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ABSTRACT 

The environmental fate of pharmaceuticals has received increasing attention, 

especially since the detection of their presence in wastewater treatment plant (WWTP) 

effluents, surface and groundwater. These compounds can be released into rivers and 

estuaries directly, by discharge or inadequate treatment of water, or indirectly, through 

groundwater contamination when contaminated manure is used as agriculture fertiliser. 

Within the veterinary pharmaceuticals, antibiotics are the group of most concern due to 

the risk of spread of antibiotic resistance in the environment. In addition to their use to 

treat diseases, antibiotics are extensively used as enhancer of feed efficiency to, between 

other things, promote growth. Microorganisms naturally occurring, mainly the ones 

present in areas that are usually exposed to several types of pollution, can be adapted to 

the presence of contaminants. Therefore, some of them can be used in bioremediation, a 

process that involves the use of microorganisms that catabolize specific molecules, 

destroy dangerous contaminants or transform them into less harmful forms.  

The main objective of this study was to evaluate the potential of autochthonous 

microorganisms from estuarine environments for bioremediation of pharmaceuticals, 

namely veterinary antibiotics. This potential was studied in two experiments, one of them 

using these microorganisms in association with plants, in constructed wetland (CW) 

microcosms, and the other using them to produce microbial consortia with capacity to 

degrade antibiotics. 

The first experiment aimed to evaluate the response of microorganisms from CW 

microcosms to the presence of veterinary antibiotics, both in terms of community structure 

and removal performance. Four sets of microcosms planted with Phragmites australis (3 

replicates each) were run in parallel: a set was feed only with livestock wastewater and 

three sets were feed with the same wastewater doped with antibiotics, alone or combined 

(enrofloxacin or/and ceftiofur at 100 µg/L). Wastewater was treated during 18 one-week 

cycles. After each one-week cycle wastewater was removed and replaced by new one 

(doped or not). Water and sediment samples were collected at the end of week 1, 8, and 

18. Antibiotics removal was evaluated by HPLC while microbial community was 

characterized by ARISA and by 454-pyrosequencing analyses. Results show that 

microbial communities were dominated by the phylum Proteobacteria (38 to 48%), 

Firmicutes (20 to 27%), Bacteroidetes (12 to 15%) and Actinobacteria (4 and 9%) but their 

relative abundance was clearly affected by the presence of the antibiotics. The study also 

shows that the systems were able to remove more than 90% of the added antibiotics, 
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pointing to the applicability of CWs for the removal of veterinary antibiotics from livestock 

wastewaters. 

Further, the potential of bacteria from the rhizosphere of two saltmarsh plants (P. 

australis and Juncus maritimus) for the antibiotic biodegradation was investigated in a 

second experiment. In this, two set of flasks were prepared with sediment from the 

rhizosphere of each plant, collected in Lima estuary, and low nutrient medium doped with 

enrofloxacin. The mixture was constantly shaken during 52 weeks. Every three weeks 

period the mixture was diluted with new nutrient medium, to progressively eliminate the 

sediment, and doped again with the antibiotic to produce a microbial consortium with 

capacity to degrade enrofloxacin. The biodegradation of enrofloxacin, a fluorinated 

antibiotic, was evaluated by measuring, with a fluoride (F-) ion-selective electrode, the 

concentration of F- present in cultures supernatants along time. The presence of this anion 

in the culture solution is an indicator of defluorination of enrofloxacin and consequently the 

degradation of the compound. The obtained consortia were able to degrade between 20 

and 80 % of the antibiotic, depending on its initial concentration. In addition, bacterial 

strains potentially involved in the biodegradation processes were isolated. 

This work points for the applicability of the use of autochthonous microorganisms 

collected from estuarine environment, for bioremediation of pharmaceuticals, namely 

veterinary antibiotics, providing new knowledge about the bacteria potentially involved in 

the removal processes. 

Key-words: Constructed wetlands; veterinary antibiotics; autochthonous 

microorganisms; microbial community; bioremediation. 
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RESUMO 

O destino ambiental dos fármacos tem recebido uma atenção crescente, 

especialmente desde que a sua presença foi detectada em efluentes de estações de 

tratamento de águas residuais, nas águas superficiais e nas subterrâneas. Estes 

compostos podem atingir os rios e estuários directamente, através de descargas ou do 

tratamento inadequado da água, ou indirectamente, através da contaminação de águas 

subterrâneas quando excreções de animais contaminadas utilizadas como fertilizantes na 

agricultura. Entre os fármacos veterinários, os antibióticos são o grupo mais preocupante 

devido ao risco da dispersão de resistência a antibióticos no ambiente.  A juntar ao seu 

uso no tratamento de doenças, os antibióticos são usados extensivamente no aumento 

da eficiência da alimentação e, entre outras aplicações, como promotores de 

crescimento. Os microrganismos presentes na natureza, principalmente os que existem 

em zonas que estão constantemente expostas a diferentes tipos de poluentes, podem 

adaptar-se à presença de contaminantes. Por tudo isto, alguns deles podem ser 

utilizados em técnicas de bioremediação, um processo que envolve o uso de 

microrganismos que catabolizam moléculas específicas, destroem contaminantes 

perigosos ou que os transformam em formas menos prejudiciais.    

O principal objectivo deste estudo era avaliar o potencial dos microrganismos 

autóctones de ambientes estuarinos para a bioremediação de fármacos, nomeadamente 

antibióticos veterinários. Este potencial foi estudado em duas experiências, uma na qual 

se usaram estes microrganismos em associação com plantas, numa microcosmo de 

zonas húmidas construídas, e na outra utilizando-os para produzirem um consórcio 

microbiano com capacidade de degradar antibióticos. 

A primeira experiência teve como objectivo avaliar a resposta dos microrganismos 

dos microcosmos de zonas húmidas construída à presença de antibióticos veterinários, 

quer em termos da estrutura da comunidade quer na performance de remoção. Quatro 

conjuntos de microcosmos plantados com Phragmites australis (três réplicas por 

conjunto) foram testados em paralelo: um conjunto em que apenas se adicionou água 

residual de pecuária e os outros três nos quais se adicionou a mesma água mas 

contaminada com antibióticos, em separado ou combinado (enrofloxacina or/and ceftiofur 

at 100 µg/L). As águas residuais foram tratadas durante 18 ciclos de uma semana. A 

seguir a cada ciclo de uma semana a água residual foi removida e substituída por nova 

(com ou sem a adição de antibiótico). Amostras de água e sedimento foram recolhidas no 

final das semanas 1, 8 e 18. A remoção dos antibióticos foi avaliada por HPLC enquanto 

a comunidade microbiana foi caracterizada por análises de ARISA e 454-
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pirosequenciação. Os resultados obtidos demostram que a comunidade microbiana era 

dominada pelos filos Proteobacteria (38 para 48%), Firmicutes (20 para 27%), 

Bacteroidetes (12 para 15%) e Actinobacteria (4 e 9%) mas a sua abundância relativa foi 

claramente afectada na presença dos antibióticos. Este estudo também demostrou que 

os sistemas tinham a capacidade para remover mais de 90% da quantidade de antibiótico 

adicionada, indicando a aplicabilidade das zonas húmidas construídas para a remoção de 

antibióticos veterinários em águas residuais de pecuária. 

Para além disto, o potencial das bactérias presentes na rizosfera de duas plantas 

de sapal (P. australis and Juncus maritmus) para a biodegradação de antibióticos foi 

investigado na segunda experiência. Nesta, dois conjuntos de frascos foram inoculados 

com sedimento proveniente na rizosfera de cada planta, recolhidas no estuário do Lima. 

A biodegradação da enrofloxacina, um antibiótico fluorado, foi estudada com base nos 

resultados obtidos com um eléctrodo selectivo de iões de fluoreto (F-). A medição da 

concentração de aniões de fluor presentes no subrenadante de culturas. A presença 

destes iões na solução das culturas são um indicador da deflurinação da molécula e da 

consequente perda de actividade. O consórcio obtido demonstrou capacidade de 

degradação entre 20 e 80% dos antibióticos, dependendo do consórcio inicial. Em adição, 

as estirpes bacterianas potencialmente envolvidas no processo de biodegradação foram 

isoladas. 

Este trabalho demostra a aplicabilidade dos microrganismos autóctones 

recolhidos num ambiente estuarino, para a bioremediação de fármacos, nomeadamente 

antibióticos veterinários, fornecendo um novo conhecimento sobre as bactérias 

potencialmente envolvidas nos processos de remoção.      

Palavres-chave: Zonas húmidas construídas; antibióticos veterinários; 

microrganismos autóctones; comunidade microbiana; bioremediação.  
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ANOVA Analysis of variance 

ARISA Automated rRNA intergenic spacer analysis 

ARISA AFLs ARISA fragment lengths 

BOD Biochemical oxygen demand 

CEF Ceftiofur 

CIP Ciprofloxacin 

CNT Control 

COD Chemical oxygen demand 

CWs Constructed wetlands 

DAPI 4‟,6‟-diamidino-2-phenylindole 
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DNA Deoxyribonucleic acid 

ENR Enrofloxacin 

EU European Union 

F- Fluoride  

FEDESA Federation of Animal Health 

FQs Fluoroquinolones 

FWS-CW‟s Free water surface constructed wetlands 

HPLC High-performance liquid chromatography 

HRT Hidraulic retention time 

ITS Internal transcribed spacer 

JNC Juncus maritimus 

Koc Octanol-water partition coefficient 

Kow Carbon and Water partition coefficient 

LOD Limits of detection 

LOQ Limits of quantification 

MDS Multidimensional scaling 

min Minutes 

MIX Mixture 

MM Minimal salt medium 

N Nitrogen 

NH3 Ammonia 

NO2
- Nitrites 

NO3
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1. INTRODUCTION 
 

1.1. Presence of pharmaceuticals in the environment 

In European market is possible to find more than 100,000 different chemicals. 

They were introduced in the attempt to improve life quality by utilization in dairy products, 

medicinal products and improvement of industrial processes. Despite all the benefits that 

these compounds represent, the features they have, especially the poor biodegradation, 

make their entrance in the environment a risk factor. Pollutants are xenobiotic compounds 

that when enter in the environment can have negative consequences. Pollutants, as result 

of spills (fuel, solvents), military activities (explosives, chemical weapons), agriculture 

(pesticides, herbicides) and industrial activities are released into the environment. Organic 

matter, suspended particles, micropollutants, nutrients (phosphorus and nitrogen) or 

heavy metals are examples of pollutants that can be released into environment. Their 

presence in the soil and in the aquatic environment is creating problems for environmental 

protection (Pilon-Smits, 2005; Schröder et al., 2007).  

New chemicals compounds that appear and are not currently regulated are called 

emerging pollutant. Information about these compounds and possible treats they posed 

for environment and human health are still unknown. In this group we found compounds 

such as: pharmaceuticals, person-care products, steroids and hormones, industrial 

additives and agents. Besides these compounds it is also important to take into account 

their transformation products making even more difficult to predict the consequences of 

their present and to regulate them. The source of these products in the environment is 

diffused, and are related with their utilization mode, with domestic and industrial wastes 

having a great impact (Farré et al., 2008; Garcia-Rodríguez et al., 2014). 

With respect to pharmaceuticals there are 3,000 different compounds that can be 

divided into different classes, among which can be distinguished: antibiotics, hormones, 

analgesics, anti-inflammatory drugs, chemical compounds used for disinfection and 

cleaning and endocrine-disrupting compounds. These compounds are identified as 

potential pollutants in diverse ecosystems. Antibiotics are one of the most commonly 

pharmaceuticals detected in wastewater treatment plants (WWTPs) effluents. Antibiotics 

can be defined as natural, semi-synthetic and synthetic compounds used in the treatment 

and prevention of diseases caused by microorganism, due their antimicrobial activity. 

They are also used as feed additives for animals and fishes, either to prevent or treat a 

variety of diseases, as well as growth promoter. According to data from the European 

Federation of Animal Health (FEDESA), 29% of the 13,288 tonnes of antibiotics used in 
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European Union (EU) in 1999 were used in veterinary medicine, 6% as growth promoters, 

and 65% applied in human medicine. The excessive application of these compounds and 

their inefficient removal in WWTP is a matter of concern since this can have as 

consequence environmental contamination, with special concern to the possible increase 

of antimicrobial resistance and impacts in human and wild life (Carvalho et al., 2014; 

Jjemba, 2002; Kemper, 2008; Kümmerer, 2004; Li et al., 2014; Rivera-Utrilla et al., 2013; 

Sarmah et al., 2006). The utilization of antibiotics as growth promoter in agriculture was 

banned from Europe in 2006 by Regulation No 1831/2003, in attempt to minimize the 

possible spread of microbial resistance.   

After administration, pharmaceuticals are only partially metabolized being excrete 

from humans and animal bodies (in faeces and urine). These excretion products are a 

mixture between metabolites and parental forms with the possibility of being both still 

bioactive. The metabolization of these compounds varies with their structural formula and 

physical and chemical properties. In turn, excretion rates can vary depending of different 

parameters such as: the substance itself, the mode of application, the excreting species 

and time after administration (Carvalho et al., 2014; Jjemba, 2002; Kemper, 2008).  

Pharmaceuticals compounds can be discharged into the nature as a result of direct 

discharged or through inadequate treatment of water (Fig. 1) and can have adverse 

effects on human health and undesirable changes in the composition of aquatic biota. The 

use of sewage sludge and manure as a fertilizer represents another way of organic 

pollutants entrance in soil, surface water and crops. Manure can be storage before being 

 

Figure 1: Pharmaceuticals fate in different environmental compartments  (Adapted 
from: Farré et al. 2008). 
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used and when this is made without any treatment performed, may lead to a biochemical 

oxygen demand increase, under which pharmaceuticals are less likely to be degraded.  

After this entry into the environment, metabolites of some compounds are converted back 

to the parent compound (Carvalho et al., 2014; Jjemba, 2002; Schröder et al., 2007). 

Pharmaceutical have already been detected in surface water in different concentrations 

(Babić et al., 2010; Grujić et al., 2009; Verlicchi et al., 2012). In the European Union over 

37% of all the sewage sludge generated annually (more than 6.5 million tons) are applied 

in agriculture. Although the pharmaceuticals concentration found in waters are relatively 

low the fact that they, and their degradation products, are continually released, make them 

„pseudo-persistent‟. The presence of antimicrobials in the environment leads to a repeated 

low-dose exposure of bacteria to sub-lethal dosage, which can cause the development of 

resistance. Transmission of these resistant strains can occur in two ways: via direct 

contact or via food chain and can have as outcome the decrease of pharmacotherapeutic 

effects (Carvalho et al., 2014; Jjemba, 2002; Schröder et al., 2007).  

Pharmaceuticals fate, behaviour and effects and their potential impacts in the 

environment are not completely understood, which is influenced by the physical and 

chemical properties of the compound. The possible entrance of compounds in water or 

their adsorption to the organic components (manure or soil) are determinate by the log Koc 

and Kow. Compounds with low log Koc and Kow represents risk to aquatic compartments 

once, due to their characteristic, it is likely for them to enter the groundwater. In the case 

of substance that presents high log Koc and Kow the risk is higher for the terrestrial ambient 

due to their strong adsorption (Kemper, 2008; Slana and Dolenc, 2013).  

In order to restrict the risk to which humans are exposed as consequence of 

antibiotics used in veterinary medicine, risk management strategies are required. With that 

propose, World Health Organization has ranked these compounds according the 

importance they have for human therapy. Each antimicrobial agent was assigned to 1 of 

the 3 categories of importance (critically important, highly important and important) on the 

basis of 2 criteria: “the agent or class is the sole therapy or one of few alternatives to treat 

serious human disease” and “the antimicrobial agent or class is used to treat diseases 

caused by organisms that may be transmitted via nonhuman sources or diseases caused 

by organisms that may acquire resistance genes from nonhuman sources” (Collignon et 

al., 2009). 
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1.1.1. ENROFLOXACIN 

In enrofloxacin (ENR) (Fig. 2) the presence of fluorine, an atom belonging to 

halogenated compounds, is of great importance, since this is the main responsible for 

their antibiotics properties. These properties result of the biological courses that fluorine 

affect, such as the inhibition of enzymes, cell-cell communication, membrane transport 

and processes for energy generation. Among the halogens found in earth, fluorine is the 

most abundant and the most electronegative, conferring a strong polarity and energy to 

carbon-fluorine bond (Key et al., 1997). 

With the insertion of a fluorine atom at 

the 6-position and substitution of a carbon 

atom for nitrogen at 8 in the basic quinolone 

ring structure, a rise in this antibiotic action 

occurs leading to a broader spectrum of 

activity. These synthetic compounds resulting 

from this quinolone family modification are 

named as fluoroquinolones (FQs), been 

flumequine the first described (Redgrave et 

al., 2014). Quinolones are, their self, a modification of compound isolated from production 

of the antimalarial drug chloroquine, with the first one in the class, nalidixic acid, first used 

in 1965. FQs started to be used in 1980 after the first fluoroquinolones were approved for 

clinical medicine (norfloxacin and ciprofloxacin (CIP)). After these, many other compounds 

were also approved for use including ENR (1989), the most important for veterinary use in 

this class (Ball, 2000; Jia et al., 2012; Pallo-zimmerman et al., 2010). Since then, and in 

order to produce a range of more efficient compounds capable to provide better 

therapeutical effects, alterations in R1, R7 and R8 groups (variable one) of FQs have been 

tested. These new developed compounds are categorized according to their structures, 

and divided in different generations. Besides structure, these generations vary from each 

other in terms of spectrum activity, with the most recent ones having an improved activity 

when compared with the previous generations (Redgrave et al., 2014). 

Their mechanism of action is related with the inhibition of enzymes involved in 

several key cellular processes, as the DNA replication. In response to environmental 

stress, growth stage or cellular process, large amount of DNA have to be packed into the 

cell. For this to be possible, DNA molecule of bacteria have to suffer a supercoiling 

process, consisting in the twist of the double-helix strutted over itself. In this process 

several enzymes are involved. FQ act on topoisomerases type II and IV inhibiting their 

Figure 2: Chemical structure of 

Enrofloxacin and Ciprofloxacin (Adapted from: 
Pallo-zimmerman et al., 2010). 
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action of controlling supercoiling in cells alteration, changing, in this way, the DNA 

topology and, consequently impairing DNA replication. Maintain the balance of 

supercoiling is extremely important since the state in what DNA is found are correlated 

with the expression of many gene including the ones involved in the responses to 

changes in the environment. The bacterial species and the type of fluoroquinolones used 

will define which of the enzymes (DNA gyrase or topoisomerase IV) will be affected. DNA 

gyrase are the preferential target in gram-negative bacteria, while in gram-positive 

bacterial is topoisomerase IV the usual target.  The result of this inhibition are depending 

of antibiotics concentration, at lower concentration an impairment of DNA replication can 

be seen and at higher concentration cell death can occur (lethal concentrations). The 

difference between affinity for bacterial DNA gyrase and mammalian DNA gyrase, 

exhibited by fluoroquinolones, with a higher affinity for the first one, allows their rapid 

activity against bacterial without having adverse effects on the host (Drlica et al., 2009; 

Hooper, 2001; Pallo-zimmerman et al., 2010; Redgrave et al., 2014).    

Nowadays, FQs represent the third largest group of antibiotics with an increased 

used in hospitals, households and veterinary (Van Doorslaer et al., 2014). Humans are 

potentially exposed to antimicrobial-resistant bacteria via food chain. The development 

and spread of bacteria resistant to FQs can be a consequence of antibiotic use in food 

animals. Besides the risk for public heath, this will also have impacts on the ecosystem. In 

order to restrict the risk to which human are exposed as consequence of antibiotics used 

in veterinary medicine, risk management strategies are required. With that propose, World 

Health Organization has ranked these compounds according the importance they have for 

human therapy. FQs have been establish as „critically important‟, fill in the 2 established 

criteria mentioned above (Collignon et al., 2009). FQ were then divided into two 

categories, the one applied in human medicine and the one used in veterinary (Redgrave 

et al., 2014).  

Presence of FQs in nature are a result of their extensively use in both human and 

veterinary medicines and lack of appropriate treatment for removing such compounds. 

After administration, only part of FQ are metabolized, being the rest excreted as 

unmetabolized parental compound. Even the metabolized portion excreted pose problems 

once they are usually constituted by break down products that show the same or similar 

toxicity as primary compound, as in the ENR case. Prior application, as fertilizer, sludge 

as to be properly treated, however when it comes to removal of FQ by treatments before 

application, studies shows that they are not very efficient, with FQ still found in digested 

sludge demonstrating their resistance for the treatment applied to sludges. After this, 

sludges are usually stored, a process that did not affect positively degradation either. This 
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shows how sewage sludge can be seen as a FQ reservoir and the vital advance that 

management of this have to suffer (Chenxi et al., 2008; Golet et al., 2003; Lindberg et al., 

2006; Van Doorslaer et al., 2014).  

Once in the environment, FQs are submitted to different processes of degradation 

as photolysis, adsorption and biodegradation. In addition to their use in veterinary 

medicine, ENR has as primary degradation product CIP, the most widely prescribed FQs, 

making their fate in environmental systems of great interest. Importance of photolysis for 

ENR degradation in water was already analysed. Photodegration represents for ENR an 

important degradation pathway. Presence of ENR last longer in deepest waters when 

compared with superficial waters. Consequences for sediment can be more significant 

once exposures are prolonged. If, in one hand, photolysis represents, in water, the 

primordial process of degradation, that is not the case in sediment. In water, and despite 

its importance, photolysis is a slow process with FQs being a long period of time in 

environment before degradation take place. In sediment, this process can only take place 

in surface or in the first millimetres of depth being therefore its role less important.  

Pseudo-persistence in the environment is due to lack of biodegradation and high 

adsorption affinity with half-life times varying between water and sediment. Even if 

biodegradation or photolysis occurs in sediments the process is not complete with residual 

traces of FQ remaining (Ball, 2000; Knapp et al., 2005; Pallo-zimmerman et al., 2010; Van 

Doorslaer et al., 2014).  

The tendency that a chemical has for volatilization and for adsorb to soil are 

defined by Henry‟s law constant and the octanol-water partition, respectively. Henry‟s law 

constants for FQs compounds are <10-15 atm.m3 mol -1, a very low value which means that 

the volatilization is a minor process. The values found for Kow have a large variability, and 

the main value found for most of compounds are less than 2.5. With this value, it was 

expected a low adsorption potential by FQs, however the affinity that they show for 

sludge, soil and sediments is closer to what happens for higher Kow values (Van Doorslaer 

et al., 2014). The move from water to soil occurs rapidly. FQs can, therefore, reach soil 

from different point as the, aforementioned, use as fertilizer of both digested sewage 

sludge and manure, excretion of livestock on fields or through the use of treated 

wastewater or already polluted river water for irrigation fields. For all of the variables, there 

are several aspects that have to be taken into account when persistence of FQs in soil are 

analysed as their photostability, adsorption capability, rate of degradation and leaching 

into water (Picó and Andreu, 2007).  FQs spread through diverse environment 

compartments pose a risk for non-target animal that somehow end up being in contact 

with these compounds. Presence of them have been already detected in several animals 
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in wildlife, as molluscus, shrimps and river snails (Li et al., 2012a, 2012b). Another route 

that can be seen as potential risk for public health is the uptake of these compounds by 

plants used for human consumption. When humans ingest products that have been in 

contact with FQs there is the possibility of accumulation. Tests for the assessment of the 

impacts in crop plants (carrot and lettuce) of soil contaminated with ENR already 

conducted showed a significantly reduction in growth of plants, with ENR being detected 

both in carrot root and lettuce leaves. Besides that, the time to achieve 90% dissipation 

was calculated as >152 days, showing the capability of ENR to  persist in soil environment 

and subsequently making more likely the continuous exposure of plants (Boxall et al., 

2006). In another study with crop plants exposed to ENR, in the plants exposed to the 

higher concentration, CIP was found at the end of experiment. This demonstrates the 

capability of plants for ENR transformation, as demonstrate for animals. Therefore 

antimicrobials can be introduce in food nets through this process (Migliore et al., 2003).  

 

1.1.2. CEFTIOFUR 

Ceftiofur (CEF) belongs to the family of semi-synthetic antibiotics cephalosporins, 

a derived from the product of fungus Cephalosporium acremonium, cephalosporin C. 

Cephalosporins structure contains a β-lactam fused with a six-membered dihydrothiazine 

ring forming the 7-aminocephalosporanic acid nucleus. The β-lactam ring can also be 

found in other molecules, as penicillins and β-lactamase inhibitors. These last ones are 

used in conjunction with β-lactams to extend their spectrum activity. The presence of the 

β-lactam ring is essential for the antibacterial activity of cephalosporins and, therefore, the 

cleavage of this at any point will result in the complete loss of activity. Besides the β-

lactam ring cephalosporins have a cepham nucleus, alterations at R7 and R3, of this, lead 

to creation of a large diversity of compounds that differed from each other. This difference 

is in terms of spectrum of activity, stability to hydrolysis by β-lactamases, protein binding 

affinities and pharmacokinetic characteristics. The alteration in the R7 will affect essentially 

antibacterial characteristics, while changes on R3 affects the absorption, protein binding, 

metabolism and drug half-life. The basic mechanism of action of cephalosporins is 

analogous to all β-lactam antibiotics. They target a class of proteins located in the inner 

portion of bacterial cell wall, the penicillin-binding proteins (PBPs). These are involved in 

various stages of cell wall synthesis and interferences in their functions leading to a 

disruption in cell wall synthesis. The distinctive alterations in the R7 and R3 groups in the 

different antibiotics will affect their affinity for the different PBPs on bacterial species. In 

the case of cephalosporins alterations that can occur will change the ability to penetrate 
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the outer membrane and so target PBP. Due to all the possible substitutions that can take 

place the spectrum of activity of each molecule is unique (El-Shaboury et al., 2007; 

Hornish and Kotarski, 2002; Prober, 1998).  

Classification of cephalosporins are based in their spectrum of activity (in vitro) and 

structural similarities, being divided in four different generations (El-Shaboury et al., 2007; 

Hornish and Kotarski, 2002; Prober, 1998): 

 First-generation: usually active against gram-positive but with a very 

restricted activity against gram-negative bacteria.   

 Second-generation: maintain the active against the same strains of the 

first-generation but with a more active action against gram-negative. 

 Third-generation: raise of the activity for gram-negative were achieved 

being the cephalosporins more potent against this type of bacteria, while 

the activity against gram-positive bacteria already see in the other two were 

maintained. The use of first and second-generation created a selective 

pressure and in order to respond to that certain β-lactamases emerged. 

The presence of an oxyimino side chains in the most of cephalosporins in 

this class confers stability against them.   

 Fourth-generation: these have potency against a broader range of 

organisms then the third-generation. 

Ceftiofur (Fig. 3) is a third-

generation broad-spectrum 

cephalosporin used exclusively in 

veterinary, for the treatment of 

several conditions as respiratory 

diseases and metritis, introduced 

in 1988. Its structure in position 3 

contains a furoic acid thioester, a 

unique substitution for 3rd generation cephalosporins. Its metabolization consist in the 

hydrolytic cleavage of the thioester bond which release furoic acid and the primary 

metabolite desfuroylceftiofur (DFC). The structure of DFC still keeps intact the β-lactam 

ring and, consequently retains the activity associated to the Ceftiofur. This makes possible 

that part of the effects associated to Ceftiofur being in fact a result of DFC action. The 

further metabolization of DFC can occur by the hydrolysis of the β-lactam ring and parallel 

loss of antimicrobial activity. DFC can also form several conjugates with glutathione and 

cysteine through reversible bind to plasma proteins and tissues. The fact that the bounds 

Figure 3: Ceftiofur chemical structure (Source: Hornish 
and Kotarski, 2002). 
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are reversible implies that DFC-conjugates may still have microbiological activity. In the 

environmental hydrolytic, photolytic and biological mechanisms, contributes to CEF 

degradation (Hornish and Kotarski, 2002; Li et al., 2011). Studies to evaluated distribution 

and excretion of CEF, in both type of CEF salts (hydrochloride and sodium), were already 

conducted in rats, cattle and pigs. Presence of CEF and several of their metabolites were 

detected in urine, faeces and plasma of all the mentioned groups of animals. The highest 

amount of CEF and derivatives are normally found in the kidneys as a result of the 

excretion by urine. The second tissue with highest concentration is the lung which is 

consistent with the fact that this is the primary target for this antibiotic. The amount of 

metabolites found that still have microbiological activity is proportional to the existent total 

residues. Investigation on the presence of CEF on effluent of WWTP from different sites 

(urban, livestock and slaughterhouse) are scarce (Beconi-barker et al., 1996; Beconi-

Barker et al., 1996; Gilbertson et al., 1995; Jaglan et al., 1989). 

 

1.2. Wastewater treatment plants 

Conventional WWTPs are designed to remove easily or moderately biodegradable 

compounds. Influent (urban or industrial) of a WWTP can undergo a serial of processes 

that aims the elimination or at least the reduction of all the undesirable compounds, 

including pharmaceuticals residues. For EU the relevant parameters for design are 

defined in the EU Urban Wastewater Directive 91/271/EEC. Treatments usually consist in 

a primary, a secondary and occasionally a tertiary stage.  They differ in terms of biological 

and physicochemical processes and in their main objective. In the first step, reduction of 

wastewater suspend sediments content, through filtration and sedimentation, is attempt. 

This is the most used step in all WWTPs. In the secondary treatment, organic matter and 

nutrients are removed by biological routes (aerobic or anaerobic). Treatment with 

activated sludge is generally used in these facilities, and represents the crucial step in 

biological component of WWTPs. Sorption process and biodegradation are the two most 

important routes for the elimination of pharmaceuticals. Other mechanisms can be 

applied, however they are negligible or non-effective. Besides these mechanisms, 

ultraviolet can be used as a disinfection step, with the intention of eliminating pathogens. 

However this method is not a routine procedure, being applied only in some WWTPs and 

even in the ones that applied it, effluents do not always receive this treatment. For 

antibiotics in WWTPs there are various biological degradation pathways as: mineralization 

to carbon dioxide or transformation to more hydrophobic/hydrophilic compounds (Batt et 

al., 2007; Kim and Aga, 2007; Michael et al., 2013).  
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Presence of different pharmaceuticals has already been detected in effluent of 

WWTP with different operational designs (Cavenati et al., 2012). Choosing a treatment 

system capable of remove all of contaminats is usually difficult due the different processes 

that exist and the variances in WWTP influent. The different types of treatment have their 

advantages and disadvantages. The total antibiotics removal is result of their sorption on 

the sewage sludge and degradation/transformation during the course of the treatments. 

The properties of these compounds will define their route of elimination, with hydrophobic 

residues predictably appearing in higher concentration in primary and secondary sludge 

due their affinity to solids. On the other hand, the most hydrophilic are expect to remain in 

the aqueous phase. The implementation of advanced treatments, such as advanced 

oxidation process, activated carbon adsorption, membrane separation and membrane 

reactor will allow the achievement of greater removal efficiencies. Yet the cost that they 

represent, as higher level of energy consumptions and expensive maintenance makes 

them a less attractive choice. These treatments do not guarantee the full removal of the 

total pharmaceuticals received. Therefore, it is of great importance the selection of low-

cost and efficient alternatives. Currently, assessments of the degradations does not take 

into account the metabolites but these also represents a risks once they can still show the 

antimicrobial activity of parental compound. Thus, searching only for parental compounds 

is not enough to evaluate the possible impacts of effluents into the environment. Industrial 

wastewater represents a most challenging for treatment due to their high concentration of 

pollutant matter. In the particular case of livestock industry, suspended solids, organic 

matter and nutrient load in their wastewater can be responsible for deterioration of water 

bodies into which they are discharged. The traditional wastewater treatment systems have 

already demonstrated their inefficiency in the removal of pharmaceuticals, and up to 40% 

of residues are released together with the effluents. In an attempt to reduce this release, 

different complementary treatments can be applied (Batt et al., 2007; Garcia-Rodríguez et 

al., 2014; Li et al., 2014; Michael et al., 2013). 

 

1.3. Constructed wetlands 

Wetlands occur in nature as a transitional environment between the dry land 

(terrestrial ecosystem) and open water (aquatic ecosystem). Due to their localization, 

these systems exhibit characteristics from both systems at the same time. The benefits 

provide from these systems goes from the habitat for wildlife to the removing of 

contaminants. The capability demonstrated for the removal of contaminants drew attention 

for these systems. Their characteristics started to be seen as potential applicable for 
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alternative or possible additional treatment for the conventional WWTPs. Constructed 

wetlands (CWs) are the artificial man-made systems developed with the objective of 

imitate the natural systems and their removal ability. This, thus, permits control the 

variable in the attempt of improving either further contaminants removal. Wetland 

vegetation, soil and associated microbial community in CWs offer the possibility for carbon 

sequestration in biomass, as well as the recycling of materials and matter. Besides this 

efficiency in the degradation, their high sustainability associated with low operating cost, 

relatively easy maintaining and operation make them an attractive choice. In a CWs 

design there are several parameters, such as organic matter (expressed as biochemical 

oxygen demand – BOD – and chemical oxygen demand – COD) and nutrients (nitrogen 

and phosphorous), that have to be taken into consideration. Limit levels of these 

parameters are defined by the EU Urban Wastewater Directive 91/271/EEC. The low-cost 

of construction, operation and maintenance that they demand associated with their 

benefits for environment makes them a low-cost green technology alternative (Li et al., 

2014; D. Zhang et al., 2014; D. Q. Zhang et al., 2014; Zhou et al., 2009).  In CWs, the 

global nitrogen transformation is a complex process that includes various mechanisms, 

which can remove nitrogen from wastewater or convert this nitrogen (N) among its various 

forms (Fig. 4).  

The N cycle involves several processes as ammonification, nitrification and 

denitrification. The first process corresponds to the conversion of N in ammonia. 

Nitrification is a two-step process where ammonium is converted in nitrate. The first step 

only occurs in strict aerobic conditions where ammonia is converted to nitrite and, this 

 

Figure 4: Mechanism of nitrogen transformation in CW‟s (Saeed and Sun, 2012).  
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one, in the second step is transformed in nitrate. Denitrification process is responsible for 

the reduction of inorganic forms of nitrogen, transforming them into nitrogen gas, under 

anaerobic/anoxic conditions. As described, the N cycle contains processes with different 

oxygen demands, making challenging the design of a CWs capable of  promoting 

efficiency for all of them (Lee et al., 2009; Saeed and Sun, 2012).  

Classification of CWs can be made in different ways depending of the parameters 

take into account. Thus, they can be classified by its hydrology (open water-surface flow 

and subsurface flow), macrophyte type used (emergent, submerged or free-floating), and 

flow path (horizontal or vertical). In what regards to the systems type of flow, it can 

distinguish the CWs with surface flow from the ones with a subsurface flow. The first one 

is also recognised as free water surface constructed wetlands (FWS CW, Fig. 5). The 

removal pathway occurring in FWS CWs in photodegradation once this process is 

enchained in water directly exposed to sunlight (Li et al., 2014; White et al., 2006; D. 

Zhang et al., 2014; D. Q. Zhang et al., 2014). 

Subsurface flow CWs (SSF CWs) can be divided into horizontal and vertical flow.  

Comparing these two types of CWs it is possible to notice their differences in the 

processes that are favoured by each one. In SSF CWs rhizosphere, root zone, have a 

more pronounced effect and adsorption surface is superior in FWS CWs. In the horizontal 

subsurface flow wastewater (SSHF CWs, Fig.6) pass from the inlet, under the surface, to 

the outlet. The systematic passage of flow in SSHF CWs causes the permanent saturation 

of bed and most zones become anoxic/anaerobic with the aerobic zone confined to the 

area around roots. Since most of the bed is in an anoxic/anaerobic state this type of 

system has conditions for occurrence of denitrification.Contrasting with this is what 

happens in SSVF CWs (Fig. 7), where the intermitting feed allows the full drainage of the 

system and  consequently the refill of bed with air. The mostly aerobic state favours the 

 

Figure 5: Schematic representation of a free water surface constructed wetland (FWS 

CW). (Adapted: Li et al. 2014). 
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nitrification with denitrification being a minor process. All these differences have impact in 

the system performance and have to be taken into account when CWs are being design. 

Alterations in degradation rates of a compound in a CW in different zones, occurs, as a 

result of the conditions alterations (e. g.: redox conditions alteration with depth) in the 

system (Li et al., 2014; White et al., 2006; D. Zhang et al., 2014; D. Q. Zhang et al., 2014).  

 

 

Different CWs designs present several advantages and disadvantages. To exploit 

the advantages of the different CWs types, diverse systems can be combined and jointly 

used. These are called hybrid CWs, and have as goal to achieve the highest removal 

efficiency possible by using different CWs with the intention of using their best capabilities. 

Another critical factor affecting the removal efficiency is the length of time during which the 

pollutants are in contact with the substrate and the rhizosphere, known as hydraulic 

 

Figure 7: Schematic representation of a subsurface Vertical flow constructed wetland (SSVF 
CWs) (Adapted from Li et al., 2014). 

 

Figure 6: Schematic representation of subsurface horizontal flow constructed wetland (SSHF 

CWs) (Adapted from: Li et al. 2014). 
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Figure 8: Factors affecting the microbial community in CW. (Adapted from: Truu et al., 2009). 

retention time (HRT). In systems with higher HRT, the time of contact between 

wastewater, rhizosphere and microorganisms will be higher. Otherwise the increase of 

hydraulic loading rate (HLR), will have the opposite effect since the amount of wastewater 

entering the system will be higher and consequently a reduction of time contact will 

happen (Carvalho et al., 2014; D. Zhang et al., 2014).  

The substrate in this type of systems have a relevant importance once they 

provide support for the growth of plants and microorganism and interact directly with 

contaminants by sorption process. The sorption of pollutants is dependent on some soil 

characteristics like the amount of organic matter, pH, mineral concentration, clay 

composition and soil temperature. Grain-size distribution can influence the treatment 

efficiency. Small size particle (clay) in the soil have the capacity to hold more water than 

sandy soils, and have more binding sites. The binding of hydrophobic organic pollutants to 

soil are positively correlated with the organic matter concentration. Evapotranspiration is 

another very important aspect to take in account in the construction of a CW, once this 

can lead to a raise of water salinity through a decrease on water volume, affecting 

negatively the system and the treatment. The decrease in water volume also means a rise 

in dissolved compounds concentration, as the pollutants. This is calculated through the 

sum of physical evaporation from water surface and plant transpiration. To minimize this 

effect, in areas with high temperatures, it will be better to select a shorter hydraulic 

retention time, avoiding the potential to salinity increasing (Carvalho et al., 2014; Pilon-

Smits, 2005; Stottmeister et al., 2003).  

Another factor that has influence in extend of the treatment is the microbial 

community. Microbial communities in these systems have a primordial role in the 

performance at the level of antibiotics degradation. These communities have in their 

constitution autochthonous (indigenous) and allochthonous (foreign) species (Fig. 8). The 
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first ones have adaptive features that allow their survival and growth, participating in 

purification processes. Allochthonous microbes, which come with water, usually can not 

survive in these systems ending to not have any functional importance (Truu et al., 2009). 

In CWs several physical, chemical and biological mechanisms can contribute for 

the elimination of the pollutant (Fig. 9). In the most dominant processes, there are 2 

biological (biodegradation and phytoremediation) and 2 physical (photodegradation and 

sorption) processes. Biodegradation correspond to the decomposition, by 

microorganisms, of organic substances, resulting in simpler and less harmful chemical 

substances. This process can occur in aerobic, anaerobic or anoxic compartments. 

Phytoremediation, as it will be described in more detail, is a removal process that involves 

the use of higher plants. The photodegradation pathway is the compounds degradation, 

by direct or indirect mechanism, when exposed to sunlight. Directly, the sunlight could be 

absorbed resulting in a chemical reaction and alteration of the compound. Besides that 

the oxidation species generated by natural photosensitizers can cause degradation by 

themselves. The sorption process can be the physical adherence of the pollutant onto the 

surface of a sorbent (adsorption) or the assimilation of the pollutant into the sorbent 

(absorption) (Garcia-Rodríguez et al., 2014; H. Jones et al., 2005; Truu et al., 2009).    

Analyses of efficiency of CWs in the removal of veterinary pharmaceuticals, in 

contrary to what happens relative to human medicines, is still scarce (Carvalho et al., 

2013a; Hussain et al., 2012; Xian et al., 2010).  

 

Figure 9: Elimination mechanisms of emerging organic compounds (ECOs) in CW's 

(Source: Garcia-Rodríguez, 2014) 
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1.4. Phytoremediation 

In CWs the behaviour of plants and their interaction with the substrate and the 

associated ecological community play an important role. Plants and their associated 

microbes can be used in phytoremediation, a process for environmental clean-up, use for 

the removal and transformation of possible toxic chemicals. Plants will be subject to 

adverse conditions that they have to cope. Some of the compounds present in 

wastewaters, including pharmaceuticals are designed to be chemicals with a high 

biological activity and can have negative effects in the plants by inducing phytotoxicity or 

by changing  the microbial communities, affecting the microorganism-plant interaction and 

making plants more susceptible to diseases and stress condition and reducing, therefore, 

the efficiency of the phytoremediation process (Boxall et al., 2006; Carvalho et al., 2014, 

2012; Pilon-Smits, 2005; Schröder et al., 2007).  

Although, due to concentrations found in the environment, the presence of 

pharmaceuticals should not be enough by itself to lead to plant death. However, some 

alteration as deficient growth or reduction crop production can be seen. The type of 

agents, dosage, adsorption kinetics and mobility in soil affect the impact of toxics in 

plants. The continued exposure to pharmaceutical compounds can lead to the 

bioaccumulation of these agents in plants, as already been demonstrated. The most 

concerning about this, are the potential threats to human health that this accumulation in 

crop, used in alimentation, may represent (Carvalho et al., 2014; Dolliver et al., 2007; 

Jjemba, 2002; Kumar et al., 2005; Migliore et al., 2003). 

Several characteristics, as fast growing, high biomass, competitive, tolerance to 

pollution and dense root systems, make certain type of plants more suitable to be used in 

CWs. There are a diversity of plant species that can be used in this type of treatment. The 

capacity that halophytes exhibit to tolerate adverse conditions (salinity, ph, water toxicity) 

that occurs in CWs, and that other plants can‟t handle, makes them the main choice for 

these systems. For exemple, Phragmites australis  is defined as a perennial and flood-

tolerant grass with an extensive rhizome system capable to penetrate to depths  up to 1m, 

frequently used in wastewater treatments in CWs (Vymazal, 2013). Phytoremediation may 

be limited by the bioavailability of the pollutants and their possible toxic effects, and the 

lack of nutrients in the soil. The plants that mediate the clean have to be able to act on the 

pollutant but for that they have to be where the pollutants are (Carvalho et al., 2014; Pilon-

Smits, 2005; Stottmeister et al., 2003).  
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The presence of plants in CWs has an important role for different physics factors, 

helping in the sedimentation of suspend soils, and reducing the erosion and re-

suspension. The roots systems are important for the stability of the soil. On the other hand 

their presence contributes for the treatment itself, both directly through uptake, adsorption, 

decomposition and phytovolatilization, and indirectly. This indirect way relates to the 

importance of roots in the biofilm growth, with the release of several compounds (roots 

exudates) from plants that can serve as carbon sources to stimulate microbial growth, and 

may also assist in the compounds degradation. The degradation of the pollutants depends 

strongly on the chemistry within the rhizosphere and the retention time. The alteration of 

the rhizosphere redox conditions resultant of oxygen release. The release of oxigen fixed 

in a plant by roots results in a higher microbial density in rhizosphere than in bulk 

sediments. Root system must obtain oxygen coming from the aerial organs. Oxygen 

reaching the roots can be release to the rhizosphere creating the oxidize conditions for 

aerobic decomposition of organic matter. The growth of nitrifying bacteria benefits with 

this oxygen release since without this it would be an anaerobic environment. The amount 

of oxygen release from the roots is dependent on different factors as: the internal oxygen 

concentration, the oxygen demand of the surrounding medium and the permeability of the 

root-walls. Investigations on the amount of oxygen released by roots have showed widely 

different concentrations. For P. australis the estimated amount of oxygen release varies 

between different authors mainly because the distinct techniques applied, and it goes from 

5-12 g m-2 day -1 to 0,02 g m-2 day -1 (Białowiec et al., 2014; Brix, 1997, 1994; Carvalho 

et al., 2012; Saeed and Sun, 2012; Vymazal, 2013).  

Not only plants can have a positive effect in microbial communities, but also these 

communities can promote plant health by stimulating root growth, enhancing water and 

mineral uptake, and inhibiting growth of other plants. The use of a particular type of plant 

can lead to the increase of the number of microorganisms responsible for remediation.  

Alternatively, the raise of this number is also possible through the addition of 

microorganisms grown in laboratory, a process defined as bioaugmentation. Uptake by 

plants depends on the physicochemical properties (kow, pka, concentration) of 

compounds. The impact that the presence of plants can have in the removal /degradation 

of pollutants are affected by the HRT. The movement of compounds in the soil are affect 

by hydrophobicity (log Kow) and volatility (henry‟s law constant). Molecules with high log 

Kow do not dissolve in the soil‟s pore water since they, due to their hydrophobicity, are 

tightly bound to soil organic matter.  These compounds can, therefore, be classified as 

recalcitrant pollutants since this lack of bioavailability results is a limitation of the 
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phytoremediation process (Li et al., 2014; Pilon-Smits, 2005; Stottmeister et al., 2003; D. 

Zhang et al., 2014). 

 Phytoremediation comprise several processes (Fig. 10), with different 

characteristic. This can occur in the rhizosphere or involve the uptake of compounds into 

the plant. In this, can be distinguished (Carvalho et al., 2014; Pilon-Smits, 2005; Schröder 

et al., 2007; Stottmeister et al., 2003):  

 Phytostimulation: microbial biodegradation of organic pollutants in rhizosphere is 

promoted by plants.  

 Phytostabilization: plants will stabilize and immobilize contaminants in soil, through 

the preventing erosion or runoff. 

 Phytoextraction: used mainly for metals and other inorganic pollutants comprises 

their uptake by plants and subsequent accumulation in tissues.  

 Phytovolatilization: compounds present in soil and water can be transported across 

plant membranes and after being uptake by plant tissue, pollutant can leave the plant to 

atmosphere in volatile form. 

 Phytodegradation: plants can also degrade organic pollutants itself through their 

enzymatic activity. The compounds can be catabolized by mineralization or partial 

degraded to stable intermediates that can be store.  

The main physico-chemical and biological processes in CW‟s occurs in rhizosphere. 

This is where the interaction between plants, microorganisms, soil and pollutants occurs. 

The rhizosphere extends approximately 1 mm around the root and is under the influence 

of the plant. It is expected that most of the reactions of these systems occurs in this 

contact area, referred as rhizoplane, between the roots and the surrounding soil. This 

zone is located between two: other the endorhiosphere, zone in roots, and 

ectorhizosphere, zone that surrounds the roots. Organic and inorganic compounds differ 

in the way that they are phytoremediated. In opposed to what happens in organic 

compounds, which can be degraded in the root zone of plants either by complete 

mineralization to inorganic compounds or partially degradation to a stable intermediate, 

inorganics cannot be degraded, but can undergo stabilization or sequestration. The 

accumulation of inorganic pollutants in tissues may result in toxicity both directly, by 

damaging cell structure, and indirectly via replacement of other essential nutrients.  

Inorganic elements are undegradable and can only be stabilized or moved and stored. 

Higher temperatures accelerate physical, chemical, and biological processes in general 

(Pilon-Smits, 2005; Stottmeister et al., 2003).  
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1.5. Objectives  

In this work is attempted to explore and understand the potentialities of the 

autochthonous microorganisms of estuarine environments in the bioremediation of 

veterinary antibiotics. With this propose two separated experiments were conducted. 

The first experiment was carried out with CW microcosms planted with Phragmites 

australis, in the presence of two different antibiotics (ENR and CEF) and their mixture 

(MIX). This work aimed to evaluate the changes in microbial community structure caused 

by the presence of this type of compounds, and to understand the contribution of 

microorganisms for the antibiotics removal. 

The second work consists in an enrichment degraders experiment, for ENR, from 

rhizosphere of two different saltmarsh plants (P. australis and Juncus maritimus) with the 

aim of investigate the biodegradation of ENR and the isolation of strains possible involved 

in ENR degradation process.  

This work is structured in 4 different chapters. The first consisted in a general 

introduction with information overview for both works. Second and third chapters, 

correspond to the first and second experiment, respectively. In each of them a short 

introduction of the theme is made, followed by the material and methods applied, results 

obtain, discussion and main conclusions. In the last chapter an overview for both works is 

made, emphasizing the new knowledge obtained from the work done. 
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CHAPTER 2 

Removal of Veterinary Antibiotics in 

constructed wetlands microcosms  
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2. REMOVAL OF VETERINARY ANTIBIOTICS IN CONSTRUCTED 

WETLANDS MICROCOSMS - RESPONSE OF BACTERIAL COMMUNITY 
 

2.1. Introduction 

Pharmaceutical compounds have been used with the aim of improving life quality, 

medicine, food production and for industrial processes. These compounds are mostly 

xenobiotic and can have negative impacts on environment (Schröder et al., 2007). Their 

extensive use can represent severe risks to public health, since they are not totally 

removed on wastewater treatment plants (WWTPs) and, consequently, are released into 

nature.  As a result, their presence has been reported in WWTPs effluents, surface and 

ground water. Within the veterinary pharmaceutical, antibiotics are one of the most used 

and, in addition, their capability to treat diseases, they are used as an enhancer of feed 

efficiency and, until the prohibition in 2006,  as growth promoters (Dordio et al., 2010; 

Kemper, 2008; Sarmah et al., 2006). These are designed to act at low doses and to be 

completely excreted from the body after a short time of residence (Thiele-Bruhn, 2003).  

Part of these, are not completely metabolized resulting in their excretion as parental 

compound to the environment. In addition, metabolites have, themselves, activity or can 

be transformed back to the parental compounds after excretion. As a result, a significant 

percentage of the administered antibiotics that are released into the environment still have 

activity (Kemper, 2008; Sarmah et al., 2006). All of these parental/metabolite compounds 

will suffer different unknown transformation and will be capable to appear in different 

compartments. Besides this, the use of manure and sewage sludge as agriculture fertiliser 

represents another route for soil contamination. Surface runoff and leaching of the 

contaminated soil makes possible the unmetabolized antibiotics and their metabolites 

reach the aquatic medium (Kim and Aga, 2007; Thiele-Bruhn, 2003). The knowledge 

about the ecotoxicity of antibiotics is still scarce, the long term exposure to low doses and 

mixtures of compounds, with the possibility of synergistic effects, are two concerning 

factors (Dordio and Carvalho, 2013). This constant presence of antibiotics in the 

environment, in sub-therapeutically concentration, set a selective pressure under the 

bacteria leading to the selection of antibiotic resistant strains. This antibiotic resistance 

can be spread, through the gene transference to others (Kümmerer, 2004).    

Due to all this, there was the need to develop systems with the capability to 

remove these compounds, and therefore, preventing their entry into the environment. 

Constructed wetlands (CWs) are artificial complexes, designed to simulate the capacity 
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for removal of pollutants, from water, shown by natural wetlands, that can be used as 

alternative or additive low-cost wastewater treatments (Białowiec et al., 2014; Carvalho et 

al., 2013a). Based on the different characteristics presented by CW‟s it can be distinguish 

different types. The characteristic choose to produce the classification can be either the 

type of plant used or the hydrology of the system.  It has already been proved the capacity 

of these systems in the removal of various pharmaceutical compounds. However, little 

attention has been given to the veterinary drugs (Carvalho et al., 2013a; Hussain et al., 

2012; Xian et al., 2010). 

The presence of plant can bring several benefits, helping improving these systems, 

having the selection of the appropriated plant a great influence in the treatment. Plants are 

capable of establishing different interactions with the rhizosphere bacteria providing 

support for the growth and influencing their composition (Segura and Ramos, 2013; 

Vymazal, 2013). They can also, by several mechanisms as adsorption, uptake and/or 

degradation, promote the removal of pollutants (Dordio and Carvalho, 2013). The 

presence of the rhizosphere bacteria also has a positive impact into plants. This bacteria 

have an important role in the system functionality, being involved in the carbon and 

nitrogen cycles and in the biodegradation of the different organic substances (Garcia-

Rodríguez et al., 2014; Kümmerer, 2004). 

The physicochemical and biological processes results of the interaction between 

plants, microorganisms, soil and pollutants, therefore, the root zone is the most active 

reaction zone on a CW‟s (Pilon-Smits, 2005; Stottmeister et al., 2003). Macrophytes 

represents the plants that occur naturally in the wetlands, in this type of plant it is possible 

to identified several adaptation that allow them to survive in such environments. Their 

adaptations to this natural conditions, identical to the ones observed in the CW‟s, make 

them a viable option for these systems  (Brix, 1997, 1994). Another important aspect to 

take into account is the length of time that water and soil will be in contact (hydraulic 

retention time), once these influences the removal efficiency of contaminants and influent 

pollutants concentration (Akratos and Tsihrintzis, 2007; Kipasika et al., 2004). For this 

work P. australis, a plant that already demonstrated capacity for removal drugs from 

livestock and slaughterhouse industries wastewater, was chosen (Carvalho et al., 2012).  

Considering that bacteria, as have already been described, can have a key role in 

CWs and that the bacterial community can be affected by a diversity of contaminants, the 

present study aimed to evaluate the response of bacteria from CW microcosms to the 

presence of veterinary antibiotics, both in terms of community structure and removal 

performance.   
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2.2. Methods 

2.2.1. Chemicals and reagents 

Enrofloxacin and ceftiofur were purchased from Sigma-Aldrich® (Spain). Stock 

solutions were prepared in methanol with a concentration of 1g/L and stored at -20ºC. 

Methanol, acetonitrile and formic acid (98%) were acquired from Sigma-Aldrich® (Spain). 

Quality of all the used reagents was pro analisis or equivalent.  

 

2.2.2. Collection and preparation of plants, soil and wastewater 

P. australis, and sediment around their roots (rhizosediment), were collected in the 

margins of Lima estuary (North of Portugal) in May 2014. Sand was collected 

simultaneously, in the river basin.  

At laboratory, sediments were separated from plant roots, and mixed with the 

collected sand (2:1 proportion). The utilization of the sediments that involves the roots was 

chosen with the intent to preserve the autochthonous microorganisms. The sediment/sand 

mixture was then homogenized to prepare the roots bed substrate for CW microcosms. 

The mixture of sand with sediment provides a more porous substrate permitting the water 

passaged.    

Wastewater was collected weekly in a pig farm. 

 

2.2.3. Microcosm’s setup 

Twelve microcosms were set up in 

plastic containers (0.4 x 0.3 x 0.3 m), filled 

with 3 different layers, in a total depth of 16 

cm (Fig. 10). The first layer was composed 

by 4 cm of gravel, the second by 2 cm of lava 

rock and the third by 10 cm of roots bed 

substrate. To simulate what happen in real 

systems, all microcosms were wrapped in 

aluminium foil, preventing this way the 

penetration of light in substrate and the 

possible photodegradation of the 

compounds. All twelve microcosms were planted with P. australis (80 plants per 

 

Figure 10: Constructed wetland – 
microcosm‟s setup. 
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microcosm). The set of microcosms was kept in an open indoor environment, subject to 

environmental temperature variations and environmental light exposure.       

 

2.2.4. Microcosms operation and sampling  

In the first ten days, 1,2 L of a nutritive solution (Hoagland and Arnon, 1950) was 

added and renewed daily to maintain plants at optimum nutritional conditions and allow 

microcosms acclimation. Water/solution level was maintained just above the substrate 

surface (flooding rate 100%) with only a tap on the base used for water exit. Four sets (3 

microcosms each) were run in parallel, a set only with 1,2 L of wastewater, serving as 

control (CNT), and the rest with the same volume of wastewater but with the addition of 

the corresponding antibiotic. The division of the three contaminated sets were made in: 

two sets only with one of the drugs (ENR or CEF) and another with a mixture (MIX) of 

both compounds (Fig. 11).   

The concentration used (100 µg/L) have already been found in the environment 

(Babić et al., 2010). The used concentration was prepared by adding the necessary 

quantity of the stock solution at the wastewater. The wastewater was treated in 18-one 

week cycles. The time that wastewater was maintained in the systems (7 days) was 

chosen based in HRT normally used in full scale CW‟s (Carvalho et al., 2012). To prevent 

the development of anoxic areas, a daily recycle were manually operated, being the 

systems operated in batch mode. Water evaporation was daily controlled by addition of 

 

Figure 11: Schematic representation of the experiment for the different treatments (ENR – 
enrofloxacin; CEF – ceftiofur and MIX – mixture). 
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deionized water, when necessary. In the end of each week, the microcosms were 

completely drained and refilled with new wastewater doped or not with the antibiotics. For 

the evaluation of different parameters, water and soil samples were collected at different 

weeks. Samples were used to evaluate the presence of veterinary drugs, microbial 

abundance and community characterization. For each microcosm, soil samples were 

collected in three different points to obtain a composite sample. Filtered (cellulose nitrate 

filters, 0,45 µm of porosity) wastewater samples, before and after treatment, were also 

collected for antibiotic and nutrient analyses. Samples for antibiotics and nutrient analyses 

and community characterization were stored at -20ºC. For microbial abundance, soil 

sample were immediately fixed with 2,5ml of distillate water with formaldehyde at 4% (0.2 

µm filtered) and storage at 4ºC.  

 

2.2.5. Nutrient analyses 

Dissolved orthophosphate, ammonia, nitrites and nitrates were analyzed following 

the methods described in Grasshoff and Ehrhardt (1983). The dissolved orthophosphate 

(PO4
3-) is typically measured by colorimetric method molybdenum blue. This method 

presupposes that in acidic solution, the orthophosphate reacts with ammonium molybdate 

and antimony potassium tartrate forming a heteropolar-phosphomolybdic acid, which is 

reduced by ascorbic acid to an intense blue complex.  

For quantification of the concentration of ammonia (NH3 and NH4
+), the method is 

based on the fact that ammonium, in moderately alkaline solutions, reacts with the 

hypochlorite forming the monochloramine compound. This, in turn, in the presence of a 

catalyst (nitroprusside), phenol and excess of hypochlorite gives rise to an intense blue 

complex (indophenol).  

Nitrites (NO2
-) were quantified  by the method of reaction of nitrite with an aromatic 

amine (sulfanilamide) to give a diazotized compound, which binds to a second aromatic 

amine (N- (1-naphthyl) ethylenediamine) resulting in a pink complex, whose intensity is 

proportional to the amount of nitrite in the solution. Nitrate (NO3
-) was measured by an 

adaptation of the spongy cadmium reduction technique described in Jones (1984), 

subtracting nitrite value from the total. All the analyses were performed in triplicate. 
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2.2.6. Veterinary antibiotics analyses in soil samples 

To evaluate if any of the added antibiotic still remains in the system, soil samples 

were collected during the microcosm experience at week 1 (w1), 2 (w2), 4 (w4), 8 (w8), 14 

(w14) and 18 (w18). Analyses were performed according to the process developed by 

(Carvalho et al., 2013b). For that 2 g of each sediment samples, previously lyophilized, 

were extracted with 10 ml methanol-acetone (95:5, v/v) using USE (period of 15 min 

each). This procedure was repeated twice for each composed samples. After each 

extraction the soil sample was centrifuged and the supernatants were collected and 

combined. Combined supernatants were then evaporated to dryness under a nitrogen 

stream at 35 ºC. The residues were dissolved in 1.0 ml methanol-mobile phase (1:3, v/v) 

and analysed by HPLC. In some of the samples, a standard solution (known 

concentration) of which one of the antibiotics was added, to see possible interference of 

the matrix and calculated the recovery rate. Compounds separation was proceeded with a 

high-performance liquid chromatography Beckman Coulter equipment (HPLC system 

gold) provided with a DAD (diode array detector) detector (module 128) and an automatic 

sampler (module 508). A 100 mm × 4.6 mm Kinetex 2.m C18 column (Phenomenex, UK) 

using a linear gradient program. The mobile phase was composed by two eluents: (A) 

filtered water–formic acid (99:1, v/v; filter at 0.45 µm of porosity) and (B) acetonitrile. 

Before used, the eluents were degassed in an ultrasonic device for 15 minutes. The linear 

gradient was composed by: 100% of the eluent A, staying this isocratic conditions for 2 

min, then 70% of eluent A (30% eluent B) of being this condition maintained for 10 min. 

The initial conditions (100% of eluent A) were reached 10 min later, with a re-equilibration 

rime of 2 min to restore the column. 50 µL of samples was injected and the detector signal 

was monitored at λ = 280 nm.  

 

2.2.7. Microbial abundance  

To estimate microbial abundance in sediments, Total Cell Counts (TCC) was 

obtained by DAPI (4‟,6‟-diamidino-2-phenylindole) direct count method (Kepner and Pratt, 

1994; Porter and Feig, 1980). After collected, samples were immediately fixed with 2,5 mL 

of distillate water with formaldehyde at 4% (0.2 µm filtered).  Two drops of Tween 80 (0,2 

µm-filtered, 12,5% (v/v)) were added to samples and then stirred at 150 rpm for 15 min 

followed by 15 min of resting. Samples were, then, sonicated for 10 min and stirred for 

1min, stirred samples were left to rest overnight at 4º C. From the previously fixed 

samples, 150µl were taken to test-tubes. To this was added 2,5 ml of saline solution (0,2 

µm-filtered, 9g L-1 NaCl) and 2 drops of Tween 80. To stain the samples, DAPI was 
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added, and incubated in the dark for 12-15 minutes. The tube content was then filtered 

through black nucleopore polycarbonate filters (0.2 µm pore size, 25 mm diameter, 

Whatman, UK) under vacuum and washed with 5 mL of autoclaved 0,2 µm-filtered distilled 

water. Membranes were set up in glass slides and cells count in an epifluorescence 

microscope (Leica DM6000B).  

 

2.2.8. Microbial community structure using automated rRNA intergenic 
spacer analyses (ARISA)  

To evaluate the microbial community structure, ARISA (automated rRNA intergenic 

spacer analyses) was performed, for triplicate samples of w1, w8 and w18. This technique 

allows amplification of the 16S-23S intergenic spacer region in the rRNA operon. Total 

DNA was extracted from 0,5 g wet weight of homogenized sediment samples, using an 

Ultra Clean Soil DNA Isolation Kit (MoBio, Carlsbad, CA, USA), according to the included 

protocol. A 1.5% electrophoresis agarose gel was used to evaluate the quality of extracted 

DNA. For ARISA, extracted DNA was amplified using ITSF (5-

GTCGTAACAAGGTAGCCGTA-3) and ITSReub (5-GCCAAGGCATCCACC-3) primers 

set (Cardinale et al., 2004). PCRs were performed in duplicated 25µl volumes. The PCR 

mixture was held at 94 ºC for 2 min, followed by 30 cycles as 94 ºC for 45s, 55 ºC for 30s, 

72 ºC for 2 min, and a final extension at 72 ºC for 7 min. PCR products were visualized on 

1.5% agarose gel. For samples purification was used a purification kit (UltraClean 15 DNA 

Purificatio Kit from MO BIO). Once purified, products were quantified using the Quant-it 

HsDNA assay kit and Qubit fluorometer (Invitrogen). In STABVIDA Sequencing Facilities 

samples fragments were run on an ABI3730 XL genetic analyser.  

 

2.2.9. 454-pyrosequencing analysis 

To complement the information retrieved from ARISA, samples from week 8 were 

also analysed by 454-pyrosequencing. For that composite, DNA sample prepared. This 

composite samples was send to Biocant facilities for analysis. Briefly, the samples V3/V4 

hypervariable region of the 16S rDNA was amplified. This amplification was made using 

the forward primer 5‟–ACTCCTACGGGAGGCAG‐3‟ and the reverse primer 5‟–

TACNVRRGTHTCTAATYC–3, containing also an upstream 454 Life Science‟s titanium 

sequencing adaptor (5‟‐ CTATGCGCCTTGCCAGCCCGCTCAG ‐3‟), in the following the 

PCR program: initial  denaturation  at  94ºC  for  4  min  followed  by  25  cycles  of 

denaturation at 94ºC for 30 s; annealing at 44ºC for 45 s and extension at 68ºC for 60s, 
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and a final extension step at 68ºC for 10 min. All the amplifications were carried out in a 

MyCycler Thermal Cycler (Bio‐Rad Laboratories, Hercules, California, USA). The 

amplicons are clonally amplified by emulsion PCR. After obtain the amplified products 

their purification was made with AMPure XP beads (Agencourt, Beckman Coulter,  USA)  

and the quality  assessment visualized  on  1.2%  (w/v)  agarose  gel  and quantification 

by fluorescence using the PicoGreen dsDNA quantitation kit (Invitrogen, Life 

Technologies, Carlsbad, California, USA). Resulting DNA library beads are loaded into the 

wells of a PicoTiterPlate (PTP) device. Once in the Genome Sequencer FLX Instrument 

(454 Life Sciences, Roche) addition of one (or more) nucleotide(s) generates a light signal 

that is recorded by the CCD camera in the instrument, signal strength being proportional 

to the number of incorporated nucleotides. Proprietary software converts the light signals 

into nucleotide information generating the final sequencer reads. The microbes present in 

each sample were identified with a bioinformatics pipeline developed at Biocant. 

 

2.2.10. Statistical analyses  

Triplicated samples, of each treatment, were analysed and treated in separate, 

being the mean and standard deviation values calculated to obtain a value for treatment at 

each week. To evaluate the possible statistically significant differences (p < 0.05) in TCC, 

bacterial richness and diversity a parametric one-way analysis of variance (ANOVA) was 

applied. If any significant difference was detected in ANOVA a multiple Tukey comparison 

test was performed to detect where the differences were. The overall statistical test were 

performed using commercial software STATISTICA, version 12, StatSoft, Inc. ARISA 

fragment lengths were analysed by Peak Scanner version 1.0 Software (Applied 

Biosystems) and data were transferred to an excel sheet and transformed in a matrix of 

aligned fragments. In this matrix, fragments with fluorescence units below 50 were 

considered “background noise” and not take into account, the same happens to fragments 

with less than 200 bp, that were removed since were considered to be too short ITS for 

bacteria. The matrix was imported to the PRIMER 6 software package (version 6.1.11) 

(Clarke and Gorley, 2006). First, based on ARISA profiles, and for better address the 

ecological description of the bacterial community with samples, bacterial richness and 

diversity index were calculated. For this, peaks number was considered to represent 

species number and peak height was considered to represent the relative abundance of 

each bacterial species. After, for the evaluation of community structure, the imported 

matrix was normalized using the presence/absence pre-treatment function. Samples were 

analysed using the Bray-Curtis similarity method and a hierarchical cluster, with the 
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default parameter and SIMPROF test. A multidimensional scaling (MDS) plot was also 

generated using the default parameters with a minimum stress of 0.01 to generate a 

configuration plot based on percentage similarity. Similarity of bacterial community 

composition was assess through an analyses of similarities (two-way crossed ANOSIM, 

based on Bray-Curtis similarity) performed using the PRIMER 6 software (Clarke and 

Gorley, 2006). This analyse (ANOSIM) is a permutation-based hypothesis statistical test, 

equivalent to univariate ANOVA, which test for differences between groups (multivariate) 

samples for different factors or experimental treatments.  

 

2.3. Results 

2.3.1. Evaluation of the systems functionality 

To evaluate the systems functionality over time, analyses for water quality 

parameters before and after treatment were conducted. Results chemical and biochemical 

oxygen demand (COD and BOD) were obtained by (Ferreira, 2014) and are summarised 

in Table 1.  High removal rates occurs for both COD and BOD, with the first having a 

percentage of removal rate ranging from 71% to 93% and the second oscillating from 85% 

to 96%.  

The results obtained in the analyses of different nutrients (ammonia – NH3; nitrates 

- NO3
- nitrites – NO2

- and phosphorous- PO4
3-) can be found in Table 2. In this, it is 

possible to see a decrease in the concentration of NH3 and PO4
- in water, after the 

treatment, when compared with the influent. In the case of NH3 for all of the weeks the 

removal rates were higher than 88%. These high removal rates were similar between the 

treatments and through time. Regarding PO4
-, removal rates ranged between 81 and 92% 

in week 1 and 8. However, a decrease in the removal efficiency, for values between 5 and 

43% can be noticed in week 18. For both, NO3
- and NO2

- concentrations present in the 

water at the end of the treatment increased with time. This increase lead to higher 

concentrations in the water after treatment, when compared with the concentrations found 

in the initial water. 
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Table 1: Water quality parameters (chemical oxygen demand - COD and biochemical oxygen 

demand – BOD) initial concentration and removal rates for the three selected weeks (adapted 
from Ferreira, 2014) 

Parameter Treatment 
Week 

W1                       W8                    W18 

 

COD 

 

Initial (mg/L O2) 2210 3420 1431 

Control 

(Removal rates %) 

83% 

(±10%) 

87% 

(±2%) 

83% 

(±5%) 

ENR 

(Removal rates %) 

93% 

(±2%) 

90% 

(±3%) 

71% 

(±8%) 

CEF 

(Removal rates %) 

89% 

(±2%) 

84% 

(±3%) 

77% 

(±8%) 

MIX 

(Removal rates %) 

91% 

(±6%) 

87% 

(±1%) 

78% 

(±7%) 

 

 

BOD 

 

Initial(mg/L O2) 223 242 516 

Control 

(Removal rates %) 

88% 

(±2,4%) 

85% 

(±1%) 

96% 

(±1,1%) 

ENR 

(Removal rates %) 

91% 

(±3%) 

91% 

(±1,7%) 

96% 

(±1,6%) 

CEF 

(Removal rates %) 

90% 

(±1,4%) 

85% 

(±0,6%) 

96% 

(±1,8%) 

MIX 

(Removal rates %) 

88% 

(±2,3%) 

89% 

(±1%) 

96% 

(±0,9%) 
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Table 2: Nutrients parameters - initial and final (average and standard deviation) and  

concentration of the three selected weeks. 

Parameter 

(µM) 
Treatment 

Week 

W1                       W8                    W18 

NH3 

Initial 69.7 57.1 45 

Control 3.6 (±2.7) 4.3 (±4.7) 1.6 (±0.3) 

ENR 2.4 (±0.4) 4.3 (±3.4) 1.4 (±0.3) 

CEF 6 (±1) 6.6 (±2.7) 1.3 (±0.5) 

MIX 4.6 (±1.6) 4.3 (±1.6) 2.3 (±0.6) 

NO3
- 

 

Initial 1.1 9.6 51.5 

Control 15.4 (±7.6) 189.6 (±94.5) 396.8 (±118.5) 

ENR 31.2 (±37.2) 32.4 (±17.4) 101.1 (±39.3) 

CEF 38.7 (14.4) 61.4 (±13.2) 258.8 (±174.6) 

MIX 9.0 (5.9) 49.4 (±52.5) 344.5 (±104) 

NO2
- 

 

Initial 6.0 9.9 9.7 

Control 1.3 (±0.7) 66.4 (±9.3) 70 (±61) 

ENR 3.5 (±2.6) 85.0 (± 109.6) 43.3 (±32.9) 

CEF 15.3 (±8.4) 137.4 (±96.3) 86.6 (±28.2) 

MIX 1.2 (±1.3) 87.2 (±84.8) 51 (±7.2) 

PO4
- 

Initial 436 712 130.9 

Control 47.9 (±15.2) 54.1 (±16.8) 89.8 (±10.5) 

ENR 36.3 (±2.9) 84.5 (± 51) 123.9 (±38.8) 

CEF 58.6 (±17) 138.8 (±37.1) 91.6 (±30.2) 

MIX 52 (±52) 109.9 (±5.7) 74.6 (±1.1) 

 

Parameter 

(µM) 
Treatment 

Week 

W1                       W8                    W18 

Initial 69,7 57,1 45 

Control 3,6 (±2,7) 4,3 (±4,7) 1,6 (±0,3) 
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2.3.2. Veterinary antibiotics removal  

The recovery percentages obtained for the sediments extraction processes 

demonstrated that the method chosen was valid. The analysed sediment samples did not 

present any peaks that could indicate the antibiotics presence. Limits of detection (LODs) 

and quantification (LOQs), were already calculated considering the extraction of 2 g of soil 

sample (Carvalho et al., 2013b). Values of ENR and CEF were 0.09 µg/g to 0.2 µg/g for 

LOD and from 0.2 to 0.6 µg/g for LOQ, respectively. The analyses of contaminated 

samples shows no interference of matrix and any peak resulting from the presence of 

drugs should appear well define.  

 In the data obtained from the water analyses it was not possible to detect the 

added compounds. This result, as already happened in the soil samples, signified that 

antibiotics concentrations present are lower than the LODs calculated (0.2µg/L for ENR 

and 0.6µg/L for CEF). This decrease in concentration signifies a removal rate above 90%. 

 

2.3.3. Microbial abundance and bacterial richness and diversity 

Microbial abundance was evaluated for the different treatments at week 8. The 

averageabundance, estimated by TCC, for all the treatments were 7 log10 g-1. No 

significant differences (p > 0.05) were observed, between treatments.  

Bacterial richness and diversity index were estimated from ARISA profiles, for 

samples of different treatments for week 1, 8 and 18. Results obtained for richness and 

diversity are present in Figure 12 and Figure 13, respectively. For each week, no 

significant differences (p > 0.05) were observed between treatments, both in terms of 

bacterial richness or diversity. Regarding evolution of bacterial richness through the time, 

it was observed a tendency to decrease, but differences were not significant (p > 0.05).  

Also, it was observed a decrease in bacterial diversity through the time, with significant 

differences (p < 0.05)  between week 1 and week 8 for all treatments. For MIX this 

difference was also significant between weeks 1 and 8. 
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2.3.4. Bacterial community structure 

Bacterial community structure was obtained from ARISA profiles, were each peak 

representing a different ARISA fragment length (ALF) corresponds to a different bacteria 

phylotypes. More important than the total number of peaks (total phenotypes) it is the 

evaluation of their distribution. With that information it is possible to assess differences in 

samples community structure. These differences were analysed in terms of treatment and 

over time. In these analyses a good experimental replication, exhibited in the hierarchical 

cluster analyses (Fig. 14A), was obtained. Replicates from the same treatments (CNT, 

ENT, CEF and MIX) are grouped together being, at the same week, more similar between 

each other than with the others treatments, with only one exception. Also, samples from 

 
Figure 13: Bacterial diversity in different treatments along experiment ; a-significant differences 

(p < 0.05) when compared  with the same treatment for week 1.  

 

Figure 12: Bacterial richness in different treatments along experiment . 
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the same week (w1, w8 and w18) are more similar between each other than with samples 

for another week, independently of the treatment. However, it is possible to see that week 

8 and 18 community showed a higher similarity between each other, than with week 1. 

MDS plot at 50% of similarity from three separate groups, corresponding to the three 

different weeks, representing the time effect on the community (Fig. 14B).  

 

Figure 14: Hierarchical clustering (A) and multidimensional scaling (MDS) ordination (B) 

based on Braey-Curtis similarities from ARISA fingerprints of bacterial communities at week 
1, 8 and 18 for the different treatments (CNT – control, ENR – enrofloxacina, CEF – 

ceftiofur and MIX – mixture). 
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Table 3: Global and pairwise values for two-way crossed ANOSIM test 
based on ARISA results for the different weeks and treatments . 

 

 

Analyses of similarity (two-way crosses ANOSIM) confirmed a significant effect of both 

factors (treatment and time) in community structure (Table 3). 

 

2.3.5. 454-pyrosequencing analysis  

The sequences obtained from the 454-pyrosequencing analyse were transformed 

in percentage to allows a better comparison between treatments. Once this analyse was 

only possible to be done for week 8, it is not possible to see the differences through the 

time. Therefore, there will be only analyse the differences between treatments and 

consequently the changes caused by the presence of the antibiotics. Results are 

presented in term of most abundant phylum, class and orders. In addition, the taxa with 

more than 2% in at least one of the systems are represented in Table 4. In terms of 

phylum there are clearly four that stand out from the 26 phyla present: Proteobacteria, 

Firmicutes, Bacteroidetes and Actinobacteria. Together they represent between 83.25% 

and 89.47% of all sequences present. In addition to these ones, another four (Chloroflexi, 

Acidobacteria, Gemmatimonadetes and Deinococcus-Thermus) contributes, at least in 

one of the microcosms, for more than 1% of the total (Fig. 15).  

For the eigth most representative phyla, above mentioned, an illustration of the 

classes was made, except for Actinobacteria that is represented by only one class 

(Actinobacteria class) and in which orders will be represent. The six classes that represent 

the phylum Proteobacteria are shown in the Fig. 16. Besides these classes, sequences 
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classified as “unknown” are represent, which includes the sequences associated to 

Proteobacteria for each it was not possible to identify the classes. The most 

representative classes, in this phylum, are Alphaproteobacteria and Betaproteobacteria. 

Due to that, a closer attention to each one of them was given. Besides these classes, 

sequences classified as “unknown” are represent, which includes the sequences 

associated to Proteobacteria for each it was not possible to identify the classes. Due to 

that, a closer attention to each one of them was given. Gammaproteobacteria will also be 

 

Figure 15: Relative abundance of differente bacterial phyla within the different systems. The 

“Others” refers to the other 18 phyla not showed. “Unknown” are the sequences that were not 
classified in any phylum. 

 
Figure 16: Relative abundance of different bacterial classes within Proteobacteria phylum. 



 
 

38 
 

focused. Comparing with control it was observed an increase in the class 

Alphaproteobacteria and a decrease in the class Betaproteobacteria, in all systems 

exposed to antibiotics. 

To evaluate better these changes a representation of the orders, in this specific 

class, were also put in chart (Fig. 17 and 18). Inside Alphaproteobacteria it is possible to 

see an increase in Rhizobiales order in the systems with antibiotics addition. This increase 

is, in part, a result of the representative presence of the family Phyllobacteriaceae, that 

alone, account for at least 1.5% of the total of sequences presents in that systems (Table 

4). Rhodobacterales is another order with representative presence in this class, the 

percentage of sequences, in this case, decrease in the systems treated with antibiotics. 

However, when Rhodabacteraceae family, present in this order, is compared with the total 

sequences in the systems there is an increased. The sequences belonging to this family, 

without a more specific classification, suffers an increase in the systems with antibiotic 

addition. In the ones attributed to the Rhodobacter genus, this increase is only existent in 

the systems treated with ENR. In the case of order Sphingomonadales there are two 

different genus (Erythrobacter and Novosphingobium) present in the table with the total 

sequences of the most abundant taxa (Table 4). 

In Betaproteobacteria classes (Fig. 18) the two dominants orders (Burkholderiales 

and Rhodocyclales) follows opposite trends. In Burkholderiales, the percentage of 

sequences is higher in the contaminated systems, than in the control one. Actually, this 

 

Figure 17: Relative abundance of different bacterial order within Alphaproteobacteria class. 
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order represents, it self, 4.2% in systems with antibiotic  and for control 2.8%, in the total 

of sequences for that systems. In Rhodocyclales, its the opposite with the percentage of 

sequences being higher in the control system. This is also what happens in the ones 

present in the overall sequences percentage. Thauera, a genus in the order of 

Rhodocyclales, represent, for control, 3.3%, with almost only half of this for the rest of the 

systems. Gammaproteobacteria class sequences appear in the table of most 

representative taxa (Table 4). These sequences are either only associated with the 

phylum or classified in Pseudoxanthomonas genus. For the latter it is possible to see an 

increase in the antibiotic treatment systems. The sequences only associated with the 

class the tendency is for the maintenance of sequence percentage, with only an increase 

in the MIX system.  

 

The Firmicutes phylum is represented by four different classes (Fig. 19), being 

dominated by acidomicrobiales 

 

Figure 18: Relative abundance of different bacterial order within Betaproteobacteria class . 
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 The Clostridia class that stands from the others with over 80% of all the with in 

this phylum. Although this expression, only one order was found, Clostridiales. The 

sequences associated only to the Clostridiales order represents, in the total of the 

sequences found in the systems, between 7.9% and 13.3%, which was the higher 

percentage found for a single taxon. In addition, two of the families identified within 

Clostridiales order, Ruminococcaceae and Peptostreptococcaceae are also among the 

most representative taxa families, than have in this order the higher percentage, are also 

englobed in the taxa with more total percentage.  

In the Bacteroidetes phylum, sequences can be grouped in four different classes 

or be only associated with the phylum (Fig. 20). The latter, includes a large percentage  

representing more than 3.9% of the total sequences in all systems (Table 4). In the case 

of the sequences grouped in orders, it is possible to see an increase in the order 

Bacteroidia  within ENR systems. This increase is mainly a consequence of the presence 

of the genus Alkaliflexus. In the table of the total sequences is possible to see that this 

genus alone represent 2.6% of the total sequences for ENR systems. Another order worth 

of noticed is the Flavobacteriia that clearly increased in the systems with antibiotic.  

 

 

Figure 19: Relative abundance of different bacterial classes within Firmicutes phylum. 
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Figure 20: Relative abundance of different bacterial classes within Bacteroidetes phylum 

In the Actinobacteria phylum, and due to the existence of only one class 

(Actinobacteria class) the different orders were analysed (Fig. 21). In this, there is a clear 

abundance of Acidimicrobial sequences that increase in the systems that contains 

antibiotics, particular in the ENR systems. This have such an influence that is also 

demonstrate for the total number of sequences with Acidomicrobiales accounting for 3.9% 

of the total sequences in systems containing ENR. The sequences that was only classified 

in terms of phylum are also present in this table with a percentage ranging between 0.7% 

and 2.4%. The Coriobacteriales order present an opposite trend decreasing, notouriously, 

Figure 21: Relative abundance of differente bacterial orders within the class Actinobacteria that is the 

only class from the Actinobacteria phylum. 
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in the presence of antibiotics.   
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2.4. Discussion 

Utilization of CW‟s in the last 25 years became more frequent in an effort to 

improve the quality of effluent discharged into the environment and, consequently, 

decrease their potential impacts on the ecosystems (Lee et al., 2009). In these systems, 

bacteria play a key role in the processes. For this, the evaluation of the responses of the 

bacterial community to the presence of veterinary antibiotics is important, in order to better 

understand the alterations in the communities.  

In order to assess the functionality of the system, in terms of water purification, 

throughout the experiment, water parameters were analysed. For COD‟s and BOD‟s high 

removal rates were achieved. These removal percentages are in agreement with high 

removal rates already described for different CW‟s systems (Hsueh et al., 2014; Ong et 

al., 2010; Saeed and Sun, 2012; Xian et al., 2010). 

The results obtained in the nutrients analyses shows that between the influent 

water and the effluent water exists a great decrease in the ammonia concentrations, 

whereas for NO3
- and NO2

- their concentrations increased over the time of the experience. 

These results are a direct consequence of the chosen system design. The use of a SSVF 

CW‟s with recirculation leads to more efficient aeration of the systems, benefiting the 

aerobic processes. The presence of plants also has an important role for this, once they 

can release oxygen into the rhizosphere. In CW‟s the nitrification process, is one of the 

first steps in the nitrogen removal mechanism. This process transformed the ammonia in 

nitrate, with nitrite as intermediary, in the presence of oxygen. This is, in agreement with 

the results obtained, where a decrease in ammonium concentrations are a result of its 

transformation either in nitrate or nitrite. This last two nitrogen forms can be transformed in 

large scale  through the denitrification process that occur mainly in low oxygen zones 

(Saeed and Sun, 2012; Vymazal, 2007). This high ammonium removal for a vertical 

system as already been described (Pelissari et al., 2014; Yalcuk and Ugurlu, 2009). The 

results obtained  for phosphorous demonstrated the capability of CW‟s for its 

transformation. However, this capability seems to be lost over time, with a decrease in 

removal efficiency being noticed in the last week of the study. The amount of phosphorous 

present in P. australis of a CW‟s have showed a decrease over time (Bragato et al., 

2006), this and the fact that plants in our study demonstrate a visible decline, can help to 

explain the decrease in removal rates. Another hypothesis that can help to explain this, is 

the fact that one of the most important mechanism of phosphorus retention in wetlands is 

the adsorption to soil. The fact that this process is saturable could implied a decrease over 

time (Vymazal, 2007; Zhang et al., 2012). 
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For COD, BOD and nutrients no alterations were notorious between the treatments 

showing that the presence of antibiotics do not have an impact in the system capability for 

transforming these compounds.   

The fact that concentration of the antibiotics after treatment are below the 

detection limit for the method demonstrate the applicability of CW‟s for the treatment of 

livestock effluents. High rates of removal of diverse compounds in CW‟s are already 

documented in other works (Carvalho et al., 2013a; Hussain et al., 2012; Xian et al., 2010; 

Zhao et al., 2015). 

Another factor analysed in this work was the presence of a system were the two 

selected antibiotics were add together. In the environment, organism are exposed 

simultaneously to a mixture of chemicals from different classes, which can interacted with 

each other. The result of this interaction it is not always equal to the results obtained for 

the compound in separate (Backhaus et al., 2000; González-Pleiter et al., 2013). The 

results obtained in the present study, in terms of water quality, show no differences 

between the systems exposed to the mixture of antibiotics (MIX) and the other systems. 

The alterations that the presence of the compounds simultaneously make in the microbial 

community structure did not influence the system depuration capacity.  

The absence of differences between the control and different treatments, shows 

that the presence of the selected antibiotics, in the concentration tested, have no 

interference in the both bacterial diversity and richness. Comparing different treatments 

along the time it was observed a significant decrease (p < 0.05) for diversity but  not for 

richness. The decrease in soil community diversity exposed to different chemicals have 

been already described (Kong et al., 2006; Kraigher et al., 2008; Zhao et al., 2015). 

Estimation of bacterial richness and diversity are very important once they help to predict 

the possible alteration in community composition and consequently systems 

functionalities. In this case, and despite changes in the diversity over time, systems seem 

to maintain their ability for water treatment, discuss above. The decrease in bacterial 

diversity, but not in  bacterial richness, can indicated an alteration of relative abundance of 

species. The maintenance of water quality, despite this alteration, can indicate that 

systems functionality is played for specific species that did not suffer relevant alteration 

(Hooper et al., 2005), or species were replaced by others with the same functions 

revealing functional redundancy (Mucha et al., 2013).  

In order to understand the variations that occurred in terms of community structure,  

a molecular fingerprinting techniques PCR-based (ARISA - automated ribosomal 

intergenic spacer analyses) were performed. In this method, the 16S-23S ribosomal 
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intergenic spacer region (ITS) is amplified. This spacer is characterized for being a highly 

variable section of the gene region, making this heterogeneity possible the distinction of 

bacterial phylotypes. This technique, and the specific pair of primers chosen, have already 

being compared with others techniques (even advanced ones) and other set of primers 

with good results obtained (Cardinale et al., 2004; Gobet et al., 2013; Purahong et al., 

2015). This, and the fact that ARISA enables a rapid, reproducible and cost-effective 

evaluation, even for complex communities, demonstrate the suitability of select 

technique/primers for studies of changes in community over time (Cardinale et al., 2004; 

Gobet et al., 2013; Purahong et al., 2015). After the ARISA profiles obtained were 

analysed, it was possible to see differences in the microbial community. These differences 

were noticed for both time of exposure and type of treatment applied. These differences 

were confirmed by the ANOSIM analyses that revealed that time of exposure was  the 

most significant factor affecting the microbial community structure. It seems to be an 

evolution of the community involving all the systems over time. This alteration caused by 

time of exposure can signify an adaptation of community to the systems and to the new 

conditions that they were exposed. The differences in similarity are more notorious 

between week 1 and the other two week (8 and 18). The initial community suffers an 

adapting process changing their composition in order to respond to the environmental 

conditions and the presence of the wastewater. Alterations verified in the controls systems 

shows that this adaptation process occurred independently of the presence of antibiotics. 

For each week differences between the different treatments were detected. There are 

several reports about the impacts of veterinary compounds on structure and function on 

microbial communities.  In Fernandes et al., (2015) the response of a CW microbial 

community, to the presence of enrofloxacin and another veterinary antibiotic, tetracycline, 

was evaluated. The result obtained showed that the community suffers an adaptation 

process. This process occurs over the time, independent of the presence of antibiotics, 

being the time the most influent factor. The effect of triclosan was studied by Zhao et al., 

(2015) by pyrosequencing. The presence of this antimicrobial agent lead to difference 

between the control systems and the ones with their presence, with a great part of the 

OTU‟s being unique for the control. Microbial community shifts, in response to 

contaminated manure with sulfadiazine, was reported in soils. Over the time more delayed 

and prolonged effects in the microbial structures were noticed (Hammesfahr et al., 2008). 

Samples from week 8 of the experiment were select to be analysed by 454-

pyrosequencing analyses. This week was selected based on the results in terms of water 

purification and in terms of microbial structure evolution, revealed by ARISA. The 

comparison between present results and those from other authors is difficult, once the 



 
 

47 
 

community composition is a result of different factors. For this, differences in the type of 

flow, operation mode or the bed media, that change the soil properties, could lead to 

differences in the community. Beside these, design factors and the technique used for the 

analyses can be a factor of discrepancy in the results. The introduction of bacteria from 

wastewater that enter the system is also an factor important. Most of the phyla present 

have already been described in others CW‟s systems, however they are not all always 

present and even when they are, their relative percentage, fluctuate (Adrados et al., 2014; 

Ansola et al., 2014). In this work, at phylum level, there are 4 phyla more represented in 

the community. The most representative is Proteobacteria, this phylum is known to 

include a diversity of bacteria that contributes for the carbon and nitrogen cycling. This is, 

most of the time referred as the predominate phylum present in soil (Ansola et al., 2014; 

Sklarz et al., 2011; Truu et al., 2009). In this phylum the Alphaproteobacteria class 

represents one of the more dominant. In the Rhizobiales order, one of the most recovered 

in this class, a strain (F11) capable of degrade Fluorobenzene have already been 

described (Carvalho et al., 2006). Once the most of Phyllobacteriaceae sequences are 

only associated with the family, it is not possible to establish a further relation between 

their increase, in the doped systems, and the potentials responsibles. The same happens 

with the sequence in the Rhodabacteraceae family. In the Rhodobacter genus, the 

increase is only seen in the systems doped with ENR. Some species of this genus have 

been identified in enriched cultures capable of degrade several aromatic hydrocarbons 

(Oberoi et al., 2015). In the Sphingomonadales, two genus with different patterns appears. 

The first, Erythrobacter, appear in the control and MIX systems, but not in the CEF and 

only with a very low percentage in ENR (0.03%). Their presence in the control system, but 

not in the ones with the addiction of only one antibiotic, demonstrate their sensibility to 

this. However, the fact that they achieved the maximum of sequences percentage in the 

presence of the pharmaceutical simultaneous shows that the conjugation of this can lead 

to alterations that possibilities the resistance of this family. In the Novosphingobium 

genus, several strains have already been described as capable of degraded several 

compounds, as bisphenol A in the rhizosediment of P. australis (Lyu et al., 2014; Toyama 

et al., 2009). The fact that they have a much higher presence in the systems treated with 

only one of the antibiotics, shows that their elements are capable to adapt to these 

conditions. The fact that the number of sequence suffers a decrease in the MIX systems 

demonstrate that, in this case, the interaction of both antibiotics results in a negative effect 

on the bacteria.   

In the Betaproteobacteria, the Rhodocyclales order suffers a decrease in the 

treated systems. This decrease also happens in their most represent genus, Thuera, in 
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the total sequences. This decrease shows the impact of antibiotics in this type of bacteria. 

A specie of this genus have already been describe in a CW‟s with a vertical flow used in 

the treatment of domestic wastewater (Adrados et al., 2014). In the case of the 

Brukholderiales an increase is seen both when it is compared to class level, as when it is 

compared with the total sequences present in the systems. Due the majority of the 

sequences being only classified in terms of order, it is not possible to attribute this 

increase to a particular type of bacteria. In a test with soil contaminated with CIP, the 

isolation and classification of species present shows that the majority of them was 

classified as belonging to Brukholderiales. Due to the fact that CIP is the primary 

degradation product of ENR it is possible that this degradation capability could be also 

extend to ENR (Dantas et al., 2008). 

The Gammaproteobacteria phylum have a representative presence in all the 

systems, but specially in the one with the mixture of the selected compounds. The fact 

that no further classification was made for the sequences makes impossible to 

determinate which group or groups of bacteria are the main responsible of this increase. 

The Pseudoxanthomonas genus have already been described as possible degrader of 

ampicillin (Shen et al., 2010). However, this could be species dependent as there are 

others species from this group described as sensitive (Kumari et al., 2011). Besides this, 

no mention about ENR or any related compound could be found in the literature. 

In the Firmicutes phylum there is a class (Clostridia) that clearly stands out from 

the rest. In this class only sequences belonging to one order (Clostridiales) were found. 

This class of bacteria is present in gut environment. Therefore, the presence of this order 

must be related with the effluent used in the experiment, despite it is described that 

allochthones microorganism that came with water, usually can not survive in the CW‟s 

systems (Truu et al., 2009). In fact, in present study, the sequences associated to 

Clostridiales order appear as the most dominant among the entire community (Table 4). 

Also in this order is possible to distinguish two different families that are part of the most 

representative taxa. The Ruminococcaceae family presents a decrease in their sequences 

number in the systems with antibiotics, showing their incapacity to adapted. The 

Peptostreptococcaceae is the other family belonging to this order that is represented 

among the most representative taxa (table 4).  

 Bacteroidetes is a well spread phylum with members present either in 

gastrointestinal tract (mainly Bacteroidia class) and in the environment (Flavobacteriia 

class) (Thomas et al., 2011). The Bacteroidia class shows an increase in the ENR 

systems, which is, mainly, a consequence of the presence of the genus Alkaliflexus, that 
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alone represents 3% of the total sequences for these systems. The association between 

Alkaliflexus and ENR were never made before.  

Actinobateria phylum are present in terrestrial and aquatic (marine) ecosystem. In 

soil, they are  important in decomposition and humus formation (Ventura et al., 2007). 

This phylum is known for having some types capable of produce secondary metabolites 

like antibiotics (Mahajan and Balachandran, 2012). In the only class found, the 

Acidimicrobiales order are the most represent. In both cases, an increase of percentage 

occured in the presence of antibiotics.   

The enchain, that makes the sequences percentage of same groups being higher 

in the presence of antibiotics, can be the result of not only their possible resistance, but 

also of the fact that the presence of antibiotics lead to a inhibition on other types of 

bacteria that in normal condition (control) will be the predominant ones. Without this 

dominant bacteria, the ones that normally appears with a lower abundance, and that have 

conditions to survey in these adverse conditions, have the opportunity to survive and 

reproduce (Huang et al., 2014).   

The analyses of community structure and the shifts that occur in these systems are 

of great importance once they are responsible for the final effluent quality. Therefore, the 

design of these systems should be directed to provide a higher diversity and consequently 

enhance the processes.  

 

2.5. Conclusion 

The results obtained in this work, with high removal rates for the veterinary 

antibiotics tested (Enrofloxacin, Ceftiofur and Mixture), organic matter and nutrients 

demonstrate the applicability of CWs for the removal of veterinary antibiotics from 

livestock wastewaters. The method applied make possible the assessment of community 

at different complexity levels. 

The evaluation of community structure demonstrates that both time of exposure 

and the presence of antibiotics influenced significantly the microbial community of the 

CW‟s. However, this alteration did not affect the capability demonstrated for the removal 

of pollutants. Information supplied by pyrosequencing provided new knowledge about the 

bacteria potentially involved in the removal processes. 
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CHAPTER 3 

Biodegradation of Enrofloxacin by bacterial 

consortia obtained from estuarine environment 
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3. BIODEGRADATION OF ENROFLOXACIN BY BACTERIAL CONSORTIA 

OBTAINED FROM ESTUARINE ENVIRONMENT 

 

3.1. Introduction 

The amount of pharmaceutical compounds utilized in human and veterinary 

medicine account for more than 5000. These compounds are divide in different classes, 

as: analgesics and anti-inflammatory drugs, antibiotics, antidepressants, hormones, 

between others (Van Doorslaer et al., 2014). Among the antibiotics compounds, the FQ, 

the class where ENR is insert, are the third largest group. The FQ are a result of the 

alteration of the quinolone structure, existing the insertion of fluorine element. This 

element is the most abundant of all the existent halogen elements, and the 13th of all the 

existing element in earth crust. The substitution of the hydrogen atom for the fluorine one 

leads to an alteration in several physic-chemical characteristics of the molecule (Murphy 

et al., 2009; Van Doorslaer et al., 2014). This fluoroaromatic structure of the FQ can not 

be found in natural products. This insertion of the fluorine in compounds for medical use 

has suffered an increase representation. In 1970 this type of compounds only represented 

2% with an increase up to 18% in 2006 (Isanbor and O‟Hagan, 2006). According with the 

World Health Organization FQ are ranked as “critical important” (Collignon et al., 2009). In 

this class of antibiotics can be distinguished four generation representing a total of twenty 

different chemicals. This division is made based in the structural differences of the 

compounds that are responsible for alterations in their activity spectrum (Jia et al., 2012; 

Pallo-zimmerman et al., 2010).   

The FQ antibiotics can be use in either human or veterinary medicine. ENR is an 

antibiotic used in veterinary medicine, including in the second-generation according to the 

already described division (Pallo-zimmerman et al., 2010). The fact that this is an 

antibiotic for veterinary use leads to concern about their entrance in the environment. In 

the animal body, these compounds suffers an incomplete metabolization being excrete as 

the unmetabolized parental compound. Even the metabolized portion, excrete pose 

problems once they are usually constituted by break down products that show the same 

or similar toxicity as primary compound (Thiele-Bruhn, 2003). In the ENR case, this is 

particularly visible, once their primary metabolite, CIP, is an antibiotic use in human 

medicine. Therefore, either by the inefficient of their removal in WWTPs or by the 

utilization of manure as fertilizer, this parental or metabolites active molecules, can enter 

in the environment. The presence of antibiotics in the natural systems poses several risks 
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for the human and wild life health. The long term exposure to low (sub-lethal) 

concentrations can promote alterations in the microbial community. In addition to these 

alterations this repeated exposition of bacteria to this type of compounds can lead to the 

appearance, transfer and/or spread of antibiotic resistance. The appearance or 

propagation of bacteria with the capability to resist to the known treatments is of great 

concern. This resistance can lead to the decrease in the treatments usually applied 

(Jjemba, 2002; Kemper, 2008; Sarmah et al., 2006). 

In this present study, it was investigated the capacity that bacteria from the 

rhizosphere of two different type of plants (P. australis and J. maritimus), present in 

natural wetlands, have for the biodegradation of ENR. The degradation of ENR have 

already been described for fungi (Karl et al., 2006; Martens et al., 1996; Murphy et al., 

2009). For bacteria there is a lack of this information. In this work, the option of using 

bacteria originating from natural wetland systems, and more specific from the rhizosphere 

of the two above mention plants, are related with the fact that these systems and, in 

particular, these plants and their associated bacteria, have already demonstrate capability 

for contaminants removal (Carvalho et al., 2013a; Fernandes et al., 2015; Ribeiro et al., 

2013). 

The biodegradation of ENR was studied based on the liberation of the fluorine 

anion. The presence of this anion in the culture solution is an indicator of defluorination of 

the molecule and consequently their loss of activity.  

 

3.2. Materials and methods 

3.2.1. Soil collection 

Rhizosphere samples from two different types of macrophyte plants (P. australis – 

PHR- and J. maritimus - JNC) were collected in the margins Lima estuary (North of 

Portugal) in July 2014. Rhizosphere samples were transported from the collection site 

until the laboratory, where the inoculation was made, in plastic containers and maintained 

in a cooler bag. 

 

3.2.2. Experiment design  

Two sets, in triplicate, were run in parallel, each one for different rhizosphere 

plants. Approximately 5 g of rhizosphere were weighted and used to inoculate 250 mL 
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flaks containing 50 ml of sterile minimal salts medium (MM) (Fig. 22). Initial setups were 

fed with 200 µL of ENR, at a final concentration of 1 mg/L. In order to prevent the 

occurrence of photodegradation all the flasks were maintained in dark environment and to 

ensure proper oxygenation were constantly agitated.  

 

The MM used was made with (per liter of ultra-pure water): Na2HPO4. 2H2O 2,03 g, 

KH2PO4 1.4 g, (NH4)2SO4 0.5 g and MgSO4.7H2O 0.2 g, and 10 mL of a trace elements 

solution with the following composition, per liter: NaOH 2.0 g, Na2EDTA.2H2O 12.0 g, 

FeSO4.7H2O 2.0 g, CaCl2 1.0 g, Na2SO4 10.0 g, ZnSO4 • 7H2O 0.4 g, MnSO4.4H2O 0.4 g, 

CuSO4.5H2O 0.1 g; Na2MoO4.2H2O 0.1 g and H2SO4 1.5 mL. The medium was sterilized 

before use. Stock solution of ENR, at 200 mg/L, was made by adding 0,015 g of the 

compound in 15ml of methanol. This solution was then filtered to a sterilized flask and 

storage at -20ºC.  

Sodium acetate stock solution, at a concentration of 100.000 mg/L, was made by 

diluting 7 g in 70 ml of distilled water, and sterilized.  

 

3.2.3. Cultures maintenance and sampling 

In the first part of the experiment 200 µl of sodium acetate were added, daily, as a 

secondary source of carbon, at 400 mg/L. Every three carbon alimentation the culture was 

transferred to a new sterilized flask to ensure the oxygenation. Twelve days after the 

beginning, half of the suspension (25 ml) was removed and passed to a new flask 

Figure 22: Inoculation and culture setup and maintenance. 
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containing 25 ml of fresh medium. To analysed the fluoride (F-) content immediately after 

the addition of the new medium 4 ml was collected and centrifuges at 4000 rpm, 10ºC for 

10 min and supernatants were frozen. The suspension remained, in each of the triplicates, 

was joined. This was then centrifuged, as described before, and from the supernatant 

obtain 3 ml were collect for the F- liberation analyse and the remained was kept for HPLC 

analyses of ENR. To avoid interference caused by the presence of soil particles, used in 

the inoculum, cultures growth monitorization, by spectrophotometry (600 nm), only started 

after the turbidity disappeared. This procedure was maintained for two and half months. 

After that, the dilution of the culture passed from twelve to twenty one days, giving 

more time to possible degradation occurrence (Fig. 23), the volume passed for half to one 

quarter (12,5ml) once the growth registered was high and carbon addition started to be 

done three days per week. Transference of culture into a new flask, sampling (for 

liberation of F- and HPLC analysis) and monitorization of growth were made as described 

before.   

Four months after the beginning of the experiment, and based on the results 

obtained until that time, bacterial community present was studied (Fig. 24). For that, and 

in the attempt to recover every strain that could be involved in the degradation processes, 

triplicates were joined. A flask per plant of the initial consortia was also maintained, in the 

same condition as described before, to continue the F- analysis. From this joined culture, 

samples were taken to prepare several dilution in eppendorfs. These diluted cultures 

were, then, spread onto plate count agar and MM (with 1 mg/L of ENR) plates and 

incubated in, at 30 ºC. After the recovery of bacterial strains, they were purified by 

 

Figure 23: Culture maintenance. 
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repetitive streaking into the corresponding medium. The differentiation of bacteria was 

made based on their morphology. Isolated strains were preserved in glycerol (85%) and 

kept at -80 ºC for future identification through DNA extraction and sequencing. 

Degradation of ENR by these pure strains obtained from the initial consortia was 

evaluated. For these analyses, isolates from each plant were reinoculated together, in 

triplicate, into MM. The maintenance of these cultures was performed in the same way as 

the initial ones.  

Due the low concentration of ENR initially used in this work, the maximum 

concentration of F- released was close to the detection limite of the electrode. Oscillations 

in the results could be a consequence of that, so in the attempted to increase the 

accuracy of the F- measurement an increase from 1 to 3 mg/L of ENR, in both initial 

culture and the one created from the isolated strains, were made. This concentration was 

maintained for 2 cycles. At this point, only a flask from the initial culture existed. To obtain 

a more realistic data, this flask passed from one to three. This was not made at once due 

the lack of culture volume to create them. For that, at the end of the first 3 mg/L cycle a 

duplicate was created from the one existent. At the end of the second cycle, a third flask 

was created with a mixture (half of each) of the other two flasks.  

 

Figure 24: PHR/JNC culture maintained, isolation of strains and inoculation of new consortia 
from the isolated strains. 
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After two cycles at 3 mg/L, and with the results obtained a change in the ENR 

added concentration was made passing to 2 mg/L, a concentration that allows to work 

above the detection limit but without posing an excessive pressure on cultures.  

 

3.2.4. Fluoride liberation 

The measurement of the concentration of F- anions present in cultures 

supernatants gives the information about defluorination of ENR. This measurement was 

made in a fluoride ion-selective electrode. For that, and before every samples 

measurement, a calibration curve was prepared. The concentration of the sodium fluoride 

(NaF) standards utilized in the curve were 0,001; 0,0025; 0,005; 0,01; 0,02; 0,1; 0,2 and 1 

mM. These concentrations were chosen based on the predictable maximum F- liberation. 

Standards were made from a 100 mM NaF stock solution dilution.  The stock solution was 

prepared by adding 0,20995 g of NaF to 50 ml of ultra-pure water. The standards dilutions 

were made in the culture medium present in the samples. To minimize the interference, 

100 µl of a total ionic strength adjustment buffer (TISAB) solution was added per ml of 

sample.  

 

3.2.5. Isolation of strains 

The isolation of strains from the different cultures was made in two different types 

of medium plates. Plate count agar (PCA) medium, a non-selective one, was prepared 

following the manufacturing instructions, in this medium all the culturable bacteria present 

is expected to grow. The other medium was prepared with the MM, equal to the one 

utilized in the cultures, with the addiction of agar and ENR (1 mg/L concentration). For 

each liter of medium, 12 g of agar was added to solidify this liquid medium. To prevent 

degradation, ENR was only added after the sterilization of the medium. The addition of 

ENR allows to select only the cultures capable of use ENR as carbon source.  
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3.3. Results 

3.3.1. Initial consortia 

The percentage of F- release, defluorination, was calculated by subtracting the F- 

present in the end of each cycle from the one present in the beginning. In the first 60 days 

of the experiment the measure of defluorination was not possible to be made due the 

interference of the remaining sediment. From day 60 until the day 114, F- release was 

measured (Fig. 25). In this, was possible to see some F- liberation for both consortia, with 

similar pattern. However, the percentage of defluorination was not stable along the time, 

showing some variations. 

 

After the procedure for strain isolation, the initials consortia cultures were 

maintained in only one flask between days 135 and 261 (Fig. 26). The oscillations seen 

before were also seen here. This oscillation can be a result of the, already described, low 

concentration used. Besides this, the fact that at this point only one flask existed does not 

allows to see if this oscillation is a result of the conditions or of some alterations in this 

particular one. After this, the flaks passed to two and the concentration was increased for 

3 mg/L. In the two cycles of 3 mg/L a decrease in defluorination percentage was detected. 

In the end of these two cycles, and once the volume of the culture permitted, the flasks 

passed to three in order to do triplicates and, therefore, to better understand the possible 
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Figure 25: Defluorination percentage (average and standard deviation) for the two 
consortia from day 60 to 144 (all with 1 mg/L)  
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variations. The ENR concentration was also adjusted to 2 mg/L, once the pattern seen in 

the cultures with 3 mg/L showed that the capability of the culture to biodegrade decreased 

and, therefore, this concentration appears to exceed the degradation capability of 

cultures.  Nevertheless, the same was observed with the 2 mg/L concentration. Thus, 

percentage of defluorination ranged between 5 and 95% in the presence of 1 mg/L of 

ENR, while in the presence of 2 or 3 mg/L it ranged between 10 and 20% or 10 and 30%, 

respectively. 

 

 

3.3.2. Consortia produced with the isolated strains 

 After these 114 days of enrichment and looking at the deflurination results, the 

microbial community present was studied. The culture streaking in the different media 

result in the obtantion of 14 strains distributed among 11 different morphologies. From 

these 14 strains, 11 were recovered from the PCA (4 from PHR and 7 from JNC) medium 

and the 3 remaining were recovered from the plates with ENR addition (1 from PHR and 2 

from JNC). Due to similar morphology, the same number was attribute to bacteria 
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Figure 26: Defluorination percentage for the two consortia. From day 135 to day 261 data 

from one flask is available. In day 282 two flasks per consortia exist, with data from de 
medium degradation and standard deviation being represented. From day 303 until the end, 

the data represent the degradation and standard deviation of triplicates.  Alteration in the ENR 
concentration added is also represent in horizontal axis (1mg/L, 2 mg/L and 3 mg/L).  
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provenient from different consortium, with the addition of the letter P (for the ones isolated 

from PHR consortium) or J (for the ones isolated from JNC consortium).  

Table 5: Identification of the different isolated strains in the consortia. (x) Indicates the 

presence; (-) indicates the absence. Without shade- recovery from PCA; with shade recovery from 
plates with ENR. 

 

 

The result of defluorination obtained from the consortium made with the isolated 

strains (Fig. 28) showed, as occur in the initial ones, variation in the percentage of 

degradation along time, with no clear differences observed between the two consortia. 

This variation was seen in all the concentration tested. In general, higher percentages of 

defluorination were observed in these consortia, in comparison with the ones observed in 

the initial consortia. Also, it was observed a tendency for a decrease of defluorination with 

the increase of ENR concentrations, as values range from 40 to 80% for 1 mg/L, from 30 

to 60% for 2 mg/L and from 20 to 50% for 3 mg/L.  

 

Identification number 
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Figure 27: Defluorination percentage (averaged and standard deviation) for the two consortia 
inoculate with the isolated.  
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3.4. Discussion  

Xenobiotic compounds, resulting from different anthropogenic activities, can enter 

in the environment from the most diverse ways having potential ecological impact. The 

ability of different microbial species for the degradation of these compounds can help in 

the reduction of contamination, decreasing, therefore, their possible impacts.  

The degradation on ENR performed by different types of fungi as already been 

described. In this, several different metabolites, resulting of different alteration processes 

of ENR have also been described. These differences in alterations are directly related with 

the type of fungi utilized, with different patterns associated with the type of fungi and their 

specific characteristics (Karl et al., 2006; Martens et al., 1996; Parshikov et al., 2000; 

Wetzstein et al., 1997, 2006). Different strategies can be adopt to analyse the 

degradations of this antibiotic. In the case of the work performed by Martens et al., (1996) 

the degradation of ENR 14C labelled, by 4 species of white rot fungi and three strains of 

Gloeophyllum striatum, was estimated based on the amount of 14CO2 released. In 8 weeks 

of experiment, degradation reached in some cases over 50%, with brown rot fungi having 

a better performance than the white ones. Wetzstein et al., 1997, based in the good 

degradation results showed by Gloeophyllum striatum, used this specie to precede to the 

identification of the metabolites resulting of ENR degradation and to establish degradation 

routes. Several degradation routes were proposed, one of them involving the loss of F- 

(Karl et al., 2006). Considering that, the studied species that have their natural occurrence 

in agriculture soil could represent a more realistic description of natural degradation. 

Wetzstein et al., (2006) studies the metabolites resulting of ENR degradation by seven 

basidiomycetes, indigenous to agricultural soils or animal waste. These metabolites 

showed to be different from the ones that appeared in the presence of Gloeophyllum 

striatum. The capability of Mucor ramannianus to transform ENR as also been study 

(Parshikov et al., 2000). All of these studies demonstrate that the biotransformation of the 

same compound performed by different organisms can be a result of different pathways. 

None of these works utilized a fluoride ion-selective electrode as method. However, this 

technique have already been used to study the degradation of other fluoroquinolones 

(Carvalho et al., 2006). 

The ability of different type of bacteria for the degradation of a diversity of 

fluorinated compounds has already been described (Carvalho et al., 2006). However, to 

our knowledge, there are no data available about ENR degradation by bacteria. For what 

concerns to this present work, only data of the degradation pathway resulting from the 

molecular defulorination is available. This is, as showed before, only one of the many 
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possible biotransformation pathways of ENR. For that, it is not possible to assess if other 

alteration, that did not result in the liberation of F-, is occurring. Understanding the 

alterations of ENR is extremely important. Only in that way it is possible to understand if 

the resulting compounds also preserved the antimicrobial characteristics of ENR. It can 

occur that, despite the alterations suffered by ENR the antimicrobial proprieties of the 

present compounds can continue affecting the microbial communities or that the 

transformation occurring implies the loss of activity.  

 

3.5. Conclusions 

Results obtained for both, initial and isolated consortia from the two selected soil, 

showed the liberation of F-, in the different concentration tested. These results are 

indicators of the capability of the bacteria present in these consortia for the alteration of 

ENR molecule. This study will proceed with the identification of the different pure strains 

recovered from the different consortia, in order to understand what type of bacteria can be 

involved in this process. In addition, HPLC analyses for the quantification of ENR and its 

metabolites, will allow the assessment of possible biotransformation routes.   
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CHAPTER 4 

General discussion and Conclusions 
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4. GENERAL DISCUSSION AND CONCLUSIONS 
 

4.1. Discussion 

The environmental fate of pharmaceuticals has received increasing attention, 

especially since the detection of their presence in wastewater treatment plant (WWTP) 

effluents, surface and groundwater. These compounds can be released into rivers and 

estuaries directly, by discharge or inadequate treatment of water, or indirectly, through 

groundwater contamination when contaminated manure is used as agriculture fertiliser. 

Within the veterinary pharmaceuticals, antibiotics are the group of most concern due to 

the risk of spread of antibiotic resistance in the environment. In addition to their use to 

treat diseases, antibiotics are extensively used as enhancer of feed efficiency to, between 

other things, promote growth. Microorganisms naturally occurring, mainly the ones 

present in areas that are usually exposed to the presence of several types of pollution, 

can be adapted to the presence of contaminants. Therefore, some of them can be used in 

bioremediation, a process that involves the use of microorganisms that catabolize specific 

molecules, destroy dangerous contaminants or transform them into less harmful forms.  

The main objective of this study was to evaluate the potential of autochthonous 

microorganisms from estuarine environments for bioremediation of pharmaceuticals, 

namely veterinary antibiotics. This potential was studied in two experiments, one of them 

using these microorganisms in association with plants, in constructed wetland (CW) 

microcosms, and the other using them to produce microbial consortia with capacity to 

degrade antibiotics. 

In the first experiment, wastewater from a livestock industry was introduced in 

CWs microcosms containing plants (P. australis) and respective rhizosediment collected 

at the Lima estuary. The wastewater, doped with two different antibiotics, was added to 

different microcosms and the response of microorganisms was evaluated, both in terms of 

community structure and removal performance. Results show that the systems were able 

to remove more than 90% of the added antibiotics, pointing to the applicability of CWs for 

the removal of veterinary antibiotics from livestock wastewaters. The potentiality of these 

systems for the elimination of pharmaceuticals, have already been report for other 

compounds in different designed CWs (Carvalho et al., 2013a; Hussain et al., 2012; Xian 

et al., 2010; Zhao et al., 2015). 

Results from community structure showed that the microorganism were in an 

adaptation process, displaying important changes along time. Despite the evolution of 



 
 

64 
 

communities over the time, the capability of the systems to treat the wastewater 

introduced was maintained along the experiment. Furthermore, the impacts of the 

presence of the antibiotics in the microbial communities, which can results in alteration in 

ecosystem functionality, were evaluated. Results show that, for all systems, microbial 

communities were dominated by the phyla Proteobacteria (38 to 48%), Firmicutes (20 to 

27%), Bacteroidetes (12 to 15%) and Actinobacteria (4 and 9%) but their relative 

abundance was clearly affected by the presence of the antibiotics. Alteration in 

communities subject to the presence of different compounds were already seen with a 

diversity of techniques (Fernandes et al., 2015; Hammesfahr et al., 2008; Zhao et al., 

2015). Neverthless, in the present study, data from 454-pyrosequencing analyse provide 

new knowledge about the bacteria potentially involved in the removal processes. 

The potential of the microorganisms, present in plants rhizosediment collected 

from an estuarine wetland, to biodegrade ENR was studied based on the liberation of the 

fluorine anion, in the second experiment. To evaluate this, the concentration of the fluorine 

anion in the culture solution was measured by a fluoride ion-selective electrode. Besides 

that, the strains present were isolated. For that, part of the initial culture was spread onto 

plates with different mediums. The result of liberation obtained indicate that these 

consortia are capable of change ENR molecule, resulting in the liberation of fluorine. 

However, as described in the case of ENR biodegradation by a diversity of fungi species, 

a variety of other possible pathways exist (Karl et al., 2006; Martens et al., 1996; 

Parshikov et al., 2000; Wetzstein et al., 1997, 2006). This fact points to the importance of 

the identification and quantification of ENR and its metabolites in the cultures, as the non-

liberation of fluorine is not a direct indicator of the non-alteration of ENR molecule. The 

identification of the isolated strains will allow the identification of the bacteria possibly 

involved in the biodegradation process.     

  

4.2. Conclusion 

Both experiments pointed to the capability of autochthones microorganisms 

present in estuarine plants rhizosediment for the bioremediation of veterinary antibiotics, 

either in CWs or in enriched consortia. The method applied in the CW experiment makes 

possible the assessment of changes in microbial community structure at different 

complexity levels. Although some alteration in community structure could be identified, 

these systems maintained their depuration capacity along all of the experiment. Besides 

that, some of the microorganism present were able to interact with a fluorinated antibiotic, 

leading to the liberation of fluorine from the molecule. 
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Thus, this work points for the applicability of the use of autochthonous 

microorganism collected from estuarine environment for bioremediation of 

pharmaceuticals, namely veterinary antibiotics, providing new knowledge about the 

bacteria potentially involved in the removal processes. 
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