92.2 ± 0.5 3.7
DGS-1 88.8 ± 0.7 88.5 ± 1.2 71.8 ± 0.7 70.0 ± 1.3 90.7 ± 1.3 86.2 ± 2.0 8
DGS-2 91.8 ± 0.8 91.6 ± 1.4 73.4 ± 1.8 71.0 ± 1.7 91.8 ± 0.5 87.3 ± 1.3 6
DGS-3 94.8 ± 0.7 95.5 ± 0.7 90.7 ± 0.5 89.5 ± 0.5 93.8 ± 0.4 92.1± 0.6 2.3

FIGURE 6.2: Example of hyperparameters’ influence on inductive link prediction in the Mooc
dataset, with the objective value measured as AP

6.3.2.3 Inference Runtime

In evaluating Deep-Graph-Sprints, our primary goal was to ensure inference times comparable

to Graph-Sprints while addressing its limitations. We conducted latency comparisons between

Deep-Graph-Sprints, Graph-Sprints, and baseline GNN models. This involved running 200 batches

of 200 events on each external datasets (Wikipedia, Mooc, and Reddit) for the node classification

128 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

FIGURE 6.3: Example: Influence of all Deep-Graph-Sprints hyperparameters on link prediction in
the Mooc dataset, with the objective value measured as AP.

FIGURE 6.4: Example of hyperparameters’ influence on transductive link prediction in the
Wikipedia dataset, with the objective value measured as AP.

task, averaging times over 10 iterations. Tests were performed on a Linux PC equipped

with 24 Intel Xeon CPU cores (3.70GHz) and an NVIDIA GeForce RTX 2080 Ti GPU (11GB).

According to Figure 6.5, Deep-Graph-Sprints not only matched but also surpassed Graph-Sprints

in inference speed, particularly in the Wikipedia and Reddit datasets (0.24 vs 0.29 seconds).

This improvement is attributed to the higher feature count (172) in these datasets, increasing

Graph-Sprints feature volume and thus, potentially, its processing time. In contrast, the Mooc

dataset, with only 7 edge features, exhibited a smaller disparity in running times (0.24 vs 0.28

6. DEEP-GRAPH-SPRINTS: LOW-LATENCY NODE REPRESENTATION LEARNING METHOD 129

seconds), Graph-Sprints being faster.

When compared to GNN baselines (TGN-attn, TGN-ID, Jodie), Deep-Graph-Sprints demon-

strated markedly lower inference latency, being over 12 times faster than TGN-attn in the

Reddit dataset. Additionally, it delivered competitive classification performance in Reddit

and surpassed TGN-attn in Mooc. However, its unexpectedly low performance in Wikipedia

warrants further investigation.

FIGURE 6.5: Deep-Graph-Sprints: Trade-off between AUC and runtime.

6.3.2.4 Analysing learning procedure

The evolution of the learning process can be seen through the visualization of parameter

adjustments across successive epochs. The figures provided elucidate the dynamic alterations

within the parameters, offering insights into the model’s convergence behavior.

Figure 6.6 illustrates the variation of the α and β scalar parameters during the learning

process in the DGS-1 approach, in the node classification task in the Mooc dataset. Initially

set at 0.5, α generally decreases over time, indicating reduced emphasis on neighboring node

information. Conversely, β tends to increase, suggesting a greater reliance on the previous state

of the target node.

In the node classification task for Mooc using the DGS-3 variant of Deep-Graph-Sprints, α

and β are vectors. Therefore, we report their average values. Figure 6.7 displays the changes in

these average parameters alongside the validation results, providing a comparison between the

adjustments in average parameters and validation performance.

This comparison reveals that on average both parameters are reducing in the initial epochs

and there is a jump close to epoch 75. However, this aggregated view is not very precise.

130 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

FIGURE 6.6: DGS-1: Example comparing α and β parameter changes with validation
performance in node classification in the Mooc dataset.

Looking at the initial and last value within each bin of the ALPHA and BETA vectors (see

Figure 6.8), we see that almost all bins in ALPHA tend to reduce, however, in BETA we notice

that approximately half of the beta parameters increase while the other decrease. This fact

underscores the importance of the implementation of β as a vector

6. DEEP-GRAPH-SPRINTS: LOW-LATENCY NODE REPRESENTATION LEARNING METHOD 131

FIGURE 6.7: DGS-3: Example comparing average α and β parameter changes and validation
performance in node classification in the Mooc dataset.

6.3.3 AML Experiments

In the context of money laundering, where criminals aim to conceal the unlawful origins of

their capital by transferring it through multiple accounts and FIs, our experimental focus is

specifically to elevate the efficacy of a triage model, which is comprehensively described in

Chapter 4, Section 4.3, by integrating the Deep-Graph-Sprints method. This integration involves

replacing the classifier and the graph-based feature generation steps with the capabilities of the

Deep-Graph-Sprints method. Consequently, the Deep-Graph-Sprints method is employed as the

primary triage model, a detailed architecture of which is presented in Figure 4.4.

132 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

FIGURE 6.8: DGS-3: Evolution of per-bin α and β parameters throughout training. The x-axis
represents the 20 bins per vector, while the y-axis shows the adjusted values of these bins after
tuning. Initially, all bins start at 0.5, and then their values evolve to optimize model performance.

6.3.3.1 Datasets

We assess the Deep-Graph-Sprints method in two real-world banking datasets. These datasets are

identical to those used in the assessment of Graph-Sprints, and their details are elaborated in

Section 5.4.3.

6.3.3.2 Task Performance

In line with our Graph-Sprints experiments, we employed several baseline models for comparison.

The first baseline is a neural network classifier that relies solely on raw node features (i.e., entity-

centric features), without incorporating any graph information, termed ’Raw’. Additional

baselines include ’GS’, utilizing exclusively Graph-Sprint features, and ’GS+Raw’, combining

both Graph-Sprints and raw features. Furthermore, we replicated the training of three GNNs

architectures used in public datasets: TGN-ID, Jodie, and TGN-attn.

For our Deep-Graph-Sprints models, we evaluate the three distinct approaches (explained in

Section 6.2.2), labeled as DGS-1, DGS-2, and DGS-3.

6. DEEP-GRAPH-SPRINTS: LOW-LATENCY NODE REPRESENTATION LEARNING METHOD 133

All models underwent optimization with an equal optimization budget. Following this, the

optimal hyperparameters (those yielding the best performance on the validation dataset) were

selected. Each model was then run using 10 distinct random seeds, and the average AUC along

with the standard deviation were calculated. This approach mirrors the methodology applied in

the node classification task on public datasets (as detailed in Section 6.3.2). Due to confidentiality

constraints, the specific AUC values are not disclosed. Instead, we present the relative AUC

improvements (∆AUC) compared to a baseline model lacking graph features (’Raw’). In this

experiment, the baseline model is assigned a ∆AUC of 0, with any enhancement in recall over

the baselines indicated by positive ∆AUC values.

The results are summarized in Table 6.4. We marked the best and the second-best models

for clarity. This analysis includes Deep-Graph-Sprints models, Graph-Sprints variants, and other

GNNs baselines. The various Deep-Graph-Sprints approaches showed promising results, with

DGS-3 being the best model in the FI-A dataset by achieving a 3.6% increase in AUC. And a

notable 26.9% improvement in AUC for the FI-B dataset, demonstrating the effectiveness of

Deep-Graph-Sprints in this domain. To provide an overview, we include a column showing the

average rank which represents the mean ranking computed from the two datasets.

TABLE 6.4: Deep-Graph-Sprints: Node classification results using AML datasets.

Method
∆AUC ± std

Average rank
FI-A FI-B

TGN-ID +0.1 ± 0.1 +24.4 ± 0.2 8
Jodie +0.0 ± 0.1 +24.5 ± 0.2 8

TGN-attn +0.3 ± 0.7 +25.1 ± 0.3 6.5
Fixed-DGS +2.0 ± 0.3 25.3 ± 0.2 4.5

GS +1.8 ± 0.5 +27.8 ± 0.4 3.5
GS+Raw +3.3 ± 0.3 +20.1 ± 3.9 5.5

DGS-1 +1.8 ± 0.3 25.8 ± 0.7 4.5
DGS-2 +3.2 ± 0.1 +26.7 ± 0.2 3
DGS-3 +3.6 ± 0.2 +26.9 ± 0.3 1.5

In this experiment, particularly with the FI-B dataset (Figure 6.9), higher DGS learning rates

proved beneficial up to a certain threshold, unlike the learning rate. As for the number of

softmax functions, 20 and 50 exhibited similar performance.

134 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

FIGURE 6.9: Example of hyperparameters’ influence on node classification in FI-B dataset, with
the objective value measured as AUC.

6.4 Summary

This chapter introduced Deep-Graph-Sprints, a novel approach to representation learning in

CTDGs. This method efficiently learns time-sensitive embeddings, balancing rapid processing

with resource efficiency. A pivotal aspect of Deep-Graph-Sprints is its capability to overcome the

limitations inherent in the Graph-Sprints model, as detailed in Section 6.1. Furthermore, Deep-

Graph-Sprints successfully navigates the challenges faced by existing GNNs in learning long-term

dependencies. This is accomplished through the strategic implementation of forward-mode AD,

a significant enhancement in advancing the capabilities of GNNs.

Extensive experiments were conducted to rigorously assess Deep-Graph-Sprints. As detailed

in Tables 6.2, 6.3, and 6.4, our findings show that Deep-Graph-Sprints often surpasses both

Graph-Sprints and state-of-the-art GNN baselines in performance. This is particularly evident

in node classification and link prediction tasks, with notable results in the Mooc dataset. The

method’s performance in both transductive and inductive settings highlights its robustness and

adaptability across various CTDG scenarios.

In terms of inference speed, Deep-Graph-Sprints maintains similar or faster processing times

compared to Graph-Sprints, especially in high-feature datasets like Wikipedia and Reddit. This

efficiency is a significant advantage over slower GNN models, such as TGN-attn, with Deep-

Graph-Sprints being over an order of magnitude faster in certain cases.

6. DEEP-GRAPH-SPRINTS: LOW-LATENCY NODE REPRESENTATION LEARNING METHOD 135

In conclusion, the Deep-Graph-Sprints method allows to achieve state-of-the-art performance

with end-to-end learning of parameters and therefore less tuning effort than the graph sprint

method, while keeping the desirable low-latency properties.

6.5 Future Work

Future developments in the Deep-Graph-Sprints method are envisioned to encompass several

pivotal areas of enhancement.

Advanced Optimization Techniques:

The incorporation of an advanced optimization algorithms such as Adam could potentially

replace the current use of stochastic gradient descent in updating the DGS parameters during

forward-mode AD. The adoption of these advanced techniques is anticipated to facilitate the

learning of optimal parameters and therefore more easily achieving good performance.

Extension to Heterogeneous Graphs:

A significant area of future research for the Deep-Graph-Sprints method is its adaptation to

heterogeneous graph structures. This evolution aims to extend the method’s applicability across

a diverse array of graph-based problem domains. One viable approach is to employ distinct

embedding matrices for different node or edge types, where each matrix maps varied input

features to a consistent embedding dimension. This method, however, presents challenges in

mini-batch training, necessitating the segregation of edges by type for effective mapping.

An alternative approach involves implementing a unique update process for each node

or edge type, resulting in the creation of multiple sub-embeddings. These sub-embeddings

would then be concatenated to form a unified final embedding. The key consideration here is

determining whether to learn a singular embedding matrix W per node or edge type, or to learn

a complete set of parameters — α⃗, β⃗, and W — for each type. The decision on this architecture is

likely to be dependent on the use cases.

Central to this adaptation is that the structure of the model needs to be defined, after which

the parameters are learned autonomously during training, obviating the need for manual

adjustments as required in Graph-Sprints.

136 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

Input-Dependent Parameters:

A significant enhancement under consideration involves enabling input-dependent adaptability

for the parameters alpha (⃗α) and beta (β⃗). This advancement aims to amplify the model’s

responsiveness to diverse data inputs. As such, the state update equation would undergo

modification, integrating trainable matrices W1, and W2 of dimension (s× f), where s represents

the embedding size and f denotes the number of input features.

To ensure the parameter values remain within the range [0, 1], a sigmoid function per feature,

denoted as ψ, can be employed. The parameters are thus defined as:

α⃗ = ψ(W1Ft),

and

β⃗ = ψ(W2Ft).

The revised state update formula, encapsulated in Equation 6.28, effectively integrates these

changes:

S⃗t = ψ(W2Ft)⊙ St−1 + (1− ψ(W2Ft))⊙
(
(1− ψ(W1Ft))⊙ σ⃗(WFt) + ψ(W1Ft)⊙ S⃗∗t−1

)
(6.28)

This modification enhances the accuracy of the Deep-Graph-Sprints model in processing

varying inputs.

These future directions represent critical steps towards augmenting the sophistication and

versatility of the Deep-Graph-Sprints model, positioning it at the forefront of graph representation

learning tools.

Chapter | 7
Conclusions and future work

Money laundering primarily seeks to hide the origins of illicit funds originating from crimes

such as drug trafficking, human trafficking, fraud, tax evasion, and corruption. This is achieved

by strategically transferring these funds through a network of interlinked accounts to represent

them as legitimate assets. An easy laundering of these funds supports underlying criminal

activities, subsequently impacting individuals, economies, governmental stability, and social

well-being [McDowell and Novis, 2001].

To incentivize FIs in their efforts against money laundering, governmental regulations outline

criteria indicating which transfers merit review. Institutions are met with rigorous sanctions for

breaches, including substantial fines for overlooked laundering activities.

In this doctoral research, we have adopted a graph-based perspective to address money

laundering detection, elucidating innovative strategies and delving into the complexities of

transaction networks.

Our journey through AML systems in banking underscored the significance of transactional

data and the relationships between entities. This exploration led to the creation of the Walking-

Profiles framework—a graph feature engineering approach grounded in the dynamics of random-

walks to extract pivotal graph-based features.

Moreover, in response to the persistent issue of false alerts in AML systems, we introduced

the triage model. This ML approach evaluates alerts against established AML criteria, assigning

them relevance scores to streamline and clarify the decision-making process.

137

138 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

Considering the escalating volume of financial transactions, we presented Graph-Sprints,

crafted for CTDGs. Prioritizing computational efficiency, this technique is adept for real-time

implementations.

Advancing towards a comprehensive solution that overcomes the limitations of Graph-

Sprints, the Deep-Graph-Sprints methodology was created. This approach represents a low-

latency representation learning method, combining the advantages of Graph-Sprints with the

capabilities of deep learning methods.

Comprehensive evaluations across diverse datasets validated the adaptability and potency

of our methodologies. Our proposed methods, namely, Walking-Profiles, Graph-Sprints, and

Deep-Graph-Sprints were subjected to performance assessments, emphasizing their applicability

within and beyond the AML sphere.

In summation, this research contributes to the broader field of graph representation learning.

Moreover, it sets the foundation for future research to enhance these methods and explore their

application in a range of potential areas.

7.1 Main Contributions

1. Creation of a framework for Graph-based Feature Extraction: Recognizing the signifi-

cance of the insights that could be encoded in graph data, we developed the graph feature

engineering framework, named Walking-Profiles (Section 4.2). By leveraging random-walks,

this framework extracts graph-based features, that can be later used in any downstream

system (e.g., ML model).

2. Formulating a Comprehensive ML Pipeline for AML Systems: Addressing the prevalent

issue of false alerts in AML systems, we introduce an ML-centric methodology termed the

triage model (Section 4.3). This model processes alerts generated by pre-defined rules in

AML systems. It assigns scores to these alerts, which then either facilitate the suppression

of low-priority alerts or order the alert queue based on severity. An intrinsic advantage of

our approach is its ability to maintain compliance and offer clear explainability. Since every

alert originates from established rules, the process remains transparent and interpretable.

3. Design of a Real-time Graph feature engineering Approach for CTDGs: With the

increasing volume and velocity of financial transactions, it is imperative to have techniques

7. CONCLUSIONS AND FUTURE WORK 139

that are both robust and efficient. Thus, we developed Graph-Sprints (Section 5.2) a method

optimized for CTDGs. This method minimizes computational overheads and memory

usage, making it suitable for real-time deployment (e.g., in an AML scenario).

4. Design of a Real-time Graph Representation Learning Approach for CTDGs: We

present Deep-Graph-Sprints, a pioneering approach in real-time graph representation

learning, as detailed in Section 6.2. This methodology successfully addresses the high

latency challenges of contemporary deep learning methods while eliminating the need for

manual tuning and domain-specific knowledge required by traditional feature extraction

techniques. Deep-Graph-Sprints combines the principles of Graph-sprints and deep learning,

offering an innovative solution for CTDGs.

5. Rigorous Evaluation of the Proposed Frameworks: To assess the performance and broad

applicability of our approaches, we undertook a comprehensive evaluation phase. We

tested the performance of both triage model (Section 4.4) and Graph-Sprints (Section 5.4.3)

across varied AML datasets. Further, to underscore the adaptability of our methods, we

also evaluated Graph-Sprints on datasets from diverse domains (Section 5.4.2), demonstrat-

ing its utility beyond the AML domain.

7.2 Future Research Directions

In this section, we start by enumerating the limitations of this research, followed by a discussion

on future directions to enhance and expand the utility of our methodologies.

7.2.1 Limitations

Acknowledged limitations include:

• Data Confidentiality: This research utilizes a combination of publicly accessible datasets

and proprietary datasets from Feedzai. Due to privacy constraints, specific details

pertaining to the internal AML datasets cannot be disclosed.

• Homogeneity Assumption: The methodologies proposed herein operate under the

assumption that all nodes and edges within the graph are homogenous, as elaborated in

Section 2.1.1.

140 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

• Algorithmic Scalability: While the algorithm is designed for low latency, evaluating

its performance and efficiency on significantly large graphs (more than a million nodes)

remains a topic future work.

Further research will seek to address these limitations and enhance the framework’s adapt-

ability.

1. Expanding the scope of the Deep-Graph-Sprints framework to more complex graphs, such

as heterogeneous graphs. Given the complexity and richness of data these graphs offer,

exploring such avenue could extend the utility of our frameworks, further details in

Section 6.5.

2. Assessing the scalability and efficiency of Graph-Sprints, the Deep-Graph-Sprints when ap-

plied to larger networks could provide insights into their potential real-world applicability

across various sectors.

3. It is crucial to explore the application of the Graph-Sprints, and Deep-Graph-Sprints frame-

works in diverse tasks, including community detection. Extending their use to other

practical domains, such as fraud detection, is important to fully leverage their potential

and broaden their applicability in graph-based research. This exploration will not only

validate their versatility but also potentially reveal new insights and improvements in

diverse areas of study.

4. Exploration of advanced optimization methods, notably the Adam algorithm, to enhance

or replace Stochastic Gradient Descent (SGD) in the Deep-Graph-Sprints framework. This

strategy is aimed at improving convergence efficiency and strengthening model robustness,

further details in Section 6.5.

5. Enhancement of the Deep-Graph-Sprints model’s responsiveness by making αandβ param-

eters depend on data inputs, further details in Section 6.5.

7. CONCLUSIONS AND FUTURE WORK 141

7.3 Closing Remarks

This Ph.D. is a collaboration between the University of Porto and Feedzai, a leading risk

prevention company.

We hope our work towards detecting money laundering leveraging graphs lays the ground

for more applications of graph-based techniques in the fight against financial crime.

Bibliography

Amr Ahmed, Nino Shervashidze, Shravan Narayanamurthy, Vanja Josifovski, and Alexander J

Smola. Distributed large-scale natural graph factorization. In Proceedings of the 22nd

international conference on World Wide Web, pages 37–48, 2013. [Cited on page 39.]

Nesreen K Ahmed, Ryan A Rossi, John Boaz Lee, Theodore L Willke, Rong Zhou, Xiangnan

Kong, and Hoda Eldardiry. role2vec: Role-based network embeddings. Proc. DLG KDD, pages

1–7, 2019. [Cited on page 40.]

Huseyin Ahmetoglu and Resul Das. A comprehensive review on detection of cyber-attacks:

Data sets, methods, challenges, and future research directions. Internet of Things, page 100615,

2022. [Cited on page 44.]

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:

A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM

SIGKDD international conference on knowledge discovery & data mining, pages 2623–2631, 2019.

[Cited on pages 70, 73, 92, and 124.]

Hagit Attiya and Jennifer Welch. Distributed computing: fundamentals, simulations, and advanced

topics, volume 19. John Wiley & Sons, 2004. [Cited on page 57.]

Lars Backstrom and Jure Leskovec. Supervised random walks: predicting and recommending

links in social networks. In Proceedings of the fourth ACM international conference on Web search

and data mining, pages 635–644, 2011. [Cited on page 21.]

Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark

Siskind. Automatic differentiation in machine learning: a survey. Journal of Marchine Learning

Research, 18:1–43, 2018. [Cited on page 26.]

143

144 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

Smriti Bhagat, Graham Cormode, and S Muthukrishnan. Node classification in social networks.

In Social network data analytics, pages 115–148. Springer, 2011. [Cited on page 21.]

C Bishop. Pattern recognition and machine learning. Springer google schola, 2:531–537, 2006.

[Cited on page 23.]

Bernardo Branco, Pedro Abreu, Ana Sofia Gomes, Mariana SC Almeida, João Tiago Ascensão,

and Pedro Bizarro. Interleaved sequence rnns for fraud detection. In Proceedings of the 26th

ACM SIGKDD international conference on knowledge discovery & data mining, pages 3101–3109,

2020. [Cited on pages 7, 24, and 69.]

Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search engine.

Computer networks and ISDN systems, 30(1-7):107–117, 1998. [Cited on page 46.]

Ramiro Daniel Camino, Radu State, Leandro Montero, and Petko Valtchev. Finding suspicious

activities in financial transactions and distributed ledgers. In 2017 IEEE International Conference

on Data Mining Workshops (ICDMW), pages 787–796. IEEE, 2017. [Cited on page 45.]

Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph representations with global

structural information. In Proceedings of the 24th ACM international on conference on information

and knowledge management, pages 891–900, 2015. [Cited on page 40.]

Moses S Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings of

the thiry-fourth annual ACM symposium on Theory of computing, pages 380–388, 2002. [Cited on

page 86.]

Fenxiao Chen, Yun-Cheng Wang, Bin Wang, and C-C Jay Kuo. Graph representation learning:

a survey. APSIPA Transactions on Signal and Information Processing, 9:e15, 2020. [Cited on

page 40.]

Zhiyuan Chen, Ee Na Teoh, Amril Nazir, Ettikan Kandasamy Karuppiah, Kim Sim Lam,

et al. Machine learning techniques for anti-money laundering (aml) solutions in suspicious

transaction detection: a review. Knowledge and Information Systems, 57(2):245–285, 2018. [Cited

on page 45.]

Tim Cooijmans and James Martens. On the variance of unbiased online recurrent optimization.

arXiv preprint arXiv:1902.02405, 2019. [Cited on pages 26 and 27.]

BIBLIOGRAPHY 145

L da F Costa, Francisco A Rodrigues, Gonzalo Travieso, and Paulino Ribeiro Villas Boas.

Characterization of complex networks: A survey of measurements. Advances in physics,

56(1):167–242, 2007. [Cited on pages 12 and 21.]

Hanjun Dai, Yichen Wang, Rakshit Trivedi, and Le Song. Deep coevolutionary network:

Embedding user and item features for recommendation. arXiv preprint arXiv:1609.03675,

2016. [Cited on page 43.]

Danske Bank Pleads Guilty to Fraud on U.S. Banks in Multi-Billion Dollar Scheme

to Access the U.S. Financial System. Us department of justice, 2022. URL

https://www.justice.gov/opa/pr/danske-bank-pleads-guilty-fraud-

us-banks-multi-billion-dollar-scheme-access-us-financial. Accessed:

24-08-2023. [Cited on page 2.]

Kousik Das, Sovan Samanta, and Madhumangal Pal. Study on centrality measures in social

networks: a survey. Social network analysis and mining, 8(1):13, 2018. [Cited on page 18.]

Resul Das and Mucahit Soylu. A key review on graph data science: The power of graphs in

scientific studies. Chemometrics and Intelligent Laboratory Systems, page 104896, 2023. [Cited on

page 15.]

Deutsche Bank fined $630m over Russia money laundering claims. The guardian,

2017. URL https://www.theguardian.com/business/2017/jan/31/deutsche-

bank-fined-630m-over-russia-money-laundering-claims. Accessed: 24-08-2023.

[Cited on page 2.]

Annette J Dobson and Adrian G Barnett. An introduction to generalized linear models. CRC press,

2018. [Cited on page 70.]

Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. metapath2vec: Scalable representation

learning for heterogeneous networks. In Proceedings of the 23rd ACM SIGKDD international

conference on knowledge discovery and data mining, pages 135–144, 2017. [Cited on page 40.]

Rafał Dreżewski, Jan Sepielak, and Wojciech Filipkowski. System supporting money laundering

detection. Digital Investigation, 9(1):8–21, 2012. [Cited on page 45.]

Rafał Dreżewski, Jan Sepielak, and Wojciech Filipkowski. The application of social network

analysis algorithms in a system supporting money laundering detection. Information Sciences,

295:18–32, 2015. [Cited on page 46.]

https://www.justice.gov/opa/pr/danske-bank-pleads-guilty-fraud-us-banks-multi-billion-dollar-scheme-access-us-financial
https://www.justice.gov/opa/pr/danske-bank-pleads-guilty-fraud-us-banks-multi-billion-dollar-scheme-access-us-financial
https://www.theguardian.com/business/2017/jan/31/deutsche-bank-fined-630m-over-russia-money-laundering-claims
https://www.theguardian.com/business/2017/jan/31/deutsche-bank-fined-630m-over-russia-money-laundering-claims

146 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

Ahmad Naser Eddin, Jacopo Bono, David Aparício, David Polido, Joao Tiago Ascensao, Pedro

Bizarro, and Pedro Ribeiro. Anti-money laundering alert optimization using machine learning

with graphs. arXiv preprint arXiv:2112.07508, 2021. [Cited on page 9.]

Ahmad Naser Eddin, Jacopo Bono, David Aparício, Hugo Ferreira, João Ascensão, Pedro Ribeiro,

and Pedro Bizarro. From random-walks to graph-sprints: a low-latency node embedding

framework on continuous-time dynamic graphs. arXiv preprint arXiv:2307.08433, 2023a. [Cited

on page 9.]

Ahmad Naser Eddin, Jacopo Bono, David Aparício, Hugo Ferreira, João Tiago Ascensão, Pedro

Ribeiro, and Pedro Bizarro. From random-walks to graph-sprints: a low-latency node

embedding framework on continuous-time dynamic graphs. In Proceedings of the Fourth

ACM International Conference on AI in Finance, pages 176–184, 2023b. [Cited on page 9.]

Ahmad Naser Eddin, Jacopo Bono, João Tiago Barriga Negra Ascensão, and Pedro Gustavo

Santos Rodrigues Bizarro. Triaging alerts using machine learning, May 11 2023c. US Patent

App. 17/831,199. [Cited on page 9.]

Hassan Eldeeb, Shota Amashukeli, and Radwa ElShawi. Bigfeat: Scalable and interpretable

automated feature engineering framework. In 2022 IEEE International Conference on Big Data

(Big Data), pages 515–524. IEEE, 2022. [Cited on page 36.]

Hugo Jair Escalante. Automated machine learning—a brief review at the end of the early years.

Automated Design of Machine Learning and Search Algorithms, pages 11–28, 2021. [Cited on

page 37.]

Falih Gozi Febrinanto, Feng Xia, Kristen Moore, Chandra Thapa, and Charu Aggarwal. Graph

lifelong learning: A survey. IEEE Computational Intelligence Magazine, 18(1):32–51, 2023. [Cited

on page 12.]

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric.

In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019. [Cited on pages 92,

113, 114, 122, and 123.]

Zengan Gao. Application of cluster-based local outlier factor algorithm in anti-money laundering.

In 2009 International Conference on Management and Service Science, pages 1–4. IEEE, 2009. [Cited

on page 45.]

BIBLIOGRAPHY 147

Goldman Sachs settles 1MDB scandal with Malaysia for $3.9bn. Bbc news. https://www.bbc.

com/news/business-53529075, 2020. Accessed: 24-08-2023. [Cited on page 2.]

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:

//www.deeplearningbook.org. [Cited on page 25.]

Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. Dyngem: Deep embedding method for

dynamic graphs. arXiv preprint arXiv:1805.11273, 2018. [Cited on page 43.]

Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still

outperform deep learning on typical tabular data? Advances in Neural Information Processing

Systems, 35:507–520, 2022. [Cited on page 23.]

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In

Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data

mining, pages 855–864, 2016. [Cited on page 40.]

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large

graphs. In Advances in neural information processing systems, pages 1024–1034, 2017a. [Cited on

page 42.]

William L Hamilton. Graph representation learning. Synthesis Lectures on Artifical Intelligence

and Machine Learning, 14(3):1–159, 2020. [Cited on page 39.]

William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods

and applications. arXiv preprint arXiv:1709.05584, 2017b. [Cited on pages 5 and 39.]

Tin Kam Ho. Random decision forests. In Proceedings of 3rd international conference on document

analysis and recognition, volume 1, pages 278–282. IEEE, 1995. [Cited on pages 23, 64, and 70.]

Franziska Horn, Robert Pack, and Michael Rieger. The autofeat python library for automated

feature engineering and selection. In Machine Learning and Knowledge Discovery in Databases:

International Workshops of ECML PKDD 2019, Würzburg, Germany, September 16–20, 2019,

Proceedings, Part I, pages 111–120. Springer, 2020. [Cited on page 37.]

Roger A Horn. The hadamard product. In Proc. Symp. Appl. Math, volume 40, pages 87–169,

1990. [Cited on page 108.]

Yining Hu, Suranga Seneviratne, Kanchana Thilakarathna, Kensuke Fukuda, and Aruna

Seneviratne. Characterizing and detecting money laundering activities on the bitcoin network.

arXiv preprint arXiv:1912.12060, 2019. [Cited on page 46.]

https://www.bbc.com/news/business-53529075
https://www.bbc.com/news/business-53529075
http://www.deeplearningbook.org
http://www.deeplearningbook.org

148 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

Yiran Huang, Yexu Zhou, Michael Hefenbrock, Till Riedel, Likun Fang, and Michael Beigl.

Automatic feature engineering through monte carlo tree search. In Joint European Conference on

Machine Learning and Knowledge Discovery in Databases, pages 581–598. Springer, 2022. [Cited

on page 36.]

ING to Pay $900 Million to End Dutch Money Laundering Probe. Bloomberg,

2018. URL https://www.bloomberg.com/news/articles/2018-09-04/ing-to-

pay-784-million-in-fines-to-settle-dutch-criminal-case. Accessed: 24-08-

2023. [Cited on page 2.]

Sergey Ivanov and Evgeny Burnaev. Anonymous walk embeddings. In International conference

on machine learning, pages 2186–2195. PMLR, 2018. [Cited on pages 37, 38, and 55.]

Di Jin, Mark Heimann, Ryan A Rossi, and Danai Koutra. node2bits: Compact time-and attribute-

aware node representations for user stitching. In Joint European Conference on Machine Learning

and Knowledge Discovery in Databases, pages 483–506. Springer, 2019. [Cited on pages 41, 52,

and 88.]

Di Jin, Sungchul Kim, Ryan A Rossi, and Danai Koutra. From static to dynamic node embeddings.

arXiv preprint arXiv:2009.10017, 2020. [Cited on page 43.]

Di Jin, Sungchul Kim, Ryan A Rossi, and Danai Koutra. On generalizing static node embedding

to dynamic settings. In Proceedings of the Fifteenth ACM International Conference on Web Search

and Data Mining, pages 410–420, 2022a. [Cited on page 43.]

Ming Jin, Yuan-Fang Li, and Shirui Pan. Neural temporal walks: Motif-aware representation

learning on continuous-time dynamic graphs. In Advances in Neural Information Processing

Systems, 2022b. [Cited on page 41.]

Ming Jin, Huan Yee Koh, Qingsong Wen, Daniele Zambon, Cesare Alippi, Geoffrey I Webb,

Irwin King, and Shirui Pan. A survey on graph neural networks for time series: Forecasting,

classification, imputation, and anomaly detection. arXiv preprint arXiv:2307.03759, 2023. [Cited

on page 44.]

Michael I Jordan and Tom M Mitchell. Machine learning: Trends, perspectives, and prospects.

Science, 349(6245):255–260, 2015. [Cited on page 22.]

https://www.bloomberg.com/news/articles/2018-09-04/ing-to-pay-784-million-in-fines-to-settle-dutch-criminal-case
https://www.bloomberg.com/news/articles/2018-09-04/ing-to-pay-784-million-in-fines-to-settle-dutch-criminal-case

BIBLIOGRAPHY 149

Martin Jullum, Anders Løland, Ragnar Bang Huseby, Geir Ånonsen, and Johannes Lorentzen.

Detecting money laundering transactions with machine learning. Journal of Money Laundering

Control, 2020. [Cited on pages 45, 71, and 73.]

George Karypis and Vipin Kumar. Metis: A software package for partitioning unstructured

graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices. 1997.

[Cited on page 42.]

Gilad Katz, Eui Chul Richard Shin, and Dawn Song. Explorekit: Automatic feature generation

and selection. In 2016 IEEE 16th International Conference on Data Mining (ICDM), pages 979–984.

IEEE, 2016. [Cited on page 36.]

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and

Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural

information processing systems, 30:3146–3154, 2017. [Cited on pages 23, 50, 64, 70, and 73.]

Liu Keyan and Yu Tingting. An improved support-vector network model for anti-money

laundering. In 2011 Fifth International Conference on Management of e-Commerce and e-Government,

pages 193–196. IEEE, 2011. [Cited on page 45.]

Roheena Q Khan, Malcolm W Corney, Andrew J Clark, and George M Mohay. Transaction

mining for fraud detection in erp systems. Industrial engineering and management systems, 9(2):

141–156, 2010. [Cited on page 4.]

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014. [Cited on page 122.]

Lauri Kovanen, Márton Karsai, Kimmo Kaski, János Kertész, and Jari Saramäki. Temporal

motifs in time-dependent networks. Journal of Statistical Mechanics: Theory and Experiment,

2011(11):P11005, 2011. [Cited on page 19.]

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory in

temporal interaction networks. In Proceedings of the 25th ACM SIGKDD international conference

on Knowledge discovery and data mining. ACM, 2019. [Cited on pages 43, 92, 94, and 123.]

Karel Lannoo and Richard Parlour. Anti-money laundering in the eu: Time to get serious. ceps

task force report 28 jan 2021. UNSPECIFIED, 2021. [Cited on pages 1, 3, 33, and 60.]

Asma S Larik and Sajjad Haider. Clustering based anomalous transaction reporting. Procedia

Computer Science, 3:606–610, 2011. [Cited on page 45.]

150 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,

2015. [Cited on page 24.]

John Boaz Lee, Giang Nguyen, Ryan A Rossi, Nesreen K Ahmed, Eunyee Koh, and Sungchul

Kim. Dynamic node embeddings from edge streams. IEEE Transactions on Emerging Topics in

Computational Intelligence, 5(6):931–946, 2020. [Cited on page 41.]

Xiangfeng Li, Shenghua Liu, Zifeng Li, Xiaotian Han, Chuan Shi, Bryan Hooi, He Huang, and

Xueqi Cheng. Flowscope: Spotting money laundering based on graphs. In AAAI, pages

4731–4738, 2020. [Cited on pages 4 and 46.]

Xujia Li, Yuan Li, Xueying Mo, Hebing Xiao, Yanyan Shen, and Lei Chen. Diga: Guided diffusion

model for graph recovery in anti-money laundering. In Proceedings of the 29th ACM SIGKDD

Conference on Knowledge Discovery and Data Mining, pages 4404–4413, 2023. [Cited on page 47.]

Xurui Li, Xiang Cao, Xuetao Qiu, Jintao Zhao, and Jianbin Zheng. Intelligent anti-money

laundering solution based upon novel community detection in massive transaction networks

on spark. In 2017 fifth international conference on advanced cloud and big data (CBD), pages

176–181. IEEE, 2017. [Cited on pages 3 and 60.]

Xi Liu, Ping-Chun Hsieh, Nick Duffield, Rui Chen, Muhe Xie, and Xidao Wen. Real-time

streaming graph embedding through local actions. In Companion proceedings of the 2019 world

wide web conference, pages 285–293, 2019. [Cited on page 43.]

Xuan Liu and Pengzhu Zhang. A scan statistics based suspicious transactions detection model

for anti-money laundering (aml) in financial institutions. In 2010 International Conference on

Multimedia Communications, pages 210–213. IEEE, 2010. [Cited on page 45.]

Xuan Liu, Pengzhu Zhang, and Dajun Zeng. Sequence matching for suspicious activity detection

in anti-money laundering. In International conference on intelligence and security informatics,

pages 50–61. Springer, 2008. [Cited on page 45.]

Joana Lorenz, Maria Inês Silva, David Aparício, João Tiago Ascensão, and Pedro Bizarro.

Machine learning methods to detect money laundering in the bitcoin blockchain in the

presence of label scarcity. In Proceedings of the first ACM international conference on AI in finance,

pages 1–8, 2020. [Cited on pages 3 and 45.]

BIBLIOGRAPHY 151

Jie Lu, Dianshuang Wu, Mingsong Mao, Wei Wang, and Guangquan Zhang. Recommender

system application developments: a survey. Decision Support Systems, 74:12–32, 2015. [Cited

on page 21.]

Devendra Kumar Luna, Girish Keshav Palshikar, Manoj Apte, and Arnab Bhattacharya. Finding

shell company accounts using anomaly detection. In Proceedings of the ACM India Joint

International Conference on Data Science and Management of Data, pages 167–174, 2018. [Cited on

page 45.]

Scott M Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M Prutkin, Bala Nair,

Ronit Katz, Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. From local explanations to

global understanding with explainable ai for trees. Nature machine intelligence, 2(1):56–67, 2020.

[Cited on page 64.]

Xingrong Luo. Suspicious transaction detection for anti-money laundering. International Journal

of Security and Its Applications, 8(2):157–166, 2014. [Cited on page 45.]

Batta Mahesh. Machine learning algorithms-a review. International Journal of Science and Research

(IJSR).[Internet], 9(1):381–386, 2020. [Cited on page 23.]

Abdul Majeed and Ibtisam Rauf. Graph theory: A comprehensive survey about graph theory

applications in computer science and social networks. Inventions, 5(1):10, 2020. [Cited on

page 12.]

Ilya Makarov, Dmitrii Kiselev, Nikita Nikitinsky, and Lovro Subelj. Survey on graph embeddings

and their applications to machine learning problems on graphs. PeerJ Computer Science, 7:e357,

2021. [Cited on pages 21, 39, and 40.]

Paulo César Gonçalves Marques, Miguel Ramos de Araújo, Bruno Casal Laraña, Nuno

Miguel Lourenço Diegues, Pedro Cardoso Lessa e Silva, and Pedro Gustavo Santos Rodrigues

Bizarro. Semantic-aware feature engineering, March 19 2020. US Patent App. 16/567,761.

[Cited on pages 37 and 69.]

John McDowell and Gary Novis. The consequences of money laundering and financial crime.

Economic Perspectives, 6(2):6–10, 2001. [Cited on pages 2 and 137.]

Tijana Milenković, Weng Leong Ng, Wayne Hayes, and Nataša Pržulj. Optimal network

alignment with graphlet degree vectors. Cancer informatics, 9:CIN–S4744, 2010. [Cited on

page 19.]

152 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

Ron Milo, Shalev Itzkovitz, Nadav Kashtan, Reuven Levitt, Shai Shen-Orr, Inbal Ayzenshtat,

Michal Sheffer, and Uri Alon. Superfamilies of evolved and designed networks. Science, 303

(5663):1538–1542, 2004. [Cited on page 19.]

Marvin Minsky. Steps toward artificial intelligence. Proceedings of the IRE, 49(1):8–30, 1961.

[Cited on page 26.]

Asier Mujika, Florian Meier, and Angelika Steger. Approximating real-time recurrent learning

with random kronecker factors. Advances in Neural Information Processing Systems, 31, 2018.

[Cited on page 27.]

Fatemeh Nargesian, Horst Samulowitz, Udayan Khurana, Elias B Khalil, and Deepak S Turaga.

Learning feature engineering for classification. In Ijcai, volume 17, pages 2529–2535, 2017.

[Cited on page 36.]

Giang Hoang Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed, Eunyee Koh, and

Sungchul Kim. Continuous-time dynamic network embeddings. In Companion proceedings of

the the web conference 2018, pages 969–976, 2018. [Cited on page 41.]

Nguyen Thi Uyen Nhi, Thanh Manh Le, et al. A model of semantic-based image retrieval

using c-tree and neighbor graph. International Journal on Semantic Web and Information Systems

(IJSWIS), 18(1):1–23, 2022. [Cited on page 39.]

Catarina Oliveira, João Torres, Maria Inês Silva, David Aparício, João Tiago Ascensão, and

Pedro Bizarro. Guiltywalker: Distance to illicit nodes in the bitcoin network. arXiv preprint

arXiv:2102.05373, 2021. [Cited on pages 45, 63, 71, 72, and 87.]

Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. Asymmetric transitivity

preserving graph embedding. In Proceedings of the 22nd ACM SIGKDD international conference

on Knowledge discovery and data mining, pages 1105–1114, 2016. [Cited on page 40.]

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social

representations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 701–710, 2014. [Cited on pages 40 and 47.]

Xiafei Qiu, Wubin Cen, Zhengping Qian, You Peng, Ying Zhang, Xuemin Lin, and Jingren

Zhou. Real-time constrained cycle detection in large dynamic graphs. Proceedings of the VLDB

Endowment, 11(12):1876–1888, 2018. [Cited on pages 4 and 47.]

BIBLIOGRAPHY 153

Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. struc2vec: Learning node

representations from structural identity. In Proceedings of the 23rd ACM SIGKDD international

conference on knowledge discovery and data mining, pages 385–394, 2017. [Cited on pages 21

and 40.]

Pedro Ribeiro. Efficient and scalable algorithms for network motifs discovery. PhD thesis, PhD thesis,

University of Porto, 2011. [Cited on page 17.]

Pedro Ribeiro and Fernando Silva. Discovering colored network motifs. In Complex Networks V,

pages 107–118. Springer, 2014. [Cited on page 19.]

Pedro Ribeiro, Pedro Paredes, Miguel EP Silva, David Aparicio, and Fernando Silva. A survey on

subgraph counting: concepts, algorithms, and applications to network motifs and graphlets.

ACM Computing Surveys (CSUR), 54(2):1–36, 2021. [Cited on pages 19 and 41.]

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael

Bronstein. Temporal graph networks for deep learning on dynamic graphs. In ICML 2020

Workshop on Graph Representation Learning, 2020. [Cited on pages 14, 43, 92, 94, 111, and 123.]

Hooman Peiro Sajjad, Andrew Docherty, and Yuriy Tyshetskiy. Efficient representation learning

using random walks for dynamic graphs. arXiv preprint arXiv:1901.01346, 2019. [Cited on

page 41.]

Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. Dysat: Deep neural

representation learning on dynamic graphs via self-attention networks. In Proceedings of the

13th international conference on web search and data mining, pages 519–527, 2020. [Cited on

page 43.]

Purnamrita Sarkar and Andrew W Moore. Fast nearest-neighbor search in disk-resident graphs.

In Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data

mining, pages 513–522, 2010. [Cited on page 42.]

David Savage, Qingmai Wang, Pauline Chou, Xiuzhen Zhang, and Xinghuo Yu. Detection

of money laundering groups using supervised learning in networks. arXiv preprint

arXiv:1608.00708, 2016. [Cited on page 46.]

Qitao Shi, Ya-Lin Zhang, Longfei Li, Xinxing Yang, Meng Li, and Jun Zhou. Safe: Scalable

automatic feature engineering framework for industrial tasks. In 2020 IEEE 36th International

Conference on Data Engineering (ICDE), pages 1645–1656. IEEE, 2020. [Cited on page 36.]

154 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

Vahid Shirbisheh. Local graph embeddings based on neighbors degree frequency of nodes.

arXiv preprint arXiv:2208.00152, 2022. [Cited on page 38.]

Amr Ehab Muhammed Shokry, Mohammed Abo Rizka, and Nevine Makram Labib. Counter

terrorism finance by detecting money laundering hidden networks using unsupervised

machine learning algorithm. In International Conferences ICT, Society, and Human Beings, 2020.

[Cited on page 45.]

Maria Inês Silva, David Oliveira Aparício, Ahmad Naser Eddin, Jacopo Bono, João Tiago

Barriga Negra Ascensão, and Pedro Gustavo Santos Rodrigues Bizarro. Graph traversal

for measurement of fraudulent nodes, June 23 2022. US Patent App. 17/553,265. [Cited on

page 9.]

Standard Chartered fined $1.1bn for money-laundering and sanctions breaches. The guardian,

2019. URL https://www.theguardian.com/business/2019/apr/09/standard-

chartered-fined-money-laundering-sanctions-breaches. Accessed: 24-08-2023.

[Cited on page 2.]

Xiaobing Sun, Jiabao Zhang, Qiming Zhao, Shenghua Liu, Jinglei Chen, Ruoyu Zhuang, Huawei

Shen, and Xueqi Cheng. Cubeflow: Money laundering detection with coupled tensors. In

PAKDD (1), pages 78–90. Springer, 2021. [Cited on page 46.]

Richard Stuart Sutton. Temporal credit assignment in reinforcement learning. University of

Massachusetts Amherst, 1984. [Cited on page 26.]

Corentin Tallec and Yann Ollivier. Unbiased online recurrent optimization. arXiv preprint

arXiv:1702.05043, 2017. [Cited on page 27.]

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale

information network embedding. In Proceedings of the 24th international conference on world

wide web, pages 1067–1077, 2015. [Cited on pages 21 and 40.]

Jun Tang and Jian Yin. Developing an intelligent data discriminating system of anti-money

laundering based on svm. In 2005 International conference on machine learning and cybernetics,

volume 6, pages 3453–3457. IEEE, 2005. [Cited on page 45.]

The united nations office of drugs and crime. United nations, 2020. URL https://www.unodc.

org/unodc/en/money-laundering/laundrycycle.html. [Cited on page 2.]

https://www.theguardian.com/business/2019/apr/09/standard-chartered-fined-money-laundering-sanctions-breaches
https://www.theguardian.com/business/2019/apr/09/standard-chartered-fined-money-laundering-sanctions-breaches
https://www.unodc.org/unodc/en/money-laundering/laundrycycle.html
https://www.unodc.org/unodc/en/money-laundering/laundrycycle.html

BIBLIOGRAPHY 155

Milind Tiwari, Adrian Gepp, and Kuldeep Kumar. A review of money laundering literature: the

state of research in key areas. Pacific Accounting Review, 2020. [Cited on page 45.]

Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan. Fast random walk with restart and its

applications. In Sixth international conference on data mining (ICDM’06), pages 613–622. IEEE,

2006. [Cited on page 42.]

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information

processing systems, 30, 2017. [Cited on page 109.]

Adilson Vital Jr, Filipi N Silva, and Diego R Amancio. Comparing biased random walks in graph

embedding and link prediction. arXiv preprint arXiv:2308.03636, 2023. [Cited on page 42.]

Dominik Wagner. Latent representations of transaction network graphs in continuous vector

spaces as features for money laundering detection. SKILL 2019-Studierendenkonferenz Informatik,

2019. [Cited on page 47.]

Hongwei Wang, Hongyu Ren, and Jure Leskovec. Entity context and relational paths for

knowledge graph completion. arXiv preprint arXiv:2002.06757, 2020. [Cited on page 21.]

Lili Wang, Chenghan Huang, Weicheng Ma, Ruibo Liu, and Soroush Vosoughi. Hyperbolic node

embedding for temporal networks. Data Mining and Knowledge Discovery, 35(5):1906–1940,

2021a. [Cited on page 41.]

Peng Wang, BaoWen Xu, YuRong Wu, and XiaoYu Zhou. Link prediction in social networks: the

state-of-the-art. Science China Information Sciences, 58(1):1–38, 2015. [Cited on page 21.]

Xingqi Wang and Guang Dong. Research on money laundering detection based on improved

minimum spanning tree clustering and its application. In 2009 Second international symposium

on knowledge acquisition and modeling, volume 2, pages 62–64. IEEE, 2009. [Cited on page 45.]

Xuhong Wang, Ding Lyu, Mengjian Li, Yang Xia, Qi Yang, Xinwen Wang, Xinguang Wang, Ping

Cui, Yupu Yang, Bowen Sun, et al. Apan: Asynchronous propagation attention network for

real-time temporal graph embedding. In Proceedings of the 2021 international conference on

management of data, pages 2628–2638, 2021b. [Cited on pages 43 and 96.]

Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. Inductive representation

learning in temporal networks via causal anonymous walks. arXiv preprint arXiv:2101.05974,

2021c. [Cited on page 41.]

156 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

Mark Weber, Jie Chen, Toyotaro Suzumura, Aldo Pareja, Tengfei Ma, Hiroki Kanezashi, Tim

Kaler, Charles E Leiserson, and Tao B Schardl. Scalable graph learning for anti-money

laundering: A first look. arXiv preprint arXiv:1812.00076, 2018. [Cited on pages 3 and 33.]

Mark Weber, Giacomo Domeniconi, Jie Chen, Daniel Karl I Weidele, Claudio Bellei, Tom

Robinson, and Charles E Leiserson. Anti-money laundering in bitcoin: Experimenting with

graph convolutional networks for financial forensics. arXiv preprint arXiv:1908.02591, 2019.

[Cited on page 45.]

Ronald J Williams and Jing Peng. An efficient gradient-based algorithm for on-line training of

recurrent network trajectories. Neural computation, 2(4):490–501, 1990. [Cited on page 27.]

Ronald J Williams and David Zipser. A learning algorithm for continually running fully recurrent

neural networks. Neural computation, 1(2):270–280, 1989. [Cited on page 27.]

Wei Wu, Bin Li, Chuan Luo, and Wolfgang Nejdl. Hashing-accelerated graph neural networks

for link prediction. In Proceedings of the Web Conference 2021, pages 2910–2920, 2021. [Cited on

page 43.]

Yu Wu, Xin Xi, and Jieyue He. Afgsl: Automatic feature generation based on graph structure

learning. Knowledge-Based Systems, 238:107835, 2022. [Cited on page 38.]

Feng Xia, Jiaying Liu, Hansong Nie, Yonghao Fu, Liangtian Wan, and Xiangjie Kong. Random

walks: A review of algorithms and applications. IEEE Transactions on Emerging Topics in

Computational Intelligence, 4(2):95–107, 2019. [Cited on page 42.]

Reynold S Xin, Joseph E Gonzalez, Michael J Franklin, and Ion Stoica. Graphx: A resilient

distributed graph system on spark. In First international workshop on graph data management

experiences and systems, pages 1–6, 2013. [Cited on page 57.]

Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Inductive

representation learning on temporal graphs. arXiv preprint arXiv:2002.07962, 2020. [Cited on

page 43.]

Li Xu, Jimmy SJ Ren, Ce Liu, and Jiaya Jia. Deep convolutional neural network for image

deconvolution. In Advances in neural information processing systems, pages 1790–1798, 2014.

[Cited on page 24.]

Carl Yang, Aditya Pal, Andrew Zhai, Nikil Pancha, Jiawei Han, Charles Rosenberg, and Jure

Leskovec. Multisage: Empowering gcn with contextualized multi-embeddings on web-scale

BIBLIOGRAPHY 157

multipartite networks. In Proceedings of the 26th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, pages 2434–2443, 2020. [Cited on page 42.]

Dingqi Yang, Bingqing Qu, Jie Yang, Liang Wang, and Philippe Cudre-Mauroux. Streaming

graph embeddings via incremental neighborhood sketching. IEEE Transactions on Knowledge

and Data Engineering, 35(5):5296–5310, 2022. [Cited on page 43.]

Yan Yang, Bin Lian, Lian Li, Chen Chen, and Pu Li. Dbscan clustering algorithm applied to

identify suspicious financial transactions. In 2014 International Conference on Cyber-Enabled

Distributed Computing and Knowledge Discovery, pages 60–65. IEEE, 2014. [Cited on page 45.]

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure

Leskovec. Graph convolutional neural networks for web-scale recommender systems. In

Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining, pages 974–983, 2018. [Cited on pages 42 and 44.]

Jianyu Zhang, Françoise Fogelman-Soulié, and Christine Largeron. Towards automatic complex

feature engineering. In Web Information Systems Engineering–WISE 2018: 19th International

Conference, Dubai, United Arab Emirates, November 12-15, 2018, Proceedings, Part II 19, pages

312–322. Springer, 2018. [Cited on page 37.]

Jianyu Zhang, Jianye Hao, Françoise Fogelman-Soulié, and Zan Wang. Automatic feature

engineering by deep reinforcement learning. In Proceedings of the 18th International Conference

on Autonomous Agents and MultiAgent Systems, pages 2312–2314, 2019. [Cited on page 36.]

Jianyu Zhang, Jianye Hao, and Françoise Fogelman-Soulié. Cross-data automatic feature

engineering via meta-learning and reinforcement learning. In Advances in Knowledge Discovery

and Data Mining: 24th Pacific-Asia Conference, PAKDD 2020, Singapore, May 11–14, 2020,

Proceedings, Part I 24, pages 818–829. Springer, 2020a. [Cited on page 36.]

Yan Zhang and Peter Trubey. Machine learning and sampling scheme: An empirical study

of money laundering detection. Computational Economics, 54(3):1043–1063, 2019. [Cited on

page 45.]

Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep learning on graphs: A survey. IEEE Transactions

on Knowledge and Data Engineering, 34(1):249–270, 2020b. [Cited on page 12.]

158 ANTI-MONEY LAUNDERING USING GRAPH TECHNIQUES

Vincent W Zheng. Engineering graph features via network functional blocks. In Proceedings of

the 27th International Joint Conference on Artificial Intelligence, pages 5749–5753, 2018. [Cited on

page 37.]

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng

Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and

applications. AI open, 1:57–81, 2020. [Cited on page 12.]

Qi Zhu, Hao Wei, Bunyamin Sisman, Da Zheng, Christos Faloutsos, Xin Luna Dong, and Jiawei

Han. Collective multi-type entity alignment between knowledge graphs. In Proceedings of The

Web Conference 2020, pages 2241–2252, 2020. [Cited on pages 42 and 44.]

	Acknowledgements
	Abstract
	Resumo
	Contents
	List of Tables
	List of Figures
	List of Algorithms
	Glossary
	1 Introduction
	1.1 Background and Motivation
	1.2 Research Contributions
	1.3 Research Context
	1.4 Thesis Organization
	1.5 Bibliographic Note

	2 Background
	2.1 Fundamentals of Graphs
	2.1.1 Graph Concepts and Terminology
	2.1.2 Graph Construction: Key Decisions and Their Impact
	2.1.3 Graph Measures
	2.1.4 Graph Analysis Tasks

	2.2 Fundamentals of ML
	2.2.1 Classification of ML Algorithms
	2.2.2 Learning Mechanisms in Deep Learning

	2.3 Incorporating Graph Data into ML Models
	2.3.1 Graph Feature Engineering
	2.3.2 Graph Representation Learning

	2.4 Fundamentals of Money Laundering
	2.4.1 Phases of Money Laundering: An Overview
	2.4.2 Traditional AML Solutions

	3 Related Work
	3.1 Evolution of Feature Engineering
	3.1.1 Feature Engineering for Tabular Data
	3.1.2 Feature Engineering for Graph Data
	3.1.3 Connecting Tabular and Graph Data Methods

	3.2 Graph Representation Learning
	3.2.1 Matrix Factorization-Based Techniques for Graph Representation
	3.2.2 Random-walk Based Techniques
	3.2.3 K-hop Neighborhood Based Methods

	3.3 Advancements in AML Strategies
	3.3.1 AML Solutions Leveraging ML
	3.3.2 ML-Enhanced AML Solutions Using Graphs

	4 Walking-Profiles: A Framework for Graph Feature Engineering
	4.1 Motivation
	4.2 Method
	4.2.1 Walking-Profiles: A Random-walk-based Feature Extraction Engine
	4.2.2 Scalable Walking-Profiles for Large-Scale Data Processing

	4.3 Triage Model: Integrating Walking-Profiles with AML
	4.3.1 Graph Construction
	4.3.2 Customising Walking-Profiles for AML
	4.3.3 Triage Model

	4.4 Experiments & Results
	4.4.1 Data
	4.4.2 Experimental Setup
	4.4.3 Triage Model using Entity-centric Features
	4.4.4 Enriching Triage Model with Neighborhood-centric Features
	4.4.5 Enriching Triage Model with Walking-Profiles Features
	4.4.6 Assessing Sliding Window Effects on Triage Model Performance
	4.4.7 Interpreting the Triage Model Through TreeSHAP

	4.5 Summary

	5 Graph Sprints: A Method for Low-latency Graph Feature Engineering
	5.1 Random-walk Based Features
	5.2 Method
	5.2.1 Assumptions
	5.2.2 Streaming Histograms as Node Embeddings
	5.2.3 Streaming Community Features
	5.2.4 GuiltyWalker Features in Streaming Context
	5.2.5 Reducing Memory Footprint

	5.3 Graph-Sprints Theoretical Analysis
	5.3.1 Equivalence between Graph-Sprints and Random-walks
	5.3.2 Graph-Sprints: Complexity Analysis

	5.4 Experiments & Results
	5.4.1 Experimental Setup
	5.4.2 Public Datasets Experiments
	5.4.3 AML experiments

	5.5 Summary

	6 Deep-Graph-Sprints: Low-latency Node Representation Learning method
	6.1 Graph-Sprints Recap and Limitations
	6.2 Method
	6.2.1 Architecture and Workflow
	6.2.2 Deep-Graph-Sprints Approaches
	6.2.3 Learning Mechanisms in Deep-Graph-Sprints
	6.2.4 Gradient Calculations in Deep-Graph-Sprints
	6.2.5 Parameter Updating Mechanisms in Deep-Graph-Sprints

	6.3 Experiments and Results
	6.3.1 Experimental Setup
	6.3.2 Public Datasets Experiments
	6.3.3 AML Experiments

	6.4 Summary
	6.5 Future Work

	7 Conclusions and future work
	7.1 Main Contributions
	7.2 Future Research Directions
	7.2.1 Limitations

	7.3 Closing Remarks

	Bibliography

