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Abstract 

Cyanobacteria produce a variety of secondary metabolites of peptidic nature, many 

of which with potent biological activities. These can be produced either ribosomally or 

non- ribosomally. Cyanobactins are a group of recently described cyclic peptides with low 

molecular weight, synthesized by ribosomal pathways that exhibit important bioactivities, 

such as antitumor, cytotoxic or multi-drug-reversing activities.   

Anacyclamides are a set of cyclic cyanobactins, which have been described from 

strains belonging to the Anabaena genus. 

The main objective of this work was the detection of anacyclamide- related genes in 

cyanobacteria from the culture collection of LEGE (LEGE CC) in an attempt to expand the 

diversity of anacyclamides know to date. In addition, we tried to characterize the 

cyanobacterial strains using both morphological and molecular data, with the ultimate goal 

of making phylogenetic inferences regarding cyanobactins production.  

For this effect, we conducted a molecular screening among Anabaena strains, for a 

gene involved in the synthesis of the ribosomal peptides cyanobactins (patE). As a result, 

we detected a putative new anacyclamide in two of the ten Anabaena strains. Sequencing 

of the patE gene allowed us to predict the amino acid sequence of a new anacyclamide. 

The presence of the new compound in the cultures was checked using LC-MS, which 

additionally suggested that the cyanobactin was post-translationally modified through two 

prenylation events. 

By expanding the known genetic and chemical diversity of anacyclamides this work can 

help us to know more about the cyanobactins. In particular, this new anacyclamide can 

aid in investigations on post-translational processing of cyclic peptides derived from these 

pathways. 
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Resumo 

As cianobactérias produzem uma variedade de metabolitos secundários de natureza 

peptídica, muitos dos quais apresentam forte bioactividade. Estes biocompostos podem 

ser produzidos quer por via ribossomal quer por via não ribossomal. As cianobactinas são 

um grupo de péptidos cíclicos recentemente descobertos, com baixo peso molecular, 

sintetizados por ribossomas e que apresentam importantes bioactividades, tais como 

actividade citotóxica, anti tumoral ou reversora de multi drogas. 

Neste sentido, o objectivo principal deste trabalho foi a detecção dos genes relacionados 

com a produção de anaciclamidas em cianobactérias provenientes da colecção de 

culturas LEGE (LEGE CC), com a consequente identificação de novas anaciclamidas. Da 

mesma forma, foi feita a caracterização morfológica e o rastreio molecular das estirpes de 

cianobactérias, tendo como ultimo objectivo a análise filogenética, atendendo à produção 

de cianobactinas por parte das mesmas. 

Para este efeito, o rastreio molecular teve como alvo o gene envolvido na síntese dos 

péptidos ribossomais (cianobactinas) – patE. Como resultado, detectámos uma nova 

anaciclamida em duas das dez estirpes analisadas.  

A sequenciação do gene patE permitiu-nos prever a presença da anaciclamida, bem 

como a sua sequência de amino ácidos, em duas das dez estirpes em estudo. A 

presença desta nova anaciclamida nas culturas foi confirmada usando a LC-MS. A 

utilização desta técnica também demostrou que a nova cyanobactina apresentava 

modificações pós tradução bem como dois grupos -prenil na sua constituição. 

Assim, este trabalho ajudou a aumentar o conhecimento sobre este grupo de péptidos, de 

baixo peso molecular e com grandes variações estruturais. O estudo da nova 

anaciclamida pode estender-nos o conhecimento em relação às modificações pós 

tradução, que caracterizam estes péptidos, particularmente sobre prenilação. 
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1. Introduction 

Many aquatic organisms are able to produce bioactive secondary metabolites, some 

of which with the potential of being used in biotechnology (Arnison et al. 2013; Schmidt et 

al. 2005; Sivonen et al, 2010). Cyanobacteria are a particularly rich source of bioactive 

secondary metabolites (Sivonen et al., 2008). These include biomedically interesting 

compounds, such as the anticancer drug lead cryptophycin (Magarvey et al., 2006) and 

environmentally problematic hepatotoxic peptides, such as microcystins , nodularins and 

many other toxins produced by bloom-forming cyanobacteria (Sivonen et al.,2008). Many 

of these compounds are peptides containing nonproteinogenic amino acids, produced by 

nonribosomal peptide synthesis (Sivonen et al., 2008; Welker et al., 2006). Additionally, 

modified peptides produced by ribosomal pathways – cyanobactins - have recently been 

found in cyanobacteria (Donia et al., 2008; Donia and Schmidt, 2010; Leikoski et al., 

2009, 2010, Schmidt et al., 2005; Sivonen et al., 2010). This study was carried out within 

this topic and here we report a novel low-molecular-weight peptide produced ribosomally 

by Anabaena strains. 

1.2. Cyanobacteria 

Cyanobacteria are a phylum of oxygenic photosynthetic prokaryotes that have two 

photosystems (PSII and PSI) and use H2O as a photoreductant in photosynthesis. All 

known cyanobacteria are photoautotrophic, using primarily CO2 as the carbon source. 

(Castenholz, 2001). Many cyanobacterial species are also capable of atmospheric 

nitrogen fixation. 

Cyanobacteria have a gram-negative cell wall, which includes two distinct 

membranes, the plasma membrane and an outer membrane, and a peptidoglycan layer, 

which is thicker than in other Gram-negative bacteria, between these two membranes 

(Hoiczyk and Hansel 2000). External to the cell wall are different layers that protect the 

cells from desiccation and presumably from phages and predators. Cyanobacteria contain 

extensive internal thylakoid membranes, which are the site of photosynthetic reactions 

(Woese, 1987; Hoiczyk and Hansel, 2000; Liberton, 2011). 

These organisms are morphologically very diverse, with unicellular, colonial, and 

multicellular filamentous forms and can inhabit a wide range of environments including 
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extreme conditions such as hot springs, the poles and, desert soils. Cyanobacterial 

species can occupy terrestrial habitats and, more commonly, aqueous environments 

(Sivonen et al., 2010). According to the botanical system of classification, cyanobacterial 

diversity has been traditionally grouped into five orders, Chroococcales, Pleurocapsales, 

Oscillatoriales, Nostocales and Stigonematales, which generally correspond to the five 

subsections proposed in the Bergey’s Manual of Systematic Bacteriology (Knoll, 2008; 

Whitton, 2008). Cyanobacteria form a distinct group in bacterial tree of life, based on 

bacterial 16S rRNA genes (Castenholz, 2001). They are responsible for the production of 

many toxins, including the most studied group of cyanobacterial secondary metabolites, 

the hepatotoxic microcystins (Sivonen and Jones, 1999). Cyanobacteria are also a rich 

source of other secondary metabolites, some of which have interesting antimicrobial, anti-

HIV, anti-malaria and anticancer activities (Burja et al., 2001, Welker and von Döhren 

2006, Linington et al., 2007). Of particular interest for the present work, we emphasize the 

cyanobactins group of secondary metabolites, which are a group of cyclic peptides 

recently found in cyanobacteria (Donia et al., 2008).  

1.2.1. Cyanobacteria toxic effects 

Some cyanobacteria frequently form mass occurrences (blooms) in aquatic systems 

(freshwater as well as marine environments). This phenomenon occurs under favorable 

environmental conditions, such as salinity, light, temperature and nutrient concentration 

and usually results in the release of the cells’ constituents (which sometimes includes 

potent toxins, termed cyanotoxins) to the water body (Béchemin et al., 1999; John and 

Flynn, 2000). At this level, eutrophication (natural or anthropogenic) and global warming 

have a strong influence in ecosystem health, but also in the economic development and in 

public heath, because the population is a consumer of aquatic resources that can be 

contaminated with cyanotoxins (John and Flynn, 2000; Paul, 2008). 

Studies on planktonic cyanobacteria from freshwaters and marine ecosystems 

became more common since the first report of a toxic episode caused by cyanobacteria in 

1878 (Francis, 1878; Sivonen and Jones, 1999). Eventually, the study of toxic compounds 

produced by cyanobacteria revealed the biotechnological potential of these organisms, in 

terms of their production of bioactive compounds. These biocompounds can be of 

different chemical families, including lipids, terpenes, glycosides, polyketides and peptides 



 

3 

 

or hybrids of some of these classes (Metting and Pyne, 1986, Rouhiainen et al., 2000; 

Tan et al., 2001, Donia et al., 2008, Donia and Schmidt, 2010). 

A significant fraction of these cyanobacterial compounds are linear and cyclic 

peptides that are produced by either ribosomal or nonribosomal biosynthetic pathways. 

The first, ribosomal pathway, was described in 2005 for the cyanobactin patellamide 

(Schmidt et al., 2005) while the first nonribosomal gene cluster had been reported earlier 

for the cyanotoxin microcystin (Tillet et al., 2000). Many cyanotoxins are partially or fully 

produced by nonribosomal pathways and released to the environment, such as 

microcystin; nodularin; saxitoxin and cylindrospermopsin. On the other hand, 

cyanobactins have been discovered as novel peptides produced ribosomally and their 

ecosystem-level impact is currently unknown (Schmidt et al., 2005; Arnison et al., 2013). 

1.3. Cyanobactins 

The cyanobactins are small peptides with low molecular weight, produced by 

various strains of free-living or symbiotic cyanobacteria, in terrestrial, marine or freshwater 

environments. (Schmidt et al., 2005; Donia et al., 2006; Sivonen., 2010). In this group are 

included compounds with anti-malarial, anti-tumoral and multidrug reversing action (Burja 

et al., 2001, Welker and von Döhren, 2006, Linington et al., 2007, Salvatella et al., 2003). 

Therefore, cyanobactins are compounds of potential interest to the pharmaceutical 

industry. These compounds possess versatile structures and are produced by proteolytic 

cleavage and cyclization of hypervariable peptide precursors, coupled with other post-

translational modifications such as heterociclization, prenylation of amino acid or oxidation 

(Sivonen et al., 2010; Leikoski et al., 2010). Cyanobactins are ribosomally synthesized 

and post-translationally modified peptides (RiPPs), which are produced by a pathway now 

designated as post-ribosomal peptide synthesis (PRPS) (Arnison et al., 2013). In PRPS, 

an unmodified precursor peptide produced by normal translation on the ribosome, 

includes the sequence that will correspond to the end-product peptide, termed core 

sequence (Oman and van der Donk, 2010 and Arnison et al., 2013).Subsequently, the 

precursor peptide is cleaved and modified to form the final product (Figure1). 

The cyanobactin gene cluster usually encodes two proteases responsible for the 

cyclization and cleavage of the precursor peptide (Sivonen et al., 2010). 
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Figure 1- Schematic of post-ribosomal peptide synthesis (PRPS) (Adapted from Arniston et 
al., 2013 and Leikoski et al., 2013) 

Initially, cyanobactins were proposed as a group of cyclic peptides containing 

oxazolines, thiazolines, or their oxidized derivatives oxazoles and thiazoles (Sivonen et 

al., 2010). This definition was modified to include cyclic peptides which consist solely in 

proteinogenic amino acids (Leikoski et al., 2010). Sometimes, isoprenoid amino acids 

derivatives are also found, for example in trunkamide, patellin, and anacyclamides, 

although they are rare (Sivonen et al., 2010). Hence, cyanobactin was proposed as a 

collective name for cyclic peptides which can contain heterocyclized amino acids or 

isoprenoid amino acid derivatives (Donia et al., 2008; Schmidt and Donia, 2009). Very 

recently it has been shown that some cyanobacteria produce short linear cyanobactins 

with a chain length ranging from three to five amino acids (Leikoski et al., 2013). 

According with the Leikoski et al. (2013) study, these linear cyanobactins were N-

prenylated and O-methylated on N and C termini, respectively. 

1.3.1. Analogous pathways 

Similarly to cyanobactins, another cyanobacterial peptide class, microviridins, was 

recently shown to be ribosomally produced in Microcystis aeruginosa and Planktothrix 

agardhii, but their biosynthetic machinery differs that of cyanobactins (Ziemert et al., 

2008a; Philmus et al., 2008; Sivonen et al., 2010). Initially, these compounds were 

thought to be products of nonribosomal peptide biosynthesis. However, microviridins are 

synthesized from precursor peptides that are converted into tricyclic depsipeptides 

through the action of ATP grasp ligases and a transporter peptidase (Ziemert et al., 

2008a; Philmus et al., 2008). The work of Philmus et al. (2008) reported similar gene 

clusters in the genomes of Anabaena variabilis, Nostoc punctiforme, and Nodularia 

Translation of the precursor gene

Core peptide

NH2 - - COOH

Post-translational modifications 

by the modifying enzymes

Percursor peptide

SRiPP
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spumigena as well as in genomes of other bacteria. The biosynthetic gene clusters 

encoding the production pathway of ribosomal peptides with oxazoles and thiazoles are 

present in a broad range of bacteria (Lee et al., 2008). Bacteria distantly related to 

cyanobacteria are known to produce bacteriocins by posttranslational modification. 

Cyanobactin biosynthesis is analogous in many ways to the biosynthesis of bacteriocins 

(Franz et al., 2007; Nolan and Walsh, 2009). The leader-peptide-guided biosynthesis is 

common in many ribosomally synthesized natural products where the precursor peptide is 

synthesized and cleaved, and in some cases the core peptide is posttranslationally 

modified (Oman and van der Donk, 2010). Bacteriocins can also present cyclization as 

cyanobactins, and also similar posttranslational modifications for example in case of 

thiazoles and oxazoles (Jack and Jung, 2000; Maqueda et al., 2008; Martin-Visscher et 

al., 2009). 

Many of cyanobacterial bioactive compound classes are synthesized on 

nonribosomal peptide synthetases (NRPS) or combined NRPS and polyketide synthases 

(Welker and von Döhren, 2006; Sivonen and Börner, 2008). However, the cyanobactins 

have been shown to be produced by posttranslational modification of the gene-encoded 

precursor peptides (e.g., Schmidt et al., 2005; Donia et al., 2008). The gene clusters 

responsible for ribosomal peptide production are small compared to the large 

nonribosomal peptide synthetase gene clusters. In NRPS, variation in the chemical 

structure of the peptide is achieved by utilization of more than 200 nonproteinogenic 

amino acids (Nolan and Walsh, 2009) whereas ribosomal peptides are restricted to 20 

proteinogenic amino acids which may be posttranslationally modified. In NRPS, the 

enzymes seem to have relaxed substrate specificity and thus allow simultaneous 

production of a number of structural variants in the same strain of a cyanobacterium 

(Welker and von Döhren, 2006). 

1.3.2. Chemical diversity and Occurrence 

A large part of cyanobactins, more than hundred as suggested by Sivonen et al. 

(2010) and Donia et al. (2008), have been identified from symbiotic associations formed 

between cyanobacteria and ascidians or from free-living cyanobacteria. This renders 

cyanobactins one of the largest classes of cyanobacterial peptides produced (Donia et al., 

2006; Schmidt and Donia, 2009). In general, cyanobactins produced by ascidians and 

sponges, for example, usually contain from six to ten amino acids and varying numbers 
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and combinations of oxazoles, oxazolines, thiazoles, and thiazolines (Sivonen et al., 

2010). A few cyanobactins, such as ulithiacyclamides, containing prenylated amino acids, 

have disulfide bridges between two cysteine residues. It is unclear if the cyanobactins are 

produced by the filter feeding organisms themselves, heterotrophic bacteria, or 

cyanobacteria associated with these organisms, but some cyanobactins have now been 

shown to be produced by cyanobacteria (Schmidt et al., 2005; Donia et al., 2006; Sivonen 

et al., 2010). For the majority of the analogous cyclic peptides reported from 

cyanobacteria, a biosynthetic origin is currently unknown. Hitherto, only ribosomal 

biosynthetic pathways have been described to produce these cyclic peptides (Schmidt et 

al., 2005; Donia et al., 2006, 2008; Sudek et al., 2006; Ziemert et al., 2008b; Leikoski et 

al., 2010). Still, a nonribosomal peptide synthetase pathway could be an alternative route 

for the biosynthesis of these compounds (Sivonen et al., 2010). In general, cyanobactins 

that contain heterocyclized amino acids range in size from six to eleven amino acids. 

Cyanobactins without heterocyclized amino acids have a length from seven to twenty 

amino acids. An interesting fact is that cyanobactins without heterocyclized amino acids, 

in addition to occasional prenylations, can present a conserved proline residue. Oxazoles 

and thiazoles are more common, while oxazolines or thiazolines occur with a lower 

frequency (Sivonen et al., 2010). 
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1.3.3. Biosynthesis of cyanobactins  

Cyanobactins are made through PRPS (Arnison et al., 2013). It means that a gene-

encoded precursor peptide is first transcribed. The precursor peptide is 50-150 amino 

acids long and the final peptide is modified and cleaved (Donia and Schmidt, 2010; 

Sivonen et al., 2010). The cleavage of the cyanobactin precursor peptide takes place at a 

minimum of two sites. In adition to the cleavage, the cyanobactin precursor is N-to-C 

macrocyclized and some amino acids can be modified (Donia and Schmidt, 2010; Oman 

and van der Donk, 2010; Sivonen et al., 2010). A hypervariable amino acids core 

sequence inside these will ultimately form the cyanobactin (Figure 3) (Donia et al., 2006, 

Patellamide A 

Trichamide 

Viridisamide A 

Figure 2- The chemical structures of a selection of cyanobactins. Trunkamide was isolated 
from L. patella, tenuecyclamide from N. spongiaeforme, anacyclamide from Anabaena, 
trichamide from T. erythraeum, ulithiacyclamide and patellamide from Prochloron( 
Originally from L. Patella); Viridisamide from Oscillatoria viridis PCC7112.(Adapted from 
Sivonen el al., 2010 and Leikoski et al., 2013). The post-translational modifications; 
oxazoline, thiazole, and reverse O-prenyl are highlighted with circles. In the linear 
cyanobactin, the identical prenylated N-termini and methylated C-termini bound to 
thiazoles are in blue. (Adapted from Sivonen et al., 2010; Leikoski et al., 2013) 
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Donia et al., 2008). Commonly, the cysteines, threonines and serines are heterocyclized 

to thiazolines and oxazolines, which can be oxidized to thiazoles and oxazoles (Figure 2). 

The core sequence may also be prenylated (Donia et al., 2008; Donia and Schmidt, 

2011). 

Thus, cyanobactins results from the proteolytic cleavage and head-to-tail (N–C) 

cyclization of precursor peptides coupled with modification of specific amino acids. 

(Sivonen et al.,2010; Oman and van der Donk, 2010). This cyclic structure results from 

the amide linkage of the α-carbonyl of C-terminal amino acid and α-amino group of the N-

terminal amino acid.  

In cyanobactins biosynthesis, the precursor peptide, designated with the letter “E”, 

directly encodes one or more cyanobactins flanked by the putative recognition sequences 

at which the precursor peptide is cleaved by two proteases, A and G (Schmidt et al., 2005; 

Lee et al., 2009; Donia and Schmidt, 2010; Sivonen et al., 2010). The fact that the 

precursor peptide can encode more than one cyanobactin represents a mechanism to 

generate chemical diversity in peptide production.  

The cyanobactin gene cluster is approximately 10 kb (contained between 7 and 12 

genes) and consists of the genes A into G, however the gene arrangement can vary.  This 

gene cluster encodes two proteases (A and G), which are involved in the cleavage of the 

precursor peptide and cyclization of cyanobactin (Lee et al., 2009; Sivonen et al., 2010). 

In the biosynthetic gene cluster of patellamide it was shown that the encoded PatA 

proteases is responsible for cleavage the precursor peptide at the N-terminal recognition 

sequence while the PatG protease cleaved the precursor peptide at the C-terminal 

recognition sequence (Lee et al., 2009). However, only the G- protease has a 

macrocyclase domain which N-to-C cyclizes the cyanobactin (Lee et al., 2009). As stated 

above, the gene order is not strictly conserved but generally biosynthetic genes are 

organized as in the patellamide pat gene cluster (Figure 4). All of the cyanobactin gene 

clusters contain two the two tandem-acting proteases, a short precursor peptide as well as 

proteins involved in the maturation of the cyanobactins (Sivonen et al., 2010). Thiazoles 

and oxazoles are formed through the heterocyclization and subsequent oxidation of 

cysteine, serine, and threonine amino acids. In general, cyanobactin gene clusters contain 

a gene encoding a PatD homolog which is predicted to heterocyclize cysteine, serine, and 

threonine to thiazolines and oxazolines (Schmidt et al., 2005). The oxidase domain of the 

bimodular PatG protein is believed to catalyze the oxidation of thiazolines and oxazolines 

to thiazoles and oxazoles (Schmidt et al., 2005). A PatF homolog is often encoded in 
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cyanobactin gene clusters and thought to be involved in the heterocyclization and/or 

prenylation of cyanobactins (Schmidt and Donia, 2009). In general, the PatB and PatC 

proteins are encoded in the majority of cyanobactin gene clusters but were found to be 

nonessential - in Escherichia coli the patellamides were produced by heterologous 

expression of the pat gene cluster, even in the absence of the patB and patC genes 

(Figure 3). 

 

Figure 3- Schematic figure of the cyanobactin gene cluster (homologous to the pat gene 
cluster

1
) and the structure of the precursor peptide (E). The functions of the genes are 

shown. The genes B and C are of unknown function. The cyanobactin structures are formed 
from the core region shown in the precursor peptide. (Adapted from Houssen el al., 2012; 

1
 

Donia et al., 2008; 
1
Schmidt et al., 2005) 

The biosynthetic genes for cyanobactin production have been described in distantly 

related cyanobacteria Prochloron, Trichodesmium, Microcystis, Prochlorococcus, 

Synechococcus, Nostoc, Lyngbya, and Anabaena (Figure 4) (Schmidt et al., 2005; Donia 

et al., 2006, 2008; Sudek et al., 2006; Ziemert et al., 2008b; Leikoski et al., 2010; Shih et 

al., 2013). One of the protease genes responsible for cleavage of the cyanobactin 

precursor peptide was shown to be common among planktonic freshwater cyanobacteria 

and present in 48 out of 132 strains studied (Leikoski et al., 2009; Sivonen et al., 2010). 

These planktonic cyanobacteria included fresh and brackish water strains from 

filamentous heterocystous (Anabaena, Aphanizomenon, Nodularia), filamentous 

(Planktothrix), as well as colony-forming (Microcystis and Snowella) cyanobacteria. The 

biosynthetic pathway appears to be relatively common among these strains (Leikoski et 

al., 2009). 

A B C D E F G

N-terminal protease Heterocyclase Prenyltransferase
C-terminal protease, 

macrocyclase (oxidase)

N- terminal 

cleavage

C- terminal 

cleavage

Percursor peptide (E) core core
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Figure 4- Cyanobactin gene clusters published from seven distantly related cyanobacteria. 
These gene clusters are typified by genes encoding proteases (yellow), a short precursor 
peptide (red), proteins involved in the maturation of the cyanobactin (black), as well as 
conserved and hypothetical open reading frames (white). (Adapted from Sivonen et al., 
2010) 

1.3.4. Bioactivities 

Cyanobactins and cyclic peptides with analogous structures have diverse reported 

bioactivities. This diversity is derived from their variable structures. However, until this 

moment, this bioactivity has not been studied systematically for the cyanobactins. 

A large fraction of cyanobacterial metabolites have been found to be anticancer 

compound. For example, trunkamide (Salvatella et al., 2003) has multidrug reversing 

(Ogino et al.,1996) as well as anti-viral activities (Burja et al., 2001, Welker and von 

Döhren, 2006, Linington et al., 2007) or acting against tropical parasites such as 

Plasmodium falciparum (Linington et al., 2007; Portmann et al., 2008b).  

According to Nolan and Walsh (2009), in Bacteria many of the ribosomally produced 

peptides are antibiotics or bactericides are produced to kill or inhibit growth of competing 

microbes. Some compounds that were isolated from cyanobacteria present antibiotic 

(Ishida et al., 1997) or antiviral (Boyd et al., 1997; Bokesch et al., 2003) effects; hence, a 

strong possibility is that cyanobactins are defense molecules.  

patA patB patC patD patE patF patG

mcaA mcaB mcaC mcaD mcaE mcaF mcaG

tenA tenB tenC tenD tenE tenF tenG

truA truB truC truD truE truF1 truF2 truG

lynA lynB lynC lynD lynE lynF lynG

acyC acyB acyA acyE acyF acyG

triEtriA triB triC triD triF triG triH triI triK

Prochloron spp.

(patellamide)

Microcystis aeruginosa

(microcyclamide)

Nostoc spongiaeforme

(teneucyclamide)

Prochloron

(patellin, trunkamide)

Lyngbya aestuarii

(Lyngbyabactin)

Anabaena sp.

(anacyclamide)

Trichodesmium erythraeum

(trichamide)
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1.4. Anacyclamides 

Anacyclamides are a group of cyanobactins with alike structural features. Leikosky 

et al. (2010) identified several anacyclamides from strains of genus Anabaena. This study 

revealed the acy gene cluster in Anabaena sp. 90, which encodes 11 open reading frame 

(ORFs), and is arranged in an 11kb operon which is bidirectionally transcribed ( Sivonen 

et al., 2010). The acy gene cluster shows a limited degree of homology with the pat gene 

cluster. Some hypothetical ORFs present in the acy gene cluster were also absent in the 

pat gene cluster (Leikoski et al., 2010). The precursor peptide AcyE encodes a single 

copy of the cyanobactin anacyclamide A10- flanked by putative recognition sequences 

which differ substantially from other cyanobactin precursors. The anacyclamide gene 

cluster lacks a PatD-homolog in conformity with the anacyclamides lack of 

posttranslationally heterocyclized amino acids (Leikoski et al., 2010). Likewise, the AcyG 

protein also lacks an oxidase domain (Leikoski et al., 2010). 

The length of the anacyclamides is highly variable, as is the amino acid sequence, 

with only one proline being conserved (Sivonen et al., 2010). 

 

Figure 5- Arquitecture of the anacyclamide gene cluster (Houssen el al., 2012). 

 

Mature cyanobactin

acyE gene

acyC acyB acyA acyE acyF acyG

1kb
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1.5. Anabaena 

The nostocalean genus Anabaena includes filamentous, heterocyst-forming 

cyanobacteria that can have gas vacuoles (Rippka et al., 2001). The presence of 

heterocysts in Anabaena coupled with a fast growth rate has rendered Anabaena one of 

the most studied cyanobacterial genera. Heterocysts are specialized nitrogen-fixing cells 

formed during nitrogen starvation by some filamentous cyanobacteria of the orders 

Nostocales and Stignomatales. These cells fix nitrogen from dinitrogen (N2) in the air 

using the enzyme nitrogenase, which is then used in the cells for biosynthesis. 

Nitrogenase is inactivated by oxygen, so the heterocyst must create a microanaerobic 

environment. An additional envelope surrounds heterocysts, helping to protect the 

enzyme nitrogenase from oxygen (Fay, 1992). Heterocysts are typically distinguishable 

from vegetative cells due to their somewhat larger and rounder shape, diminished 

pigmentation, thicker cell envelopes, and usually prominent cyanophycin granules at poles 

adjacent to vegetative cells (Figure 6). Mature heterocysts provide the ideal environment 

required for nitrogen fixation, especially separating the oxygenic photosynthesis in 

vegetative cells (Golden and Yoon., 1998) 

  

Figure 6- Heterocysts development (1) in Anabaena LEGE 00259, one of the strains used in 
this work. 

Anabaena sp. can produce neurotoxic and cytotoxic alkaloids and hepatotoxic cyclic 

peptides (Sivonen and Jones, 1999). This variety of toxins has a strong impact on 

ecosystems and, consequently, several actions on terrestrial vertebrates, especially 

mammals. Some examples of saxitoxin and cylindrospermopsin from Anabaena have 

been reported (Sivonen and Jones, 1999). Microcystin is one of the most frequently 

cyanobacterial toxins found in Anabaena blooms and act as an inhibitor of protein 

phosphatase. Similarly, anatoxin-a and anatoxin-a(S) have been characterized from this 

genus and their mechanism of action is binding irreversibly to the nicotinic acetylcholine 

receptors and the inhibition of acetylholinesterase activity, respectively.  

1 
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This study was carried out using only Anabaena strains. 

1.6. Biotechnological Aspects  

The biotechnological exploitation of cyanobactins will require detailed studies on the 

enzymes involved in the biosynthesis as well as mechanisms of action of these peptides.  

The small size of the cyanobactin gene clusters and their amenability to be fully 

heterologously expressed (Schmidt et al., 2005; Donia et al., 2006, 2008; Leikoski et al.,  

2010) will provide new possibilities to create compound libraries and novel compounds 

(Donia et al., 2006, 2008). In the study of cyanobactins pathway, the heterologous 

expression gives options to study the role of individual genes in biosynthesis as well as 

produce novel peptides. The core sequence of the precursor peptide directly encodes the 

resulting cyanobactin and this sequence can be changed easily by genetic engineering in 

heterologous hosts and recombinant peptides can be produced (Donia et al., 2006; 

Tianero et al., 2012).  

According to Donia et al. (2006) the cyanobactin pathway was utilized in E.coli to 

synthesize an engineered cyclic peptide (eptidemnamide) similar to an anticoagulant in 

clinical use. This approach demonstrates a means to exploit cyanobacterial pathways and 

produce novel compounds by the rational design of peptides (Donia et al., 2006; Sivonen 

et al., 2010). 

According to the work by Oman and van der Donk (2010) the peptide precursor-

directed synthesis allows manipulations directly to the precursor gene and enables 

production of engineered peptides in heterologous hosts. In addition, the enzymes in the 

cyanobactin pathways could be used as catalysts to assist the chemical synthesis of the 

desired compounds. 

The work by Lee et al. (2009), showcased not only the important role of proteases in 

cyanobactin biosynthesis but also was demonstrated the potential of the enzymes as 

general catalysts for cyclization of peptides. The PatG protease was shown to require no 

exogenous energy for the cleavage and cyclization, and to be tolerant to different 

substrate lengths and sequences as long as the C-terminal recognition sequence was 

present (Sivonen et al., 2010; Lee et al., 2009). This is important, for example, in synthetic 

peptide manufacture where the head-to-tail cyclization restricts peptide production in bulk 

amounts (Sivonen et al., 2010). It is important to note that whole-genome information has 
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already led to the discovery of cyanobactin biosynthesis as well as several new 

compounds and compound classes, for example novel patellamides (Schmidt et al., 

2005), trichamide (Sudek et al., 2006), and anacyclamides (Leikoski et al., 2010).  

The number of genome sequencing projects involving cyanobacteria and 

metagenomic studies applied to various environments is increasing. This should allow 

new discoveries in the near future, including new ribosomal pathways and cyanobactins. 

1.7. Objective 

The main objectives of this work were the detection of anacyclamide- related genes 

in cyanobacteria from the culture collection LEGE (LEGE CC) and, the corresponding 

identification of new anacyclamides. As a secondary objective, we tried to characterize the 

cyanobacterial strains using both morphological and molecular data, with the ultimate goal 

of making phylogenetic inferences regarding cyanobactins production.  

For this purpose, a PCR-screening of ten freshwater cyanobacterial strains for 

cyanobactin-related genes was carried out. The resulting amplicons were then cloned and 

sequenced in order to identify potential producers of new members of this class of 

compounds. Finally, investigations on the production and the nature of the new 

cyanobactins were performed using analytical methodologies.  
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2. Material and Methods 

The methods used are outlined in the workflow shown in figure 7.  

 

Figure 7- Schematic drawing of the workflow. 

2.1. Source of strains 

Cyanobacteria used in this study are part of the LEGE culture collection and had 

been isolated from water samples collected from freshwater supplies, located in north and 

central regions of Portugal (Table1). Additionally, for comparison purposes, the strain 

Anabaena sp.90, isolated in Finland from Lake Vesijärvi, in 1986 and maintained at the 

University of Helsinki was used (Sivonen et al., 1992). 

 

1Cyanobacteria strains

(10 Anabaena strains)

2Culture growth

3gDNA extraction, screening of 

16S rRNA gene and anacyclamide

related- genes by PCR 

5Screening anacyclamides by 
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of a prenyl unit

3Cloning and sequencing 

of the precursors genes

Predictions of 

anacyclamides structures

Putative anacyclamide
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Table 1- Identification of the ten strains in study, from the LEGE culture collection 

Anabaena 

strain 
Origin/source Isolator 

Year of 

harvest 

Co- 

identification 

LEGE00233 Maranhão reservoir 
Joana 

Osswald 
2000 J1 

LEGE00241 Maranhão reservoir 
Joana 

Osswald 
2000 J14 

LEGE00243 Maranhão reservoir 
Joana 

Osswald 
2000 J16 

LEGE00245 Maranhão reservoir 
Joana 

Osswald 
2000 J18 

LEGE00246 Maranhão reservoir 
Joana 

Osswald 
2000 J19 

LEGE00248 Maranhão reservoir 
Joana 

Osswald 
2000 J21 

LEGE00250 Maranhão reservoir 
Joana 

Osswald 
2000 J27 

LEGE00253 Chaves reservoir 
Joana 

Osswald 
2000 J37 

LEGE00259 Maranhão reservoir 
Joana 

Osswald 
2000 J46 

LEGE04289 
Marco de 

Canaveses 

Joana 

Osswald 
2004 J83 

2.2. Cyanobacterial strains and culturing 

The ten Anabaena sp. strains were grown in sterile Z8 medium (Kotai, 1972), in 40-

ml cultures under a 14:10 h light: dark cycle (Martins et al., 2005), with a photon irradiance 

of 10-30 µmol m2 s-1 at 25°C. 
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 Regarding large scale biomass production, for the chemical analyses, two isolates 

were grown in sterile 16L culture vessels, with aeration,  under 14:10h light: dark cycle, 

with a photon irradiance of 10-30 µmol m2 s-1 at 25°C. 

 

Figure 8- Cyanobacterial strains and Culturing 
Anabaena sp. Strains were grown in z8 medium, with aeration, under 14:10 light:dark at 25°C. 

2.3. DNA extraction, PCR amplification, Cloning and 

sequencing 

Genomic DNA (gDNA) extraction was carried out either with the Purelink genomic 

DNA mini kit (Invitrogen) or with the Dneasy Plant Mini kit (Qiagen). PCR amplification of 

the 16S small ribosomal subunit gene (16S rRNA gene) was carried out using the gDNAs 

as templates. Primers 27F, 359F and 1491R (Neilan et al., 1997; Jungblut et al., 2005), 

targeting the 16S rRNA gene, were used. 

 All PCR reactions were prepared in a 20µl of volume containing 10x PCR buffer for 

Super Taq (HT Biotechnology Ltd.). PCR conditions were as described previously. 

Amplicons were cloned into a PGEM-T vector and transformed into Oneshot E.coli TOP10 

cells (Invitrogen). Plasmid DNA was isolated from the transformed cells using the 

GenElute Plasmid MiniPrep kit (Sigma-Aldrich) and sequenced (Macrogen) using M13 

primers.  
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Table 2- Primers used for the 16S rRNA gene amplification.  

Primera Sequence (5’»3’) Reference 

27F AGAGTTTGATCCTGGCTCAG Neilan et al., 1997 

Jungblut et al., 2005 1494R TACGGCTACCTTGTTACGAC 

CYA359F GGGGAATYTTCCGCAATGGG 

a
Gene primers are named according to their locus 

The amplification of the patA gene was made using a pair of primers that amplified a 

1.4 kb section, PatAR and PatA F (Lee et al., 2009). These amplifications, using these 

primers, was already made by Leikoski et al. in previous studies to screen many 

cyanobactia strains, including Anabaena sp.90. The annealing temperature used in the 

PCR program was of 52°C.  

Anabaena sp.90 (Sivonen et al., 1992) was used as a positive control in the 

screening. 

In order to identify an Anabaena strain producing an anacyclamide, the acyE 

peptide precursor gene was amplified using primers preRNAF (5’-

GAAGAACATCCGCCCCCAACAAGTTG-3’) and preRNAR (5’-CTCCGCGTCGTC 

GCCTGCAAAAGG-3’) and primers PreF (5’-GCCTTCACCAAACCAGTCT TCTTCAT-3’) 

and PreR (5’-CATCGAGGCGAACCGTGCGCCAAGGGAT- 3’) (Leikoski et al., 2009) from 

the genomic DNA of all the Anabaena strains. The expected size band, for the last primer 

pair is about 312 pb and for the PCR program the Annealing Temperature was calculated 

at 53°C; using the first primer pair the expected size band is about 160 bp and the 

Annealing Temperature was calculated at 56°C. Following cloning and sequencing as 

described above, the amplified fragments were compared to those of known acyE 

precursor to infer the novelty of the encoded anacyclamide.  
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Figure 9- The acyE peptide precursor gene with the protease cleaving sites highlighted and 
the primer annealing regions shown. 

 

Table 3- PCR reaction for each primers pair 

Pair of primers 

PCR reaction 
a
 

Inicial 

Denaturation 

Denaturation Annealing  extension Final 

extension 

 

27F/1494R 

359F/1494R 

94°C 

4min 

35 cycles 72°C 

8min 

8°C 

∞ 94°C 

45sec 

50°C 

45sec 

72°C 

1min20sec 

preRNAF/preRNAR 

94°C 

2min 

94°C 

30sec 

56°C 

30sec 

72°C 

10sec 

72°C 

7min 

8°C 

∞ 

PreF/PreR 

94°C 

2min 

94°C 

30sec 

53°C 

30sec 

72°C 

20sec 

72°C 

7min 

8°C 

∞ 

a
The PCR reactions were calculated according with the specific primers used and they are not publish.  

2.4. Cloning the acy biosynthetic gene cluster  

In order to amplify the entire 12 kb gene cluster from genomic DNA of Anabaena sp. 

LEGE 00259 by PCR , the patex2f (5’-ATGGATCCTGATGGACTGTAGTGTGAG-3’) and 

patex5r (5’- TACTCGAGAGGTTTTGGGACTCTTTAG-3’) primer pair (Leikoski et al., 

Primers 

Leader

acyE gene percursor

5’ 3’

CoreNH2 COOH

Proteases
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2009) was used, in three 60-µL reaction mixtures, containing 10× PCR buffer for Super 

Taq Plus (HT Biotechnology Ltd.), 200 µmol of each nucleotide (Finnzymes), 0.75 µM of 

each primer, 0.8 U Super Taq Plus proofreading polymerase (HT Biotechnology Ltd.), and 

100 ng of Anabaena sp. LEGE 00259 gDNA. The thermocycling conditions were 94°C for 

2 min, followed by 30 cycles of 94°C for 30 s, 56.4°C for 30 s, and 68°C for 9 min and 

then a final extension at 68°C for 20 min. The PCR products were separated on a 0.7% 

agarose gel containing 0.5× Tris-acetate-EDTA and run for 30 min at 100 V. The gel was 

stained using SYBR Safe DNA gel stain (Invitrogen) and was visualized using a Dark 

reader (Clare Chemical Research Inc.) to avoid DNA damage from UV light during gel 

extraction. The 12-kb PCR product was gel extracted with a MinElute gel extraction kit 

(Qiagen) and cloned into the PCR 2.1-TOPO vector using a TOPO TA cloning kit 

(Invitrogen) with an insert-to-vector molar ratio of 3:1. The vector was used to transform 

chemically competent E.coli One Shot TOP10 cells according to the manufacturer’s 

instructions. The resultant RC_c1, RC_c2 and RC_c3 plasmids were analyzed by PCR 

and restriction digestion to ensure that the integrity of the insert was maintained during the 

cloning and amplification in E. coli. The transformants containing the 12-kb insert in the 

plasmid were grown overnight with shaking at 120 rpm at 28°C in 50 ml of LB medium 

containing 150 µg ml -1 of ampicillin (sodium salt; Sigma-Aldrich) for liquid chromatography 

(LC)-mass spectrometry (MS) analysis. The cells were harvested by centrifugation at 

10,000 × g for 10 min (Ep- pendorf 5804R centrifuge),  dried with a Heto vacuum 

centrifuge (Heto- Holten A/S), which yielded ca. 43 mg (dry weight) and sent to 

sequencing (Macrogen; Seoul, Korea). 

2.5. Biomass collection of LEGE 00248 and LEGE 00259 

and preparation of extracts  

The biomass of 16L cultures of LEGE 00248 and LEGE 00259 was collected following 

approximately one month of growth under the conditions detailed in the “Cyanobacterial 

strains and cultivation” section. The collection was carried out by filtration using a 41 µm 

plankton net. The filtered cells were then centrifuged at 4600rpm for 10min and the pellet 

was frozen and freeze-dried. 
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Figure 10- Biomass collection of 16L cultures of LEGE 00248 and LEGE 00259 strains 

2.5.1. Biomass extraction 

The lyophilized biomass was weighed and then methanol extraction was made 

(Leikoski et al., 2010) using 60ml of solvent (ACS grade). The biomass with methanol was 

macerated and then the supernatant was transferred into a 45ml falcon and centrifuged at 

4600×g for 10min. This procedure was repeated six times. The pooled supernatants were 

then concentrated in vacuo and the mass of the resulting crude extract determined. 

2.6. Chemical analysis 

Cells of Anabaena strains were collected from the 40 mL cultures by centrifugation at 

7,000 g for 7 min. The collected cells were freeze-dried with Supermodulyo (Edwards 

High Vacuum International) or dried with a Heto vacuum centrifuge, which yielded 5 to 12 

mg (dry weight). The dried Anabaena cells, as well as E. coli transformants, were 

extracted with 1 mL of methanol (HiperSolv, HPLC grade; BDH Laboratory Supplies) in 2 

mL plastic tubes containing glass beads (cell disruption medium; 0.5-mm-diameter glass 

beads; Scientific Industries Inc.). 

Each mixture was homogenized by shaking with a FastPrep cell disrupter (Bio 101, 

Thermo Electron Corporation, Qbiogene, Inc.) for 30 s at a speed of 5 ms-1. The mixture 

was centrifuged at 10000 x g for 5 min, and the supernatant was used for LC-MS analysis. 
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The methanol extracts were analyzed with a high-performance liquid chromatograph 

combined with a mass spectrometer (Agilent 1100 series LC/MSD with Ion Trap XCT Plus 

and an electrospray ion source) in order to detect low-molecular-weight peptides. 

Peptides were separated from the extracts by HPLC using a Phenomenex C18(2) column 

(2.0 mm x 150 mm; particle size, 5µm). The mobile phase gradient consisted of 0.1% 

aqueous (water purified with Milli-Q Plus; Millipore) formic acid (Fluka) (solvent A) and 

0.1% formic acid in isopropyl alcohol (Sigma-Aldrich) (solvent B). Two different settings 

were used; one setting was used for screening methanolic extracts of Anabaena cells, 

and the other setting (values in parentheses below) was used for further structural 

characterization of natural and synthetic peptides. The percentage of solvent B was 

increased from 5 to 50% in 60 min. A flow rate of 0.15 mL min-1 was used, and the 

columns were heated to 40°C during separation. The positive-ion mode of electrospray 

ionization was used. The pressure of the nebulizer gas (N2) was 30 lb/in2 (35 lb/in2), the 

drying gas flow rate was 8 L min-1, and the temperature was 350°C. The capillary voltage 

was set at 5,000 V (4,500 V), and the capillary offset value was 300 V. A skimmer 

potential of 85 V (100 V) and a trap drive value of 144 (111) were used. Spectra were 

recorded using a scan range from m/z 100 to m/z 2200. Identification of the 

anacyclamides was based on the molecular weights calculated from the predicted peptide 

AcyE precursor amino acid sequences and the assigned fragment ion patterns of MSn (n= 

1 to 3) spectra. A comparison with the retention time and MS data for a synthetic 

reference was used in five cases (Beijing SBS Genetech Co., Ltd., China; anacyclamide 

B7 from JPT Peptide Technologies GmbH, Germany). 
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3. Results and Discussion 

In this study we proposed to detect new cyanobactins among ten Anabaena strains 

from LEGE CC. At the same time, it was our aim to characterize the cyanobacterial strains 

using both morphological and molecular data, with the final goal making phylogenetic 

inferences. For this purpose were made a variety of procedures, including genomic DNA 

extraction, PCR screening, in silico analysis and detection by LC-MS. 

3.1. Morphological characterization 

In the beginning of this work a morphological characterization was made for each 

strain. Microphotographs for each strain are shown in Figure 11. Morphometric 

parameters determined for each strain are presented in Table 4.  
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Figure 11- Morphological characterization of the Anabaena strains, using an optical 
microscopy approach. 1- LEGE 00233, 2- LEGE 00241, 3- LEGE 00243, 4- LEGE 00245, 5- 
LEGE 00246, 6- LEGE 00248, 7- LEGE 00250, 8- LEGE 00253, 9-LEGE 00259, 10- 04289. 
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3.1.1. Morphometry 

Table 4- Morphometric parameters for each strain 

Strains  Average cell length  (S.D) Average cell width (S.D) 

LEGE 00233 

 
4,84 (±0,84) 3,37 (± 1,20) 

LEGE 00241 

 
6,99 (±2,62) 3,91 (±0,35) 

LEGE 00243 

 
2,82 (±0,44  

LEGE 00245 

 
4,98 (±1,01) 4,43 (±0,57) 

LEGE 00246 

 
5,85 (±0.80) 2,82 (±0,36) 

LEGE 00248 

 
7,21(± 1,67) 2,89 (±0,33) 

LEGE 00250 

 
7,55 (±1,22) 2,00 (±0,39) 

LEGE 00253 

 
7,31 (±2,59)  

LEGE 00259 

 
6,97 (±1,15) 3,52 (±0,57) 

LEGE 04289 

 
7,27 (±1,97) 7,60 (±0,90) 

In accordance with the figure 11, which showed the microphotographs for each 

strain, we conclude that the morphological data obtained is consistent with the 

characteristics of  nostocalean  genus Anabaena, since that the main part of them 

presented filamentous morphology with heterocysts. The exception was the strain LEGE 

00243, which presented non-filamentous morphology.  

To support this characterization, the morphometric parameters determined for each 

strains was presented in Table 4. 

5 6 

7 8 

9 10 
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3.2. Genomic DNA extraction, PCR amplification, 

cloning and sequencing 

To start the molecular screening of the ten strains, we performed the genomic DNA 

extraction for each strain. Then, the amplification of the 16S rRNA gene was made, using 

different primer pairs, 27F-1494R; 359F-1494R (Neilan et al., 1997; Jungblut et al.,2005). 

The amplification of the 16S rRNA gene, using these primers, resulted in amplicons with 

different size, since that with the 27F-1494R pair of primers all cyanobacteria strains 

presented a 1467 bp amplicon, as expected. In the same way, with the 359F-1494R all 

strains presented a 1135 bp amplicon. The organization of the results is performed 

according to the following numerical correspondence (1-10):  

Strain 1- LEGE 00233 

Strain 2- LEGE 00241 

Strain 3- LEGE 00243 

Strain 4- LEGE 00245 

Strain 5- LEGE 00246 

Strain 6- LEGE 00248 

Strain 7- LEGE 00250 

Strain 8- LEGE 00253 

Strain 9- LEGE 00259 

Strain 10- LEGE 04289 
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Figure 12- Amplification of the 16S rRNA gene with the primers 359F- 1494R(up);  27F- 
1494R  (down) for all ten strains. Samples: 3µl; 1kb plus DNA ladder: 1,5µl. 1,5% agarose 
gel; 1- LEGE 00233, 2- LEGE 00241, 3- LEGE 00243, 4- LEGE 00245, 5- LEGE 00246, 6- LEGE 
00248, 7- LEGE 00250, 8- LEGE 00253, 9-LEGE 00259, 10- 04289. 

All the strains showed amplicons of the expected size, using these sets of universal 

primers.  These results were consistent with the classification of the strains, as members 

of cyanobacteria group.   

These bands were excised and then the purified product was cloned into a pGEM-T 

vector, according with the protocol and method described above. The amplicons resulting 

from 27F-1494R was sent to sequencing but until the moment we haven’t obtained the 

sequencing results. The sequencing results of the amplicons resulting from the 359F-

1494R will provide more specific information about the strains, since the primers 359F is a 

cyanobacteria-specific primer. 

Following, we performed a screening for the genes involved in the cyanobactins 

production. In this work, was used a pair of primers, which were designed to amplify the 

gene encoding PatA protease, which cleaves the precursor peptide at the N-terminal 

recognition site (Lee et al., 2009). The primers amplified a 1.4 kb section of the patA gene. 

According with the Leikoski et al. study (2013), the patA gene is especially common in 

planktonic cyanobacteria. Furthermore, it’s also known that the cyanobactin pathway is 

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10
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widespread and sporadically distributed in cyanobacteria and hinted at the potential 

chemical diversity of cyanobactins encoded in this pathway. 

These results were compared with the Anabaena sp.90, as a positive control (Leikoski et 

al., 2010). 

 

Figure 13- Amplification of the patA gene (1.4kb section) with the PatA pair of primers 
designed for this effect, by Leikoski et al. All the ten strains are represented. Tann = 52°C.  
Samples: 4µl; 10kb GeneRuler DNA ladder: 3µl. 0.7agarose gel. Positive control= Anabaena 
sp. 90. 

According with Figure 13, showing the electrophoresis results of the patA gene 

amplification, we can conclude that the strains with 1.4 kb amplicon were LEGE 00243, 

LEGE 00245, LEGE 00248 and LEGE 00259.   

We then proceeded to the amplification of the patE gene, using different pairs of 

primers (PreF/PreR and PreRNAR/PreRNAR).  

At this stage, we worked with only nine strains because one of them (LEGE 00250) 

showed a deficit of growth. Due to the lag in growth, this strain was not included in 

amplification of patE genes. We decided to increase the growth time and do the screening 

for this strain later. When the strain achieved the proper growth the amplifications of the 

patA genes was made and we verified that it did not result in an amplicon of the expected 

size (Figure 13).  

Regarding the patE genes, in the first screening the PreF/PreR pair of primers were 

used. The results were in accordance with the patA genes amplification, since we 

obtained positive result for the strains 3- LEGE 00243, 4-LEGE 00345, 6-LEGE 00248 

and 9-LEGE 00259. The exception on these results was the strains 8-LEGE 00253 and 

1 2 3 4 5 6 7 8 9 10 C+ C-
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10- LEGE 04289, which also presented band in the expected size. The results are shown 

in Figure 14 as an example.  

 

Figure 14- Amplification of patE genes, using primers PreR and PreF, from nine strains. 
Tann= 53ºC. Samples: 3µl ,1kb plus DNA ladder: 1.5µl. 1,5% agarose gel; 1- LEGE 00233, 2- 
LEGE 00241, 3- LEGE 00243, 4- LEGE 00245, 5- LEGE 00246, 6- LEGE 00248, 7- LEGE 00253, 
8- LEGE 00259, 9-LEGE 04289 

 

Figure 15- Amplification of the patE genes, using primers PreRNA R and PreRNA F, from 
nine strians. Tann=56ºC. Samples: 3µl, 1kb plus DNA ladder: 1.5µl. 1,5% agarose gel; 1- 
LEGE 00233, 2- LEGE 00241, 3- LEGE 00243, 4- LEGE 00245, 5- LEGE 00246, 6- LEGE 00248, 
7- LEGE 00253, 8- LEGE 00259, 9-LEGE 04289. 

Using the primers PreRNA R and PreRNA F we obtained one more strains with 

amplicon in the expected size (160 bp) comparing with the first primer pair used for patE 

gene amplification. This strain was 5- LEGE 00246. After, the excised bands were cloned 

and sent to sequencing 

With the precursor gene sequences in hand we proceeded to the in silico analysis. 

We aligned the sequence of the acy gene precursor for all strains with the acy gene 

percusor sequence of the Anabaena sp.90 (Figure 16). For this alignment, we used two 

1 2 3 4 5 6 8 97
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clones for each strain, each clone for a different set of primers, excluding the strain LEGE 

04289, which has only one clone and strain LEGE 00245 that has tree clones. This 

difference in the number of clones is because in the strain LEGE 04289 one of the 

sequenced clones was not in accordance with the expected (according to BLAST results), 

and in case of strain LEGE 00245 the patE gene screening result presented two bands of 

similar size. 

 

Figure 16- Alignment of the sequences of the acy precursor from all the strains with the acy 
precursor of the Anabaena sp. 90 (acyE). The areas of the precursor protein which form the 
mature cyanobactin are in grey 

The AcyE core peptide sequences allowed us to put forward putative structures of 

the anacyclamides found in the cyanobacterial strains, using the ChemDraw software. 

The anacyclamide with the amino acids sequence (Thr-Ser-Gln-Ile-Trp-Gly-Ser-Pro-

Val-Pro) was found in some of these strains and is already described in literature in 

several studies (Leikoski et al., 2010; Sivonen et al., 2010). It corresponds to 

anacyclamide A10 originally described from Anabaena sp. 90 (Figure 17). However, in 

four clones we obtained a different amino acids core sequence, which suggested that we 

could have a putative new anacyclamide. These four clones were from four different 

strains. Those are LEGE 00248, LEGE00253, LEGE 00259 and LEGE 04289.The new 

amino acids core sequence common between the first three strains, Ala-Asp-Asx-Glu-Tyr-

Gly-Tyr-Lys-Leu-Asp-Ala-Ser-Asp-Asx-Tyr-Ile-Pro, presents 17 amino acids. While the 

amino acids core sequence of LEGE 04289, Met-Leu-Cys-Asp-Ile-Gln-Thr-Arg-Glu-Cys-

Thr-Pro is smaller with 12 amino acids (Figure 18 and Figure 19). 

 

acy leader peptide, LEGE 00248 (R7P clone)     MTKKNIRPQQVAPVERETISTSKDQSGQITPSADNEYGYKLDASDNYIPFAGDDAE

acy leader peptide, Anabaena sp. 90  MTKKNIRPQQVAPVERETISTAKDQSGQVQAQTSQIWG---SP----VPFAGDDAE

acy leader peptide, LEGE 00243 (R1P clone)     MTKKNIRPQQVAPVERETISTAKDQSGQVQAQTSQIWG---SP----VPFAGDDAE

acy leader peptide, LEGE 00243 (Ra clone)  MTKKNIRPQQVAPVERETISTAKDQSGQVQAQTSQIWG---SP----VPFAGDDAE

acy leader peptide, LEGE 00246 (Rf clone)   MTKKNIRPQQVAPVERETISTAKDQSGQVQAQTSQIWG---SP----VPFAGDDAE

acy leader peptide, LEGE 00248 (Rg clone)   MTKKNIRPQQVAPVERETISTAKDQSGQVQAQTSQIWG---SP----VPFAGDDAE

acy leader peptide, LEGE 00253 (Ri clone) MTKKNIRPQQVAPVERETISTAKDQSGQVQAQTSQIWG---SP----VPFAGDDAE

acy leader peptide, LEGE 00245 (Rd clone)      MTKKNIRPQQVAPVERETISTAKDQSGQVQAQTSQIWG---SP----VPFAGDDAE

acy leader peptide, LEGE 00259 (R11P clone)   MTKKNIRPQQVAPVERETISTSKDQSGQITPSADNEYGYKLDASDNYIPFAGDDAE

acy leader peptide, LEGE 00253 (R9P clone) MTKKNIRPQQVAPVERETISTSKDQSGQITPSADNEYGYKLDASDNYIPFAGDDAE

acy leader peptide, LEGE 00259 (Rk clone)  MTKKNIRPQQVAPVERETISTAKDQSGQVQAQTSQIWG----SP----VPFAGDDAE

acy leader peptide, LEGE 04289 (R13P clone)    MTKKNIRPQQVAPVERETISTAKDRSGQVTALMLCDI------QTRECTPFAGDDAE

acy leader peptide, LEGE 00245 (R3P clone)   MTKKNIRPQQVAPVERETISTAKDQSGQVQAQTSQIWG---SP----VPFAGDDAE

acy leader peptide, LEGE 00245 (R5P clone) MTKKNIRPQQVAPVERETISTAKDQSGQVQAQTSQIWG---SP----VPFAGDDAE

1 10 20 30 40 50 56
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Figure 17- (A) AcyE peptide precursor from Anabaena sp. 90 with the hypervariable region 
of the 49-aminoacid protein encoding the mature anacyclamide shaded, indicating the 
position of cleavage and macrocyclization (grey). (B) Putative structure of the decapeptide 
anacyclamide A10 from Anabaena sp. 90 (Leikoski et al., 2010) 

In the same way, we designed the possible structure for the putative new anacyclamides 

based on these results.  
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Figure 18- Putative structure of ADNEYGYKLDASDNYIP anacyclamide, using the sequence 
of AcyE precursor peptide from strain LEGE 00259 (example) 
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Figure 19- Putative structure MLCDIQTRECTP of anacyclamide, using the sequence of AcyE 
precursor peptide from strain LEGE 04289 (example) 

Based on these results some predictions regarding the linear mass, cyclic mass and post-

translational modifications were also made. All the predictions are presented in Table 5. 

Table 5- Anacyclamide predictions by each strain in study 

Strains 

Predictions 

R
e
fe

re
n
c
e

 

Core sequence 

A
m

in
o
 a

c
id

s
 

Linear 

mass 

(Da) 

Cyclic 

mass 

(Da) 

Post-translational 

modifications 
 

LEGE 00233 No predictions      

LEGE00241 No predictions      

LEGE00243 TSQIWGSPVP 10 1053.5   I. 

LEGE 00245 TSQIWGSPVP 10 1053.5   I. 

Percursor peptide AcyE from LEGE 04289

MTKKNIRPQQVAPVERETISTAKDRSGQVTAL  MLCDIQTRECTP  FAGDDAE
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LEGE 00246 TSQIWGSPVP 10 1053.5   I. 

LEGE 00248 

TSQIWGSPVP 10 1053.5   I. 

ADNEYGYKLDASDNYIP 17 1946.8 1928.8 

1996.8, 2064.8 

(monoprenyl, 

diprenyl 

 

LEGE 00250 No predictions      

LEGE 00253 

TSQIWGSPVP 10 1053.5   I. 

ADNEYGYKLDASDNYIP 17 1946.8 1928.8 

1996.8, 2064.8 

(monoprenyl, 

diprenyl 

 

LEGE 00259 

TSQIWGSPVP 10 1053.5   I. 

ADNEYGYKLDASDNYIP 17 1946.8 1928.8 

1996.8, 2064.8 

(monoprenyl, 

diprenyl 

 

LEGE 04289 MLCDIQTRECTP 12 1408.6 1390.6 

1350.6, 1312.6  

(thiazoles, 

thiazoles+oxazole

s) 

 

1388.6 (sulphur 

bridge) 

 

I.-This prediction is in accordance with data already published by Leikoski et al., 2010. 
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3.3. Chemical analysis 

We then sought to confirm our predictions by looking for the new cyanobactin-

related masses in the Anabaena cells. The methanol extracts of all strains were submitted 

to the LC-MS analysis as described. 

After the LC-MS analysis of all the strains, only the anacyclamide with the amino 

acids sequence ADNEYGYKLDASDNYIP was found, in its diprenylated form. This 

anacyclamide showed presence in two strains 6- LEGE 00248 and 9-LEGE 00259 (Table 

6), out of three candidates strains. 

In order to compare all the strains regarding the production of this or other 

prenylated anacyclamides, an analysis of the ten strains using a Neutral loss of 68 Da 

filter was performed (Figure 20). 

Table 6- Anacyclamides and their detection by LC-MS, in two Anabaena strains 

Strain Amino acid sequence [M+H]
+
 

Chemical 
formula Experimental 

mass 
Error 
(ppm) 

Diprenylated 

LEGE 
00248 

ADNEYGYKLDASDNYIP 2065,975 C96H136N20O31 2065.9839 4.16 

LEGE 
00259 

ADNEYGYKLDASDNYIP 2065,975 C96H136N20O31 2065.9792 1.88 
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LEGE 00259

LEGE 00248

 

Figure 20- Ion chromatograms of the ten Anabaena strains filtered for Neutral losses of 68 
Da. The two large clusters correspond to the two strains containing the diprenylated novel 
anacyclamide 

As seen in Figure 20, the strains LEGE 00259 and LEGE 00248 showed a peak with 

strong intensity compared with the other strains. This pick appeared in the chromatogram 

around the same retention time, in both strains. This fact is consistent with the 

anacyclamide production by both strains. 

The ADNEYGYKLDASDNYIP anacyclamide is present in two strains (LEGE 00248 

and LEGE 00259), as seen by LC-MS (Figures 21 and 22). The chromatograms show a 

peak with the retention time 19.0 min, with a mass spectrum containing a cluster with a 

[M+H]+ pseudomolecular ion at 2067 Da, indicating the presence of the predicted 

anacyclamide.  
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LC-MS analysis for the strain LEGE 00248 

 

Figure 21- MS profile TIC to the LEGE 00248 strain 

 

 

Figure 22- MS profile MS to the LEGE 00248 strain; Retention Time: 18,91min- 19,32min 

 

 

 

 

 

 

[M+H]
+
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LC-MS analysis for the strain LEGE 00259 

 

Figure 23- MS profile TIC to the LEGE 00259 strain 

 

Figure 24- MS profile MS to the LEGE 00259 strain; Retention Time: 18.93min-19.38min 

Comparing the LC-MS data with the predictions made, we conclude that the 

experimental mass of the putative new anacyclamide produced by strains LEGE 00248 

ans LEGE 00259 was bigger than the predicted mass by 136 Da. This fact is consistent 

with two prenylation sites.  

According with the literature, the known prenylated amino acids are tyrosine, serine, 

threonine, and tryptophan (Leikoski et al., 2010; Erickson et al., 2003). So, the probable 

prenylation sites in that anacyclamide is on Tyrosines (Tyr). However, in amino acids 

sequence the new anacyclamide presents three Tyrosines, so one of them probably didn’t 

presents prenylation and is unclear which tyrosines are prenylated. We have growth both 

strains in large-scale and performed a methanol extraction with the goal of purifying the 

new anacyclamides, as described in the material and methods. However, we have yet to 

perform the purification steps. Our objective is to perform 1D and 2D NMR experiments in 

the purified material to clarify the positioning of the prenyl groups, which should be 

achieved in conjunction with MS2 data.  

[M+H]
+
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In Table 7 we present the extraction yields for both strains 

Table 7- Extraction yields for LEGE 00248 and LEGE 00259 strains 

Strains Lyophilized mass Extract mass R 

LEGE 00248 1,29g 0,28g 21,7% 

LEGE00259 1,27g 0,28g 22,0% 

We have also strived to characterize the putative cyanobactin cluster in LEGE 

00259, which is responsible for the new anacyclamide production. Thus, the acy gene 

cluster was amplified, with patex2f (5’-ATGGATCCTGATGGACTGTAGTGTGAG-3’) and 

patex5r (5’-TACTCGAGAGGTTTTGGGACTCTTTAG-3’) primers in three 60-µl reaction, 

as described previously, and cloned in E.coli TOP10. The three clones obtained were sent 

to sequencing. This approach was supported in other works, for example in the work 

involving the Anabaena sp. 90 gene cluster sequencing (Leikoski et al., 2010). By this 

time, we have yet to obtain the sequencing results and perform the consequent analysis 

of the entire gene cluster from LEGE 00259 strain. 
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4. Conclusion and future work 

In this study we reported a novel low-molecular-weight peptide produced 

ribosomally by Anabaena strains. The new post-translationally modified anacyclamide, 

with two prenyl groups, was detected in two of ten Anabaena strains screened for. The 

probable prenylation sites are on Tyrosines. However the anacyclamide presented, in the 

amino acids sequence, three Tyrosines. It is unclear which Tyrosines are prenylated and 

further investigations on the prenylation mechanisms may help us gain more insight into 

these post-translational tailoring events, for example, the basis for the non-prenylation of 

one of the tyrosine side-chains. 

The next step will be to carry out nuclear magnetic resonance (NMR) to fully 

characterize this new compound, identifying in which Tyrosines the prenylation occurs to 

make a phylogenetic inference regarding anacyclamides production in these and other 

strains.  

Overall, this study reports a new cyanobacterial secondary metabolite, which can 

expand our knowledge about this family of compounds and their biological activity.  
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