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“The pursuit of knowledge is an ongoing process of doubt and inquiry. By subjecting our
beliefs to rigorous scrutiny, we can uncover errors, refine our understanding, and approach closer

to the truth. Doubt is not an obstacle but a means to attain certainty.”

René Descartes
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Applying Machine Learning to Intelligent Chatbot for Preventive Care

by Sofia MALPIQUE

This dissertation aims to enhance preventive care with two primary contributions.
Firstly, it constructs a machine learning model that, when integrated into a medical chat-
bot, can predict the likelihood of hospitalization for COVID-19 patients in home quaran-
tine, thereby facilitating early identification and improving patient care.

The research focuses on utilizing straightforward patient data, such as age, sex, symp-
toms, and underlying medical conditions, to construct a robust classification model. It
begins with the careful selection of an appropriate COVID-19 patient dataset, taking into
consideration factors like dataset size and data completeness.

An exploratory data analysis (EDA) aids in understanding the dataset, including ex-
amining relationships between variables and hospitalization. Cluster analysis reveals dis-
tinctive patterns in symptoms and comorbidities.

To enhance model performance, feature selection techniques are employed, showcas-
ing the complexity of the dataset. Given a class imbalance with only 3.9% positive cases,
techniques like random under-sampling, SMOTE, and SMOTEENN are applied to boost
model effectiveness.

Hyperparameter tuning via grid search optimizes the selected models, and their per-
formance is assessed using metrics such as G-means, F1-Score, and ROC-AUC on an in-
dependent test dataset.

The results underscore the substantial impact of sampling techniques, with Gradi-

ent Boosting demonstrating exceptional performance. The combined effect of addressing
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class imbalance and employing feature selection techniques markedly improves model

efficacy.
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Aplicacao de Machine Learning a um Chatbot Inteligente para Cuidados Preventivos

por Sofia MALPIQUE

Esta dissertagdo contribui para o campo de preventive care através do desenvolvimento
de um modelo de Machine Learning (ML) para um chatbot, que prevé a necessidade de
hospitalizagdo de doentes COVID-19 durante a quarentena. Esta funcionalidade contribui
para a melhoria do atendimento de doentes COVID-19 e para a alocagdo de diferentes
recursos.

O modelo desenvolvido utiliza técnicas de inteligéncia artificial (IA) para analisar
varidveis de dados rudimentares - idade, sexo, sintomas, comorbidades - a fim de esta-
belecer um sistema de classificagdo robusto.

A pesquisa inicial envolveu a identificacdo de datasets adequados de doentes COVID-
19, considerando certas caracteristicas como tamanho e quantidade de valores nulos. O
dataset escolhido impulsionou a andlise subsequente e o desenvolvimento do modelo.

O estudo comegou com uma andlise exploratéria de dados (AED) para compreender o
dataset. As varidveis foram analisadas individualmente, juntamente com sua relacdo com
a varidvel target. Foi também realizada uma andlise com uso de clusters para estudar o
agrupamento de doentes COVID-19, que revelou padrdes de sintomas e comorbidades.

Foram empregues técnicas de feature selection através de modelos baseados em arvores,
filtrando assim inicialmente o dataset. Para lidar com o desbalanceamento de classes - a
classe positiva era apenas 3,9% - foram aplicadas técnicas de re-amostragem como ran-
dom undersampling, SMOTE e SMOTEENN, que contribuiram para um dataset mais equi-

librado, melhorando, desta forma, a robustez do modelo.
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A grid-search facilitou o tunning de hiperparametros para os modelos considerados.
Os models, depois de optimizados, foram avaliados usando métricas como G-means, F1-
Score e AUC-ROC num festset independente.

Os resultados destacaram o impacto das técnicas de re-amostragem. RUS e SMOTE-
ENN tiveram um desempenho consideravelemnte melhor. Destaca-se o modelo Gradient
Boosting (GB) nas diferentes métricas e versdes do dataset. As descobertas realgam a im-
portancia de abordar o desbalanceamento de classes e de empregar técnicas de feature

selection para uma melhor eficdcia do modelo.
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Chapter 1

Introduction

This chapter lays the foundation for the research presented in this dissertation, which
aims to contribute to the field of preventive care using artificial intelligence (Al) tech-
niques. It begins by providing the motivation behind the study, highlighting the im-
portance of preventive care and the potential of intelligent chatbots in healthcare. Sub-
sequently, the context of the research is established. Next, the research objectives are
outlined, which include contributing to the field with insights gained from the available
data and also developing a classification model to predict the need for hospitalization of
COVID-19 patients. Finally, the chapter concludes with a brief overview of the structure
and outline of the subsequent chapters, providing the reader with a clear roadmap of the

dissertation’s content.

1.1 Motivation

The COVID-19 pandemic has not only worsened the existing challenges but also shed
light on the lasting issue of poor resource management within hospitals. Healthcare sys-
tems worldwide have been quite burdened, struggling to meet the overwhelming de-
mand for medical care as the cases continued to surge [1]. Despite these pre-existing
challenges, healthcare systems persistently strive to adapt and respond to the crisis, work-
ing tirelessly to ensure patients receive the necessary care during these challenging times
[2]. Furthermore, in response to the pressing need for improved resource management,
the COVID-19 pandemic has reinforced the significance of implementing remote patient

monitoring (RPM) systems [3].
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Over the past few years, these systems have provided a new solution by enabling
healthcare providers to remotely monitor and care for patients, helping to alleviate the
strain on hospital resources, while offering patients the ability to safely transition to their
homes. Thereby ensuring they receive appropriate support and providing a consider-
able degree of flexibility and convenience in managing their health. With RPM systems,
individuals can experience a greater sense of comfort and autonomy while ensuring con-
tinuous care [4]. RPM systems leverage digital monitoring tools, and they can be further
improved through the integration of Al techniques [5, 6]. These tools may include digi-
tal oximeters and thermometers, as illustrated in the iCare4NextG project’s use case (ex-
plained in Section 1.2). Al integration with digital monitoring tools enables the early de-
tection of potential health issues, offering significant benefits, such as the ability to predict
hospitalization needs in COVID-19 patients before their conditions deteriorate [7]. This

dissertation demonstrates the application of machine learning (ML) within RPM systems.

1.2 Context

The iCare4NextG project focuses on advancing healthcare through the integration of inno-
vative technologies. It aims to improve RPM through the integration of digital solutions.
The project aims to enable proactive healthcare management by employing digital mon-
itoring tools and cutting-edge Al techniques. This approach is intended to create a more
efficient and responsive healthcare system by anticipating health concerns, optimizing
patient care, and contributing to improved patient outcomes and resource utilization [8].

As part of its broader objectives, the iCare4NextG project includes the development of
an intelligent chatbot for preventive care. This chatbot is designed to assist in achieving
the project’s tasks and goals. With the incorporation of ML and other Al capabilities, the
chatbot aims to provide insights, predictions, and support to both patients and healthcare
providers, precisely when needed. The project encompasses various use cases, one of
which involves the monitoring of COVID-19 patients. While COVID-19 monitoring is a
specific application within the project, iCare4NextG’s aspirations extend beyond this use
case. The project’s broader mission is to reshape remote patient management in health-
care through technological innovation, with the intelligent chatbot and RPM framework
playing core roles in achieving this transformation [9].

Typically, RPM systems operate in settings where collecting more complex data isn’t

always feasible due to the absence of a hospital environment or specialized tools [10]. So
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there is a preference for an RPM system that excels in its performance by relying only on
simple data, especially in cases like COVID-19 patients who are sent home without access
to lab results or specialized medical tools. Simple data includes basic information indi-
viduals can provide about themselves, for instance, age, sex, symptoms experienced, and
comorbidities. When Al techniques are applied to this information, the derived insights
can hold significant value for healthcare providers when making decisions about the pa-
tient’s condition, even in home settings with limited medical resources [11]. Leveraging
this information, RPM systems can proficiently monitor patient health, facilitate timely

interventions, and elevate the overall quality of healthcare delivery [12].

1.3 Objectives

The objective of this dissertation is to contribute to the field of preventive care by devel-
oping a tool that can improve RPM systems. This broader objective can be sectioned into
smaller goals, presented in the natural order of events.

The initial phase involves data exploration and comprehension. This deep dive into
the data is essential to gain a thorough understanding of COVID-19 patients’ characteris-
tics and outcomes. It provides insights that will contribute to subsequent stages of the re-
search. Building upon the insights obtained from the data exploration, the next step is the
construction of a predictive classifier. This classifier’s primary role is to effectively predict
whether a COVID-19 patient, who is under home quarantine, requires hospitalization. It
is supposed to leverage simple and readily available data, mirroring the information typ-
ically accessible to patients in their home environments. This construction phase aligns
with the broader goal of enhancing the efficiency and reliability of an RPM system.

The predictive model aims to inspire confidence in patients undergoing home quar-
antine. It seeks to alleviate concerns and ensure patient comfort during this challenging
period, by delivering robust predictive capabilities. Subsequently, such a model is in-
tended to be integrated as a feature into an intelligent chatbot designed for preventive
care. This integration represents a pivotal improvement to the chatbot’s functionality, fur-
ther aligning with the project’s objectives. However, it's important to note that this thesis
primarily focuses on constructing and refining the predictive model, while the integration
process into the chatbot falls outside the current study’s scope.

Additionally, this research commits itself to maximizing the application of informa-

tion collected from the working dataset. This data-driven approach not only enriches the
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understanding of patient conditions but also contributes to informed decision-making in

the realm of preventive care, by reveling insights and patterns through the exploratory

phase. Each of these steps in the research process plays an important role in achieving the

broader objective of enhancing patient safety and well-being through an advanced RPM

system. In this way, the research significantly contributes to the field of preventive care.

1.4

Outline of the Dissertation

. Chapter 1: Introduction - Overview of the research work and its goals. Explanation

of the motivation behind developing an ML model for predicting hospitalization.

Specific objectives and significance of the study in preventive care.

Chapter 2: State of the Art - Extensive review of the definitions of the necessary
concepts related to the present study. Examination of existing ML applications
in healthcare. Overview of previous studies related to predicting hospitalization
in COVID-19 patients. Identification of the types of publicly available datasets
COVID-19 related.

Chapter 3: Datasets - Information regarding datasets pertaining to COVID-19 pa-
tients, including origins, attributes, and data quality. Explanation of data prepro-
cessing procedures, containing the treatment of missing values and identification of

outliers. A concise overview of the refined dataset tailored for the predictive model.

Chapter 4: Exploratory Data Analysis (EDA) - Comprehensive analysis of each
variable in the dataset. Examination of relationships between variables and the tar-
get variable (hospitalization indication). Results of cluster analysis revealing group-

ing patterns of symptoms and comorbidities.

Chapter 5: Hospitalization - A Classification Task - Development of the predictive
model for hospitalization as a classification task. Application of feature selection
techniques to identify influential variables. Discussion of sampling techniques to

address class imbalance. Summary of the selected predictive model architecture.

Chapter 6: Conclusion - Summary of key findings and implications of the research.
Reiteration of significant contributions of the intelligent chatbot in preventive care.
Discussion of limitations encountered during the research. Outline of future re-

search directions and potential enhancements to the predictive model.



Chapter 2

State of the Art

In this chapter, the following sections will explain the key concepts necessary to under-
stand the subsequent discussions. The groundwork will be laid for a better understand-
ing of the state-of-the-art RPM technologies, health chatbots, ML techniques behind these
types of technologies, and COVID-19-related datasets. Existing studies and research on
these topics will be examined in each of the areas mentioned before. The advantages and
disadvantages of various approaches will be examined, and their contribution to advanc-

ing the healthcare system will be evaluated.

2.1 Concepts & Definitions

Al is a field of computer science dedicated to creating intelligent systems. These systems
are designed to perform tasks that usually require human intelligence, such as learning,
reasoning, problem-solving, and decision-making. A significant component of Al is ML,
centered around developing algorithms and models that empower computers to learn
from data and make predictions or take actions without being explicitly programmed.
This learning process involves identifying patterns and insights from data to enhance
performance over time [13].

In the realm of ML, there are two main types: supervised learning and unsupervised
learning. In supervised learning, the model is trained on labeled examples, learning to
generalize patterns from the labeled data to make predictions or classifications on unseen
data (explained in more detail in upcoming paragraphs). On the other hand, unsuper-

vised learning involves the model learning patterns and relationships in the data without
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explicit labels. This type of learning helps discover hidden structures or groupings within
the data [14].

Table 2.1 compares supervised and unsupervised learning based on several key char-
acteristics, including the type of input data, the type of output data, the overall goal, some

examples of tasks, and some common algorithms used for each approach [15-17].

TABLE 2.1: Comparison of Supervised and Unsupervised Learning

Supervised Learning Unsupervised Learning
Input data Labeled data Unlabeled data
Output data Predicted output No output
Goal Predictive modeling Discovering patterns and relationships
Examples Classification, regression Clustering, anomaly detection
Common algorithms | Naive Bayes, SVM, Decision Trees | K-Means, PCA, DBSCAN

The focus of this dissertation will be on classification, regression, and clustering, even
though various other ML tasks exist [18].

Classification, as a supervised learning task, entails the ML model learning to catego-
rize input data into predefined classes or categories. It establishes a mapping between
the data and corresponding class labels. It's important to note that classification can be
categorized into two main types: binary classification, where data is sorted into two dis-
tinct classes, and multi-class classification, which expands to multiple categories. For
instance, binary classification can be exemplified by the task of distinguishing between
spam and non-spam emails, while multi-class classification involves categorizing images
into classes like cats, dogs, and birds [15].

On the other hand, regression represents another dimension of supervised learning,
with a focus on predicting continuous numerical values. In regression, the model learns
to establish relationships between input features and output values, often used for tasks
like predicting house prices based on attributes such as square footage, bedroom count,
and location [17].

Unlike classification, clustering does not rely on predefined classes but rather aims to
reveal underlying patterns within the data. This is why Clustering is considered unsu-
pervised learning. This technique involves grouping similar data points together based
on their inherent characteristics. This proves particularly valuable for discovering specific

segments or identifying similarities among data points [19].
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In essence, these three tasks form the foundation of ML empowering diverse appli-
cations. Classification assigns data to classes, regression predicts continuous values, and
clustering uncovers hidden relationships.

Now, transitioning from discussing the fundamental aspects of ML tasks to the im-
portance of data, it is necessary to understand how these ML tasks rely on data for their
functionality. It all starts with a dataset (or multiple), which is a collection of organized
information, either structured or unstructured, used for training and testing ML models.
It consists of input details along with corresponding output labels or target values [18].

As data is essential for training an ML model and assessing its performance, typically,
a division of 70:30 or 80:20 is made, where the larger portion, referred to as training data,
is used to teach ML models, while the smaller part goes for testing. During training,
models learn from input features and their known corresponding output labels to make
accurate predictions or classifications. The smaller segment, known as test data, remains
unused during training. Instead, it’s used to assess the trained model’s accuracy and its
ability to perform well on new, unseen data. This process ensures that the model doesn’t
just memorize the training data but generalizes its learnings effectively [20].

Assessing how well a trained model performs on unseen data is an indispensable
step in the ML process, known as model evaluation. The choice of evaluation metrics
depends on the type of ML task at hand. In classification tasks, commonly used metrics
include accuracy, precision, sensitivity, specificity, F1-Score, G-Mean, and area under the
ROC curve (AUC-ROC). These metrics help people understand how well the model can
distinguish between different categories while managing errors. We will provide detailed
definitions and explanations of each metric, starting with individual metrics and then
moving on to composite metrics. These definitions are drawn from the book "Machine
Learning: A Probabilistic Perspective” by Kevin P. Murphy [21].

The basic concepts are:

True Positives (TP) represent the correctly predicted positive instances.

True Negatives (TN) represent the correctly predicted negative instances.

False Positives (FP) represent the instances that were predicted as positive but were

actually negative.

False Negatives (FN) represent the instances that were predicted as negative but

were actually positive.
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Accuracy measures the proportion of correct predictions made by the model out of all
the predictions it made. It provides an overall view of how well the model is perform-
ing in terms of both true positives and true negatives. The accuracy formula is given as

follows:
TP + TN

A —
CCUracy = Tp y TN + FP + EN

@)

Precision measures the proportion of positive predictions made by the model that are
actually correct. It provides insights into the model’s ability to avoid false positives, which

can be crucial in scenarios where false alarms have significant consequences (Equation 2).

TP

TP + FP @

Precision =

Sensitivity measures the proportion of actual positive cases that are correctly identified
by the model. It helps assess the model’s effectiveness in capturing all positive instances
and minimizing false negatives, which is important when missing positive cases can lead

to severe consequences (Equation 3).

TP

Specificity measures the proportion of actual negative cases that are correctly identi-
fied by the model. It’s especially valuable when correctly identifying negative cases is

essential, such as in medical diagnostics (Equation 4).

T

The F1-Score combines Precision and Sensitivity into a single value. It offers a bal-
anced assessment of the model’s ability to minimize both false positives and false nega-
tives. The harmonic mean takes into account both precision and recall, making it useful
when there’s a need to balance these aspects (Equation 5).

2 x (Precision x Sensitivity)

F1-Score = ®)

(Precision + Sensitivity)
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G-Mean is a performance metric that considers both sensitivity and specificity. It pro-
vides a balanced evaluation of classification performance across multiple classes, making

it suitable for scenarios with imbalanced datasets (Equation 6).

G-Mean = +/Sensitivity x Specificity (6)

AUC-ROC is a metric used to evaluate the model’s capability to distinguish between
the positive and negative classes across varying classification thresholds. The ROC curve
illustrates the true positive rate (TPR) - a.k.a. sensitivity - against the false positive rate
(FPR) - i.e. 1 - specificity - at different thresholds. The AUC-ROC quantifies the overall
performance of the model in discerning between the two classes, providing a comprehen-

sive view of its discriminatory power (Equation 7).
1
AUC-ROC = / TPR(FPR)dFPR @)
0

Similarly, in regression tasks, standard metrics encompass mean absolute error (MAE),
mean squared error (MSE), root mean squared error (RMSE), and R-squared. These met-
rics provide insights into the model’s precision when predicting numerical values and
its overall performance [22]. However, since they are not pertinent to this dissertation,
detailed explanations will not be provided.

In tasks involving classification, two or more classes are presented, and when there’s
a significant imbalance in the distribution of these classes, the data becomes imbalanced.
In such situations, careful consideration is needed regarding the metrics employed for
evaluating the model’s performance. Some metrics, like accuracy, may not be suitable
for such scenarios. A model trained on highly imbalanced data tends to classify most
instances as the majority class, resulting in a high accuracy rate. However, if accurately
predicting the minority class is crucial, other metrics are more appropriate for evaluating
the model’s effectiveness [23].

Indeed, the choice of suitable metrics plays an important role in improving model
performance. However, it is equally imperative to acknowledge that achieving superior
results relies on meticulous data preparation [17]. In this context, this dissertation will

delve into some of the common steps in the subsequent list:
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e Data cleaning: This fundamental step involves identifying and rectifying errors or
inconsistencies in the dataset, such as duplicate records, inaccurate values, or out-
liers. It ensures dataset accuracy and reliability, forming a solid foundation for anal-

ysis [15].

e Handling missing values: Addressing missing data points is crucial to avoid bi-
ased results and incomplete analyses. Various techniques, like imputation or data

removal, can be applied based on the dataset’s characteristics [16].

e Feature engineering: This process focuses on creating new features or modifying
existing ones to enhance ML model performance. It aims to capture essential data

patterns and relationships, improving predictive power [17].

e Feature selection: Feature selection narrows down attributes to those with the most
significant impact on model performance, reducing complexity, computational load,

and overfitting [16].

e Encoding categorical variables: Transforming categorical data into numerical form
bridges different data types and enhances the model’s capacity to derive insights

from diverse attributes [15].

e Data reduction: Techniques like Principal Component Analysis (PCA) or t-Distributed
Stochastic Neighbor Embedding (t-SNE) simplify dimensionality, preserving vital

data information and facilitating more efficient pattern extraction [17].

e Outlier detection: This step ensures data integrity by identifying and addressing
anomalous data points, preventing skewed model interpretations and enhancing

accuracy [16].

e Data standardization: Normalizing data to a consistent range prevents certain at-
tributes from overshadowing others due to their magnitudes, ensuring model fair-

ness [17].

e Dealing with class imbalance: Addressing scenarios where class distribution is
skewed ensures each class is fairly represented, preventing biased model predic-

tions and promoting accuracy and fairness [15].
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With a foundation in data pre-processing established, the focus now shifts to exploring
various ML algorithms, such as Decision Tree (DT), K-Nearest Neighbours (KNN), Logis-
tic Regression (LR), AdaBoost, Bagging, Gradient Boosting (GB), Random Forrest (RF),
and eXtreme Gradient Boosting (XGBoost). The definitions follow the idea presented in
the book Introduction to Machine Learning by the author Ethem Alpaydin [16].

Before delving into the definitions of each model, it is necessary to understand the con-
cept of ensemble methods in ML. Ensemble methods, also known as ensemble techniques,
represent a powerful approach that amalgamates predictions or decisions from multiple
individual algorithms, often referred to as “base models” or “weak learners.” The goal
of ensemble methods is to generate a prediction or classification that is not only more
accurate but also more robust. The underlying principle of ensemble methods revolves
around leveraging the diversity and collective intelligence of these multiple models to
enhance predictive performance.

The core idea driving ensemble methods is the acknowledgment that combining pre-
dictions from various models can frequently yield superior results compared to relying
solely on a single model. Each individual model within the ensemble may possess its
unique strengths and weaknesses. Ensemble methods effectively mitigate weaknesses
and amplify strengths by aggregating their predictions, ultimately yielding predictions

that are not only more precise but also more stable and reliable.

e Decision Tree: A decision tree [24] is a graphical representation of possible deci-
sions based on certain conditions. It starts with a root node representing the entire
dataset and branches out to internal nodes that correspond to specific features. Each
internal node makes a decision, and the leaf nodes provide the final classification or

prediction. Decision trees are easy to understand and visualize.

e K-Nearest Neighbors (KNN): K-Nearest Neighbors [25] is a simple classification
and regression algorithm that relies on the similarity between data points. Given
a new data point, KNN identifies the K nearest neighbors based on a chosen dis-
tance metric. The algorithm then predicts the class label (classification) or value
(regression) based on the majority class or average of the neighbors’ values. KNN is

intuitive and effective for smaller datasets.

o Logistic Regression: Despite its name, logistic regression [26] is a classification al-

gorithm. It models the probability of a binary outcome using a linear combination
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of input features, transformed by the logistic function. The output represents the
likelihood of belonging to a certain class. Logistic regression is interpretable, and its

coefficients provide insights into feature importance.

e AdaBoost: AdaBoost [27] (Adaptive Boosting) is an ensemble learning technique
that combines multiple weak learners to create a strong classifier. It assigns higher
weights to misclassified data points, allowing subsequent weak learners to focus
on correcting these mistakes. AdaBoost’s final prediction is based on the weighted
decisions of all weak learners. It’s an effective method for improving classification

performance by addressing complex datasets.

e Bagging: Bagging [28] (Bootstrap Aggregating) is an ensemble method that re-
duces prediction variance by combining multiple models trained on bootstrapped
datasets. Each model learns from a subset of the data, and the final prediction is
obtained by aggregating individual model outputs. Bagging is particularly useful

for models with high variance, enhancing stability and overall accuracy.

e Gradient Boosting: Gradient Boosting [29] is an advanced ensemble technique that
builds a strong model by iteratively improving upon the mistakes of previous mod-
els. Each new model focuses on the residuals of the previous model’s predictions.
Gradient Boosting combines these weak models to create a powerful predictor ca-

pable of capturing complex relationships in the data.

e Random Forest: Random Forest [30] is an ensemble technique that constructs multi-
ple decision trees and aggregates their predictions to make a final decision. Each tree
is trained on a subset of the data, reducing overfitting and increasing generalization.

Random Forest is versatile, effective, and handles high-dimensional datasets well.

e XGBoost: XGBoost [31] (eXtreme Gradient Boosting) is an optimized version of gra-
dient boosting that incorporates regularization, parallel processing, and advanced
optimization techniques. XGBoost provides superior predictive power and effi-

ciency.

We selected these algorithms based on strong support from existing literature. For
instance, in a study conducted by S. S. Aljameel et al. [32], LR, XGBoost, and RF were
used as algorithms, and RF outshone the others with an impressive accuracy of 0.95 and

an exceptional area under the curve (AUC) of 0.99. Similarly, K. Moulaei [33] evaluated
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seven ML algorithms, including J48 decision tree (J48), RF, KNN, multi-layer perceptron
(MLP), Naive Bayes (NB), XGBoost, and LR, and found that RF consistently delivered
superior performance. RF achieved remarkable accuracy, sensitivity, precision, specificity,
and receiver operating characteristic (ROC) values, standing at 95.03%, 90.70%, 94.23%,
95.10%, and 99.02%, respectively.

Furthermore, S. S. Zakariaee et al. [34] delved into the evaluation of eight ML algo-
rithms, encompassing J48, support vector machine (SVM), MLP, KNN, NB, LR, RF, and
XGBoost. In this comprehensive analysis, the RF algorithm once again demonstrated out-
standing performance, boasting an accuracy of 97.2%, sensitivity of 100%, precision of
94.8%, specificity of 94.5%, F1-Score of 97.3%, and an AUC of 99.9%. These consistent
findings across multiple studies strongly suggest that the RF model is poised to deliver
top-tier performance, potentially even securing the highest scores in our research.

As we conclude our examination of ML models and their explanations, it’s important
to note that while they perform well in many situations, they can struggle with complex
tasks like image recognition or speech understanding. The introduction of Deep Learn-
ing (DL) is a must as it signifies a significant Al evolution. DL, a subset of ML, empha-
sizes multi-layered Neural Networks (NNs), inspired by human brain neurons, serving
as building blocks for both DL and ML algorithms [35].

NN consist of interconnected neurons organized into layers. These neurons process
data using weighted connections and activation functions. Training involves adjusting
weights to minimize prediction errors, with NNs excelling in image recognition and nat-
ural language processing [36].

ML and DL differ in data representation, training, model complexity, interpretability,
and performance. ML relies on manual feature engineering, while DL learns features
directly from raw data. DL requires more computational power for extensive datasets,
resulting in complex models. ML is more interpretable, whereas DL can be challenging to
interpret. DL outperforms in handling unstructured data and complex tasks [35, 36].

Regarding algorithms, ML uses RF, NB, and KNN, while DL employs specialized algo-
rithms like Convolutional Neural Networks (CNNSs) for image analysis and Long short-
term memory (LSTM) for sequential data tasks. These NNs have applications in language
processing, speech recognition, and more [37].

DL’s adaptability extends to Natural Language Processing (NLP), enabling tasks like

sentiment analysis, language translation, and chatbot creation [38].
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This technology enhances patient care by providing real-time insights into health sta-
tus and potential concerns, aligning technology with healthcare for improved monitoring

and personalized interventions [39].

2.2 Remote Patient Monitoring Systems

The concept of RPM and the technologies beyond RPM systems are introduced in Chap-
ter 1. One of the significant benefits of RPM is its ability to facilitate timely interventions
if necessary [40]. Healthcare providers can detect and address problems before they es-
calate, by continuously monitoring patients remotely, improving patient outcomes, and
reducing the risk of adverse events [41].

RPM systems, as highlighted in the study by Kaur et al. [42], can collect data from
diverse sources, including wearable devices, sensors, and medical equipment. These sys-
tems possess the unique capability to discern intricate patterns and detect anomalies that
may elude human observation, by subjecting this data to analysis through ML techniques.
Consequently, this analytical achievement empowers these systems to offer invaluable in-
sights into a patient’s health status, as demonstrated in the research by Oliver et al. [43].
Furthermore, this higher analytical robustness translates into improved healthcare deliv-
ery, ultimately benefiting patient care.

Data from various sources, such as wearable devices, sensors, and medical equipment,
can be gathered by RPM systems [42]. RPM systems can detect patterns and anomalies
that may not be apparent to the human eye, by analyzing this data and applying ML
techniques, providing, this way, valuable insights into a patient’s health status [43]. Also,
it can improve their robustness, resulting in better healthcare delivery.

With the COVID-19 pandemic, RPM systems became increasingly important for re-
motely monitoring and managing COVID-19 patients. G. Saranya et al. [44] present an
IoT and cloud-assisted health monitoring system designed for RPM. The proposed sys-
tem employs multiple sensors to detect and monitor the severity of COVID-19 in patients.
It collects disease-specific parameters such as heart rate, temperature, oxygen level, and
pulse rate. The collected data is processed on a cloud server, and CNN models are applied
to identify the severity of the disease. The system also generates an alert for healthcare
providers if any abnormalities are detected during the computation of sensed data on the
CNN. This model can be used as a prediction and forecasting technique to determine the

severity of the patient based on their health data.
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Some other examples of RPM systems specifically designed for COVID-19 patients are
the Vivify Health RPM system [45] and the Philips eCareCoordinator [46]. Vivify Health
operates as both a company and a remote patient monitoring platform, providing inven-
tive solutions to elevate patient engagement and the management of care. With a focus on
enabling healthcare providers, the platform facilitates the remote monitoring of patients’
health, the gathering of pertinent data, and the empowerment of patients in managing
their care through personalized interventions and communication. The underlying tech-
nology from Vivify Health strives to enhance patient outcomes, diminish instances of hos-
pital readmissions, and elevate the overall healthcare journey by harnessing the potential
of remote monitoring and patient engagement tactics [45].

The Philips eCareCoordinator represents a comprehensive and advanced solution for
remote patient monitoring, crafted by Philips, a prominent healthcare technology com-
pany. This innovative platform is meticulously designed to equip healthcare providers
with the necessary tools and capabilities to proficiently oversee and track patients” well-
being from a distance. Through the eCareCoordinator, healthcare professionals can con-
veniently and remotely monitor patients” crucial health metrics, pertinent health data,
and ongoing progress in real-time. This real-time insight enables timely interventions and
adaptable adjustments to treatment strategies as required. Additionally, the platform fos-
ters seamless communication channels connecting patients and their care teams, enhanc-
ing patient engagement and facilitating personalized care delivery. The Philips eCareCo-
ordinator harnesses advanced technology and sophisticated data analytics to pursue the
goal of enhancing patient outcomes, streamlining healthcare delivery, and elevating the

overall patient experience [46].

2.3 Health Chatbots

A chatbot serves as a concrete example of an Al system and stands as one of the most
essential illustrations of intelligent Human-Computer Interaction (HCI) [47]. Functioning
as a computer program, it emulates an intelligent entity by proficiently engaging in text
or voice-based conversations and understanding one or more human languages through
the application of NLP techniques [48]. In linguistic terms, a chatbot is defined as ”A com-
puter program designed to simulate conversation with human users” [49]. The chatbots
are also recognized under various names, including intelligent bots, interactive agents,

digital assistants, or artificial conversational entities.
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There are COVID-19 health chatbots for different purposes and to perform different
tasks. These tasks include, for example, answering questions [50, 51], asking questions
[52], creating health records and history of use [53, 54], filling forms and generating re-

ports [55].

2.3.1 COVID-19 Health Chatbots

The versatile applications of COVID-19 health chatbots have been pivotal in tackling the
multifaceted challenges posed by the pandemic. These chatbots have harnessed their
capabilities to offer indispensable support and services, addressing various aspects of the
crisis.

One of the foremost roles undertaken by health chatbots was the dissemination of cru-
cial health information and knowledge. They became a reliable source for resources re-
lated to COVID-19 symptoms, medication, and precautionary measures. These resources
were made available through different forms and formats, including textual content, med-
ical catalogs, audio clips, animated videos, and maps, catering to a range of preferences
and needs [50-54].

Furthermore, health chatbots have played an important role in enabling self-triage and
personalized risk assessment during the pandemic [51-53]. Operating based on guide-
lines from reputable organizations like the WHO and local health authorities, these chat-
bots facilitated self-screening to determine the need for inpatient care. Some were even
employed for employee self-assessment before entering workplaces [55], while others
provided information about nearby medical services and emergency hotlines for indi-
vidualized risk evaluation [56].

Another significant application of these chatbots has been the monitoring of potential
exposure to the virus and the provision of timely notifications. For instance, the CO-
OPERA system in Japan has been instrumental in assessing the epidemiological situation,
monitoring high-risk groups, and extending support where necessary [50].

Additionally, health chatbots have been adept at tracking health symptoms and men-
tal well-being associated with the pandemic [50, 54, 57]. Users have been able to record
various factors, such as nutrition and physical activity during self-isolation periods, along-
side monitoring mood status to address psychological effects like anxiety and depression

[58].
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Notably, these chatbots have also been at the forefront of the fight against COVID-19
misinformation and fake news [57]. Distinguished examples include the WHO'’s chatbot,
which disseminates reliable information and best medical practices, and the "COVID-19
Preventable” chatbot in Thailand, dedicated to sharing accurate information and raising
awareness [52].

Table 2.2 provides an overview of various applications and roles that health chatbots
have played during the COVID-19 pandemic. It encapsulates the roles and functions of
these chatbots within the framework of pandemic management and response, categoriz-

ing them based on their respective applications and chatbot roles.

TABLE 2.2: Applications of COVID-19 Health Chatbots

Application Role of Chatbot Reference
Providing resources on COVID-19
Dissemination of symptoms, medication, and
. . . [50-54]
Information precautionary measures through various
formats.
Self-Triage and Risk En..albhpg self—scree.m'ng based on
guidelines, determining the need for [51-53]
Assessment

inpatient care.
Assessing the epidemiological situation,

Monitoring  Exposure

and Notifications mom'to'rmg high-risk groups, and [50]
providing support.
Tracking Health Recording factors like nutrition, physical
Symptoms and Mental | activity during self-isolation, and [50, 54, 57, 58]
Well-Being monitoring mood status.
. Dispelling COVID-19 misinformation and

Combating 1 .

.. . fake news, providing reliable [57]
Misinformation

information and best practices.

2.3.2 Challenges of Health Chatbots

Naturally, there are challenges associated with the utilization of these technologies, both
on social and technical system levels. At the social system level, some health chatbots
experienced limited engagement from the community, resulting in virtual inactivity [57].
Moreover, a disparity existed between users’ perceptions of these technologies and the
capabilities provided by health chatbots, influencing acceptance [58]. Negative user per-
ceptions regarding chatbot integrity, benevolence, the accuracy of the information, and
privacy preservation hindered their willingness to use health chatbots. Additionally, in-

dividuals without access to technology or the Internet could not benefit from these tools,



18 APPLYING MACHINE LEARNING TO INTELLIGENT CHATBOT FOR PREVENTIVE CARE

resulting in information gaps within the population and decreased accuracy in identifying
and predicting cases of infection [54].

At the technical system level, fact-checking information in real-time posed a signif-
icant challenge for chatbots, as a vast amount of data is updated daily. Ensuring the
processing and delivery of accurate and up-to-date information often necessitated the in-
tervention of multidisciplinary teams [57]. Integrating information from multiple sources
sometimes resulted in incoherence, leaving users needing clarification and searching for
reliable answers. Furthermore, current chatbot capabilities may not be sufficiently de-
veloped to address sensitive topics like mental health. Empathetic Natural Language
Generation, for example, is not yet considered sophisticated, limiting the chatbots” suit-
ability in assisting individuals experiencing nervous breakdowns or suicidal thoughts —
critical issues prevalent during pandemics [53]. Other concerns encompass the need for
accurate medical translation from professional jargon to day-to-day terms to prevent mis-
understandings and misguided actions. Given the novelty of the pandemic, different ter-
minologies used to describe the same condition can lead to confusion and inappropriate
user actions [55].

Among the mentioned challenges, the integration of Al techniques offers promising
solutions. Al can play an important role in improving the functionality and effectiveness
of health chatbots. Advanced NLP algorithms can improve the accuracy and coherence
of information delivery, addressing concerns related to fact-checking and data integra-
tion. Al-powered sentiment analysis can assist in identifying users” emotions and mental
states, helping prepare responses and interventions more effectively, especially in cases of
sensitive topics like mental health [59]. ML models can be trained to identify and rectify
misinformation, reducing the spread of inaccurate data. Moreover, the deployment of Al
technologies can facilitate seamless language translation, bridging the gap between med-
ical terminology and everyday language, and ensuring accurate communication even in
diverse linguistic contexts. As these technologies continue to evolve, the integration of
Al in health chatbots holds the potential to mitigate existing challenges and improve the
overall user experience, contributing to more effective pandemic management and re-

sponse strategies [60].
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24 Applications of Al and ML for COVID-19

Among the challenges posed by the COVID-19 pandemic, a surge of innovative solutions
has emerged to address its multiple complexities [61]. This section delves into the diverse
applications of Al and ML technologies in the battle against COVID-19 [62]. These grow-
ing technologies have been applied in numerous medical studies, resulting in improved
scalability, timely and reliable outcomes, and increased efficiency [63]. In some healthcare
tasks, it has even surpassed human performance [64]. Tools based on Al are employed
for the identification, classification, and diagnosis of medical images to manage disease
spread [65, 66]. Recent advancements in Al research have significantly enhanced COVID-
19 screening, diagnostics, and prediction [67].

ML-based techniques have been very helpful in identifying patterns and forecasting
epidemics. In the context of the COVID-19 pandemic, many researchers have applied
these techniques to facilitate early detection and diagnosis of the infection, contact tracing
of individuals, projection of cases and mortality rates, development of drugs and vaccines,
reducing the workload of healthcare workers, and monitoring the treatment of patients.
Various studies have documented the successful application of ML-based techniques in
these areas [68-70].

These algorithms have been applied to COVID-19 detection, diagnosis, classification,
screening, drug repurposing, prediction, and forecasting [71, 72]. The following sub-

sections cover each use-case/application.

2.4.1 Early detection, diagnosis, and prediction of the disease

Al can quickly analyze irregular symptoms and identify potential red flags, providing
timely alerts to both patients and healthcare professionals. This facilitates decision-making
and the implementation of cost-effective solutions. Al helps develop new diagnosis and
management systems for COVID-19 cases using useful algorithms. In particular, sophis-
ticated DL algorithms, such as CNNs, have a significant impact on extracting critical fea-
tures, especially in the realm of medical imaging [69, 73]. These algorithms exhibit efficacy
in diagnosing infections, as their performance is enhanced when coupled with medical
imaging technologies, such as Computed Tomography (CT), Magnetic Resonance Imag-
ing (MRI) scans, or X-ray images of various body parts. A new diagnostic framework
emerges, by synergizing Al-driven analyses with advanced imaging, allowing for a more

detailed assessment of COVID-19 cases [72, 74].
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The significance of ML and DL-based techniques is highlighted in several studies. For
instance, M. Otoom et al. [75] utilized a dataset from the CORD-19 repository to evaluate
the effectiveness of eight ML algorithms in identifying COVID-19 cases. CORD-19 is a
COVID-19 research initiative that offers an extensive dataset containing scientific articles
and publications related to COVID-19 and has been a valuable resource for researchers
and healthcare professionals studying the pandemic [76]. Despite some challenges with
the data, five of these algorithms achieved over 90% accuracy. L.H. Nguyen et al. [77]
proposed a novel DL method that uses cough sounds for early detection of COVID-19.
This method involves converting audio signals into Log-Mel spectrograms, which are
then processed by a two-stage deep neural network.

Further, a model using X-ray images and support vector machines was suggested for
early COVID-19 detection and diagnosis [78], demonstrating high accuracy. L. Wang et
al. [76] proposed a method for early detection of suspected COVID-19 cases without the
need for CT scans, using Lasso regression for feature selection and also as the base model,
having a 100% recall score. Additionally, a model for diagnosing COVID-19 was devel-
oped using multivariate logistic regression based on a dataset of 620 laboratory samples
[79], showing satisfactory performance with high predictive values. Besides these tech-
niques, other ML-based techniques, including NN, k-means, XGBoost, gaussian process
regression, and multilayer perceptron, have also been employed for COVID-19 screening,
detection, prediction, and forecasting [80-83]. CNNs have also become a popular tool in
the fight against the COVID-19 pandemic. Its applications range from COVID-19 screen-
ing, diagnostics, classification, and prediction, to forecasting, as demonstrated in various

studies [84-86].

2.4.2 Individuals’ contact tracing

Al has the potential to analyze the level of infection caused by COVID-19 by identifying
clusters and hotspots and can also aid in contact tracing and monitoring of individuals.
According to various studies, such technology can predict the future course of the disease
and its likelihood of reappearance [87]. One major strategy for preventing the spread of
the virus is tracing confirmed cases of COVID-19, given the potential for transmission
through the air via coughing, sneezing, or talking [88]. It was recommended that not

only those who have tested positive for COVID-19 but also those who have been in close
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contact with confirmed cases be quarantined for 14 days. Contact tracing applications
have been implemented worldwide using various methods [89].

Contact tracing begins after a case has been diagnosed since the individual needs to
be tracked [90]. The data collected by contact tracing apps are then analyzed using Al
techniques to determine the extent of the disease’s spread [91]. Although these apps are
useful during the pandemic, privacy concerns have arisen due to the large amount of
data collected, and governments may surveil individuals [92]. This is where digital foot-
print data provided by these apps and ML technology can be utilized to detect infected
patients and enforce social distancing measures [93]. One example of this application is
the SQREEM platform, originally developed in Singapore to track individuals who may
have contracted COVID-19, which has been utilized in South Africa for real-time contact

tracing with Al technology [94].

2.4.3 Mortality and number of cases projection

ML has the capability to forecast the nature of the COVID-19 virus using available data,
social media, and media platforms to identify the risks of infection and its spread [95].
It can also predict the number of positive cases and deaths in any region and identify
the most vulnerable regions, people, and countries. With this information, appropriate
measures can be taken to mitigate the spread of the virus. These capabilities have been
demonstrated in several studies, as reported in various publications [96].

Multiple studies have compared several ML models. For instance, M. Pourhomayoun
et al. compared the performance of DT, RF, KNN, SVM, LR, and ANN, for predicting the
mortality rate in patients with COVID-19. The dataset used in this study included 117,000
cases of COVID-19 infection of both genders. The model achieved an accuracy of 93% for
predicting the mortality rate. The DT method, when used with 10-fold cross-validation,
achieved an accuracy of 90.63% on its own [97]. S.S. Zakariaee et al. [34] compared the
performance of eight ML algorithms for predicting the mortality of COVID-19 patients.
The RF algorithm stood out with an accuracy of 97.2%, sensitivity of 100%, precision of
94.8%, specificity of 94.5%, F1-Score of 97.3%, and an exceptional Area Under the ROC
Curve of 99.9%. Other algorithms also demonstrated good prediction abilities, achieving
AUC values ranging from 81.2% to 93.9%. The proposed model, especially when utilizing

a dataset including chest CT severity score (CT-SS), proved effective in promptly assessing
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COVID-19 patient risk, optimizing hospital resources, and improving patient survival

probabilities.

2.4.4 Reducing the workload of healthcare workers

The COVID-19 pandemic has resulted in an abrupt rise in patient numbers, leading to an
unprecedented workload for healthcare professionals, as already introduced in Chapter 1.
Al can provide training to medical students and doctors to better understand the disease.
The use of Al can have a significant impact on future patient care and tackle potential
challenges, thereby reducing the workload of doctors [37, 69, 73, 74, 98].

N. Galo et al. [99] discusses a decision-making process for triaging suspected COVID-
19 patients in Brazil. The paper suggests the use of computational techniques based on
fuzzy inference systems, arguing that fuzzy set theory [100] is suitable for this problem
since it allows natural language to describe the patient’s symptoms, making it easier for
healthcare professionals. The fuzzy system is modeled with symptoms that health pro-
fessionals currently use to analyze COVID-19 cases, and a pilot test was conducted. The
results suggest that the model aligns with the sample data and has the potential to support
triage for classifying the severity of COVID-19 cases.

With the surge in the number of COVID-19 cases, manual severity assessment has
become a challenging and time-consuming task. The authors Tang et al. [101] proposed an
ML-based model that can automatically identify the severity level of COVID-19 patients.
The RF model is trained using CT images of 176 COVID-19-positive patients for severity
assessment. The results of this study are promising, with 87.5% accuracy using 3-fold
cross-validation. The authors also identified various quantitative features that have the

potential to assess the severity of COVID-19 cases.

2.4.5 Prevention

Al combined with data analysis, can provide valuable and up-to-date information for
the prevention of COVID-19 [102]. It can predict the areas with the highest likelihood
of infection, the extent of the virus spread, the need for hospital beds, and the demand
for healthcare professionals during this crisis [103]. Moreover, Al can help prevent future
viruses and diseases by analyzing previous data and identifying trends, causes, and rea-
sons for the spread of diseases. It can offer preventive measures and assist in combating

other diseases [104].
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One other facet of Al that has shown remarkable promise during the COVID-19 pan-
demic is the utilization of health chatbots, as mentioned earlier. These chatbots, avail-
able in multiple languages, have proven instrumental in aiding patients during the initial
phases of the illness [105]. An illustrative example of such implementation is Aapka Chk-
itsak, an Al-driven chatbot developed in India by U. Bharti et al. [51].

2.4.6 Monitoring the treatment

It has been suggested the development of an intelligent platform for the automatic mon-
itoring of COVID-19 patients [106]. These platforms, leveraging Al and data analytics,
could provide daily updates on patient conditions, offer solutions to combat the pan-
demic, and significantly aid healthcare professionals in managing patients and control-
ling the virus’s spread. Such platforms could provide insights for decision-making, and
facilitate remote consultations [107].

H. Yu et al. focused on model-based decision trees to detect the severity of COVID-19
in pediatric cases [108] involved the collection of clinical laboratory and epidemiological
data from 105 infected children. The outcomes of the study were encouraging, with the
proposed model showcasing promising results. Impressively, it achieved a flawless F1
score of 100, underscoring the predictive potential of ML in gauging disease severity, a
crucial aspect of the monitoring process.

B. S. Yelure et al. [109] utilized IoT and Al in remote monitoring by analyzing cough
sounds. The detection of coughs was performed using Mel-frequency cepstral coefficients
(MFCC) features and deep neural networks (DNN), as well as CNNs. This research high-
lights the potential of Al in non-invasive monitoring techniques.

A significant advancement in monitoring COVID-19 is the study by Kim et al. [110],
which used an automated ML technique to develop prediction models using easily ob-
tainable characteristics—baseline demographics, comorbidities, and symptoms. The pri-
mary outcome was the need for intensive care, and the model used was XGBoost. This
study shows the potential of ML in predicting intensive care needs based on non-invasive
parameters. The proposed model in this research not only utilizes non-invasive param-
eters but also leverages a wider time window, which provides a comprehensive view of
the pandemic’s progression and the associated changes in patient characteristics and out-
comes. This approach facilitates a deeper understanding of the factors influencing hos-

pitalization among COVID-19 patients, revealing distinct patient categories that could
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inform personalized treatment plans.

2.4.7 Conclusion

In conclusion, the integration of Al has ushered in a new era of agile responses to the
COVID-19 pandemic. Beyond its role in patient treatment, Al is very helpful to monitor
and manage the health of infected individuals. This technology can operate on multi-
ple scales, spanning from molecular insights to epidemiological trends, providing health-
care professionals with the tools to make informed decisions. Medical practitioners can
develop personalized treatment regimens and preventive strategies tailored to each pa-
tient’s unique profile, by using Al’s predictive capabilities, ultimately improving patient
outcomes.

Furthermore, Al-driven data analysis accelerates the extraction of meaningful insights
from vast datasets, allowing researchers to identify patterns, potential treatment targets,
and novel therapeutic interventions. The development of intelligent platforms and the
adoption of non-invasive monitoring techniques represent innovative pathways in pan-
demic management. These approaches can enable real-time monitoring and assessment,
ensuring timely interventions and resource allocation. As the global community con-
tinues to combat COVID-19 and prepares for future health challenges, the partnership
between Al and healthcare exemplifies humanity’s resilience and adaptability in using
technology to solve these challenges.

Overall, Al has demonstrated its transformative power in the fight against the pan-
demic, offering a varied arsenal of tools to aid healthcare professionals and researchers.
As this symbiotic relationship continues to evolve, the potential for Al-driven solutions to

shape more effective and responsive healthcare strategies becomes increasingly evident.

2.5 Tools

The study employed diverse computational tools, all accessed and executed within the
cloud-based Python development environment, Google Colaboratory [111], generously
offered by Google. Additionally, we used GitHub [112] as the repository for hosting all

the project notebooks.

e Python: The primary programming language used in this research was Python. The

specific version used should be confirmed in the Google Colaboratory environment.
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e Pandas: Pandas (1.5.3.) used for data manipulation and analysis.
e NumPy: NumPy (1.22.4) used for numerical computations.
e Matplotlib: Matplotlib (3.7.1.) used for data visualization.

e Seaborn: Seaborn (0.12.2) is a statistical data visualization library based on Mat-

plotlib, used for creating more informative and attractive statistical graphics.
o Scikit-learn (sklearn): Scikit-learn (1.2.2.) used to perform various ML tasks.

e XGBoost: XGBoost (1.7.5.), another gradient boosting framework, was used for

building predictive models.

e Imbalanced-learn (imblearn): Imbalanced-learn (0.10.1) used to tackle the issue of

imbalanced datasets.






Chapter 3

An overview of COVID-19 public
data

This chapter is about the process of dataset selection and analysis. We begin by outlin-
ing the key criteria and considerations that guided our selection process, highlighting the
great impact of data completeness, structure, and relevance in our decision-making. Fur-
thermore, we provide a comparative examination of three publicly available COVID-19
datasets, presenting their strengths and limitations. The chosen dataset becomes the base
of our research, as it will establish the subsequent chapters’ analysis and model devel-
opment. In addition, we shed light on the challenges associated with missing data and

emphasize the significance of data quality in ensuring the integrity of our study.

3.1 COVID-19 Datasets

The pandemic has resulted in the gathering of data, encompassing publicly accessible
general information as well as sensitive patient-specific data. While general information
is readily available online, the healthcare sector generates a trove of confidential data,
including patient records, subject to stringent access controls. These same access restric-
tions apply to COVID-19 data. This section aims to present the challenges associated
with COVID-19 datasets, offering insights into various examples and providing succinct
explanations to illuminate these points of view.

The development of accurate and effective Al systems leans on the structure and qual-
ity of the dataset. The method of data collection, storage, and the inclusion of specific

variables within the dataset play a vital role in this process. Concerning the context of
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COVID-19, various types of datasets exist, ranging from publicly available ones, such
as state-level statistics, to private datasets that require special access permissions. Some
datasets are created by researchers for specific purposes, as exemplified in the work by
Yelure et al. [109], where sounds are recorded and categorized for building a ML model.
However, datasets of this kind are often kept private and not widely shared within the re-
search community. This underscores the significance of data quality and access in devel-
oping Al systems, especially in the context of healthcare and pandemic-related research.

Regarding publicly available datasets, several public COVID-19 datasets contain un-
structured data. The CORD-19 dataset [76] contains scientific papers on COVID-19, and
the COVID-19 Image Data Collection contains chest X-rays and CT scans of patients [113]
are two examples of datasets containing unstructured data.

A considerable amount of work on diagnostics, screening, classification, disease pre-
diction, and medication development has already been done using not only tabular data
but mostly CT-Scans, X-rays, and MRI images [114]. Nevertheless, other topics, such as
contact tracing [115], projecting mortality and case numbers [97], reducing the workload
of healthcare professionals [99], preventing disease [51], and monitoring treatment [109]
have received less attention [72].

Concerning tabular data, some examples related to COVID-19 patients are datasets
containing information on patient demographics, laboratory test results, and medical his-
tory. Such organized data helps in keeping track of how patients are doing, spotting
symptoms, and understanding how the disease is developing [116]. The structured for-
mat of this data makes it easier to study, which can potentially lead to better patient out-
comes [117]. There are various COVID-19 patient datasets that follow this structured
pattern, like the COVID-19 Open Data Portal [118] and the dataset provided by the Johns
Hopkins Coronavirus Resource Center [119]. Researchers have used these datasets to ex-
plore things like what factors make someone more likely to get sick, how severe the illness
can become, and the rates of people dying from the disease [120].

Using this form of data (tabular data) allows for the monitoring of patients” condi-
tions, symptom identification, and the tracking of disease progression, as highlighted in
Gordon et al. (2020) [116]. Structured data also facilitates a more straightforward analysis
of patient information, potentially leading to enhanced patient outcomes, as emphasized
in Wallace et al. [117]. Various COVID-19 patient datasets with structured data are avail-

able, including the COVID-19 Open Data Portal dataset [118], encompassing data from
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multiple countries, and the Johns Hopkins Coronavirus Resource Center dataset [119].
These datasets have been instrumental in analyzing COVID-19 risk factors, disease sever-
ity, and mortality rates, as demonstrated in research such as that conducted by Pericles et
al. [120].

J. Zhang et al. emphasize that laboratory test results contain pertinent information
and serve as effective markers of disease severity [86]. Nevertheless, these test outcomes
were deemed less relevant due to the infrequent nature of post-discharge blood tests for
patients, especially during home quarantine periods. Demographic details like age and
gender help in analyzing how the virus affects different groups. Information about symp-
toms helps in recognizing common signs of the disease. Patient outcomes indicate the
effectiveness of treatments and interventions. Comorbidities reveal underlying health
conditions that could worsen COVID-19 outcomes. Dates provide a timeline for tracking
the progression of the disease. Collecting and analyzing such data is crucial for devel-
oping strategies, making informed decisions, and improving healthcare responses during
the pandemic [121]. Consequently, this dissertation focused only on the previously men-
tioned data types.

We identified three datasets that hold information on COVID-19 patients: two of them
containing covid patients’ characteristics, such as the ones mentioned before - demo-
graphics, relevant dates, symptoms, comorbidities, and patient outcome - and one dataset
containing the same features except for the symptoms and the comorbidities.

In chronological order, starting from the earliest inception to the most recent data
within the initial time frame, let’s introduce these datasets. The first dataset, known as
Novel COVID-19 (nCov2019) [122], contains comprehensive information on COVID-19
cases reported in Hubei and various other Chinese provinces. Following that, the second
dataset, Data Science for COVID-19 (DS4C) [123], was collaboratively developed by the
Korea Centers for Disease Control and Prevention (KCDC) and Seoul National University
Bundang Hospital in South Korea. Lastly, we have the third dataset, named TriCovB [99],
which was specifically designed for COVID-19 triage purposes within hospitals in Brazil.

Table 3.1 summarizes the ML studies performed on these identified datasets. These
studies predicted COVID-19 outcomes, classified patients based on disease severity, and

identified potential risk factors.
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TABLE 3.1: COVID-19 Patient Datasets and Predictive Tasks

Dataset Predictive Tasks
Prediction of mortality rate [97]

nCov2019 [122] Assess risk factors of r};ortality [124]
Prediction of isolation, released, and deceased states [125]
DSA4C [123] Prediction of the number of recovered and deceased
cases [126]
Prediction of the number of days to recover [127]
TriCovB [99] | Severity Assessment [99]

3.2 Analysis and Pre-Processing

This section begins by describing the datasets and then focuses on the pre-processing. The
following subsections will present each dataset and the steps that were taken to obtain
the final result. Our goal is to ensure that the data is properly prepared and meets the
quality criteria for further analysis and ML tasks. Initially, the initial size of the datasets
will be considered, followed by the removal of lines containing missing values in any of
the relevant features (simple data). Subsequently, their sizes will be reassessed once the
datasets have been tidied to determine if they possess a feasible size for the continuation

of the analysis and the execution of the remaining ML tasks.

3.2.1 nCov2019

The nCov2019 dataset [122] encompasses a comprehensive collection of patients infor-
mation predominantly gathered from China for three months (December 2019 - February
2020). The dataset comprises 31 distinct features and consists of 18,527 entries. The ex-
tensive features include patient ID, age, sex, location, relevant dates, symptoms, comor-
bidities, travel history, administrative units, source of patient information, and patient
outcomes.

In this study, the approach adopted was to consolidate the analysis by removing un-
necessary features. Attributes like patient ID, location-related information, travel data,
and data source details were deliberately omitted. This consolidation resulted in a re-
fined dataset containing nine essential attributes: age, gender, confirmation date, date of
death, release date, symptoms, comorbidities, and patient outcomes.

During the preliminary analysis, the percentage of missing values was computed for
each category within the dataset. The dataset exhibited an alarmingly high proportion of

missing values. Consequently, all entries containing missing values were excluded from
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further analysis. Therefore, the final dataset consisted of 39 entries, rendering further
analysis unfeasible.

In addition to the limited size of the dataset, several significant issues necessitate ac-
knowledgment. Foremost among these concerns is the datasets reference period, which
predates the WHOs declaration of the COVID-19 outbreak as a pandemic. Furthermore,
notable challenges arise regarding the datasets demographic feature, namely age. Al-
though the dataset contains many missing age values, instances where age values are
present often exhibit wide age intervals, such as 15-88, or provide precise age values, such
as 42. Moreover, the symptom and comorbidity features are presented in a textual format
lacking a standardized protocol. Consequently, the processing of this information is com-
plicated by multiple entries with different names but representing the same symptom or

disease.

3.2.2 DS4C

The DS4C dataset [123], referred to as the Data Science for COVID-19 dataset, encom-
passes a period of six months (January 2020 - June 2020). It comprises multiple tables con-
taining detailed information on the number of COVID-19 cases, patient-related data, time
series data illustrating the progression of case numbers, and supplementary information
such as weather data. However, for this study, the primary focus was on the patient infor-
mation table, as it was the only table containing essential data regarding demographics,
significant dates, and patient outcomes.

Initially, the patient information table encompassed 14 different features for 5,165 pa-
tients. However, only seven pertinent features were retained through a careful selection
process. These included age, sex, confirmation date, release date, deceased date, patient
state, and a newly derived feature called “quarantine duration”. The sex of the patients
was represented as binary values, while age was categorized into 10-year intervals. The
relevant dates considered for analysis were the confirmation date and either the deceased
or release dates. The patient state variable encompassed three distinct values: “deceased,”
"isolated,” or “released.” It is noteworthy to mention that this dataset did not contain in-
formation regarding patient symptoms or comorbidities.

Following an initial phase of data preparation, entries with the patient state labeled as
"isolated” were removed from consideration. This selection focused solely on cases that

had already reached a definitive status of recovery or death. Entries with negative values



32 APPLYING MACHINE LEARNING TO INTELLIGENT CHATBOT FOR PREVENTIVE CARE

in this new column were subsequently eliminated from the dataset. The final version of
the dataset comprised the following seven characteristics: age, sex, confirmation date,

release date, deceased date, quarantine duration, and patient state.

3.2.3 TriCovB

The TriCovB dataset, as documented in Galo et al. (2022) [99], offers an extensive and
comprehensive collection of data spanning over a year, from January 2020 to July 2021.
This dataset holds an impressive array of 45 features and a substantial 1,679,329 entries.
It includes detailed patient information, containing both individuals who are positive for
COVID-19 and those not affected. This data compilation includes all the aforementioned
features, ranging from patient demographic information and relevant dates to symptoms,
comorbidities, and patient outcomes. Notably, the dataset organizes gender as binary
values and presents age through two distinct features, one indicating precise age and
the other denoting age intervals. Furthermore, the symptoms and comorbidities in the
dataset were encoded using the one-hot encoding technique.

Multiple dates are included within the relevant dates category; however, for this study,
only diagnostic, release, and decease dates were considered. Furthermore, patient out-
comes encompass not only ”“discharged” or “deceased” but also additional values such as
"deceased, but not from COVID-19” and “not infected.”

To prepare the dataset for analysis, a series of filtering operations were performed
to eliminate irrelevant information or features. The initial step involved filtering entries
specifically related to confirmed cases of COVID-19, as this study focuses on monitoring
COVID-19 patients who were sent home. Features such as location-related attributes, test
and lab results, and social attributes were removed as they are not pertinent to the scope
of this study.

Additionally, travel information columns were eliminated, as they are irrelevant to the
study’s objectives. Relevant date features were further filtered, and only confirmation,
decease, and release dates were retained. These features were utilized to calculate the
duration of quarantine (in days), which was subsequently used to create a new feature.
The ”Ethnicity” column was retained for further analysis to explore potential correlations

with other attributes, as it is easily accessible when a patient is at home.
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To ensure data quality, entries with negative values in the quarantine duration column
were excluded, and any missing information within the symptoms, ethnicity, comorbidi-
ties, or relevant dates columns was also eliminated. After implementing these filters, the
dataset was refined, resulting in a final version comprising 188,383 entries and encom-
passing 22 features. These features can be categorized into various aspects, including rel-
evant dates, quarantine duration, patient outcomes, hospitalization status, demographics,
ethnicity, symptoms, comorbidities, and additional patient details. The organization en-
tails seven symptom variables encoded as one-hot vectors, six comorbidity variables en-
coded similarly, age represented both as an exact value and within 10-year intervals, sex,
ethnicity, three relevant dates, and patient outcomes. This meticulously curated dataset

subsequently served as the foundation for subsequent analyses.

3.3 Comparison of Datasets

A summary of the three COVID-19 datasets under investigation, namely DS4C, nCov2019,
and TriCovB, is presented in Table 3.2. Each dataset was analyzed based on important fea-
tures like their sizes, starting and ending dates, leading to the time they cover, whether
they include age and sex information, whether they provide details about symptoms and

other health conditions, and whether relevant dates are present.

TABLE 3.2: Summary description of the three public COVID-19 datasets.

nCov2019 [122] DS4C [123] TriCovB [99]
Original Size | 18,527 x 32 5,165 x 14 1,679,329 x 45
Final Size 39 x 9 1,633 x 6 189,625 x 24
Period Dec. 2019 - Jan. 2020 - Jan. 2020 -
Feb. 2020 Jun. 2020 Jul. 2021
one variable: one variable: ror;léltlpii Vj;?lbli%:_ car
Age 10-year intervals and | 10-year intervals (e.g. | . P ye
. interval and one with
precise age 20s, 30s,) .
precise age
Sex M/F M/F M/F
format: format:
Symptoms text NA one-hot encoding
Comorbidities format: NA format: .
text one-hot encoding
symptom onset, symptom onset, notification, testing, di-
Relevant 1. .. . ; . .
Dates hospltahzatlon, confir- | confirmation, agnose, register,
mation, release/death release, death release, death
. dead, alive, dead, released,
Outcome dead, alive isolated not infected
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The nCov2019 dataset contained information on symptoms and comorbidities in text
format instead of readily usable one-hot encoding variables. The occurrence of missing
values was evident, and this can be better understood through the analysis presented in
Figure 3.1. Subsequently, following the dataset’s pre-processing, its size was reduced,
resulting in a final count of 39 records with 9 features. This considerable reduction in size
notably constrains its potential for facilitating a thorough data analysis as needed for our
specific task.

The DS4C dataset was reduced after pre-processing, indicating that a large portion of
the data was either irrelevant or incomplete for the purposes of this dissertation. Further-
more, it lacked crucial information on symptoms and comorbidities, which are essential
variables in COVID-19 studies.

On the other hand, the TriCovB dataset, with its massive original size, still retained a
substantial amount of data after pre-processing. It also provided a more detailed repre-
sentation of age and included one-hot encoding for symptoms and comorbidities, which
is a more suitable format for ML tasks. Moreover, it covered a longer period and included
more relevant dates, which could provide more comprehensive insights into the progres-
sion of the disease.

Figure 3.1 presents a series of bar plots that visually represent the percentage of miss-
ing values for each type of feature in each dataset. The bar plots offer a clear and con-
cise way to understand the completeness of the data in each category, highlighting areas
where data may be sparse or missing. The presence of missing data is a crucial factor in

data analysis, as it can substantially influence the outcomes and the derived conclusions.
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FIGURE 3.1: Percentage of Missing Values on each Dataset
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In the case of the DS4C dataset, there is a considerable percentage of missing data
across all variables. Specifically, the Relevant Dates and Outcome variables exhibit more
than 40% missing data. This high percentage of missing values could potentially under-
mine the efficacy of any analysis conducted using this dataset, given that a significant
portion of the data is absent.

The situation is even more pronounced with the nCov2019 dataset, which displays
an exceedingly high percentage of missing values. Specifically, the Age, Sex, Relevant
Dates, and Outcome variables all have over 90% missing data. This severe deficiency
implies that the vast majority of the data for these variables is absent, which could result
in biased or unreliable outcomes. The near-total absence of Symptoms and Comorbidities
variables further restricts the utility of this dataset for COVID-19 studies.

In stark contrast, the TriCovB dataset exhibits a significantly lower percentage of miss-
ing values for the majority of its variables. Both the Age and Sex variables are completely
filled, and the Relevant Dates variable has a mere 14% missing data. However, the Out-
come variable does present a relatively high percentage of missing values at 69%, which

could pose a potential issue.

3.4 Conclusions

The process of dataset selection for this study involved a careful evaluation of the DS4C,
nCov2019, and TriCovB datasets. Each dataset was assessed based on its completeness,
structure, size, and relevance to the research objectives.

The DS4C dataset, despite its substantial size, was not selected for this study. The pri-
mary reason for this decision was the dataset’s lack of information on patient symptoms
and comorbidities. These variables are crucial for our study, as they provide essential in-
sights into the patients’ conditions. Without this information, the DS4C dataset does not
fully meet the requirements of our research.

Similarly, the nCov2019 dataset was also not chosen for this study. The reported pe-
riod of this dataset predates the declaration of the pandemic by the WHO, which limits
its relevance to our research objectives. Furthermore, the size of the dataset, after the
cleaning process, was not sufficient to support robust analysis. These factors collectively

rendered the nCov2019 dataset less suitable for our study.
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The TriCovB dataset was selected for further analysis. This decision was based on the
several key strengths of the dataset. Firstly, the TriCovB dataset has a minimal percent-
age of missing values, which sets it apart from the other datasets considered. This com-
pleteness provides a robust foundation for our research. Secondly, the TriCovB dataset is
characterized by its tidy structure and substantial size, with nearly 200,000 entries. The
dataset encompasses a comprehensive range of information, including detailed demo-
graphics, pertinent dates, symptoms, comorbidities, and patient outcomes. This wealth
of data enables us to gain a thorough understanding of the patients and their respective
conditions, which is indispensable for conducting effective analysis.

In summary, the selection of the TriCovB dataset for this study was guided by its
completeness, structure, size, and relevance to the research objectives. Despite the high
percentage of missing values in the Outcome variable, the dataset still offers the most
comprehensive and reliable data among the three datasets. However, its important to
note that the high percentage of missing values in the Outcome variable should be ac-
knowledged in the analysis, as it could potentially introduce bias or uncertainty in the

results.



Chapter 4

Case Study on Brazil COVID-19

Hospitalization

Studying the TriCovB dataset through exploratory data analysis (EDA) can help uncover
insights and spot possible reasons for negative outcomes. This involves looking at details
like patient characteristics, symptoms, and results, as well as other factors. Performing an
EDA allows a closer look at the dataset to understand its main parts, such as distribution,
variance, and relationships. Using tools like pictures and simple summaries, an EDA
shows patterns and possible connections in the data.

This chapter begins by providing a more comprehensive introduction to the TriCovB
dataset (previously mentioned in Chapter 3), then proceeds to focus on Univariate Analy-

sis, followed by Multivariate Analysis, and ultimately grouping similar elements together.

4.1 Dataset Description

In this section, our aim is to provide an in-depth exploration of each feature category,
as introduced in Chapter 3. This endeavor is designed to empower the reader with a
comprehensive grasp of the dataset’s composition, prioritizing a nuanced comprehension

of the dataset’s nature over a mere focus on feature types:

e Relevant Dates: This feature group contains dates in a specific format, which may
represent significant events or milestones related to each patient. These dates can

provide crucial temporal context during the analysis.

37
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Quarantine Duration: This numerical feature denotes the duration of the patient’s
quarantine period, measured in days. It reflects the amount of time the patient spent

in isolation or under observation.

Patient Outcome: This binary feature indicates the patient’s ultimate outcome. A
value of "0’ signifies that the patient has recovered from COVID-19, while a value of

1" indicates that the patient passed away.

Patient Hospitalization: This binary feature captures whether or not a patient re-
quires hospitalization. A value of ‘0" denotes no hospitalization, while a value of "1’

indicates that the patient was admitted to a hospital.

Demographics: This feature group encompasses demographic information about
the patients, including sex and age. The "sex’ feature is represented as a binary vari-
able, with ’0” denoting male and "1’ denoting female. The "age’ feature is a numerical

variable measured in years, indicating the patient’s age.

Ethnicity: This categorical feature represents the ethnicity of each patient. It consists
of five distinct classes, allowing for an analysis of the potential impact of ethnicity

on hospitalization.

Symptoms: This feature group consists of seven one-hot encoded variables, each
representing a specific symptom exhibited by the patient. The possible symptoms
are fever, cough, headache, difficulty breathing, runny nose, sore throat, and diar-
rhea. By examining these symptoms, it is possible to explore their individual and

collective relationship with hospitalization.

Comorbidities: Similar to the symptoms group, the comorbidities feature group
comprises six one-hot encoded variables, reflecting the presence or absence of spe-
cific comorbidities in each patient. The comorbidities covered in the dataset are
obesity, diabetes, smoking, cardiac, lung, and renal problems. Analyzing these co-
morbidities can provide insights into their association with the likelihood of hospi-

talization.

Extra Patient Information: This group includes additional patient-related informa-
tion, such as whether the patient is pregnant, has any incapability, or works as a
healthcare professional. These variables offer supplementary context that may in-

fluence the patient’s hospitalization status.
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4.2 Univariate Analysis

Univariate analysis is a fundamental component of EDA that focuses on examining indi-
vidual variables in isolation. In this section, we delve into the univariate analysis of the
TriCovB dataset to gain a deeper understanding of each feature’s characteristics and its
relationship with the target variable. The primary objective of the univariate analysis is to
explore the distribution, central tendency, and variability of each feature independently.
Numerical attributes, like age and quarantine duration, are examined to discern their
central tendencies and dispersion. Categorical and binary features also undergo scrutiny,
revealing frequency distributions that shed light on the prevalence of each category or
value. Complementing these statistics, the deployment of visualizations — encompass-
ing histograms, box plots, bar charts, and pie charts — aids in intuitively conveying fea-
ture distributions and proportions, facilitating the identification of noteworthy patterns

or discrepancies.

4.2.1 Relevant Dates

The temporal constraints of the available data necessitated a meticulous examination of
pertinent dates. The dataset spanned a period of eighteen months, leading to an unequal
representation of the months within a year. The first half of the year was twice as repre-
sented as the second half. To rectify this imbalance, a specific time frame was defined for
our analysis: from July 2020 to June 2021.

This period represents a critical phase in the global trajectory of the COVID-19 pan-
demic, marked by significant developments and challenges. It is the most recent full-year
window available in our dataset, making it particularly relevant for informing current
and future public health strategies. During this period, the world witnessed the rise and
fall of multiple waves of infections, the emergence of new variants of the virus, and the
initiation of global vaccination campaigns [128]. The start of this window, July 2020, saw
many countries grappling with the aftermath of the first wave and preparing for poten-
tial subsequent waves [129]. By the end of this window, in June 2021, many countries had
launched vaccination campaigns and were starting to see the impact of these efforts on
case numbers and hospitalizations [130].

Upon resolving the temporal limitations, the investigation turned toward the explo-
ration and analysis of the temporal distribution of COVID-19 cases. The diagnosis date

served as the foundation for this analysis. Two methodologies were employed: monthly
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segmentation and seasonal segmentation. These techniques facilitated a comprehensive
understanding of potential temporal patterns or trends in the incidence of COVID-19.
Figures 4.2 and 4.1 visually compare these two methodologies, illustrating the monthly

and seasonal distributions.

Monthly COVID-19 Cases
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FIGURE 4.1: Monthly COVID-19 Cases

The monthly distribution of cases within this time frame is represented in Figure 4.1.
March 2021 accounted for the highest number of cases, approximately 12.8% of the total,
followed by November 2020 and December 2020 with 11.4% and 11.5% respectively. June
2021 recorded the least number of cases, contributing only 4.7% to the total.

A parallel analysis was conducted for the seasonal distribution of cases, as depicted
in Figure 4.2. Spring had the highest case count, constituting 34.2% of the total cases,
followed by Winter and Autumn with 27.1% and 20.8% respectively. Summer recorded
the least cases, contributing approximately 17.9% to the total.

In terms of seasonal distribution, the highest number of cases were reported in Spring,
followed by Winter, Autumn, and Summer. This could be due to the fact that respira-
tory viruses, including the one that causes COVID-19, often show seasonal variation with
higher transmission rates in colder months [131]. However, the impact of seasonality on
COVID-19 is still not fully understood and is likely to be influenced by a combination of
factors including human behavior, host immunity, and environmental conditions [132].

These findings are in line with some of the existing literature on COVID-19. Belay et
al. [133] highlighted the trends in the geographic and temporal distribution of COVID-19
cases among children in the US. Furthermore, a perspective by Dhanasekaran et al. [134]
discussed the potential short and long-term evolutionary dynamics of seasonal influenza

and the potential consequences as global travel gradually returns to pre-pandemic levels.
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FIGURE 4.2: Seasonal COVID-19 Cases

4.2.2 Quarantine Duration

The quarantine duration is a numerical feature that denotes the length of time each pa-
tient spent in isolation or under observation. Measured in days, this feature provides an
indication of the duration of the quarantine period. The quarantine duration feature was
derived from the relevant dates in the dataset, specifically the difference between the end
date and the diagnosis date.

The Quarantine Duration feature initially presented a maximum value of 7,485 days
in the TriCovB dataset. This value was deemed anomalous, especially considering the
timeframe under study, which spanned from January 2020 to July 2021, a total of 546
days. As depicted in Figure 4.3, a box plot visualization was instrumental in identifying
two data points with quarantine durations exceeding 6,000 days. These were considered

erroneous and subsequently removed from the dataset.
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FIGURE 4.3: Erroneous Data Points
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Post removal of these two data points, the revised dataset comprised 189,625 cases.
The cleaned dataset presents a mean quarantine duration of approximately 20 days, with
a standard deviation of around 20 days, indicating a substantial variation in quarantine
durations among individuals. The minimum duration is 0 days, while the maximum
is significantly reduced to 448 days. The interquartile range, extending from the 25th
percentile (11 days) to the 75th percentile (21 days), encapsulates the middle 50% of the
quarantine durations, with the median duration being 15 days.

The box plot in Figure 4.4a illustrates the distribution of Quarantine Duration after
this data cleaning process. Notably, a significant number of data points lie beyond the box
plot’s right whisker, indicating numerous outliers with relatively long quarantine dura-
tions. These outliers represent individuals with exceptionally lengthy periods of quaran-
tine compared to most of the population in the dataset.

The histogram in Figure 4.4b provides another perspective on the distribution of Quar-
antine Duration. The concentration of data towards the left of the histogram indicates a
right-skewed or positively skewed distribution, suggesting that a larger proportion of
individuals in the dataset had relatively short quarantine durations. However, the distri-
bution’s skewness is likely influenced by the presence of outliers, as indicated in the box

plot.
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FIGURE 4.4: COVID-19 cases distribution by Quarantine Duration

4.2.3 Patient Outcome

The patient outcome is a binary feature that indicates the ultimate outcome for each indi-
vidual in the dataset. A value of ‘0" signifies that the patient was cured, while a value of

"1” indicates that the patient passed away. Analyzing the patient outcome is essential in
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understanding the overall prognosis and mortality rates within the dataset. By examining
the distribution and proportions of these outcomes, we can gain insights into the severity
of the disease and its impact on patient health. This information is crucial for assessing the
effectiveness of healthcare interventions and identifying potential risk factors associated
with poor outcomes.

Figure 4.5 presents the distribution of patient outcomes, specifically focusing on fatal-
ities within the dataset. It provides a visual representation of the proportions of patients

who unfortunately succumbed to the disease.

Death Distribution
Died

Cured

FIGURE 4.5: Fatalities Distribution

The analysis of COVID-19 cases within the dataset revealed a case fatality rate (CFR)
of 3.6%. The CFR is a critical measure in epidemiology as it provides insights into the
severity of a disease and the effectiveness of healthcare systems in managing it.

The observed CFR of 3.6% falls within the range reported in the literature for COVID-
19, albeit on the lower end. For instance, a study conducted in Italy during the early stages
of the pandemic reported a CFR of 7.2% [135]. A systematic review and meta-analysis of
multiple studies found a pooled CFR estimate of 3.38% [136]. These figures, however,
should be interpreted with caution as the CFR can be influenced by several factors. These
include the demographic characteristics of the population, the capacity and quality of
healthcare systems, and the strategies used to test, report, and manage cases.

In relation to our research, the relatively lower CFR could be influenced by a range
of factors. These factors might encompass the specific time frame covered by the dataset,

extensive testing and accurate case identification, a population composition that skews



44 APPLYING MACHINE LEARNING TO INTELLIGENT CHATBOT FOR PREVENTIVE CARE

towards younger age groups, as discussed in Section 4.2.5, or efficient healthcare and
treatment approaches for individuals with COVID-19. It is also possible that a significant
number of mild or asymptomatic cases were detected and reported, which would lower
the observed CFR. In conclusion, the CFR of 3.6% observed in this study is consistent
with the existing literature on COVID-19, although it is on the lower end of reported rates
[137].

4.2.4 Patient Hospitalization

The patient hospitalization feature is a binary variable designed to capture the necessity
of hospital care for each individual. A value of ‘0" signifies that hospitalization was not
required, indicating that the patient did not undergo admission to a medical facility. Con-
versely, a value of "1” indicates that the patient was admitted to a hospital. The analysis
of the patient hospitalization feature allows for a comprehensive understanding of the
proportion of individuals who necessitated medical care beyond the standard quarantine

period.

Hospitalization Distribution

Yes

FIGURE 4.6: Hospitalization Distribution

A visual representation of the distribution of COVID-19 cases based on hospitalization
status is provided in Figure 4.6. In the dataset under study, a hospitalization rate of 3.9%
was observed. The hospitalization rate is a crucial indicator of the severity of the disease
in the population and the potential strain on healthcare resources.

The value observed in this study is within the range reported in the literature. For

instance, a study conducted in New York City during the early stages of the pandemic
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reported a hospitalization rate of 21% among confirmed cases [138]. In Denmark, a na-
tionwide cohort study reported a hospitalization rate of 17.2% among confirmed COVID-
19 cases [139]. This rate is significantly higher than the one observed in our study, which
could be due to differences in the demographic characteristics of the populations or the
strategies for managing COVID-19 patients.

In the context of Brazil, a study developed a risk prediction algorithm for hospital
admission due to COVID-19 and found that factors such as age, sex, ethnicity, and comor-
bidities significantly influenced the risk of hospitalization [140]. These factors could also
explain the relatively low hospitalization rate observed in our study.

In conclusion, the hospitalization rate of 3.9% observed in this study is consistent with
the existing literature, although it is on the lower end of reported rates. This finding
underscores the importance of context-specific factors in influencing the outcomes of the
COVID-19 pandemic. As the situation continues to evolve, ongoing research is needed to

monitor these trends and inform public health strategies.

4.2.5 Demographics

The demographics feature group encompasses crucial patient information, including sex
and age, which contribute to a comprehensive understanding of the dataset. The "sex’
feature is represented as a binary variable, with ‘0" denoting male and 1" denoting female.
This enables an analysis of potential gender-based differences in hospitalization rates and
outcomes. The "age’ feature, measured in years, provides valuable insights into the age-
dependent vulnerability and risk factors associated with the disease.

The dataset exhibits a broad range of ages, spanning from newborns (minimum age of
0 years) to elderly individuals (maximum age of 111 years). The mean age of the dataset
is approximately 41 years, with a standard deviation of around 18 years, indicating a
notable dispersion in age among the individuals. It is worth noting that the mean age is
slightly higher than the reported average age of 40 in the city of Sdo Paulo, as documented
in a previous study [141]. However, this disparity may be attributed to the inclusion of
patients from diverse regions in Brazil, limiting the dataset’s representativeness for the
population in Sdo Paulo. Further investigation is required to determine the statistical

significance of this difference and identify potential contributing factors.
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FIGURE 4.7: COVID-19 cases distribution by Age

The interquartile range, ranging from the 25th percentile (28 years) to the 75th per-
centile (53 years), encapsulates the middle 50% of the ages, with a median age of 39 years.
The distribution of age is graphically depicted in Figure 4.7.

The histogram in Figure 4.7a reveals a left-skewed or negatively skewed distribution,
with a higher frequency of younger ages. This indicates a larger proportion of relatively
young individuals in the dataset.

The box plot in Figure 4.7b further illustrates this skewness and identifies several out-
liers on the higher end of the age spectrum. These outliers, represented as points beyond
the right whisker of the box plot, indicate individuals significantly older than the majority
of the population in the dataset.

Regarding the gender distribution, a minor disparity is observed within the dataset.
Females account for 54.7% of the cases, while males comprise 45.3%. Interestingly, this
distribution contradicts existing literature, which often reports a higher incidence of COVID-

19 cases in males compared to females [142].

4.2.6 Ethnicity

The ethnicity feature serves as a categorical variable that characterizes the ethnicity of
each patient in the dataset. It encompasses five distinct classes, allowing for an analysis
of the potential influence of ethnicity on hospitalization rates.

From the outset of our analysis, we recognized ethnicity as a potentially significant
categorical feature, considering that certain diseases exhibit varying prevalence across
different ethnic groups [143]. For instance, skin cancer is more commonly observed in

individuals with lighter skin, including those of Caucasian descent [144]. Thus, we closely
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monitored this feature and explored its potential associations with other variables to gain

valuable insights.

Ethnicity Distribution
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FIGURE 4.8: COVID-19 Cases Distribution by Ethnicity

The distribution of COVID-19 cases across different ethnicities in the dataset under
study reveals certain disparities. Mixed ethnicities and white individuals each account
for 42.3% of the cases, followed by Asian individuals at 7.7% and Black individuals at
7.5%. Indigenous people constitute the smallest group, with only 0.1% of the cases.

These disparities could be attributed to a combination of social, economic, and health-
related factors. Socioeconomic factors could play a significant role in the observed ethnic
disparities. For instance, individuals from certain ethnic groups might be more likely
to live in crowded housing conditions, work in jobs with a higher risk of exposure to
the virus, or have limited access to healthcare, all of which could increase their risk of
COVID-19 [145].

Pre-existing health disparities could also contribute to the observed trends. Certain
ethnic groups might have a higher prevalence of underlying health conditions that in-
crease the risk of severe COVID-19, such as diabetes or cardiovascular disease. These
health disparities could lead to a higher incidence of cases among these groups.

Differences in access to testing could also influence the observed distribution of cases.
If testing is more accessible to certain ethnic groups, it could lead to a higher detection
rate among those groups. This could result in an over-representation of these groups in

the dataset.
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Cultural factors, such as language barriers or mistrust in healthcare systems, could
also influence the likelihood of seeking testing or healthcare, thereby affecting the ob-
served distribution of cases. These factors could lead to an under-representation of certain

ethnic groups in the dataset.

4.2.7 Symptoms

The symptoms feature group consists of seven one-hot encoded variables, each represent-
ing a specific symptom exhibited by the patient. By examining these symptoms, we can
explore their individual and collective relationship with hospitalization. Analyzing the
prevalence of symptoms allows us to identify symptom patterns that may be indicative
of severe illness and the need for hospitalization.

Initially, we analyzed the symptomatology of the patients in our dataset. We found
that the top-3 most common symptoms reported were cough, headache, and fever. In-
terestingly, our findings differ slightly from those reported in the literature [146], which
indicate that the top-3 symptoms during the same period were fever, cough, and fatigue.
However, since fatigue was not included as a symptom in our dataset, the next most
prevalent symptom after cough and fever was dyspnea, which can be interpreted as dif-
ficulty breathing. Notably, difficulty breathing was the third least common symptom in
our dataset.

The remaining symptoms and their corresponding percentages are presented in Figure
4.9, where they are displayed in descending order of prevalence.

The distribution of symptoms among COVID-19 patients in TriCovB reveals a diverse
range of manifestations. The most prevalent symptom is a cough, reported in 57.03%
of patients. This is closely followed by a headache, experienced by 55.44% of patients.
Fever is the third most common symptom, reported in 45.77% of cases. Other symptoms
include a runny nose, reported in 37.49% of patients, a sore throat, experienced by 32.17%
of individuals, difficulty breathing, reported by 16.97% of patients, and diarrhea, reported
by 16.06% of patients. Interestingly, 12.08% of patients report no symptoms, highlighting
the potential for asymptomatic transmission of the virus.

These results provide valuable insights into the symptomatology of COVID-19 pa-
tients in TriCovB, which can inform future research and clinical practices. The symptoms
of COVID-19 are a result of the body’s immune response to the virus and the damage

caused by the virus to different organs. The respiratory system is often the most affected,
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FIGURE 4.9: Percentage of patients with symptoms

which explains the high prevalence of cough and difficulty breathing. The virus can also
affect other systems, leading to symptoms such as headache, fever, and diarrhea.

The range and severity of symptoms can vary widely among individuals, depending
on factors such as age, sex, underlying health conditions, and genetic factors. This could
explain the diverse range of symptoms observed in the dataset.

The existence of asymptomatic cases, constituting 12.08% of the patients in the dataset,
is a recognized characteristic of COVID-19 [147]. However, this proportion is notably
lower compared to findings reported in existing literature [148]. These individuals test
positive for the virus but do not exhibit any symptoms. Asymptomatic cases pose a sig-
nificant challenge in controlling the spread of the virus, as these individuals might un-
knowingly transmit the virus to others.

It’s worth emphasizing that these are plausible explanations, and the precise causes

might differ based on particular contexts and conditions.
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4.2.8 Comorbidities

Similar to the symptoms group, the comorbidities feature group comprises six one-hot
encoded variables. These variables reflect the presence or absence of specific comorbidi-
ties in each patient. This analysis aids in understanding the interplay between COVID-19
and pre-existing health conditions.

In this study, the three most prevalent comorbidities among patients in the dataset
were cardiac conditions, diabetes, and obesity, in that order. Interestingly, these results
differ from the literature [149], which suggests that the most common comorbidities in
COVID-19 patients are hypertension, cardiovascular diseases, and diabetes. However,
hypertension was not included in the dataset. Hence, the researchers compared the top
three comorbidities common to both the dataset and the literature: cardiovascular dis-
eases, diabetes, and chronic kidney disease. It is worth noting that renal conditions were
found to be the least common comorbidity in the dataset.

The prevalence of the remaining comorbidities in the dataset and their corresponding
percentages can be found in Figure 4.10, where they are displayed in descending order.
These findings suggest that the distribution of comorbidities in COVID-19 patients may
vary depending on the population studied, which highlights the importance of under-
standing the specific characteristics of each population to provide appropriate medical
care.

The comorbidity profile among COVID-19 patients in the dataset under study is largely
characterized by the absence of any reported comorbidities, with 74.76% of patients falling
into this category. However, among those with comorbidities, cardiac issues are the most
prevalent, affecting 18.11% of patients. Diabetes is the next most common comorbidity,
reported in 6.83% of cases. Obesity is present in 3.38% of patients, while lung-related is-
sues are reported in 3% of cases. Smoking, a risk factor for many health conditions, is
reported in 2.12% of patients. Renal issues are the least common comorbidity, affecting
just 0.6% of patients.

Older individuals are more likely to have comorbidities such as cardiac issues and
diabetes [150]. Individuals with comorbidities are at a higher risk of severe COVID-19.
Therefore, they might be more likely to get tested and be represented in the dataset.

Lifestyle factors such as diet, physical activity, and smoking can contribute to the de-
velopment of comorbidities such as obesity, cardiac issues, and lung-related issues. These

factors could influence the observed distribution of comorbidities.
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FIGURE 4.10: Percentage of patients with comorbidities

It's important to highlight that the high proportion of patients without any reported
comorbidities could reflect the demographic profile of the dataset (e.g., younger age,
healthier population) or testing strategies (e.g., widespread testing, including asymp-

tomatic individuals).

4.2.9 Extra Patient Information

The extra patient information group includes additional patient-related variables, such
as pregnancy status, incapability, and healthcare professional status. This information
provides insights into the unique characteristics of certain patient subgroups and their
potential vulnerability to severe COVID-19 outcomes.

The dataset reveals that 0.6% of the patients are pregnant, as depicted in Figure 4.11a.
This finding suggests that pregnant individuals constitute a small proportion of the over-
all COVID-19 cases in the dataset.

Furthermore, the dataset indicates that 8% of the patients are health professionals,
as shown in Figure 4.11b. This finding is noteworthy as it highlights the occupational
exposure and potential vulnerability of healthcare workers to COVID-19. Analyzing the
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FIGURE 4.11: Extra Patient Information

hospitalization rates and patient outcomes specifically among healthcare professionals
can provide insights into the effectiveness of infection control measures within healthcare
settings and help identify any additional support or interventions required to safeguard
the health and well-being of frontline workers.

In addition, the dataset reveals that 1.9% of the patients have some form of incapac-
ity or deficiency, as presented in Figure 4.11c. This finding underscores the importance
of understanding the impact of COVID-19 on individuals with pre-existing conditions
or disabilities. This information can contribute to the development of targeted interven-
tions and support systems to ensure equitable care for all individuals, regardless of their

physical or cognitive abilities.

4.3 Multivariate Analysis

In the next phase, a multivariate analysis was conducted by examining the hospitalization
feature paired with other variables. The dataset will be partitioned into two subsets: cases
requiring hospitalization and cases not requiring hospitalization. This analysis aims to aid
in the identification of factors that display significant variation between the two groups.
In this part, the hospitalization rates and patient outcomes were explored and an-
alyzed. The analysis of TriCovB uncovered that severe outcomes were experienced by a
relatively minor segment of the population within our dataset, as shown before in Figures

4.6 and 4.5. The distinction was made between survivors and non-survivors, aiming to
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determine the proportion of individuals from each group that were hospitalized. This ap-
proach was taken with the intention of investigating whether hospitalization could serve

as an indicator of unfavorable outcomes. Figure 4.12 illustrates these distributions.
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FIGURE 4.12: Hospitalization Cases by Survivance

It is noteworthy that 62.4% of the patients who unfortunately did not survive were
initially hospitalized, while 37.6% were not. In contrast, a mere 1.8% of the survivors re-
quired hospitalization. This observation suggests that hospitalization is indeed a relevant
indicator of unfavorable outcomes.

With our focus directed toward predicting COVID-19 patient hospitalization, subse-
quent sub-sections will present an overview and conduct a comparative analysis between
the hospitalized and non-hospitalized groups, aiming to enhance comprehension of fac-

tors associated with hospitalization and, ultimately, mitigate unfavorable outcomes.

4.3.1 Age and Sex

In order to conduct a combined analysis of the age and sex features, we explore potential
differences in age distributions between the sexes. The density graph in Figure 4.13 visu-
ally represents these distributions, offering insights into variations in the age distribution
between males and females.

The multivariate analysis of the dataset reveals specific trends in the prevalence of
COVID-19 cases, particularly an increased prevalence in older men compared to older
women. Among patients aged 60 and above, the count of men surpasses that of women,
indicating a higher incidence of confirmed cases in older men. This pattern is also ob-

servable in the age brackets of 10, 30s, and 50s. Conversely, women in their 20s, 40s, and
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FIGURE 4.13: COVID-19 cases distribution by Sex

around the age of 55 exhibit a higher incidence rate. The most significant disparity in the
number of cases between the genders is observed at around 40.

These observed gender and age-specific trends could be attributed to a combination
of biological, behavioral, and social factors. Some studies suggest that biological differ-
ences between men and women could influence their susceptibility to infections, includ-
ing COVID-19 [142]. For instance, sex hormones and the X chromosome in females have
been associated with a stronger immune response, which could potentially explain the
lower incidence of cases in women in certain age groups [151].

The observed patterns could also be influenced by lifestyle and behavioral elements.
For instance, habits like smoking and alcohol consumption, which tend to be more com-
mon among men, could elevate the susceptibility to severe COVID-19 outcomes [152].
Moreover, men might display a greater tendency to seek medical attention and undergo
testing, potentially resulting in a higher detection rate within specific age brackets [153].

To examine potential variations in age distribution, distinct age histograms were gen-
erated for hospitalized COVID-19 patients and non-hospitalized patients, as illustrated in
Figure 4.14a and Figure 4.14b, respectively.

Variations in age distribution emerged between hospitalized and non-hospitalized
COVID-19 cases. Hospitalized patients exhibited an average age of 63, somewhat lower
than certain literature references suggest [154, 155]. Regarding non-hospitalized patients,
the average age of 40 years old is slightly below the figure of 45 years reported in the
literature [156]. This finding supports the conclusion that older individuals tend to face
an elevated probability of requiring hospitalization.

Quartile analysis further reinforces this observation, demonstrating a larger propor-

tion of elderly individuals among hospitalized cases compared to non-hospitalized cases.
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FIGURE 4.14: Age distribution by hospitalization outcome

Despite both groups sharing a similar maximum age (111 for non-hospitalized and 109
for hospitalized), the age range was more extensive among hospitalized cases, spanning
from infants to older individuals.

Figure 4.15 provides a visual representation of the gender distribution, clearly delin-
eating the comparative proportions of males and females within the two distinct cate-

gories of COVID-19 patients: those who required hospitalization and those who did not.
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FIGURE 4.15: Sex distribution by hospitalization outcome

A slight imbalance in hospitalization rates based on gender was observed. Hospital-
ized patients were mainly male, comprising 53.4% of the cases, while females constituted
the majority at 55% among non-hospitalized patients. These findings align with existing
literature [157]. These results suggest a potential gender-based difference in COVID-19
outcomes, indicating that males might be more susceptible to a severe disease requiring

hospitalization [158].
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The results indicate a significant influence of age on the probability of COVID-19 pa-
tients requiring hospitalization, aligning with the existing literature’s expectations. Ad-
vanced age is linked to a heightened vulnerability to severe conditions necessitating hos-

pital admission.

4.3.2 Quarantine Duration

To investigate potential differences in quarantine duration distribution , we generated

separate histograms. The histograms are presented in Figure 4.16a and Figure 4.16b, re-

spectively.
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FIGURE 4.16: Quarantine duration distribution by hospitalization outcome

When comparing the quarantine duration between hospitalized and non-hospitalized
cases, several notable differences emerge. For non-hospitalized cases, the mean quar-
antine duration is approximately 20 days, with a standard deviation of around 19 days.
The minimum duration is 0 days, indicating individuals who may not have undergone a
quarantine period.

The quartile analysis reveals that 25% of non-hospitalized cases have a quarantine du-
ration of 11 days or less, while 50% have a duration of 15 days or less. The 75th percentile
indicates that 75% of non-hospitalized cases have a duration of 21 days or less. The max-
imum duration observed among non-hospitalized cases is 448 days.

On the other hand, for hospitalized cases, the mean quarantine duration is approxi-
mately 63 days, with a standard deviation of around 17 days. Similar to non-hospitalized
cases, the minimum duration is 0 days. The quartile analysis shows that 25% of hospi-
talized cases have a duration of 52.5 days or less, while 50% have a duration of 65 days
or less. The 75th percentile indicates that 75% of hospitalized cases have a duration of 75

days or less. The maximum duration observed among hospitalized cases is 109 days.
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These findings indicate a substantial disparity in quarantine duration between the
two groups. Non-hospitalized cases tend to have shorter quarantine periods, with the
majority falling within the range of 15 to 21 days. In contrast, hospitalized cases have
significantly longer quarantine durations, with the majority falling within the range of 65
to 75 days. It is important to note that the comparison of quarantine duration between the

two groups should be interpreted with caution.

4.3.3 Ethnicity

This dissertation explored how different ethnic groups relate to the chances of getting
hospitalized due to COVID-19. We can see if there are any differences, by comparing the
numbers of hospitalized and non-hospitalized cases in each ethnic group. This helps us
understand if some ethnic groups are more likely to end up in the hospital or not. The

outcomes are visualized in Figure 4.17.
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FIGURE 4.17: Ethnicity distribution by hospitalization outcome

Figure 4.17a illustrates the ethnic distribution among hospitalized COVID-19 cases,
showcasing that Caucasian and Mixed Ethnicities are prevalent, comprising 39.50% and
41.87% of cases, respectively. Asian and Black ethnic groups account for 10.29% and
8.27%, while the Indigenous group has the lowest representation at 0.07%. Compara-
tively, Figure 4.17b reveals a balanced distribution among ethnic groups for both hospi-
talized and non-hospitalized cases, with Caucasian and Mixed Ethnicities prevailing at

42.39% and 42.41%, respectively, followed by Asian (7.58%) and Black (7.50%) groups.
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4.3.4 Symptoms

Figure 4.18 shows a comparison of the prevalence of various symptoms among hospital-

ized and non-hospitalized COVID-19 patients.
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FIGURE 4.18: Symptoms in Hospitalized Patients VS Non-Hospitalized Patients

For non-hospitalized patients, the most frequently reported symptoms are cough and
headache, present in 56.86% and 56.58% of patients, respectively. Fever is also common,
reported by 45.43% of patients. Other symptoms such as runny nose and sore throat
are present in 38.25% and 32.97% of patients, respectively. Diarrhea is less common, re-
ported by 16.23% of patients. Notably, a significant proportion of non-hospitalized pa-
tients, 12.29%, reported no symptoms.

In contrast, the distribution of symptoms among hospitalized patients is markedly
different. The most common symptom in this group is difficulty breathing, reported by
61.93% of patients. This is followed closely by cough, present in 61.15% of patients, and
fever, present in 54.21% of patients. Other symptoms such as runny nose, sore throat,
and diarrhea are less common, reported by 18.92%, 12.74%, and 11.86% of patients, re-
spectively. Headache is present in 27.55% of patients. Notably, only 6.96% of hospitalized
patients reported no symptoms.

These findings suggest that symptoms such as difficulty breathing, cough, and fever
are more common among hospitalized COVID-19 patients compared to those who are not
hospitalized. This could indicate that these symptoms are associated with more severe

COVID-19 outcomes, leading to hospitalization.
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It’s also important to note that a significant proportion of patients in both groups re-
ported no symptoms. This underscores the fact that COVID-19 can affect individuals of

all health statuses and that even those without symptoms can spread the virus.

4.3.5 Comorbidities

In order to understand the role of underlying health conditions in COVID-19 outcomes,
we examined the prevalence of various comorbidities among patients. Figure 4.19 pro-
vides a comparative analysis of these comorbidities, offering insights into potential dif-

ferences in health profiles between these two groups
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FIGURE 4.19: Comorbidities in Hospitalized Patients VS Non-Hospitalized Patients

For non-hospitalized patients, the most common comorbidity is cardiovascular dis-
ease, present in 16.61% of patients. This is followed by diabetes, which is seen in 5.88%
of patients. Pulmonary disease and obesity are present in 2.82% and 3.06% of patients,
respectively. Renal disease and smoking (tabacism) are less common, with prevalence
rates of 0.43% and 1.97%, respectively. Notably, a significant majority of non-hospitalized
patients, 76.42%, reported no comorbidities.

In contrast, the distribution of comorbidities among hospitalized patients is markedly
different. Over half of these patients, 54.68%, have cardiovascular disease. Diabetes is also
significantly more common in this group, present in 29.93% of patients. Pulmonary dis-
ease and obesity are seen in 7.43% and 11.24% of patients, respectively. Renal disease and
smoking are present in 4.59% and 5.79% of patients, respectively. Notably, only 34.20% of

hospitalized patients reported no comorbidities.
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These findings suggest that comorbidities are more common among hospitalized COVID-
19 patients compared to those who are not hospitalized. Specifically, cardiovascular dis-
ease and diabetes are significantly more prevalent in the hospitalized group, as seen in
figure 4.19.

It’s also important to note that a significant proportion of patients in both groups re-
ported no comorbidities. This complements the fact that COVID-19 can affect individuals
of all health statuses and that even those without underlying health conditions can expe-

rience severe outcomes.

4.3.6 Extra Patient Information

In light of the limited representation of pregnancy in our dataset, as indicated in 4.2.9,
and our aim to discern features significantly associated with hospitalization, we chose
to examine the percentage of pregnant individuals among both hospitalized and non-
hospitalized cases. This approach facilitated an investigation into the potential influence
of pregnancy on hospitalization rates amid the COVID-19 pandemic.

As illustrated in Figure 4.20, the differences between the two groups in terms of preg-
nancy are minimal, further underscoring the limited representation of this demographic

in our dataset.

Pregancy Distribution for

Pregancy Di.stribution for Non-Hospitalized Cases
Hospitalized Cases

Yes
Yes

No MNo

(A) Hospitalized Cases (B) Non-Hospitalized Cases

FIGURE 4.20: Pregnancy distribution by hospitalization outcome
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Our analysis revealed that pregnant individuals constituted a small proportion of both
hospitalized and non-hospitalized cases, at 0.3% and 0.6% respectively. This low repre-
sentation of pregnancy in the dataset suggests that it may not significantly influence the
overall patterns and trends in our analysis.

Interestingly, there appears to be a slightly higher percentage of pregnant individuals
among non-hospitalized cases. However, given the minimal overall representation, this
difference is unlikely to have a significant impact on the broader trends and patterns in
the data.

Given these findings, we decided to exclude the pregnancy column from the dataset.
This decision was made to streamline our analysis and focus on features with more sub-
stantial representation and potential impact on hospitalization rates.

It is important to note, however, that this does not diminish the relevance of studying
the impact of pregnancy on COVID-19 outcomes in a dataset with a more substantial
representation of this demographic. Future research with a larger sample of pregnant
individuals could provide valuable insights into the effects of pregnancy on COVID-19
severity and outcomes.

Before we delve into specific disparities observed in our dataset, it’s important to take
a closer look at the representation of health professionals within our study’s population.
As illustrated in Figure 4.21, there are noticeable but modest disparities between the two
groups in terms of the presence of health professionals. This observation serves to accen-
tuate the dataset’s continued underrepresentation of this specific feature.

Our analysis reveals a distinct difference in the representation of health professionals
among hospitalized and non-hospitalized cases. Specifically, only 2% of hospitalized pa-
tients are health professionals, compared to a significantly higher proportion of 8.3% in
non-hospitalized cases.

This disparity could suggest that health professionals, despite their increased expo-
sure to the virus, are less likely to require hospitalization when infected with COVID-19.
This could be attributed to a variety of factors, including potentially higher rates of vac-
cination, better access to personal protective equipment, and early access to treatment
among health professionals.

Turning the attention to some other two distinct groups in our dataset, it’s important

to consider the representation of incapacitated individuals. As illustrated in Figure 4.22,
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Health Professional Distribution
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FIGURE 4.21: Health Professionals distribution by hospitalization outcome

the differences between those two groups are minimal, highlighting the limited represen-

tation of this demographic in our dataset.

Incapacity Distribution in Incapacity Distribution in
Hospitalized Cases Non-Hospitalized Cases
Yes Yes
No No
(A) Hospitalized Cases (B) Non-Hospitalized Cases

FIGURE 4.22: Incapacity distribution by hospitalization outcome

Our analysis reveals a notable difference in the proportion of incapacitated individuals
among hospitalized and non-hospitalized cases. Specifically, incapacitated individuals
constitute 3.4% of hospitalized cases, which is almost double the proportion observed in

non-hospitalized cases at 1.8%.
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This disparity suggests that incapacitated individuals are more likely to require hospi-
talization when infected with COVID-19. Incapacitated individuals may have underlying
health conditions or compromised immune systems that make them more susceptible
to severe outcomes from the virus. Additionally, they may face challenges in accessing

timely and appropriate care, which could exacerbate the severity of their illness.

4.4 Clustering Analysis

The process of clustering analysis, which groups similar data points based on their at-
tributes, has been employed in this study to discern patterns in patient characteristics,
such as symptoms and comorbidities.

The K-means algorithm [159] was chosen for this task due to its computational effi-
ciency and its capacity to manage large datasets with high dimensionality. K-means is
a clustering technique in data analysis used to group similar data points together into
clusters. It operates by iteratively assigning data points to the nearest cluster center and
then recalculating the cluster centers based on the newly assigned data points. This pro-
cess continues until the cluster centers stabilize. K-means requires the pre-specification
of the number of clusters (k) and aims to minimize the distance between data points and
the cluster centers they belong to while maximizing the distance between different clus-
ters. To ascertain the optimal value of k, the number of clusters, the elbow method [160]
was employed, utilizing Within-Cluster-Sum-Squared (WCSS) [161] errors as the crite-
rion. The Jaccard index [162] was chosen as the similarity measure for the application of
K-means to our dataset.

The decision to segment the dataset into symptoms and comorbidities was driven by
the desire to gain distinct insights from these two different aspects of a patient’s health.
Symptoms, as manifestations of the disease (in this case, COVID-19), and comorbidities,
as pre-existing health conditions, can provide unique perspectives when analyzed sepa-
rately. Clustering based on symptoms can reveal patterns related to the disease’s man-
ifestation and progression, thereby potentially contributing to a better understanding of
the disease and aiding in the formulation of targeted treatment plans.

On the other hand, clustering based on comorbidities can shed light on how pre-

existing conditions might influence the disease’s severity and patient outcomes. This
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could provide valuable insights for developing preventative measures and risk stratifi-
cation strategies, particularly given that patients with comorbidities are often at higher
risk for severe outcomes from COVID-19.

The decision to exclude patients without any comorbidities from the comorbidity anal-
ysis was made to address the issue of data sparsity. With a significant proportion of the
patients in the dataset (74.82%) not having any comorbidities, including these patients in
the comorbidity-based clustering could lead to many empty or zero values in the data
matrix. This could negatively impact the clustering results, potentially leading to less

reliable and less meaningful insights.

4.4.1 Symptoms

The clustering analysis performed on the symptom sub-dataset resulted in the identifi-
cation of nine unique clusters. To help better understand the patient distribution across

these clusters, a corresponding visualization was constructed, as illustrated in Fig. 4.23.
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FIGURE 4.23: Percentage of patients per cluster of symptoms.

The three clusters that contain the greatest number of patients are indicated by the
darkest shade of blue, specifically clusters C6, C2, and C8. In contrast, the three clusters
with the smallest number of patients are denoted by the lightest shade of blue, namely
clusters C3, C5, and C7. This graphical representation serves to elucidate the distribu-
tion of patients across the symptom clusters, thereby offering valuable insights into the
prevalence of symptom patterns among the patient population.

Table 4.1 provides an overview of the symptom profiles associated with each cluster.
The first and fourth columns identify the clusters under consideration, representing the
top 3 and bottom 3 clusters, respectively. The second and fifth columns outline the symp-
tom(s) essential for a patient’s categorization within the respective cluster, while the third
and sixth columns specify the symptom(s) that should not be present for the patient to be

associated with that specific cluster.
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TABLE 4.1: Top 3 and Bottom 3 symptoms clusters characterization

Top 3 Present Absent Bottom 3 Present Absent
C6 headaches runny nose, sore | C3 runny nose, sore | fever
throat throat
C2 - runny nose, sore | C5 cough runny nose, fever,
throat headaches
C8 runny nose sore throat c7 runny nose -
difficulty breathing

Given that we are discussing COVID-19, the distribution of patients across the clusters
and the associated symptom profiles could be influenced by several factors related to the
nature of this specific disease.

For the top three clusters (C6, C2, and C8), the common absence of symptoms such as
a runny nose and sore throat might suggest that these symptoms are less prevalent or less
specific to COVID-19. The presence of headaches in cluster C6 could indicate a common
symptom among a significant subset of COVID-19 patients. The absence of any specific
symptoms in cluster C2 might suggest a group of asymptomatic or mildly symptomatic
COVID-19 patients. The presence of a runny nose in cluster C8 could indicate a subset of
COVID-19 patients who experience this symptom without the accompanying sore throat,
which could be related to individual variations in disease presentation.

Conversely, the bottom three clusters (C3, C5, and C7) highlight symptom profiles that
are less commonly observed among COVID-19 patients. The coexistence of runny nose
and sore throat in cluster C3 possibly characterizes a subset of patients with these con-
current symptoms. Within cluster C5, a unique presence of cough without accompanying
symptoms like runny nose, fever, or headaches indicates a specific manifestation. Further-
more, the simultaneous occurrence of runny nose and breathing difficulties in cluster C7
might indicate a more severe symptom pattern associated with critical COVID-19 cases.

This analysis revealed intriguing patterns regarding the symptomatology of COVID-
19. Cough, a symptom often mentioned by patients, emerged as a distinctive trait solely
within cluster C5 (alongside the absence of runny nose, fever, and headaches). Notably,
this cluster is among the three groups with the smallest number of patients. This ob-
servation suggests that despite the high prevalence of cough, it does not appear to be a
distinguishing characteristic of the clusters that encompass the majority of patients in our
dataset.

There are various factors that could contribute to this. Cough, although commonly

associated with the illness, is not exclusive to COVID-19 and can be indicative of various
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respiratory conditions. As a result, the presence of a cough alone might not be adequate
to definitively assign a patient to a particular COVID-19 symptom cluster. Additionally,
individual patient attributes like age, overall health condition, and the existence of under-
lying health issues are recognized as influencers of COVID-19 severity and progression.
This implies that the observed symptom clusters may better mirror these fundamental
factors rather than being solely dictated by the presence of an isolated symptom like a
cough.

In conclusion, the analysis of symptom clusters among COVID-19 patients has un-
veiled intriguing insights. While some clusters align with common expectations, such as
the presence of headaches in one group or the absence of specific symptoms in another,
there are notable deviations that challenge conventional assumptions. For instance, the
presence of cough, a symptom frequently associated with COVID-19, is not a defining fea-
ture of the larger patient clusters, suggesting its presence may not be as distinctive in the
context of the disease. These findings emphasize the varied nature of COVID-19 symp-
toms, which can overlap with various other respiratory conditions. Additionally, individ-
ual patient characteristics and underlying health factors play a crucial role in shaping the

manifestation and severity of the disease.

4.4.2 Comorbidities

The clustering analysis conducted on the comorbidities sub-dataset resulted in the iden-

tification of nine unique clusters, as depicted in Figure 4.24.
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FIGURE 4.24: Percentage of patients within each comorbidity cluster

Clusters containing the largest patient populations are displayed in the deepest shade
of green (namely, clusters C0, C2, and C7), while those with the lowest patient numbers
are portrayed in the palest shade of green (clusters C8, C6, and C3).

Table 4.2 offers an overview of the comorbidity profiles associated with each cluster.

The first and fourth columns identify the clusters under consideration, representing the
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top 3 and bottom 3 clusters, respectively. The second and fifth columns outline the co-
morbidity(s) essential for a patient’s categorization within the respective cluster, while
the third and sixth columns specify the comorbidity(s) that should not be present for the

patient to be associated with that specific cluster.

TABLE 4.2: Top 3 and Bottom 3 comorbidities clusters characterization

Top 3 Present Absent Bottom 3 Present Absent
Co diabetes cardiovascular, lung, | C8 lung diabetes
obesity
C2 cardiovascular renal, obesity C6 renal, diabetes cardiovascular, lung
C7 obesity renal C3 lung, obesity -

Similarly to the preceding analysis of symptoms, this examination unveiled distinct
patterns in the comorbidity profiles of COVID-19 patients. These clusters exhibit specific
combinations of comorbidity presence and absence. The largest cluster, CO0, is charac-
terized by the presence of diabetes and the absence of cardiovascular, lung, and obesity
issues. In other words, all individuals in cluster CO have diabetes, while none of them
have any issues related to cardiovascular health, lung function, or obesity. In cluster C2,
the common factor is cardiovascular problems, with no occurrences of renal or obesity is-
sues. Lastly, cluster C7 is marked by the presence of obesity among all its members, while
no one in this cluster has renal problems.

On the other hand, the three clusters at the bottom (C8, C6, and C3) exhibit less fre-
quent comorbidity patterns among COVID-19 patients. Cluster C8 is characterized by
the presence of lung disease alongside the absence of diabetes. For cluster C6, all pa-
tients have diabetes and renal problems, yet none of them exhibit any cardiovascular or
lung issues. In the case of cluster C3, the least populous cluster, its defining feature is the
coexistence of lung and obesity problems.

The coexistence of diabetes while simultaneously lacking cardiovascular, lung, and
obesity issues in cluster CO raises questions about the relationship between diabetes and
other comorbidities in COVID-19 patients. This observation implies that even though dia-
betes is widely recognized as a risk factor for severe outcomes, the lack of other prevalent
comorbidities may point toward distinct pathways or factors that influence the severity
of COVID-19 in individuals with diabetes [163, 164]. Moreover, the absence of cardio-
vascular disease within the same cluster, which encompasses a significant portion of our
dataset, is noteworthy. This observation highlights that despite the widespread occur-

rence of cardiovascular disease among patients, it does not seem to be a defining feature
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of the largest cluster in our dataset. This logic aligns with the notion that if a particular
ailment is prevalent among nearly all or most individuals, it loses its discriminative value.
On the contrary, its absence becomes more telling and indicative.

On the other hand, the coexistence of cardiovascular problems within cluster C2, cou-
pled with the absence of renal and obesity issues, invites a deeper investigation into
the complex interplay between cardiovascular health and other comorbidities within the
realm of COVID-19. This discovery is rather unexpected, given the high prevalence of
cardiovascular problems among COVID-19 patients. Typically, cardiovascular problems
tend to be paired with other comorbidities like chronic kidney disease and other illnesses
[165, 166]. However, in this specific case, where cluster C2 ranks as the second-largest
cluster, its distinctive feature is the absence of renal and kidney problems while concur-
rently presenting cardiovascular problems.

The presence of obesity while lacking renal problems in cluster C7 raises questions
about the direct association between obesity and renal complications in COVID-19 pa-
tients. The existing literature has consistently highlighted a relationship between obesity
and kidney disease [167] within the context of COVID-19, which stands in contrast to the
outcome revealed by the cluster analysis. Paradoxically, prevailing research underscores
that obesity significantly heightens the risk of kidney disease development [168]. This
disparity between the observed cluster outcome and established knowledge in the field
accentuates the complexity of comorbidity patterns in COVID-19 patients.

Cluster C8's characteristic combination of lung issues without concurrent diabetes
draws attention to a potential differentiation between lung health and diabetes within
the context of COVID-19. Although both conditions can contribute to disease severity, this
cluster implies that their coexistence is not ubiquitous. Considering the higher prevalence
of diabetes among individuals with chronic obstructive pulmonary disease (COPD) com-
pared to the general population [169], this result is particularly intriguing. This discovery
challenges the conventional understanding that patients with lung disease typically have
diabetes, as suggested by the literature. Nonetheless, it’s crucial to bear in mind that this
particular cluster constitutes a relatively smaller subset of cases.

In cluster C6, where both renal problems and diabetes are requisites while cardiovas-
cular and lung issues are excluded, the evidence suggests a convergence between renal
health and diabetes concerning COVID-19, as supported by the literature [170]. This im-

plies that renal and metabolic factors may jointly contribute to the disease’s severity in
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individuals with diabetes, warranting further investigation into their combined impact.
Similarly, in cluster C3, the co-occurrence of lung and obesity issues underscores a poten-
tial connection between respiratory and metabolic well-being among COVID-19 patients,
which is also substantiated by existing literature [171]. This cluster potentially represents
a subgroup with distinct vulnerability resulting from the interplay between respiratory
and metabolic factors. It’s worth noting that both clusters, C6 and C3, encompass less
than 1% of the patient population, indicating their relatively limited prevalence.

In conclusion, the analysis of comorbidity patterns among COVID-19 patients has re-
vealed complex relationships and unexpected insights. While some clusters agree with
established understandings, such as the association between diabetes and renal health,
others challenge conventional knowledge, like the disassociation between cardiovascular
problems and certain comorbidities within a significant portion of the dataset. These find-
ings highlight the complexity of comorbidity patterns in COVID-19 patients and the need
for nuanced approaches to understanding the interplay between different health condi-
tions. This study sheds light on potential subgroups within the COVID-19 patient popu-
lation, each with unique vulnerabilities emerging from the complex interactions between
comorbidities. Further research in this direction could offer insights into customized in-
terventions and treatments for specific patient profiles, ultimately improving patient care

and outcomes.






Chapter 5

Hospitalization Prediction Task

The main goal of this chapter is to predict whether patient hospitalization is necessary.
The prediction relies solely on the TriCovB dataset that now comprises 19 patient fea-
tures, including one numerical variable and 18 binary variables. The binary target vari-
able indicates hospitalization necessity, with 0 representing No and 1 indicating Yes. The
dataset, encompassing around 190,000 entries, presents a challenge due to its highly im-
balanced nature. The target variable distribution is skewed, with No instances making
up about 96.1%, while Yes instances constitute only 3.9%. To address this, the dataset is
split into training and test sets for model development and evaluation, considering the
need to prioritize sensitivity (identifying Yes cases) while maintaining specificity to pre-
vent unnecessary hospitalizations. This chapter will present all the tasks executed on the
training dataset for constructing our ML model. Each task is associated with a specific
section, including Feature Selection, Addressing Imbalance, Preliminary Model Selection,

Performance Evaluation, and Discussion and Conclusion.

5.1 Feature Selection

In light of the foundational concepts discussed in Chapter 2, let’s provide a concise sum-
mary. Feature Selection is an important step in ML. It involves choosing the most influ-
ential features from the larger pool of variables. The primary goal is to streamline the
dataset, retaining only those attributes that truly impact the model’s performance. This
process offers several advantages, including reducing noise in the data, enhancing model
efficiency, and improving predictive accuracy. One common method employed during

feature selection is Feature Importance analysis. This technique evaluates each feature’s
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contribution to an ML model’s predictions. Essentially, it ranks features based on their
influence. Features with higher importance scores are considered more vital in determin-
ing the model’s outcomes. This approach helps researchers and data scientists pinpoint
the key factors driving their models” performance. Feature importance with tree-based
models is the chosen approach to perform Feature Selection.

Feature importance allows us to identify the most influential features that contribute
to the prediction outcome. We can extract feature importance scores by training tree-based
models such as Random Forest and Extreme Gradient Boosting, and these scores indicate
the relative importance of each feature in making accurate predictions. Features with
higher importance scores are considered more relevant and informative for predicting
hospitalization. Then the focus can be laid on a subset of highly important features that
contribute the most to the model’s predictive performance.

To guide the decision on which features from the training dataset to retain and which
to discard, a feature importance analysis was conducted using tree-based models. Specif-
ically, algorithms such as RF, GB, XGBoost, DT, AdaBoost, and Bagging were employed
- their definitions can be revised in Chapter 2. The results of this analysis are summa-
rized in Figure 5.1, providing insights into the relative importance of the various features
in the predictive models. This figure shows the top ten features that have collected the
highest importance scores across the models applied. Features are listed alphabetically,
and the importance scores are rounded to four decimal places. A dash (”-”) signifies that
a particular feature did not rank among the top 10 most influential features for a given
model.

The features that were considered important across all models are highlighted in bold
in Figure 5.1, and these features are Age, Diabetes, Difficulty Breathing, Headache, Runny
Nose, and Sore Throat. The prominence of these features across all models suggests their
pivotal role in the decision-making process of these models, indicating their potential as
robust predictors for the outcome of COVID-19.

The Age feature persists across all models, corroborating the clinical understanding of
COVID-19. It is well-documented in the literature that older individuals are at a height-
ened risk of severe disease and mortality due to COVID-19, which could elucidate why
Age is a highly rated feature in all models [172-174]. These findings align with the results
highlighted in Chapter 4, where a clear differentiation in the age distribution between

hospitalized and non-hospitalized patients was noted.
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Importance of Features Using Different Models
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FIGURE 5.1: Heatmap of Feature Importance

The feature ”Difficulty Breathing” consistently emerges as a predictive factor across
all models. This consistency is further supported by the contrast observed in Chapter
4, where 61% of hospitalized patients exhibited this symptom, compared to only 15%
of non-hospitalized patients. Notably, “Difficulty Breathing” is a recognized indicator of
severe COVID-19, often heralding the onset of conditions such as pneumonia or acute res-
piratory distress syndrome (ARDS) [175-177]. Hence, it is not surprising that this feature
emerges as a key determinant in the models’ predictions.

Another feature that consistently emerges as significant across all models is Diabetes, a
well-documented comorbidity known to exacerbate COVID-19 symptoms and contribute
to more severe outcomes [164-166, 173]. It's worth noting that, while the disparities may
not be as prominent as those observed for Difficulty Breathing, a considerable distinc-
tion persists. Specifically, as detailed in Chapter 4, 29% of hospitalized patients exhibited
diabetes as a comorbidity, whereas only 5% of non-hospitalized patients had this charac-
teristic. This observation reinforces its role as a predictive factor for hospitalization.

In essence, all the features that appear across all models also demonstrated a notewor-
thy contrast in Chapter 4 when comparing hospitalized and non-hospitalized patients.
This occurrence serves to corroborate and validate the results obtained for these features
in the current stage of analysis.

Let’s delve into the attributes of "Headache,” "Runny Nose,” and “Sore Throat,” which

are frequently associated with various respiratory illnesses, including COVID-19 [178].
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It’s noteworthy that these symptoms have been identified as significant features in multi-
ple models. This finding implies that, despite their non-specific nature, these symptoms
could potentially serve as indicators of a COVID-19 infection.

In contrast, features such as Fever, Lung, and Renal are not deemed as important by
any of the models which aligns with the results obtained in the Cluster Analysis in chapter
4, section 4.4. This could be interpreted as these features not contributing significantly to
the models’ predictive accuracy. Interestingly, Fever, a common symptom of COVID-19
[178], is not considered important. This could be attributed to the fact that fever is a
common symptom for many illnesses and not specific to COVID-19, thereby reducing its
predictive power.

The Cardio feature, which pertains to cardiovascular comorbidities, is considered sig-
nificant by some models but not by others. This could be due to the inherent differences
in the construction of decision trees across these models or due to the specific character-
istics of the training data. The importance associated with this feature might be justified
by the results outlined in Chapter 4, where it was noted that 54% of hospitalized patients
had cardiovascular problems, while only 16% of non-hospitalized patients exhibited this
comorbidity. Moreover, a noteworthy aspect to consider as well, as highlighted in Section
4.4 of the same chapter, is that the predominant cluster within our analysis demonstrated
an absence of cardiac problems, while the second-largest cluster exclusively consisted of
patients with cardiac issues. These findings suggest that the significance of the Cardio fea-
ture is context-dependent. While it may not hold universal importance across all models,
its role becomes more pronounced when considering specific patient clusters or subsets.

For last, the Sex feature is only considered important by the GradientBoost and Ad-
aBoost models. This could be reflecting the observed disparity in COVID-19 outcomes
between genders, with men often experiencing more severe disease and higher mortality
rates [95].

These findings have informed the creation of a refined dataset, solely comprising the
features outlined in Figure 5.1. In the subsequent section, we will apply a combination of
resampling techniques to this dataset, encompassing both oversampling and undersam-

pling methods, to further refine our models.
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5.2 Tackling Imbalance

The TriCovB dataset, as introduced before, has 96.1% of entries representing patients who
were not hospitalized and only 3.9% representing hospitalized patients, which indicates a
highly imbalanced data scenario. Given the imbalanced nature of the dataset, the positive
class has been explicitly defined as being the value "1’. This explicit definition ensures
that our models are more adept at detecting the minority class, which is often of greater
significance in imbalanced datasets. This particular scenario of imbalanced data reflects
the real-world nature of the problem[179].

In healthcare, hospitalizations are relatively less frequent compared to non-hospitalizations
[180]. Accurately predicting the minority class (hospitalized patients) carries pivotal im-
portance within this context. As detailed in chapter 4, particularly in section 4.3, it was
observed that a considerable proportion of individuals who were admitted to the hospital
ultimately succumbed to the condition. Identifying patients who require hospitalization
is important for timely medical intervention, appropriate allocation of resources, and ad-
equate healthcare management [181].

To tackle imbalanced data challenges, approaches like undersampling, oversampling,
or a combination of both can be employed. Undersampling reduces instances in the ma-
jority class to balance it with the minority class, curbing bias and boosting overall model
performance. Oversampling involves increasing minority class instances through syn-
thetic data or duplications, achieving class distribution equilibrium, and potentially en-
hancing model performance [182].

Random Undersampling (RUS) is a method of undersampling [183]. It functions by
randomly discarding instances from the majority class to achieve a balanced class distri-
bution. This method proves particularly useful when dealing with large datasets or when
data collection costs are high, as it minimizes the amount of data required for model
training. However, it’s important to apply RUS with caution, as it may result in the loss of
significant information from the majority class, which could be vital in specific scenarios
such as predicting rare diseases [184].

We have applied RUS to the original dataset to obtain a newer version of a dataset
with a class distribution that is closer to a 50:50 balance between the minority class (the
class of interest) and the majority class. Figure 5.2 illustrates the effect of applying the RUS
technique on the original dataset. The plot shows a more balanced distribution of the two

classes, achieved by reducing the instances of the majority class. However, it's important
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to note that this method may result in the loss of potentially important information from

the majority class.
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FIGURE 5.2: Random Undersampling Process

On the other hand, the Synthetic Minority Over-sampling Technique (SMOTE) is an
oversampling method. SMOTE works by creating synthetic samples for the minority class
through interpolation between neighboring instances. This method is especially benefi-
cial when accurate prediction of the minority class is critical [185], such as in predicting
hospital admissions.

As depicted in Figure 5.3, the SMOTE technique generates synthetic examples for the
minority class, resulting in a more balanced dataset. The plot shows a denser cluster of
minority class instances, indicating the creation of synthetic data points. However, this
technique may lead to overfitting due to the synthetic nature of the new instances.

Moreover, combining oversampling and undersampling techniques, like in the case of
SMOTEENN (SMOTE + Edited Nearest Neighbors), can boost performance by eliminat-
ing noisy samples and generating new instances. These resampling techniques offer an
effective solution for enhancing the model’s ability to understand the patterns and charac-
teristics of the minority class, thereby improving predictive performance and mitigating
the bias towards the majority class [186].

Figure 5.4 demonstrates the result of applying SMOTEENN to the dataset. This tech-
nique first over-samples the minority class using SMOTE method and then cleans the data
using Edited Nearest Neighbors (ENN). The plot shows a more diverse and cleaner dis-

tribution of instances, combining the benefits of both over-sampling and under-sampling.
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Original Distribution Distribution after SMOTE
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However, this method can be computationally expensive due to the complexity of the

ENN algorithm.
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FIGURE 5.4: SMOTEENN Process

A comparison of these techniques, including an overview of their primary operational

mechanisms, a discussion of their key advantages, and an examination of potential draw-

backs, is presented in Table 5.1.

With all of this considered, the decision was made to create four versions of the Tri-

CovB dataset, using each of the mentioned approaches: the original (imbalanced) dataset,

the RUS dataset, the SMOTE dataset, and the SMOTEENN dataset. These dataset vari-

ations enable an examination of strategies to address the impact of imbalanced data on

analyses.
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TABLE 5.1: Comparison of Sampling Techniques

Technique Description Advantages Disadvantages

RUS Reduces majority class Simple, fast, improves Risk of losing information,
instances. computational efficiency. potential underfitting.

SMOTE Generates synthetic Provides diverse training Potential overfitting.

minority class instances. data.

Results in cleaner,
Applies SMOTE, then | diverse dataset. Combines | Can be computationally
cleans data with ENN. over-sampling and expensive.
under-sampling.

SMOTEENN

5.3 Hyperparameter Tuning

The initial stage of our model selection process involves conducting a grid search across
different classifiers. Grid search is a technique used in ML to systematically explore and
evaluate various combinations of hyperparameters for a given model, then train and eval-
uate the model using all the combinations set for the grid [187]. This helps to identify the
best combination of hyperparameters that leads to the best performance of the model on
a validation or test dataset. Hyperparameters, unlike other parameters, are not derived
from the data during the learning process but are predetermined before the initiation of
this process [188]. Essentially, it consolidates the search for the ideal hyperparameters for
an ML algorithm, offering a time-efficient and less labor-intensive alternative to manual
tuning [189].

To build robust ML models for predictive analysis, we have selected a diverse set
of classifiers, each offering a unique approach to solving the given task. To get a better
understanding of the inner workings of these classifiers and their associated hyperparam-

eters, we present a concise overview.

e Decision Tree

- Maximum depth of the tree (‘'max_depth’): This hyperparameter controls the
maximum depth or levels of the decision tree. It determines how deep the tree
can grow during training. A deeper tree can capture more complex patterns

but is more prone to overfitting.
e K-Nearest Neighbors

— Number of neighbors (‘'n_neighbors’): This hyperparameter defines the num-

ber of nearest data points (neighbors) to consider when making predictions for
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a new data point. It influences the model’s sensitivity to local patterns in the

data.
e Logistic Regression

— Inverse of regularization strength ("C’): This hyperparameter represents the
inverse of the regularization strength. Smaller values of 'C” indicate stronger
regularization, which can prevent overfitting by penalizing large coefficients in

the logistic regression model.
e AdaBoost

- Maximum number of estimators ('n_estimators’): This hyperparameter speci-
fies the maximum number of weak learners (usually decision trees) that Ad-
aBoost can use. Increasing this value can improve model performance but

might lead to longer training times.

- Learning rate: The learning rate controls the contribution of each weak learner
to the final prediction. It is a small positive value (e.g., 0.1, 0.01) that scales the

weight of each weak learner’s prediction.

e Bagging

— Number of base estimators in the ensemble ('n_estimators’): Bagging (Boot-
strap Aggregating) creates an ensemble of base models. This hyperparameter

determines how many base models are included in the ensemb]e.
e Gradient Boosting

— Number of boosting stages ('n_estimators’): Gradient Boosting builds an en-
semble of decision trees sequentially. This hyperparameter specifies the num-

ber of boosting stages or trees to be added to the ensemble.
— Learning rate: Similar to AdaBoost, the learning rate controls the contribution
of each tree added to the ensemble. It’s a small positive value.

e Random Forest

— Maximum depth of the tree (‘'max_depth’): Similar to the decision tree’s ‘max_depth,’
this hyperparameter controls the maximum depth of individual trees in the

random forest.
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— Number of trees in the forest ('n_estimators’): This hyperparameter sets the

number of decision trees to include in the random forest ensemble.
e XGBoost

— Number of boosting stages ('n_estimators’): XGBoost builds an ensemble of
decision trees. This hyperparameter specifies the number of boosting stages or

trees to be added.

- Learning rate: As with other boosting methods, the learning rate governs the

contribution of each tree to the ensemble’s prediction.

We resort to the grid-search method for hyper-parameter tuning with 10-fold cross-
validation process. Cross-validation is a resampling procedure utilized to evaluate ML
models on a limited data sample [190]. The method of 10-fold cross-validation partitions
the original sample into 10 subsamples, using nine for training purposes, and the remain-
ing one for validation. This process is iteratively repeated 10 times, with each iteration
using a different subsample as the validation set [191].

In the following part, we explore the grid search approaches, outlining the hyperpa-
rameter values explored for each model. Each ML model is associated with its distinct set
of hyperparameters. Table 5.2 specifies the ranges of values examined for each hyperpa-

rameter.

5.3.1 Original Dataset

The grid search process was first conducted on the original dataset. This dataset, in its
original form, presents the true distribution of the classes and serves as a baseline for
comparison with the resampled datasets. The hyperparameters of various ML models
were tuned on this original dataset, and the results are presented in Table 5.3.

For this preliminary stage, we have selected G-means as our evaluation metric for
performing a grid search, as G-means is particularly suitable for imbalanced datasets as it
provides a balanced measure of the model’s performance on both the majority and minor-
ity classes 5.2. G-means balances sensitivity and specificity. This balance is crucial for our
problem where both false positives and false negatives have significant implications. The
aim is to minimize both types of errors by utilizing G-means, ensuring that neither class

is disproportionately favored over the other during the hyperparameter tuning process.
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TABLE 5.2: Search Space of Hyperparameters
Algorithm Hyperparameters Tested Values
Decision Maximum depth of the tree | None, 5, 10
Tree ‘max_depth’
K-Nearest Number of neighbors | 3,5,7
Neighbors 'n_neighbors’
Logistic Inverse of regularization | 0.001, 0.01, 0.1, 1, 10, 100
Regression strength 'C’
AdaBoost Maximum number of estima- | 50, 100
tors 'n_estimators’
Learning rate 0.1, 0.01
Bagging Number of base estimators in | 10, 20
the ensemble 'n_estimators’
Gradient Number of boosting stages | 100, 200
Boosting 'n_estimators’
Learning rate 0.1,0.01
Random Maximum depth of the tree | None, 5, 10
Forest ‘max_depth’
Number of trees in the forest | 100, 200
‘n_estimators’
XGBoost Number of boosting stages | 100, 200
‘n_estimators’
Learning rate 0.1,0.01
TABLE 5.3: Grid Search Results for the Original Dataset
Tee | Neighbors | presion | AdaBoost | Bagging | frelS | IR | XGBoost
Best Hy- B . lfearning rate ) lf:arning rate | max depth = lf:arning rate
max depth = | num neigh- =01, num estima- | =0.1, None, =01,
perpa- None bors =3 c=1 num estima- | tors =20 num estima- | num estima- | num estima-
rameters tors = 100 tors = 100 tors = 200 tors = 100
(S;C'gf:““ 0.4607 0.4458 0.4379 0.3048 0.4743 0.4696 0.4678 0.4459

The grid search results on the original dataset indicate that the models are struggling
to balance sensitivity and specificity, as evidenced by G-Mean scores below 0.5. This chal-
lenge may stem from the dataset’s imbalance, with far fewer instances of patients requir-
ing hospitalization compared to those who don’t. The Bagging model with 20 estimators
and the RF model with no maximum depth and 200 estimators achieved the highest G-
Mean scores, suggesting they handle the class imbalance best. However, these scores are
still insufficient for such a critical task. These findings emphasize the necessity of using
resampling techniques like RUS, SMOTE, and SMOTEENN to address the dataset’s class
imbalance. These techniques could potentially enhance the models” performance.

In summary, while the initial results serve as a valuable benchmark, they also high-

light the issues caused by the dataset’s class imbalance. The next step involves applying
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the resampling techniques presented before and repeating the grid search on the resam-
pled datasets to find models that can more accurately and reliably predict COVID-19 pa-

tients” hospitalization needs.

5.3.2 RUS Dataset

After the grid search was conducted on the original dataset, the same procedure was ap-
plied to the RUS dataset. This adapted dataset presents a more balanced class representa-
tion to counteract the initial class imbalance. The hyperparameters of several ML models
were fine-tuned on this RUS dataset. The outcomes, encompassing the optimal hyperpa-
rameters for each model along with their corresponding G-Mean scores, are detailed in
Table 5.4.

TABLE 5.4: Grid Search Results for the RUS Dataset

Score

Decision K-Nearest Logistic Re- . Gradient Random
Tree Neighbors gregssion AdaBoost Bagging Boosting Forest XGBoost
Best Hy- learning rate learning rate | max depth = | learning rate
erpa- max depth = | num neigh- C=01 =0.1, num estima- | =0.1, 10, =0.1,
fame ters 5 bors =7 ’ num estima- | tors =20 num estima- | num estima- | num estima-
tors = 100 tors = 100 tors = 200 tors = 100
G-Mean 0.8109 0.7859 0.8256 0.8234 0.7827 0.8331 0.8226 0.8268

These scores are notably superior to those from the original dataset, suggesting im-
proved model performance on a balanced dataset created via RUS. GB, with a learning
rate of 0.1 and 100 estimators, tops the list with the highest G-Mean score. XGBoost and
AdaBoost follow closely, demonstrating effective handling of the balanced dataset and a
balanced sensitivity-specificity trade-off. These findings highlight the importance of RUS

in enhancing ML model performance on imbalanced datasets.

5.3.3 SMOTE Dataset

Subsequent to the grid search conducted on the original and RUS datasets, the same
methodology was employed on the SMOTE dataset. This version has been synthetically
augmented to address the class imbalance, thereby providing a more equitable class rep-
resentation. The results of the grid search, including the optimal hyperparameters for
each model and their corresponding G-Mean scores, are displayed in Table 5.5.

The G-Mean scores, as shown in Table 5.5, are markedly superior to those from the

original dataset, suggesting enhanced model performance on a balanced dataset created
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TABLE 5.5: Grid Search Results for the SMOTE Dataset

Decision K-Nearest Logistic Re- . Gradient Random
Tree Neighbors grfssion AdaBoost Bagging Boosting Forest XGBoost
Best Hy- learning rate learning rate | max depth = | learning rate
erpa- max depth = | num neigh- Cc=10 =0.1, num estima- | =0.1, None, =0.1,
fampe ters None bors =7 num estima- | tors =20 num estima- | num estima- | num estima-
tors = 100 tors =200 tors = 100 tors =200
S::f:an 0.9011 0.7961 0.8332 0.8248 0.9030 0.8411 0.9029 0.8560

via SMOTE. Bagging and RF models stand out with the highest G-Mean scores, indicat-
ing their effectiveness in managing the balanced dataset and maintaining a good balance
between sensitivity and specificity. The obtained results show the value of SMOTE in

boosting the performance of ML models on imbalanced datasets.

5.3.4 SMOTEENN Dataset

After performing the grid search on the original, RUS, and SMOTE datasets, we extended
the same procedure to the dataset modified using the SMOTEENN. This adjusted dataset
has been synthetically expanded and refined to rectify the class imbalance, thus providing
a more balanced class representation. The results, including the optimal hyperparameters

for each model and their respective G-Mean scores, are presented in Table 5.6.

TABLE 5.6: Grid Search Results for the SMOTEENN Dataset

Gradient Random

Decision

K-Nearest

Logistic Re-

Tree Neighbors | gression AdaBoost Bagging Boosting Forest XGBoost
Best Hy- learning rate learning rate | max depth = | learning rate
perpa- max depth = | num neigh- C=001 =01, num estima- | =0.1, None, =01,
rameters None bors =3 ’ num estima- | tors =20 num estima- | num estima- | num estima-
tors = 100 tors = 200 tors =200 tors = 200
S::f:an 0.9954 0.9974 0.9246 0.9133 0.9959 0.9328 0.9964 0.9599

These scores notably surpass those from the original, RUS, and SMOTE datasets,
suggesting improved model performance on the balanced dataset created via the SMO-
TEENN. Bagging, DT, KNN, and RF models stand out with the highest G-Mean scores,
indicating their effectiveness in managing the balanced dataset and maintaining a good
balance between sensitivity and specificity. The values that were obtained from the grid
search highlight the advantages of using SMOTEENN to boost the performance of ML

models on imbalanced datasets.
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5.4 Performance Estimation

To assess model performance, the hyperparameter configuration that yielded the highest
G-Mean score will be utilized. Once these optimal hyperparameters are determined, the
question of which dataset version should be employed for model training arises. In re-
sponse, an evaluation of the models using the corresponding TriCovB dataset version will
be presented in each subsection below. Model performance will be assessed on the test set
using metrics such as G-Mean, F1-Score, and AUC-ROC, providing a comprehensive eval-
uation of their capabilities. This evaluation process will facilitate objective comparisons
of model performance across different dataset versions, enhancing our understanding of

their effectiveness in handling various data imbalance scenarios.

5.4.1 Original Dataset

Upon completing the training of models on the original dataset with the optimal param-
eters identified through grid search, the focus transitioned to the phase of model evalua-
tion. This phase includes the analysis of the outcomes of this evaluation, along with the

presentation of their corresponding scores, all of which can be observed in Table 5.7.

TABLE 5.7: Models Evaluation for Original Dataset

Metric Model

AdaBoost Bagging DT GB KNN LR RF XGBoost
G-Mean 0.2975 0.4647 0.4617 0.4764 0.4428 0.4499 0.4567 0.4442
F1-Score 0.1557 0.2801 0.2623 0.3241 0.2651 0.3006 0.2774 0.2950
AUC-ROC 0.9084 0.8139 0.6667 0.9132 0.7147 0.9087 0.8438 0.9129

The GB model emerges as the superior performer in terms of G-Mean. This metric
value suggests an optimal balance between sensitivity and specificity. This implies that
the GB model exhibits good performance in classifying the positive class. Regarding the
F1-Score, the GB model also exhibits superior performance compared to the other models.
However, it is important to highlight that even though the GB model achieves the best
score, it remains below the level of randomness. This signifies a notable deficiency in
the model’s precision, suggesting that its ability to correctly classify positive instances is
somewhat limited.

The XGBoost model outperforms other models in terms of the AUC-ROC score, indi-

cating its superior ability to differentiate between classes. This means that the XGBoost
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model exhibits a higher capability to distinguish between positive and negative classes,
independently of the threshold selected for classification.

On the other hand, the AdaBoost model registers the lowest scores for both G-Mean
and F1-Score, suggesting a struggle in achieving a balance between sensitivity and speci-
ficity, and between precision and sensitivity. The DT model, with the lowest AUC-ROC
score, demonstrates the weakest performance in distinguishing between classes across
different thresholds. These outcomes imply that the models encounter challenges in strik-
ing a harmonious equilibrium between sensitivity and specificity, as well as precision and
sensitivity. This suggests that the AdaBoost and the DT models might not be the most

suitable option for the final model selection.

5.4.2 RUS Dataset

Similarly to the preceding subsection, subsequent to finalizing the model training process
using the optimal parameters acquired through grid search for the RUS dataset, the in-
vestigation has transitioned into the phase of model evaluation. In this phase, the results
of this assessment, along with their respective scores, are presented, as illustrated in Table
5.8.

TABLE 5.8: Models Evaluation for RUS Dataset

Metric Model

AdaBoost Bagging DT GB KNN LR RF XGBoost
G-Mean 0.8349 0.7986 0.8191 0.8377 0.8113 0.8354 0.8382 0.8369
F1-Score 0.2951 0.2462 0.2853 0.2967 0.2661 0.2982 0.2984 0.2959
AUC-ROC 0.9080 0.8756 0.8957 0.9132 0.8784 0.9091 0.9121 0.9102

The RF model emerges as the superior performer in terms of G-Mean, indicating that
it has the best balance between sensitivity and specificity among all models. This suggests
that the RF model is particularly effective in classifying the positive class while maintain-
ing a robust balance between false positives and false negatives. The F1-Score analysis
reveals that the RF model also outperforms its counterparts. Yet, an intriguing observa-
tion is that the top-performing F1-Score still falls short of a random baseline, similar to
the pattern observed in the original dataset.

The GB model takes the lead in terms of the AUC-ROC score, which measures the
model’s ability to distinguish between classes across different threshold settings. This
suggests that the GB model is more capable of distinguishing between the positive and

negative classes, regardless of the specific threshold chosen for classification.
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Conversely, the Bagging model records the least favorable scores across all evaluated
metrics, indicating challenges in striking a balance between sensitivity and specificity, as
well as precision and sensitivity. Moreover, it exhibits the least effective performance in
distinguishing between classes across varying threshold values. These combined results

raise concerns about its suitability for eventual model selection.

5.4.3 SMOTE Dataset

Following the same pattern as with the original and RUS datasets, the models were trained
on the SMOTE dataset using the optimal parameters found through grid search. The re-
sults are displayed in Table 5.9.

TABLE 5.9: Models Evaluation for SMOTE Dataset

Metric Model

AdaBoost Bagging DT GB KNN LR RF XGBoost
G-Mean 0.8216 0.6629 0.6587 0.8153 0.7777 0.8151 0.6637 0.7975
F1-Score 0.2848 0.2285 0.2252 0.2955 0.2595 0.2834 0.2323 0.2871
AUC-ROC 0.8961 0.7872 0.6830 0.8893 0.8406 0.8877 0.8139 0.8769

The AdaBoost model excels in achieving a high G-Mean score, highlighting its pro-
ficiency in accurately classifying the positive class while maintaining a balanced false
positive to false negative ratio. This capability extends to the AUC-ROC score, where the
model effectively distinguishes between positive and negative classes at different thresh-
old settings, emphasizing its strength in class separation.

The GB model leads in terms of the F1-Score among the models. However, it’s impor-
tant to note that even the best F1-Score achieved is lower than what would be expected
by chance, indicating limited precision in positive case classification.

Conversely, the DT model consistently shows less favorable results across all evalu-
ated metrics, implying challenges in achieving a balance between sensitivity and speci-
ficity, as well as precision and sensitivity. Additionally, it exhibits a limited ability to
differentiate between classes at various threshold levels. These findings raise questions

about its suitability for model selection.

5.44 SMOTEENN Dataset

Following the same pattern as in the previous dataset versions, the models have been
trained on the SMOTEENN dataset. The results of evaluating these models in the test set

are shown in Table 5.10.
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TABLE 5.10: Models Evaluation for SMOTEENN Dataset

Metric Model

AdaBoost Bagging DT GB KNN LR RF XGBoost
G-Mean 0.8306 0.7643 0.7582 0.8289 0.7172 0.8255 0.7727 0.8171
F1-Score 0.2807 0.2929 0.2902 0.2899 0.3241 0.2779 0.3066 0.2909
AUC-ROC 0.9017 0.8312 0.7663 0.9035 0.7522 0.9019 0.8579 0.8980

The highest G-Mean score is attained by the AdaBoost model, analogous to the pat-
tern observed in the SMOTE dataset. Consequently, the significance of this prominent
performance mirrors the same of the prior subsection.

The evaluation of the F1-Score highlights the KNN model’s dominance over the other
models. However, it’s worth noting that even the highest F1-Score attained is not able to
surpass the level of randomness. This observation brings to light a precision deficiency in
the model, suggesting that its accuracy in identifying positive instances is relatively low.

The GB model takes the lead regarding the AUC-ROC score, which measures the
model’s ability to distinguish between classes across different threshold settings. This
suggests that the GB model is more capable of distinguishing between the positive and
negative classes, regardless of the specific threshold chosen for classification.

The KNN model exhibits the lowest scores for G-Mean and AUC-ROC, indicating
difficulties in achieving a balanced combination of sensitivity and specificity, as well as
challenges in differentiating between classes at varying threshold values. Similarly, LR
holds the lowest score for F1-Score, suggesting struggles in maintaining a robust balance
between precision and sensitivity. These findings collectively suggest that both the KNN
and LR models might not be the most optimal choices for the final model selection, given

their limitations in achieving balanced performance across the assessed metrics.

5.5 Discussion

The results underscore the importance of hyperparameter tuning in improving model per-
formance. The optimal hyperparameters varied across the different models and datasets,
highlighting the need for a thorough and systematic approach to hyperparameter tuning.
Future studies could explore more advanced hyperparameter optimization techniques,
such as Bayesian optimization or genetic algorithms, to further improve model perfor-

mance but more of this will be discussed in the next chapter.
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The results also show how different ML models performed on various dataset ver-
sions, the original version being the ground truth for comparison, and each of the other
versions designed to tackle the issue of imbalanced data. Compared to the original imbal-
anced dataset, all the ML models had a better performance when trained on the resam-
pled versions. These findings emphasize the importance of addressing class imbalance in
training data, as it directly impacts the models” ability to make accurate predictions.

In the original dataset, the models struggled to achieve a balanced trade-off between
sensitivity and specificity, evident from the low scores obtained across all models for the
metrics G-Mean and F1-Score, even falling below random levels. However, through re-
sampling techniques, we observed a substantial improvement in overall performance.
Across all dataset versions, several common trends and distinctions have emerged, pro-
viding insights into the suitability and limitations of various ML models.

In terms of the G-Mean score, it is intriguing to observe consistent trends across dif-
ferent dataset versions. The GB, and the RF models got the highest G-Mean scores. The
AdaBoost model was both among the models with the lowest and the highest G-Mean
score. Bagging, DT, and KNN models also held the lowest G-Mean score. This observa-
tion shows the limitations of these models in achieving the desired equilibrium.

Regarding the F1-Score, a unique finding comes to the forefront. While different
dataset versions display variations in performance, an intriguing trend prevails: even the
top-performing F1-Scores across all versions remain below the random baseline. This sug-
gests that the models, although showing improved sensitivity, struggle to maintain an ad-
equate level of precision. This fact corroborates the difficulty of achieving high precision
in predicting COVID-19 patient hospitalization, regardless of the technique employed.

In terms of the AUC-ROC score, a consistent trend is observed where the foremost
positions are consistently held by the XGBoost, GB, and AdaBoost models, underscoring
their proficiency in effectively discriminating between positive and negative cases. Con-
versely, lower scores are associated with the KNN, DT, and Bagging models, positioning
them among the models with comparatively poorer performance in this regard.

To sum up the best scores and the corresponding models for each version of the
dataset, the table 5.11 was built.

The results presented in this table allow some conclusions that go as follows:

e G-Mean: The optimal resampling technique in this context is Random Under-sampling.

This approach is advantageous as it minimizes the dataset’s size, thereby reducing
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TABLE 5.11: Best Scores for Each Metric on Different Dataset Versions

Metric Original RUS SMOTE SMOTEENN
G-Mean 0.4764 (GB) 0.8382 (RF) | 0.8216 (AdaBoost) | 0.8306 (AdaBoost)
F1-Score 0.3241 (GB) 0.2984 (RF) | 0.2955 (GB) 0.3241 (KNN)
AUC-ROC | 0.9129 (XGBoost) | 0.9132 (GB) | 0.8961 (AdaBoost) | 0.9035 (GB)

the computational resources required. The model of choice, Random Forest, brings
several benefits. It is capable of managing high-dimensional spaces and numerous
features effectively. It also exhibits robustness to outliers and possesses an inher-
ent feature selection capability due to the random subspace method. Additionally,
Random Forest models, through their ensemble nature, are less prone to overfit-
ting compared to individual decision trees. This is because the ensemble approach

averages out biases and diminishes variance.

F1-Score: This metric, generally, offers a well-rounded evaluation of model per-
formance, particularly in imbalanced dataset scenarios, nevertheless the values ob-
tained are notably low. The models with the highest F1-Score are GB and KNN,
but even so, it is worse than random. This usually happens when the model is
not performing well in terms of precision, meaning that it is generating a signifi-
cant number of false positives [192]. The low scores suggest that there are areas for
further optimization. This could involve additional feature engineering, parameter

tuning, or the exploration of other resampling or modeling techniques.

AUC-ROC: High AUC-ROC values across all versions of the dataset suggests that
the models are doing a good job of distinguishing between the two classes, regard-
less of the dataset version. This is a positive outcome, as it indicates that the models
have learned meaningful patterns from the data that allow them to differentiate
between the classes effectively. Noteworthy that this metric gets slightly better in
the RUS version, although its value on the original dataset is the second best. This
makes it a good metric for imbalanced datasets, as it’s not sensitive to the class im-

balance itself.

However, a slight decrease in AUC-ROC for more complex resampling techniques
like SMOTE and SMOTEENN was observed. This could be due to a variety of fac-
tors. One possibility is that these techniques, while they do a good job of balancing

the classes, may also introduce some noise or artificial patterns into the data that
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make the classification task slightly more challenging. For instance, SMOTE cre-
ates synthetic examples in the feature space, which can sometimes lead to over-
generalization or the creation of instances that are harder to classify. Similarly,
SMOTEENN combines over-sampling of the minority class (SMOTE) with under-
sampling of the majority class (ENN), which can lead to a more complex decision

boundary that might not necessarily result in better AUC-ROC.

Another possibility is that the models are overfitting to the resampled training data,
which could result in lower performance on the test set, as reflected in the AUC-
ROC. Overfitting is a common risk with more complex models or when using tech-
niques that significantly alter the training data, as they can cause the model to learn

patterns that are specific to the training data but do not generalize well to new data.

In conclusion, our initial findings highlight the challenges associated with class imbal-
ance in the dataset and the complexities of predicting COVID-19 patient hospitalization.
Our primary objective is to create a robust model that assists healthcare professionals in
deciding when hospitalization is necessary for COVID-19 patients. To achieve this, we
propose the use of RUS to tackle class imbalance. The choice lies between GB and RF as
the model depends on the evaluation metric. If prioritizing AUC-ROC with a score of
0.91, go for GB; if focusing on G-Mean with a score of 0.82, opt for RE.

The resulting model can be seamlessly integrated into various health chatbots de-
signed for RPM, enabling timely assessments of the need for hospitalization, which can

substantially benefit healthcare decision-making.



Chapter 6

Conclusions

This chapter recaps our study on how ML can be applied to preventive healthcare having
as a specific use case the COVID-19 disease. We highlight our main contributions and key
achievements in applying ML to predictive models for healthcare. We also present some

of the future work topics regarding the intersection of healthcare and ML.

6.1 Contributions

It’s essential to recognize that this work represents just the beginning of a more extensive
journey aimed at improving ML for healthcare applications. This dissertation has made a
few contributions to preventive care and ML, in the context of the COVID-19 pandemic,

which we describe next.

e Presentation and Analysis of Datasets: One contribution of this research lies in
the presentation and analysis of COVID-19 datasets regarding patient characteris-
tics. Through an evaluation of the available COVID-19 datasets, this dissertation en-
sures that the chosen datasets align with the research goals. This informed decision-
making process, based on the understanding of the datasets’ strengths and limita-

tions, reinforces the relevance and applicability of the study’s outcomes.

e Nature of the Data: This research highlights the significant implications of using

simple data variables, such as age, sex, symptoms, and comorbidities, to predict the
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likelihood of hospitalization for COVID-19 patients (Chapters 1 and 2). This ap-
proach demonstrates the potential of using readily available data for critical health-
care decisions, resource allocation, and patient management. This is important in

the scope of preventive care.

e Exploratory Data Analysis: The exploratory data analysis conducted on the chosen
dataset represents another valuable contribution. This EDA effort revealed insights
into the relationships between the independent variables and the target variable.
For example, we observed that individuals who eventually required hospitaliza-
tion tended to be older males, experiencing prominent symptoms like difficulty
breathing, along with the presence of cardiovascular comorbidities and diabetes.
Additionally, our cluster analysis revealed distinct grouping patterns within symp-
toms and comorbidities. This analysis established a robust basis for our subsequent
model development, underscoring the crucial role of comprehending the data be-

fore venturing into predictive modeling.

e Addressing Class Imbalance: One other contribution is the application of diverse
resampling techniques to mitigate class imbalance within the dataset. With the pos-
itive class accounting for only 3.9% of the data, this imbalance is a common hurdle
in medical data analysis. The study showcases how balanced datasets substantially
enhance ML model performance (when using G-Means and AUC-ROC metrics), by
employing methods like RUS, SMOTE, and SMOTEENN. This contribution boosts
model robustness and offers insights for researchers tackling imbalanced data chal-

lenges or using TriCovB.

e Final Result and Practical Application: The final and perhaps most significant con-
tribution is the development of an ML model ready to be integrated into an intel-
ligent chatbot as a practical application of the research findings. The research has
demonstrated how ML can be harnessed to provide actionable insights in a real-
world context. This contribution not only showcases the practical applicability of
the research but also provides a tangible tool that can be used to predict the need for

hospitalization in COVID-19 patients, or potentially, in the context of other diseases.
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In conclusion, this dissertation represents a humble yet meaningful contribution to
the field of preventive care and ML. It is hoped that the findings will inspire further re-
search in this area, ultimately leading to more robust and reliable predictive models for

healthcare applications.

6.2 Future Work

The research presented in this thesis has laid a solid foundation for the application of ML
techniques in the development of an intelligent chatbot for preventive care. The results
obtained demonstrate the potential of ML in this domain and highlight the importance of
addressing the challenges posed by imbalanced datasets.

However, like all research pursuits, there are many potential avenues for future work
that could build upon the findings and insights gained from this thesis. The following list

outlines a few representative topics and examples.

e Exploration of Additional Datasets: We chose the TriCovB dataset for its size and
minimal missing data. Accessing COVID-19 patient data is challenging due to pri-
vacy and logistics. Future research may explore diverse datasets for validation and

insights, potentially revealing region-specific factors and refining our methodology.

e Incorporation of Additional Features: The study primarily focused on vital fea-
tures like age, sex, symptoms, and comorbidities due to data availability and impor-
tance. However, COVID-19’s complexity suggests value in unexplored factors like
health history, genetics, and socio-economics. Future research may enrich features
with new data sources, potentially enhancing predictions, though careful selection

and validation are crucial to avoid overfitting.

e Use of Advanced Resampling Techniques: This study applied common resam-
pling techniques to tackle class imbalance effectively. While these methods enhance
ML performance, advanced techniques like ADASYN and Borderline-SMOTE pro-
vide nuanced approaches. Emerging ensemble-based methods offer further poten-
tial. Future research can explore these techniques for COVID-19 patient hospital-
ization prediction, but their complexity and computational demands require careful
assessment. Resampling choices should align with dataset characteristics, warrant-

ing systematic evaluation and benchmarking studies for optimal selection. While
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this research demonstrated effective techniques, exploring advanced options holds
promise for optimization, necessitating careful consideration of complexities and

challenges.

e Experimentation with Different Model Architectures: In this study, ML model se-
lection was guided by healthcare and COVID-19 prediction literature. The ML land-
scape offers various models like Support Vector Machines, Neural Networks, and
advanced ensembles, each with unique strengths and weaknesses tied to dataset
characteristics. Deep learning methods, including Convolutional and Recurrent
Neural Networks, hold promise for diverse data types. Future research should
systematically compare these models to determine their strengths and weaknesses.
Optimizing hyperparameters, potentially through Bayesian or genetic algorithms,
is crucial for model performance. While this study demonstrated model efficacy, ex-
ploring alternative models and methodologies is essential for improving COVID-19

patient hospitalization prediction.

e Refinement of Hyperparameter Tuning: Grid search systematically explores a hy-
perparameter subset, while random search efficiently handles numerous param-
eters. Bayesian optimization intelligently selects hyperparameters based on past
data, ideal for limited evaluations. Future research should explore these advanced
tuning methods, comparing their performance and resource requirements. Identi-
tying the most effective hyperparameter tuning approach for predicting COVID-19
patient hospitalization requirements is crucial. While grid search worked well here,

advanced methods may further enhance model performance.

e Integration into an Intelligent Chatbot: The project aims to integrate the classifier
into an existing intelligent preventive care chatbot [105]. This integration would
enable real-time predictions of COVID-19 patient hospitalization needs based on
user inputs. The development of such a chatbot has the potential to revolutionize
COVID-19 management by facilitating early intervention. Future work should focus

on refining the chatbot for enhanced performance and user practicality.
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