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Abstract  

Most pathogens start the process of infection at the mucosal fish surfaces and therefore 

the mucosal immune response plays an essential role in the course of the infection. Due 

to their condition of flatfish, the present comparative study aimed to analyse several 

immune-related enzymes as well as the bactericidal activity (against fish pathogens 

Vibrio anguillarum, Photobacterium damselae piscicida) between the skin mucus from 

ocular and blind sides of Senegalese sole (Solea senegalensis Kaup) bath challenged 

with Tenacibaculum maritimum during 24 hours at 1, 2 and 3 weeks. The haematological 

profile and immune-related parameters were also measured in plasma in order to 

evaluate the systemic immune response after T. maritimum challenge. In a second study, 

the same immune-related enzymes and bactericidal activities were assessed in skin 

mucus (from both sides) and plasma at 4 weeks following a 24h non-lethal bath 

challenge with T. maritimum. In the later study, the survival rates after a lethal bath 

challenge with T. maritimum (ten times higher – LD50) at 5 weeks of first bath challenge 

were measured to assess possible resistance to the disease. Our results showed that 

most of the parameters tested were increased in skin mucus of bath challenged fish 

compared to unchallenged ones. Contrarily, the sublethal dose tested did not influence 

the haematological profile as well as the absolute numbers of the different leucocyte 

types studied. Moreover, no variations were observed in plasma lysozyme, peroxidase, 

protease and haemolytic complement activities between unchallenged and bath 

challenged fish. This study demonstrates that all the studied innate immune-related 

molecules were constitutively present in both skin mucus sides but at different levels. 

Interestingly, the levels of most parameters measured were higher on the ocular side 

than on the blind side, possibly due to the higher exposure to invasion by waterborne 

microorganisms on this side. In addition, the results showed that there is a response to 

the first contact with T. maritimum which makes Senegalese sole more resistant to a new 

contact with the pathogen. Therefore, the present study brings some insights regarding 

local immune responses after bacterial challenge in skin mucus from the ocular and blind 

sides in one of the most valuable flatfish species in Southern Europe. 

 

 

 

Keywords: Cell-mediated immunity, Humoral and mucosal immunity, Senegalese sole 

(Solea senegalensis), Tenacibaculum maritimum. 
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Resumo 

A maioria dos agentes patogénicos iniciam o processo de infeção na mucosa da 

superfície dos peixes e, assim, a resposta imune desta mucosa desempenha um papel 

essencial no decurso das infeções. Devido à sua condição de peixe plano, o presente 

estudo comparativo teve como objetivo analisar várias enzimas relacionadas com o 

sistema imunológico, assim como a atividade bactericida (contra os organismos 

patogénicos Vibrio anguillarum, Photobacterium damselae subsp. piscicida) entre o 

muco epitelial dos lados ocular e cego do linguado senegalês (Solea senegalensis 

Kaup), colocados num banho de Tenacibaculum maritimum durante 24 horas nas 

semanas 1, 2 e 3. Paralelamente, o perfil hematológico e os mesmos parâmetros 

imunológicos foram medidos no plasma de modo a avaliar a resposta imunológica após 

o desafio de T. maritimum. Posteriormente, as mesmas enzimas e atividades 

bactericidas foram avaliadas no muco da pele (de ambos os lados) e plasma após 4 

semanas de banho com T. maritimum numa nova experiência, bem como as taxas de 

sobrevivência após um segundo banho com T. maritimum (dez vezes superior) às 5 

semanas do primeiro banho, para avaliar a possível resistência ao ensaio com banho. 

Os nossos resultados demonstraram que a resposta da maioria dos parâmetros 

testados aumentou no muco da pele dos peixes colocados em banho, 

comparativamente com os não testados. Contrariamente, a dose subletal testada não 

influenciou o perfil hematológico, assim como o número absoluto dos diferentes tipos de 

leucócitos estudados. A nível sistémico, não foram observadas variações nas atividades 

de lisozima, peroxidase, protease e complemento hemolítico plasmático entre peixes 

não testados e testados em banho. Este estudo demonstra que todas as moléculas 

inatas relacionadas ao sistema imunológico estavam constitutivamente presentes em 

ambos os lados do muco da pele, mas em diferentes níveis. Curiosamente, os níveis da 

maioria dos parâmetros medidos foram maiores no lado ocular do que no lado cego, 

possivelmente devido à maior exposição à invasão por microrganismos aquáticos deste 

lado. Além disso, os resultados mostraram que existe uma resposta ao primeiro contato 

com T. maritimum e que torna o linguado senegalês mais resistente a um novo contato 

com o patogénio. Portanto, o presente estudo traz algumas informações sobre o 

funcionamento das respostas imunes locais após o desafio bacteriano no muco da pele 

dos lados ocular e cego numa das espécies de peixes planos mais valiosas do sul da 

Europa. 

Palavras-chave: Imunidade mediada por células, imunidade humoral e mucosa, 

Senegalese sole (Solea senegalensis), Tenacibaculum maritimum. 
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Aquaculture is an emerging industry which has undergone strong growth during the 

recent years. However, issues such as the introduction of new culture species for 

diversification and the control of bacterial fish diseases, which constitute one of the main 

causes of economic losses, still pose major challenges. Due to the signs of market 

saturation by dominant species in the context of marine aquaculture, new alternatives 

have been sought in the last years for the cultivation of marine fish. From this point of 

view, the cultivation of flatfish worldwide has increased in the last years constituting also 

one of the groups of species with greater commercial value (FAO, 2018).  

Consequently, Solea senegalensis (Kaup, 1858) is one of the fish species that have most 

recently been incorporated to large-scale aquaculture production in Europe being farmed 

in the south-western and Mediterranean areas of Spain and Portugal (Dinis et al., 1999). 

The success is based on the control of the reproduction, a good knowledge of the fish 

biology, technology innovation, the development of a specific feed, the animal response 

to stressful conditions and the control of the pathogens (Peatman & Beck, 2015). It is 

known that produce more disease-resistant fish is a great goal to the aquaculture 

industry (van der Marel et al., 2010). Bacterial diseases are the main source of economic 

losses in aquaculture and especially in flatfish, far surpassing those caused by other 

problems such as mortality due to sudden changes in oxygen concentration, chemical 

pollution or predation (Austin & Austin, 1999). Water in aquaculture systems may support 

a wide range of microorganisms which bombard the mucosal epithelial barriers of aquatic 

animals (Van der Marel et al., 2010; Salinas, 2015).  

Tenacibaculosis is one of the most threatening bacterial infections limiting the culture of 

many species of commercial value in distinct geographical areas of the world (see review 

by Toranzo et al. 2005). Tenacibaculum maritimum is the aetiological agent of this 

ulcerative disease and its eradication is of considerable economic significance to 

aquaculture producers. Classically, control of pathogens is achieved by the 

administration of antimicrobial agents. Nevertheless, according to WHO fact sheet 194 

(World Health Organisation Antimicrobial Resistance Fact Sheet 194 2017, 

http://www.who.int/mediacentre/factsheets/fs194/en/), the excessive use of them can 

produce the transference of resistance genes and their application in the aquaculture 

industry is limited due to legal issues (i.e. environmental and health impacts). This 

problem was discussed by Austin in 1983, but it has become far worse with the major 

increase in farming that has occurred since then. The modern aquaculture demands 

alternatives to maintain the animal welfare as well as a healthy environment. A better 

knowledge of the fish immune system will help to achieve these aims (Esteban, 2012). 

It offers the possibility to develop health management tools to support a growing finfish 



Introduction  6 
 

aquaculture industry, the development of novel vaccination strategies in fish and the 

information about questions concerning origins and evolution on immunity on vertebrates 

(Esteban, 2012; Rakers et al., 2013). 

The immune system of vertebrates involves both innate and acquired immune 

responses, therefore the studies of both responses are important to develop new 

strategies to reduce the attack by pathogens in aquaculture. Actually, the use of innate 

immune components may help to reduce the antimicrobial agents and improve the 

productivity and the economic gains for the aquaculture industry (Ewart et al., 2001; 

Chabrillón et al., 2005b). For example, even in eurythermal fishes, acquired (antibody-

mediated) immunity is reduced at low temperatures. Some works determined that innate 

immune components are less affected by lower temperatures and obstruct the 

transference of resistance genes (Magnadóttir et al., 1999). For these and other reasons, 

the studies about innate immune components are increasing. The initial cue of the innate 

immune response is essential for the later establishment of specific adaptive immunity 

based on B and T cells (Salinas, 2015). While an acquired immune system is mostly 

related to the antibodies, an innate immune system is independent of them and constitute 

the first line of defence against an infection (Ewart et al., 2001). On the one hand, 

antibodies are immunoglobulins used to develop vaccines against pathogens (Salinas, 

2015). On the other, several molecules are involved in the innate immune system with 

their antibacterial activity and stimulate the pathogens destruction by macrophages or 

the complement (Yano, 1996; Castro & Tafalla, 2015).  

The skin mucus is the first barrier of teleost fish and; together with the skin, plays a critical 

role in the defence mechanisms acting as a natural, dynamic, physical, chemical, and 

biological barrier that protects the animal from pathogens, potent harmful chemicals and 

physical factors in the water where it is constantly submerged (Raj et al., 2011; Gómez 

et al., 2013). Moreover, composition and functional characterization of fish skin mucus 

has recently received significant interest since it contains many mechanisms (including 

important enzymes) that constitute the first line of defence against a broad spectrum of 

pathogens present in the aquatic environment (Shephard, 1994; Van der Marel et al., 

2010). However, the most available studies are focused on gut (GALT) and there is 

insufficient information about the state of the mucus on the epidermis (SALT) and its 

functions in a lot of fish species as the Senegalese sole (Rombout et al., 2011; Salinas 

et al., 2011; Esteban, 2012).  

The role of the mucus layer in fish health is particularly relevant in farmed fish due to the 

large number of pathogens that are involved in aquaculture (Benhamed et al., 2014; 
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Castro & Tafalla, 2015). Susceptibility to different diseases among related species is 

variable. To develop a better understanding of the basis for species variability, several 

important non-specific humoral parameters were examined in the economically 

important species. Consequently, the characterization of the mucus from fish skin has 

been approached from different perspectives and has focused on fish species of 

economic interest to aquaculture (Jurado et al., 2015).  

Mucosal surfaces are armed with cellular and humoral defenses (Salinas et al., 2011; 

Castro & Tafalla, 2015). The distribution of some components and their possible role in 

defence have been reported from skin mucus of several species such as coho salmon 

(Oncorhynchus kisutch), rainbow trout (Oncorhyncus mykiss), Atlantic salmon (Salmo 

salar L.), Arctic char (Salvelinus alpinus), brook trout (Salvelinus fontinalis), koi carp 

(Cyprinus carpio), striped bass (Morone saxatilis), haddock (Melanogrammus 

aeglefinus), Atlantic cod (Gadus morhua) or hagfish (Myxine glutinosa) (Fast et al., 2002; 

Subramanian et al., 2007, 2008). After that, Palaksha et al. (2008) demonstrated the 

presence of 15 enzymes in skin mucus of olive flounder (Paralichthys olivaceus) and 

Narvaez et al. (2010) provided the first evidence for quantifying the presence of active 

AMPs in the skin mucus of Atlantic salmon using an immunological method. Changes in 

protein composition of epidermal mucus in turbot (Scophthalmus maximus L.) were 

studied in Ai-Jun et al. (2013). More recently, it was identified and characterized different 

constitutive humoral defence mechanisms of the skin mucus of five marine teleosts: 

gilthead seabream (Sparus aurata), European sea bass (Dicentrarchus labrax), shi drum 

(Umbrina cirrosa), common dentex (Dentex dentex) and dusky grouper (Epinephelus 

marginatus) (Guardiola et al., 2014). Furthermore, it was identified and characterized for 

the first time the proteome map of the skin mucus of farmed gilthead seabream and from 

European seabass (Cordero et al., 2015; Jurado et al., 2015). All of them are considered 

a valuable source of food for both consumers taste and preference.  

Even though several teleost species have been studied in the last two decades from an 

immunological point of view (Peres et al., 2014; Medina et al., 2015; Roman-Padilla et 

al., 2016), there is little available information about the skin mucus immunity of others as 

the flatfish Senegalese sole (Solea senegalensis Kaup). For instance, Guardiola et al. 

(2017) examined the abundance of terminal carbohydrates, several enzymes related to 

immunity, bactericidal activity and different physicochemical parameters in the skin 

mucus of Senegalese sole. Nevertheless, there is not much more information about the 

rest of the immunological parameters in this species and none comparing information 

between its upper and lower face. In addition, despite the important roles of mucus in 
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the immunity of fish, knowledge of the detailed events occurring during the infection 

process against one of its main parasites as T. maritimum is still limited. 
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2.1. The host and the pathogenic agent 

2.1.1. Senegalese sole (Solea senegalensis, Kaup, 1858) 

After years of scientific research and technological development, the culture of flatfish 

species constitutes one of the great bets in aquaculture in the last decades (FAO, 2018). 

Outside Europe, the main cultivated species were the Japanese flounder or hirame in 

Japan and Korea, the summer flounder (Paralichthys dentacus) and the Atlantic halibut 

(Hippoglossus hippoglossus), almost endangered in America north. On the other hand, 

in Europe the cultivation is dominated by the turbot and the Atlantic halibut, followed by 

other species such as flounder (Platichthys flesus), plaice (Pleuronectes platessa) or 

sole (Solea spp.).  

The European sole farming began in Portugal in the late 1970s with only 2 tonnes per 

year. In the mid-1980s, Spain began sole production, by which time Portuguese sole 

farming continued to expand, fluctuating between 10 and 70 tonnes until 2007. Italy 

entered the sole market in 2008 with 20 tonnes but stopped production in 2012. The 

greatest impulse in sole farming was in 2010 when French production started. Currently, 

Portugal, France and Spain are the leading sole producers (FEAP, 2014). Its culture has 

opened up new opportunities for business and job creation, becoming in one of the most 

promising species for European aquaculture. In 2016 the world aquaculture production 

of Senegalese sole was 1,468 tons, practically the same harvest as the previous year 

and it is expected to exceed 1600 tons in 2017 as shown in Fig. 1 (APROMAR, 2017). 

 

 

 

 

 

 

 

Figure 1.  Evolution of cultured Senegalese sole (Solea senegalensis) production in Europe 
between 2005-2016 and forecast for 2017 (On FAO, FEAP and APROMAR). 
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Senegalese sole (Solea senegalensis Kaup) is one of the fourth economically most 

valuable flatfish species in Southern Europe along with the common sole (Solea solea), 

the wedge sole (Dicologoglossa cuneata) and brill (Scophthalmus rhombus) (Bjørndal et 

al., 2016). Senegalese sole belongs to a Soleidae family reaching a size of about 60 cm 

in length. Its distribution goes from the Bay of Biscay (Spain) to the coasts of Senegal, 

being also present in some areas of the Mediterranean Sea. The works to obtain their 

production at commercial level began in in the 80s and nowadays is an expanding 

industry in Spain and Portugal due to its possibility to develop their complete biological 

cycle (Rodriguez, 1984; Dinis et al., 1999, Chabrillon et al., 2005a). S. senegalensis is 

more suitable for production than S. solea due to be better adapted to the warmer water 

of temperate climates (Dinis et al., 1999). However, it is not possible to affirm that at 

present the Senegalese sole is a species consolidated at the level of industrial production 

due to the high incidence of pathologies, in many cases opportunistic that affects them, 

especially in the phases of pre-fattening and fattening (Imsland, 2003; Padros et al., 

2003; Toranzo et al., 2003; Cañavete, 2005).  

Nonetheless, important progress has been made in the last decade towards developing 

a stronger and sustainable aquaculture industry for Senegalese sole, as a result of a 

consistent research effort in several biological disciplines (as reproductive biology, 

behavior, physiology, nutritional requirements, modulation of the immune system in 

response to environmental parameters and stress or characterization and mitigation of 

the main disease threats), a better management and technical improvements (Morais et 

al., 2014). For example, in the last years, its production has increased significantly above 

all in Spanish areas with a production of 775 t in 2016 such as Galicia, the Canaries 

islands or Andalucía and studies to avoid the incidence of pathogens are increasing due 

to its great commercial value (APROMAR, 2017). Overall, the most important factor for 

sole aquaculture is that high juvenile costs are likely to come down. Consequently, the 

prospects for expansion in sole farming in the coming years are good (Bjørndal et al., 

2016).  

2.1.2. Challenges in Solea senegalensis culture  

Despite being relatively warm water species, temperature control used to be one of the 

problems in the sole culture that affected the most north-west farms of Europe. Today 

technological advances have mitigated this problem and the major cause of mortality is 

the infection by pathogenic agents (Reviewed in Imsland et al., 2003).  
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The main problem in the sole culture over the last decades is the occurrence of the Black 

Patch Necrosis (BPN). BPN was first described in common sole by McVicar and White 

(1979) and later confirmed to be caused by the bacterium Flexibacter maritimus, 

nowadays called Tenacibaculum maritimum (Bernadet et al., 1990). However, it is now 

known that one of the main reasons of the disease was the poor nutrition diets fed to the 

sole (Baynes & Howell, 1993). Flexibacteriosis, fin rot or black patch necrosis are 

currently called as tenacibaculosis disease. 

Unfortunately, this is not the only pathogen that affects sole production. Zorrilla et al. 

(1999) reported another disease that affected the cultivation of S. senegalensis in the 

southwestern of Spain, the Pasteurellosis or Photobacteriosis. Infected fish showed no 

apparent large lesions other than swelling in the abdominal cavity and some dark 

pigmentation. The affected samples exhibited pallor of liver and kidney and typical white 

tuberculosis of 1-2 mm in diameter in the spleen. Microbiological analysis of these fish 

revealed the presence of a bacterial colony in all organs examined characterized as 

Photobacterium damselae subsp. piscicida. This bacterium is the causative agent of a 

disease that causes massive mortalities in marine aquaculture. 

Years later, a new outbreak with moderate mortalities of 20% of the production of S. 

senegalensis in southern Spain was observed (Zorrilla et al., 2003). The bacteria of the 

outbreak were identified as Vibrio harveyi and Vibrio. parahaemolyticus. For both 

species, vaccination with sublethal doses of extracellular products (ECP) reduced the 

mortality by 32-37% (V. parahaemolyticus) and 76-83% (V. harveyi) compared to 

unvaccinated fish. It was concluded that ECP could be considered as a protective 

antigen to design potential vaccines against vibriosis in Senegalese sole (Reviewed in 

Imsland et al., 2003).  

Aeromonas salmonicida subsp. salmonicida was reported as the causative agent of an 

‘atypical’ furunculosis outbreak in cultured sole in a marine farm operating in a 

recirculation system in Galicia (Magariños et al., 2011). In this particular case, soles were 

grown in a farm which also produced turbot, which pointed towards a potential crossed 

infection of this bacterium from one fish species to another. Similarly, Castro et al. (2012) 

isolated Edwarsiella tarda in Senegalese sole growing in a farm which also produced 

turbot, which again pointed towards a potential crossed infection named Edwardsielosis.  

Despite transmission of mycobacteria in fishes is poorly understood, Ziehl-Neelsen-

positive stain was observed in some fish species as Senegalese sole (Padrós et al., 

2001). These bacteria, resembling Mycobacterium spp., could represent a potential new 
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hazard for cultured sole and therefore recirculation systems may play an important role 

in its transmission in aquaculture. 

As viral diseases, Rodriguez et al. (1997) isolated and characterized a Birnavirus (genus 

Aquabirnavirus) named solevirus from the skin and internal organs of dead or dying 

soles. External signs of this pathology showed fish with a dark coloration, erratic 

swimming and uncoordinated behaviour. It was described as the agent causing 100% 

mortality in wild Senegalese sole broodstock introduced into a culture facility in 

southwest Spain. Comparing the virus, it was defined as Sp Serotype, the most common 

serotype in Spain (Perez-Prieto et al., 2001). Nodavirus (genus Betanodavirus), the 

aetiological agents of the viral nervous necrosis or viral encephalopathy and retinopathy 

(VER or VNN) and lymphocystis have also been detected in cultured sole (Starkey et al., 

2001; Toranzo et al., 2003; Thiéry et al., 2004; Alonso et al., 2005; Cutrín et al., 2007; 

Olveira et al., 2009; Cano et al., 2010; Hodneland et al., 2011). Lymphocystis disease is 

characterised by papilloma-like lesions typically on the skin, fins and tail and is caused 

by an Iridovirus with a worldwide geographical distribution that involves a chronic disease 

(Walker & Hill, 1980). Although these viruses can be transmitted horizontally by contact 

between diseased and healthy fish, the main transmission route is vertical (Toranzo et 

al., 2004), which highlights the importance of detecting broodstock carriers that could 

transmit the virus to the larvae through fertilised eggs.  

In recent years, parasitic problems have been observed in cultured Senegalese sole due 

to the presence of amoebas as Endolimax piscium (Archamoeba) (Constenla et al., 

2014). Although the condition was not associated with high mortalities, reduced growth 

and high morbidity were noted. In fact, protuberances on the skin surface in addition to 

unspecific signs of diseases due to a lethargy with sporadic and erratic swimming were 

shown (Constenla & Padrós, 2010). Amoeboid organisms like Neoparamoeba sp. have 

also been observed in cultured Senegalese sole causing a chronic proliferative mucoid 

inflammation in gills. In addition, some sporadic infections by protist parasites like 

flagellates or ciliates (Amyloodinium, Cryptobia and Cryptocaryon) have also been 

described usually in cases where sole were reared in ponds (Padrós et al., 2003).  

In general, cultured sole are extremely susceptible to a host of diseases that commonly 

affect other cultured flatfish and finfish species. In most cases, the severity of the disease 

seems to be linked with increasing intensification of production. The results given in 

Machado et al., (2018) indicate that situations of acute hyperoxia exposure in RAS 

systems may result in negative consequences to the host over a longer time frame, such 

as a decrease in growth or lower disease resistance as a harmful outcome. 
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At the present, photobacteriosis (Photobacterium damselae subsp. piscicida), vibriosis 

(Vibrio sp.) and flexibacteriosis (Tenacibaculum maritimum) are considered the most 

important pathogens affecting sole culture and limiting successful expansion (FAO, 

2018). Tenacibaculosis can cause significant mortality in fish farms in many countries, 

limiting the culture of economically important marine fish species (Santos et al., 1999). 

For this and other reasons is the pathogen in which our study was focused. 

2.1.3. Tenacibaculum maritimum  

Tenacibaculum maritimum, formerly known as Flexibacter maritimus or Cytophaga 

marine (Wakabayashi et al.,1986; Holmes, 1992; Suzuki et al., 2001), is a Gram-negative 

filamentous bacterium with oxidative metabolism belonging to the Bacteroidetes filus, 

family Flavobacteriaceae.  It is a global distribution agent that produces tenacibaculosis 

or flexibacteriosis, an ulcerative disease that causes massive mortalities and important 

economic losses in cultures of many marine species (Toranzo et al., 2005; Avendaño-

Herrera et al., 2006). 

The disease was first described in 1977 by Masumura and Wakabayashi in Japan, 

causing high mortalities in cultured marine fish. However, T. maritimum was not only 

reported in Senegalese sole, but also in turbot, common sole, European seabass, 

Japanese flounder, European flounder, gilthead seabream, white sea bass, red 

seabream, black seabream, Tub gurnard (Chelidonichthys lucerna), rainbow trout, 

striped trumpeter (Latris lineata), greenback flounder (Rhombosolea tapiriña), yellow-

eye mullet (Aldrichetta forsteri) and pacific sardine (Sardinops sagax) (Reviewed in 

Avendaño-Herrera, 2006). It is considered a potential limiting factor for the culture of 

economically important marine fish species causing serious mortalities in farms in many 

countries (Santos et al., 1999).    

The main symptoms are lesions on the body surface (ulcers, necrosis), erosion of the 

mouth and frayed or rotten fins as can be seen in Fig. 2. Septicemic may occasionally 

occur. The loss of epithelial fish surface, typical of this disease, is also a portal of entry 

for other bacterial or parasitic pathogens. Since these lesions favor the entry of other 

saprophytic and pathogenic bacteria, as well as protozoa, T. maritimum often appears in 

mixed infections (Toranzo et al., 2005). The disease presents a higher prevalence and 

severity with temperatures above 15°C, and when stress situations occur and with host-

related factors (skin surface condition) (Magariños et al., 1995).  
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Figure 2.  Macroscopic images of lesions in affected soles. A. Wedge-shaped ulcer located in the 
dorsal fin. Flap of necrotic epidermis associated with the damage (arrowhead). B. Ventral side 
with a wedge-shaped ulcer on the dorsal fin. C Circular ulcer located on the trunk of the fish 
surrounded by evident depigmentation. Flap of necrotic epidermis associated with the damage 
(arrowhead). D Small ulcer located on the dorsal fin close to eye and mouth (arrowhead). E. Mild 
erosion and thickening of the dorsal fin. (From Vilar et al., 2012) 

 

Typical colonies of T. maritimum are pale-yellow, flat with uneven edges. Although the 

bacterium is biochemically homogeneous, at least two major O-serogroups can be 

detected which seem to be related to the host species (Avendaño-Herrera et al., 2004a). 

Thus, one of the major problems in the study of this bacterium is the difficulty of 

distinguishing it from those of the genera Flavobacterium and Cytophaga. Therefore, the 

identification of morphological and biochemical characteristics or different molecular 

methods based on the PCR technique can be carried out for the identification of the 

pathogen (Bader & Shotts, 1998; Toyanna et al., 1996; Wilson et al., 2003; Warsen et 

al., 2004). Cepeda and Santos (2002) isolated for the first time T. maritimum from 

Senegalese sole in southwest Spain, where it caused almost 100% mortality of the 

affected stocks. Recently, Vilar et al., (2012) described particularly severe ulcerative 

disease outbreaks in cultured Senegalese sole associated with T. maritimum.  

Despite efforts made in the past 10 years to deal with the problems discussed above, it 

is obvious that the pathogenesis of T. maritimum is a complex, multifactorial process not 

yet fully understood. The first data on tenacibaculosis control using drugs was reported 
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by McVicar & White (1979) in Scotland. Studies have now been carried out from the point 

of view of the acquired immune system so that effective commercial vaccines are 

available since a flexibacteriosis vaccine (FM 95) was patented by the University of 

Santiago (Spain) to prevent mortalities caused by F. maritimus in turbot (Santos et al., 

1999). Nevertheless, the excessive use of vaccines can produce the transfer of 

resistance genes due to a transferable R-plasmid. 

Additionally, studies from the point of view of the innate response of several fish species 

are increasing in the last years (Avendaño-Herrera et al., 2006; Magariños et al. 1995). 

The few existing reports on the incidence of specific pathogens in aquaculture (Frans et 

al., 2011; Silva et al., 2014) reinforce the idea that opportunistic pathogens are the main 

cause of mortality. However, the first information about the response of Senegalese sole 

mucus and plasma against T. maritimum was reported in Mabrok et al. (2016). In that 

study, both mucus and plasma samples presented a relatively low bactericidal capacity, 

suggesting that Senegalese sole does not contain adequate compounds with potent 

bactericidal activity to kill T. maritimum, which require further investigations. These 

results can help to understand the mechanism of T. maritimum infection and assist future 

studies to increase vaccine efficiency in this species. 
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2.2. Fish immune defence 

Fish live in aquatic environments, which are an ideal medium for the growth of the 

pathogenic organisms (Magnadottir, 2010). Additional challenges can be raised to the 

immune system of aquatic vertebrates versus their terrestrial counterparts in these 

conditions (Gómez et al., 2013; Esteban & Cerezuela, 2015; Salinas, 2015).  

The fish immune system, comprised of numerous distinct and interdependent immune 

components and immune organs, is necessary for organisms to defend themselves 

against invading microorganisms (Esteban, 2012). Fish possess both innate immune 

system as well as an adaptive immune system. Nevertheless, the innate immunity is 

stronger than adaptive immunity (Rauta et al., 2012). In simple terms, physical barriers 

prevent pathogens such as bacteria and viruses from entering the organism. If a 

pathogen breaches these barriers, the innate immune system provides an immediate, 

but non-specific response (Litman et al., 2005). If pathogens successfully evade the 

innate response, it activates the adaptive immune system, which is more adapted by its 

specific response and its ability to retain the response in the form of immunological 

memory (Uribe et al., 2011). However, in fish, the innate response has been considered 

an essential component in combating pathogens due to limitations of the adaptive 

immune system, their poikilothermic nature, their limited repertoire of antibodies and the 

slow proliferation, maturation and memory of their lymphocytes (Whyte, 2007). It is 

commonly divided into three compartments: the epithelial/mucosal barrier, the humoral 

parameters and the cellular components. 

The spleen, thymus and head-kidney are the major lymphoid organs in fish (Zapata et 

al., 2006). Teleost lack lymph nodes and the spleen, with the kidney, form the two major 

filtering organs removing foreign agents and effete blood cells from the vascular system. 

Basically, the thymus can be considered as an aggregation of macrophages that promote 

the encapsulated proliferation of T cells, as it does in mammals, involved in cell-mediated 

immunity (Davis et al., 2002). The head-kidney in teleost fish is the equivalent of the 

bone marrow in vertebrates and is the largest site of haematopoiesis until adulthood 

(Zapata et al., 2006). Thymus and head-kidney are considered the primary lymphoid 

organs (lymphocyte-generating) in fishes working along with the secondary lymphoid 

tissue (immune response-generating), the spleen (Rauta et al., 2012). Furthermore, 

evidence reveals that teleost fish possess an adaptive immune system associated with 

each of their mucosal body surfaces: the mucosa-associated lymphoid tissue (MALT) 

(Salinas, 2015).  
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Mucosa immune system is the first barrier against pathogens because there is an 

intimate contact between these animals and the aquatic environment (Esteban, 2012; 

Parra et al., 2015; Salinas et al., 2011). Mucosa-associated lymphoid tissue is 

predominantly on the general skin surface (SALT), the gills (GIALT) and the gut lining 

(GALT); but also, has been identified a functional nasal immune system defined as NALT 

as shown in figure 3 (Tacchi et al., 2014; Salinas, 2015). Composition and functional 

characterization of fish skin mucus has recently received significant interest since it 

contains many defence mechanisms (including important enzymes) that constitute the 

first line of defence against a broad spectrum of pathogens present in the aquatic 

environment (Shephard, 1994; Van der Marel et al., 2010). Moreover, mucus plays a 

critical role in the defence mechanisms acting as a natural, dynamic, physical, chemical, 

and biological barrier as it will be detailed in later chapters (Raj et al., 2011). This 

importance was clearly demonstrated when transcript analysis mucus of common carp 

revealed 82 orthologous of genes with immune relevance in other organisms (Gonzalez 

et al., 2007). However, excluding some studies as in Guardiola et al. (2016), the most 

available studies are focused on gut (GALT) and there is insufficient information about 

the state of the mucus on the epidermis (SALT) and its functions in a lot of fish species 

as the flatfish Senegalese sole (Esteban, 2012; Rombout et al., 2011; Salinas et al., 

2011;).  

 

 

Figure 3. Schematic representation of the four teleost main mucosa-associated lymphoid tissues 
(MALT) described so far and their anatomical localization. GALT: gut-associated lymphoid tissue; 
SALT: skin-associated lymphoid tissue; GIALT: gill-associated lymphoid tissue; and NALT: 
nasopharynx-associated lymphoid tissue. Adapted from (Salinas, 2015). 
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2.3. Teleost skin 

Skin is the structure that covers the body surface and protects the entry of pathogens, 

allergens, solutes or ions from the leakage of water (Castro & Tafalla, 2015). These 

barrier functions are dependent on the epidermis, a stratified cellular sheet. While a 

differentiated cornified cellular sheets (stratum corneum) covers the epidermis in 

amphibian adults, reptiles, birds and mammals; mucus covers the epidermis in fish and 

amphibian tadpoles. In fish, the outermost layer of cells is alive and with capacity to 

divide (Salinas et al., 2011). Teleost skin secretes mucus when is involved in immune 

functions as adaptation to aquatic environmental (Esteban, 2012).  

Skin not only separates and protects the fish, also represents a metabolically active 

tissue (Bullock & Roberts, 1974). Fish tegument has roles in protection, communication, 

sensory perception, locomotion, respiration, ion regulation, excretion and thermal 

regulation (Elliott, 2000). These functions are possible due to skin’s complex structure 

and cell composition as shown in figure 4. 

 

Figure 4. Schematic depiction of teleost fish skin highlighting the general structure, components, 
and the main cell types present. Adapted from (Gómez et al., 2013). 
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Some of these functions are very important in fish larvae. Larval skin is a thin two-cell 

layer lying on a basal membrane and overlying an extensive haemocoel, according to 

the existing data (Esteban, 2012). Although a lot of studies have focused on the histology 

and hydrochemistry of the adult teleost epidermis (Bullock & Roberts, 1974; Esteban, 

2012), only a few studies have focused on the structure on the larval skin (Ottesen & 

Olafsen, 1997). In Solea senegalensis goblet cells were evident on days 15-20 of larval 

development and contain N-acetyl glucosamine and/or sialic acid (Sarasquete, 1998).  

 

2.3.1. General tegument in adults: complex composition  

The integument or skin forms the external covering of the body. The skin in teleost shows 

some inter-species differences; some species have no scales while others have special 

large epidermal alarm substance cells (club cells). The skin is composed of two layers, 

an outer epidermis and an underlying dermis as is shown in figure 5.  

  

 

Figure 5. Drawing of a cross section of a flatfish (from Bermúdez, 2012). 
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- Bacteria-microbiota – fish mucus harbours an abundant and diverse microbial 

community with bacteria and fungi. It is no clearly how this community affects to 

the SALT (Austin, 2006). 

 

- Epidermis – a squamous but non-keratinized stratified epithelium with goblet 

cells (Salinas et al., 2011). The major difference from mammals is that in the 

teleost, the outermost epidermal fusiform cells remain viable, and retain the 

capacity to divide (Genten & Terwinghe, 2009).  

 

- The layer is about 5-10 cells thick, of which the majority are squamous cells, 

characterized by numerous desmosomes and associated cytoplasmic filaments 

with minimal quantities of keratin. Squamous cells of the superficial layer show 

microridges that contain mucus and antibacterial substances secreted to the 

surface from mucous goblet cells located in the intermediate stratum of the 

epidermis. The minority composition of the layer are mucous cells (Zhao et al., 

2008).  

 

- Dermis – mainly composed of dense connective tissue with a large number of 

collagen fibres (it contains relatively little of the connective tissue found in 

tetrapods), with blood and lymphatic supply. The dermis contains two strata: 

 

- Hypodermis or stratum spongiosum - a frequent site of development of 

infectious processes. 

 

- Innermost layer or stratum compactum. 

 

 

2.3.2. Immune cells in fish skin 

The different leucocyte types derived from the lymphoid and myeloid lineages known 

from mammals have also been recognized in fish (Castro & Tafalla, 2015). In contrast to 

mammals, MALT contains the major lymphoid accumulations. It is possible to find: 

• Leucocytes: They can be lymphocytes (T and B cells), plasma cells, 

macrophages or granulocytes. Plasma cells and plasmablasts are responsible to 

produce secretory immunoglobulins. B cells are secreted by the head-kidney 
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while T cells are produced by the thymus (Zapata et al., 2006). Teleost T cell 

have similar characteristics to mammals. Two major T cells receptors (TCR) have 

been described: TCRαβ and TCRγδ. In addition, two co-stimulatory molecules 

define the T cells: CD4+ and CD8+. CD4+ T cells are the main component of 

adaptive immune system of vertebrates (Salinas, 2015). The presence of this T 

cell population is modulated by cytokines. Unfortunately, there is no much 

information about regulatory T cells (Tregs) related homeostasis in teleost except 

in common carp and in rainbow trout (Yang et al., 2012; Salinas, 2015). 

 

• Antibody-secreting cells (ASCs): including plasmablasts and non-replicating 

plasma cells. It is known that the number of ACSs depends of the parasite 

exposure. 

 

• Mast cells or eosinophilic granular cells (EGCs): present in a lot of tissues as 

gills, skin, gut or brain and in blood. 

 

However, little information is available about the function of each one during the immune 

response in fish (Salinas et al., 2011; Salinas, 2015).  
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2.4. The cutaneous mucus layer  

2.4.1. Functions 

Different functions have been suggested for the fish mucus and its role in the immune 

system of the fishes. Functions very specific were defined in some species as to glue 

nest material collected to predation at night or to inhibit discharge nematocysts by 

anemone fishes (Shephard, 1994). However, these proposed roles for mucus have a 

very little supporting information on the relevant actions of mucus. Functions attributed 

to this mucus include the predator elusion, the improvement of the locomotion reducing 

the fluid friction (Guardiola et al., 2015a), the drag reduction and the isolation of 

superficial epithelial cells from bacteria (Genten & Terwinghe, 2009; Shephard, 1994). 

The fish mucus acts as a physical, biochemical, biological and semipermeable barrier 

that allows the exchange of nutrients, water, gases, odorants, hormones or gametes 

acting as an osmotic, ionic and acid-base regulator (Shephard, 1994; Cone, 2009; 

Guardiola et al., 2015a). In fact, there is evidence to suggest that many teleost fishes 

filter feed in a process assisted by the mucus (Sanderson & Cech, 1991).  

As it was mentioned before, the mucosal surface of the fishes or MALT (gill, skin and 

gastrointestinal tract) are the first robust barrier of defence against infections between 

the external environment and the internal milieu. In fact, the mucus has the power of trap 

and immobilizes organisms as pathogens, viruses or other nanoparticles (NP) that are 

removed from the mucosa by the water current before they can contact epithelial in the 

surfaces. Fish mucus also, on occasions, contains substances as lysozyme able to lyse 

cells. Lysozyme is able to lyse Gram-negative bacteria and may have an influence on 

fungal cell walls. In addition, mucus has a defensive role providing a medium in which 

antibacterial mechanism can act due to the presence of endogenous peroxidase and 

alkaline phosphatase in the goblet cells (Shephard, 1994). This antimicrobial property 

has been tested in different fish species (Narvaez et al., 2010; McGuckin, 2011).  

Immunoglobulins, leucocytes and macrophages, also present in mucus, providing an 

additional protection against infections (Genten & Terwinghe, 2009).  

Another aspect of the defence that is possible to find in some fish is that of resistance to 

abrasion. Abrasion resistance appears to depend on the lubrication qualities of the 

mucus based on the “hydrodynamic lubrication” (Hills, 1988). When there are abrasive 

materials suspended in the water the fish swims against, it is assumable that mucus 
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provides such a defence. By last, a function related to defence is the production of toxic 

materials in some fish species (Shephard, 1994).  

2.4.2. Properties and composition 

One important property of the mucus is the capacity to maintain a layer of mucus 

adjacent to the epithelium despite vigorous movements as swallowing, coughing, 

intestinal peristalsis or copulation. Skin mucus can trap and immobilize pathogens before 

they can contact epithelial surfaces, because it is impermeable to most bacteria and 

many pathogens (Mayer, 2003; Cone, 2009). Furthermore, the continuously capably of 

the fishes to replace the mucus prevent the permanent colonization of potential 

microorganisms (Woof & Mestecky, 2005; Subramanian et al., 2007; Cone, 2009).  

Mucus is equal with slime and slime is the material that makes fishes slippery to touch. 

This property is due to the high-water content (95% approx.) and the presence of high-

molecular-weight macromolecules of the mucus (Shephard, 1994). These 

macromolecules are a kind of glycoproteins called mucins but also contains salts and 

lipids (e.g. fatty acids, phospholipids or cholesterol). The glycoproteins in fish mucus 

appear to be similar to mammalian mucins in make-up. Some of them have a defensive 

role while others may also have a function in the organization of the mucus structure 

(Thornton, 2004). The proteins and glycoproteins constitute the complement system. 

This system is synthesized by hepatocytes, but important amounts are produced by other 

cells as macrophages, blood monocytes or epithelial cells of the genitourinary tract and 

gastrointestinal tract. Complement proteins have a wide range of functions, including the 

elimination of invading pathogens, promotion of inflammatory responses, clearance of 

cell debris, and modulation of adaptive immune responses (Castro & Tafalla, 2015). 

The composition and the thickness of the mucus vary throughout the epithelial surface 

and define the immune functions of the skin mucus. The properties of the mucus gel are 

dictated in large part by the oligomeric mucins and, over the past decades, we have 

gained a better understanding of the molecular nature of these complex O-linked 

glycoproteins in some species as in humans (Thornton, 2004).  The proteins that 

contains are required to maintain their properties under harsh conditions such as high 

temperatures or hydraulic pressure (Esteban, 2012). Lipids (including fatty acids) 

contribute to increasing the viscoelasticity of the gel that allows some small fishes to 

collect nutrients suspended in water (Cone, 2009). Mucus transport needs a well-

regulated viscoelasticity which is mostly controlled by hydration. However, many other 
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mechanisms contribute to control the viscoelasticity, as secreted lipids, trefoil factor, pH, 

calcium and non-mucin glycoproteins (Thornton, 2004).  

Mucus composition varies between the fish species. For example, over the 85% of the 

dry weight of mucus in Arabian Gulf catfish (Arius bilineatus) are protein, 13,4% are lipids 

and only a small quantity are carbohydrates and nucleic acids (Ali et al., 1989). More 

studies are needed to characterize all the different fish mucus and to describe their 

defence mechanisms (Esteban, 2012).  

Fish mucus also serves as a repository of a lot of defensive molecules of both the innate 

and the acquired immune system (Yano, 1996; Subramanian & MacKinnon, 2007; 

Esteban, 2012; Guardiola et al., 2015a; Cammarata et al., 2016). Some components 

only have a defensive purpose, whereas others may also act by modifying the 

organization and properties of the gel. A report of the main mucus components is now 

numbered. In summary, common features of these MALTs resemble those of mammals 

and include the following: (i) a copious mucus layer that actively barriers pathogen 

adherence and agglutinates; (ii) secreted antimicrobial proteins (such as lysozyme, 

lectins, complement proteins, histones, and defensins), antibodies (igM and igtT/Z 

isotypes), immune mediators (cytokines and chemokines), and enzymatic disruptors 

(mainly proteases, peroxidases, and phosphatases); and (iii) interposed myeloid and 

lymphoid immune cells (including mast cells, dendritic-like cells, macrophages, 

neutrophils, and B and T lymphocyte families), natural killer cells (NK/NCC-like), 

epithelial phagocytic cells, and immune-associated cells such as thrombocytes and 

erythrocytes (Alexander, 1992; Inami et al., 2009; Castro & Tafalla, 2015; Khansari et 

al., 2018) 

2.4.2.1. Mucins 

Mucins are glycoproteins with a lot of 

carbohydrate chains (fig. 6). They are the most 

abundant components in the mucus layer, 

responsible for its viscous property due to their 

high molecular weight. Defence is the main role 

of the mucins forming an adhesive matrix in 

which different molecules can be found 

(McGuckin, 2011). 

Figure 6. Intestine Nile perch (Lates niloticus) showing the mucins in the goblet cells. AB & PAS 
(x 400). Namulawa et al. (2014). 
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2.4.2.2. Enzymes 

Some innate immune components were found in skin mucus. Lysozyme (N- 

acetylmuramide glucanohydrolase or muramidase) is the most studied enzyme present 

in fish mucus because is a mucolytic enzyme that acts on the peptidoglycan layer of 

bacterial cell walls resulting in the lysis of bacteria, catalyzing the hydrolysis of the 

linkages between the N-acetylmuramic acid and the N-acetyl-D-glucosamine. It is 

produced mainly by monocytemacrophages and neutrophils and, consequently, is 

abundant in lymphoid tissues, serum, mucus, and eggs. There are three determined 

isoforms in skin mucus and are present in some fishes but not in others (as cod or 

wolfish) (Nigam et al., 2012). The isoforms and their levels depend on the fish species 

and their environmental conditions. To date, serum lysozyme has been identified in 

practically all aquacultured species and its modulation, in response to infection and 

physiological stress, has been demonstrated in the mucus of many species such as 

European plaice (Pleuronectes platessa L.), channel catfish (Ictalurus punctatus), 

yellowtail (Seriola quinqueradiata), common carp, ayu (Plecoglossus altivelis), rainbow 

trout, Atlantic salmon, Japanese flounder and coho salmon (Fletcher & White, 1973; 

Grinde et al., 1989; Lie et al., 1989; Schrock et al., 2001; Fast et al., 2002; Subramanian 

et al., 2007; Saurabh & Sahoo, 2008).  

Another mucus enzyme, alkaline phosphatase (AP) has been demonstrated as a 

potential stress indicator in the epidermal mucus of Atlantic salmon (Ross et al., 2000). 

It is also thought to act in a protective role in the initial stage of wound healing in carp (C. 

carpio) and as an antibacterial agent because of its hydrolytic activity (Iger & Abraham, 

1990, 1997). Acid and alkalines phosphatases are also found in the skin mucus of some 

species like in the Asian stinging catfish (Heteropneustes fossilis) or in the common carp.  

Other studied enzymes are copper and zinc superoxide dismutase (SOD) isolated from 

European plaice, esterases found in Gilthead seabream and European seabass, 

trypsine, beta-galactosidase, beta-glucoridase or alfa-fucosidase (Esteban, 2012). 

By last, proteases are enzymes classified into serine, cysteine, aspartic and 

metalloproteases (Hartley, 1960). The ability of these enzymes to lyse formalin killed 

some bacteria as V. anguillarum so it seems that play a role in defence against bacteria 

(Ellis, 2001). Serine protease compounds more than the 25% of the complement system 

and it is reported as one of the main mucus proteases in fish skin mucus (Nigam et al., 

2012). Cell lysis is accomplished by the complement. The complement and the mucins 

act in synergy both interact with other components of fish mucus (such a C-reactive 

protein) to initiate the “complement cascade” (Alexander, 1992). Proteases as Cathepsin 



State of the art  28 
 

or Metalloproteases also activate the production of others fish mucus components as 

immunoglobulins or antimicrobial peptides (Cho et al., 2002). Cathepsins have been 

demonstrated in species as Japanese eel (Anguilla japonica) or catfish (Esteban, 2012). 

Enzymes that inhibits the action of a protease are called antiprotease. 

2.4.2.3. Antimicrobial peptides (AMPs) 

AMPs are enzymes discovered by Boman’s group in 1982 (Rakers et al., 2013). 

However, the first AMP reports in teleost date back some years after (Thompson et al., 

1986). To date, more than one thousands of antimicrobial peptides have been classified 

(http://www.bbcm.uniV.trieste.it/~tossi/). 

AMPs are evolutionarily well preserved and found in higher vertebrate skin (including 

human epidermis). In fact, several AMPs in fish mucus may act as antibiotic for human 

diseases. AMPs as piscidin-2 from hybrid bass seem to exhibit a potent antifungal activity 

and epinecidin-1 also acts as a potential antitumor against fibro-sarcoma cells. 

Furthermore, each fish secretes their own AMPs with structural differences which may 

be exploited as antimicrobial agents, vaccine adjuvants or antitumoral agents. For that, 

fish skin offers the opportunity to study the origins of innate antimicrobial defence 

systems and might constitute a rich source of antiviral compounds for fighting against 

human infections (Falco et al., 2009; Esteban, 2012; Rakers et al., 2013). 

AMPs are present in exposed tissues as skin and mucosal surfaces (Cho et al., 2002) 

and have the ability to fight against numerous pathogenic organisms as bacteria (gram-

positive and gram-negative), yeasts, fungus, viruses and other parasites (Najafian & 

Babji, 2012). However, relatively a few species of fish (i.e. zebrafish, pufferfish, rainbow 

trout, common carp, gilthead seabream, tilapia, winter flounder, American plaice, 

American halibut, mud dab, Atlantic salmon or Atlantic cod) have been studied to 

characterize their AMPs (Rakers et al., 2013). 

2.4.2.4. Proteins  

Lectines  

The innate immune system is largely defined by pattern-based recognition of non-self-

cells due to the carbohydrates on their surfaces. In animals, the proteins that recognize 

these groups and also agglutinate cells are soluble molecules called lectines (Ewart, 

Jonhson, & Ross, 2001).  

Lectine is a term used to include an extensive variety of carbohydrate-binding proteins 

without immune origin. Lectines are widely distributed in lot organisms from prokaryotes 
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to vertebrates. The first vertebrate lectines were described in European eel (Anguilla 

anguilla). It is known that lectines are involved in an immense range of key biological 

processes as the immune response (Cammarata et al., 2016). They are found in skin 

mucus but also in gills and can interact with the pathogenic surface for their subsequent 

destruction by phagocytic cells and/or activate the complement pathway (Ewart et al., 

2001; Esteban, 2012). 

Animal lectines are classified in several molecular families differing in carbohydrate 

recognition domain (CRD) structure and organisation: C-type lectines (CTLs), Galectins 

or S-type lectines, Rhamnose-binding lectines (RBLs), F-type lectines (FTLs), X-type 

lectines (XTLs). I-type lectines, P-type lectines and Pentraxins (Cammarata et al., 2016). 

Selectins and other lectines gens have been reported in the current available fish 

genomes and CTLs, FTLs, Galectins or pentraxins have been characterized in both 

cartilaginous and bony fish. In addition, recent studies have identified new lectines 

families, some of them present in other taxa (Vasta et al., 2011). 

Cytokines 

Cytokines include a broad category of small proteins that mediate cell signalling within 

the immune system. Cytokines are released by cells (mainly leucocytes) and regulate 

immune functions through the interaction with a specific receptor on the surface of other 

cells (paracrine) or the same cell that produced it (autocrine). Sometimes, systemic 

effects can also be produced through their release (endocrine). Each cytokine can be 

produced by different cell types, but in the same way; its receptor can be expressed on 

the surface of many different leucocyte types. Finally, several cytokines may exert very 

similar roles and thus there is a high degree of duplication (Castro & Tafalla, 2015). Some 

important cytokines are the chemokines or the interleukines.  

Chemokines are produced by different cells and regulate immune cell migration, 

maturation, and functionality of the recruited cells in response to inflammation.  They are 

defined by the presence of four conserved cysteine residues and are divided into four 

subfamilies depending on the arrangement of the first two conserved cysteines in their 

sequence, into CXC, CC, C, and CX3C classes. Despite the great number of chemokine 

genes identified in diverse fish species, it is still difficult to understand the mechanism of 

action of the molecules (Castro & Tafalla, 2015).  
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Others 

Other several proteins have been studied in fish mucus. Some of them are calmodulin, 

lactoferrin, histones or ribosomal proteins (Esteban, 2012). Calmodulins are ubiquitous 

calcium-dependent activators of some enzymes with antigenic properties (Flik et al., 

1984). Lactoferrin is related to induce systemic immunity and inhibit allergic responses 

(González-Chávez et al., 2009). In addition, Histone H2B is defined as an endogenous 

antibiotic due to its property to inhibit important fish bacteria and fungus as Aeromonas 

hydrophila or Saprolegnia spp (Bergsson et al.,2005). 

 

2.4.2.5. The complement system 

The complement system is one of the main mechanisms in the innate response. It is 

composed of about 30 plasma proteins synthesized as pro-enzymes (Secombes et al., 

2012). These proteins are responsible for a variety of functions including the elimination 

of invasive pathogens, the activation of phagocytosis and inflammatory response, the 

elimination of apoptotic cells and cellular debris, and modulation of the adaptive immune 

response (Holland & Lambris, 2002). This system can be activated by three different 

routes: classic, initiated by immune complexes; alternative, initiated by the union to 

microbial structures; and lectins as mentioned above, initiated by a bacterial mannose-

binding lectin (Nakao et al., 2011). mRNA’s encoding complement components have 

been detected in teleost in a wide variety of tissues such as liver, cephalic kidney, gut or 

gills (Løvoll et al., 2007).  

Complement system includes an important component called pentraxins, an ancient 

pattern recognition of molecules that are conserved throughout phylogeny from 

arthropods to mammals. All these proteins play important roles in innate immunity, 

homeostatic regulation and the acute phase response, involving the immune system as 

well as other biological and physiological processes (Magnadóttir et al., 2018). In fish, 

some pentraxins have been detected in several species, such as rainbow trout (Murata 

et al., 1994, 1995), dogfish (Mustelus canis) (Robey et al., 1983), plaice (White et al., 

1981), channel catfish. japanese eel, murrel (Channa punctatus) or goldfish (Carassius 

auratus) (Nunomura, 1991; Mitra and Bhattacharya, 1992; Kovacevic et al., 2015).  
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2.4.2.6. Immunoglobulins 

The adaptive immune system of the majority of vertebrates is based on key molecules 

such as immunoglobulins (Ig), T cell receptors (TCR) and major histocompatibility 

complex (MHC). Secretory immunoglobulins (Ig) are molecules found secreted into 

serum or mucosal secretions, or molecules adhered to B cells surfaces acting as 

membrane-bound form (BCR). The immunoglobulins found in fluid liquids are called 

antibodies (Ab) and constitute the main effectors in the humoral part of the immune 

system. These molecules are composed by two identical heavy chains (H) and two 

identical light chains (L) binding by two amino-terminal variable domains as shown in fig. 

7 (Parra et al., 2015).  

Immunoglobulins are produced by plasmablast and plasma cells and play a key role in 

the mucosal homeostasis from many animals (Salinas et al., 2011). They are well 

characterized in higher vertebrates as mammals. However, in lower vertebrates and 

particularly in teleost fish were firstly reported in the late 1960’s by Fletcher and Grant 

(1969).  

 

 

The kind of immunoglobulins varies in the different taxa. In fish mucosal surfaces, there 

are defined three types of Ig produced by teleost B cells: IgM, IgD and the recently 

discovered IgT/IgZ (Hansen et al., 2005; Xu et al., 2016). IgT has been reported to be 

an immunoglobulin specialized in gut and gill mucosal immunity while IgM is the 

predominant isotype in plasma, bile and skin mucus (Zhang et al., 2010). Except catfish 

and medaka, all the other fish species studied present the IgT and constitutes the most 

ancient mucosal immunoglobulin found in vertebrates (Xu et al., 2016). However, the 

presence of IgD in mucosal skin secretions in fish has not been reported (Parra et al., 

2015). 

The concentration of Ig serum varies between species and may change depending on 

fish size, environmental temperature, water quality, season of the year or stressful 

conditions (reviewed in (Solem & Stenvik, 2006)). There are several studies that 

described the immunoglobulins from some bony fishes as giant grouper (Epinephelus 

itaira), margate (Haemulon album), sheepshead (Archosargus probatocephalus), 

Figure 7. Heavy chains (H) (red and blue) and 
light chains (L) (green and yellow) from an 

immunoglobulin. 
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common carp, rainbow trout, European perch (Perca fluviatilis L.), olive flounder, 

European seabass or southern Bluefin tuna (Thunnus maccoyii Castelnau) (reviewed by 

Salinas et al., 2011; Guardiola et al., 2015b). However, there is no information about the 

characterization of the immunoglobulins in Senegalese sole as in the case of the other 

components (enzymes or antimicrobial peptides). 

There is a discussion about the synthesis and transport of immunoglobulins in mucosal 

sites. It seems that the spleen is a site for B cells activation, plasmablast formation and 

differentiation into plasma cells. In addition, the spleen is involved in trapping antigens 

from the bloodstream. After that, plasma cells migrate to the head-kidney and produce 

immunoglobulins (Solem & Stenvik, 2006; Ye et al., 2011a,b). The authors concluded 

that Ig must have resulted from local synthesis and transported across the hepatocytes 

to be secreted in the bile, and not transudation or transport from serum (Lobb & Clem, 

1981; Abelli et al., 2005). Finally, Xu et al. (2016) provided the first demonstration that 

dedicated mucosal immunoglobulins are locally induced at the mucosal surface of a non-

tetrapod species. 

Immunoglobulins are the principal components of the immune response against 

pathogenic organisms. Immunomodulatory products, including nucleotides, glucans and 

probiotics, are increasingly used in aquaculture production. The use of these products 

reduces the need for therapeutic treatments, enhances the effects of vaccines and, in 

turn, improves the indicators of production (Uribe et al., 2011).  
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2.5. Skin mucosal immunity response  

Mucus composition can be influenced by endogenous and exogenous factors (Esteban, 

2012; Parra et al., 2015). Sex or developmental stages are some of the endogenous 

factors while stress, acidification, hyper osmotic pressure, seasonality or infections are 

some of the studied exogenous factors (Blackstock, 1982; Wu et al., 2004; Costas et al., 

2011; Esteban, 2012). Nevertheless, the presence of invasive pathogens is the main 

influencer in mucus composition (Esteban & Cerezuela, 2015). The fish innate immune 

system recognises pathogenic and non-pathogenic microorganisms via germline 

encoded pathogen pattern recognition receptors (PRRs) that sense particular structures 

of the microorganisms (pathogen-associated molecular patterns, PAMPs) and initiate a 

well-orchestrated immune response (Boltaña et al. 2011).  

 

 

 

Figure 8. Resume of the most invasive pathogens in marine aquaculture. 
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As shown in Fig. 8, fish are immersed in a sea of pathogens and the importance of the 

mucus is now better documented due to their Ig responses (Salinas et al., 2011; Esteban 

& Cerezuela, 2015). Some bacterium as Flavobacterium columnare or protozoan as 

Ichthyophthirius multifiliis cause fatal diseases penetrating by the skin and gills, points of 

entry for the pathogens to the fish body (Matthews, 2005). By this way, Moritella viscosa 

is considered the hardest pathogen causing ulcer and septicaemia on the fish skin due 

to its capacity to inhibit the epidermal regeneration abilities of the keratocytes (Karlsen 

et al., 2012). 

In addition, the concept of common mucosal immune system (CMIS) is believed to 

happen in fish but is not yet demonstrated in all the mucosa systems. CMIS suggests 

that an initial response in one of the mucosal places could be generate similar response 

in other mucosal tissues (Salinas et al., 2011). Thus, more studies are needed to show 

the presence or absence of the CMIS. 

2.5.1. Fish responses against bacteria  

There is an increasing interest in fish studies after bacterial change but no much is known 

in this area related to soles. White sturgeon (Acipenser transmontanus), striped bass 

(Morone saxatilis), Chinook salmon (Oncorhynchus tshawytscha) and channel catfish (I. 

punctatus) were immersion challenged with Edwardsiella ictaluri and a Gram-negative 

septicaemia occurred in infected fishes, suggesting that E. ictaluri is a potential pathogen 

of salmonid fishes (Baxa et al., 1990). After that, some studies in catfish treated with 

Flavobacterium columnare revealed a response in IgM levels from gill, skin, and liver 

samples (Shoemaker et al., 2005). However, no specific changes in IgM levels were 

found when catfish were infected with Edwardsiella tarda. In addition, immune responses 

and expression profiles of some immune-related genes from head kidney and serum in 

Indian major carp (Labeo rohita) were studied after E. tarda infection (Mohanty & Sahoo, 

2007). Nile tilapia (Oreochromis niloticus) was challenged with Aeromona hydrophila in 

Tellez-Bañuelos et al. (2010) and M. viscosa bath challenge was performed to Atlantic 

salmon, turbot, cod and Atlantic halibut. Samples of serum or head kidney were studied, 

and only Atlantic halibut was resistant to the pathogen (Björnsdóttir et al., 2004; Løvoll 

et al., 2009). Furthermore, Gilthead seabream and European seabass were subjected to 

either experimental infection with Photobacterium damselae subsp. piscicida in Mauri et 

al. (2011). Oral antigens also were studied in coho salmon skin infected with V. 

anguillarum and in barramundi (Lates calcarifer) challenged with Streptoccocus iniae 

(Delamare-Deboutteville et al., 2006). Other studies tested this bacterial influence in 
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species as European eel by immersion with Vibrio vulnificus. V. anguillarum was also 

studied in eels and in common carp, where an increased goblet cell number was 

observed (van der Marel et al., 2010; Salinas et al., 2011). In addition, effects after 

bacterial challenge were described in other marine species as viera (Pecten maximus) 

or corals and demonstrate the strength of this kind of studies in the last years (Genard, 

et al., 2014; Welsh et al., 2017).  

These experiments are also being accomplished on Senegalese sole specifically 

challenged with P. damselae piscicida. Leucocyte responses to inflammation as well as 

some innate immune parameters of Senegalese sole were determined after challenge 

with two strains of P. damselae subsp. piscicida in Costas et al. (2013). A challenge 

experiment using this bacterium was carried out to evaluate the effects of corticosteroids 

on the susceptibility to this important pathogen (Salas-Leiton et al., 2012). A similar 

experiment was developed by Barroso et al. (2016) to determine the effect of a dietary 

multi-species probiotic on growth, gut morphology and immune parameters in the same 

flatfish species. Nowadays, the response of cultured Senegalese sole serum to P. 

damselae piscicida infection had been studied through the determination of 

transcriptional changes in genes related to iron metabolism, stress response and innate 

immune system (Núñez-Díaz, 2016). However, none of those studies gathered any data 

from the skin mucus of the species.  

2.5.2. Skin mucus response against bacteria  

Despite the important roles of mucus in fish immunity, the knowledge of detailed events 

happened within it during infection process is still limited. Some studies have focused on 

characterizing the protein and enzyme activities in the skin mucus following challenge 

as in Atlantic salmon mucus affected by Neoparamoeba perurans (Valdenegro-Vega et 

al., 2014) or the characterization of the probiotic strain Vagococcus fluvialis in European 

seabass after the experimental challenge against V. anguillarum (Sorroza, 2012). 

Japanise eel was other of the study species in order to check different levels of 

antibacterial activities in skin mucus against three strains of Gram-negative bacteria: E. 

tarda, A. hydrophila, Aeromonas sp. and one Gram-positive Bacterium Micrococcus 

leteus (Liang et al., 2011). Similar responses were observed from the zebra fish mucosa 

after colonization with the resident microbial flora (Cheesman & Guillemin, 2007). Other 

studies have examined the gene expression profiles as in the channel catfish skin mucus 

following Flavobacterium columnare challenge (Ren et al., 2015).  



State of the art  36 
 

However, there is a great lack of knowledge about the properties of skin mucus in 

Senegalese sole after bacterial infection. The first report about a bath challenge with T. 

maritimum was reported by Mabrok et al. (2016). This study aimed to optimize bacterial 

yields as well as to establish a challenge model for tenacibaculosis induction and 

suggested that the body surface can be considered the primary site of T. maritimum 

infection, as was also suggested in Vilar et al. (2012). In addition, data regarding mucus 

and plasma activities against T. maritimum suggested both a lack of host innate immune 

responses against this particular pathogen and evading strategies of T. maritimum 

against Senegalese sole.  
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Considering the information reviewed in the literature, the present work studied for the 

first time, the in vivo mucosal immune response of Senegalese sole after the infection 

with one of its main threatening pathogens, T. maritimum. Therefore, one of the aims of 

the study was to determine the haematological profile and several humoral parameters 

in plasma and skin mucus after bacterial bath-challenge with T. maritimum. Interestingly, 

due to their condition of flatfish, it was wanted to differentiate between the skin mucus 

from ocular and blind sites in order to evaluate if there are differences in the mucosal 

immune response between both zones. The second aim of the present study was to 

assess possible resistance to bath challenge with T. maritimum through the evaluation 

of innate immune parameters at systemic (plasma) and local level (skin mucus), as well 

as, the disease resistance.  

 

For these reasons, the present study was divided into two experiments to 

evaluate:  

1) Haematological profile, several immune-related enzymes, natural haemolytic 

complement and bactericidal activities in skin mucus (from ocular and blind sides) and 

plasma after 1, 2 and 3 weeks of bath challenge with T. maritimum.  

 

2) Several immune-related enzymes and bactericidal activities in skin mucus 

(from ocular and blind sides) and plasma after 4 weeks of bath challenge with T. 

maritimum, as well as, the survival rates after a second bath challenge with T. maritimum 

(ten times higher) at 5 weeks of first bath challenge.
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Figure 9. General graphical abstract. 
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5.1. Fish care and maintenance 

Healthy adult specimens of Senegalese sole with no history of tenacibaculosis (164.09 

± 5.08 g mean body weight and 25.28 ± 1.32 cm mean body length) were obtained from 

a commercial fish farm, located in north-west Portugal, and transported to the CIIMAR’s 

experimental facilities (University of Porto, Portugal). Prior to the trials, fish were 

maintained in a recirculating aerated seawater (33 ‰ salinity) system with mechanical 

and biological filtration where dissolved oxygen was maintained around 90%, water 

temperature at 21 ± 1ºC, and a 12 h light/12 h dark photoperiod was adopted. Fish were 

fed to apparent satiety with commercial pellets (Skretting LE-2 ELITE, Spain). Ammonia 

and nitrite levels in the water were measured twice a week using commercial kits and 

never exceeded 0.025 and 0.3 mg L-1, respectively.  

5.2. Bacterial culture condition and inoculum 

preparation 

T. maritimum strain ACC6.1 isolated from the Senegalese sole in a local fish farm was 

kindly provided by Professor Alicia E. Toranzo (Departamento de Microbiología y 

Parasitología, Facultad de Biología, University of Santiago de Compostela, Spain). 

Bacteria were kept frozen at -80°C until being used. The recovery of bacteria was 

achieved using marine agar (CONDA, Spain) at 25 °C for 48 hours. For inoculum 

preparation, the bacteria were harvested and inoculated into 50 ml of marine broth (MB) 

for additional 48 hours under the same temperature with continuous shaking (140 rpm). 

Exponentially growing bacteria were harvested by centrifugation at 4,000 x g for 30 min, 

re-suspended in sterile physiological saline (0.9% NaCl solution) and adjusted to the final 

concentration (2.7  105 CFU ml-1) according to Mabrok et al. (2016). 

5.3. Experimental design and sampling 

This experiment was directed by trained scientists (following FELASA category C 

recommendations) and conducted according to the European Union Directive 

2010/63/EU on the protection of animals for scientific purposes. It was divided into two 

parts: Experiment 1 and 2. 
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Experiment 1 

MUCOSAL IMMUNE RESPONSES IN SENEGALESE SOLE JUVENILES AFTER 

TENACIBACULUM MARITIMUM CHALLENGE: A COMPARATIVE STUDY 

BETWEEN OCULAR AND BLIND SIDES 

 

Fish were randomly distributed in 2 identical recirculated water systems composed of 6 

tanks filled with 8 L of aerated seawater at flow rate 900 L h-1 as shown in Fig. 11. 

Thereafter, fish were left to acclimate for fifteen days prior to bacterial challenge. 

Subsequently, one of those systems (6 tanks, n=18) were bath challenged with a final 

bacterial concentration of 2.7 x 105 CFU mL-1 in 1 L of sea water at 23 ± 1 °C with strong 

aeration for 24 hours. Afterwards, the rearing water in each tank was changed three 

times and the recirculation system was re-established. The remaining system (6 tanks, 

n=18) was challenged under the same conditions with sterile marine broth (MB) instead 

of bacteria and served as control. One fish was then removed from each tank at the 

following times after bacterial challenge: 1, 2 and 3 weeks; then, skin mucus, blood and 

plasma were collected as described below.  Fish were fed daily at a ratio of 1% of total 

fish biomass. In addition, ammonia and nitrite levels were assessed daily and kept below 

0.025 and 0.3 mg L-1, respectively. 

 

 

 

 

 

 

 

 

 

Figure 10. Experiment 1 experimental design.  
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Experiment 2 

DISEASE RESISTANCE AND IMMUNE RESPONSE IN SKIN MUCUS AND PLASMA 

OF SENEGALESE SOLE AFTER TENACIBACULUM MARITIMUM CHALLENGE 

Eighteen groups of 2 fishes each one were randomly distributed in 3 identical recirculated 

water systems composed of 6 tanks each one filled with 8 L of aerated sea water at flow 

rate 900 L h-1. Two of the systems were selected as control and were defined as “Control 

A” and “Control B”. The other system was considered the experimental group as it is 

represented in Fig. 12. Thereafter, fish were left to acclimate for 15 days prior to bacterial 

challenge. Subsequently, the experimental group (6 tanks, n=12) were bath challenged 

in 1 L of sea water at 23 ± 1°C with strong aeration for 24 hours with the same bacterial 

concentration than the previous experiment (2.7 x 105 CFU mL-1 of T. maritimum) as 

described in figure 12.  

 

 

Figure 11. Experiment 2 experimental design. 

 

Afterwards, the rearing water in each tank was changed three times and the recirculation 

system was restored. The remaining systems “Control A and B” (12 tanks, n=24) were 
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challenged under the same conditions with sterile marine broth (MB) instead of bacteria 

and served as controls. All fish were then removed from each tank at 4th week, and skin 

mucus of both sides (up and down), blood and plasma were collected as described 

below.  

After the sampling point a new infection ten times more concentrated than before of T. 

maritimum (2.7 x 106 CFU mL-1 of T. maritimum) were applied in the previous challenged 

groups and in one of the previous control systems (6 tanks, N=12) to become the “2nd 

challenge-control” as shown in figure 12. After this second infection, the survival rates 

were determined.  

 

5.4. Samples collection  

Prior to each sampling point, fish 

were anesthetized with 2-

phenoxyethanol (1 ml L-1; Sigma). 

Skin mucus was aseptically 

collected from specimens using the 

method described by Guardiola et 

al. (2014) with slight modifications. 

Firstly, the fish were drained and 

subsequently the ocular and blind 

sides of both control and challenged 

fish were gently scraped by using a 

cell scraper with enough care to avoid the mixture of skin mucus between both sides as 

well as the contamination with urogenital and/or intestinal excretions. Collected mucus 

samples were then centrifuged at 2,000 × g and 4 ºC for 10 min. The supernatant was 

then filtrated (0.2 µm pore size; Sarstedt), aliquoted and stored at -80 ºC until further 

analyses. Following mucus collection, blood samples were withdrawn from the caudal 

vessel with heparinized syringes as shown in Fig. 13, placed in heparinized Eppendorf 

tubes and used to determine total erythrocytes and leucocytes counts and to prepare 

blood smear preparations. The remaining blood was used to collect plasma, following 

centrifugation (10,000 × g, 10 min, at 4 °C). Plasma was then frozen in liquid nitrogen 

and stored at −80 °C until further analysis.  

Figure 12. Blood collection from the caudal vein. 
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5.5. Haematological procedures  

The haematological profile consisted of total red (RBC) and white (WBC) blood cells 

counts, haematocrit (Ht) and haemoglobin (Hb; SPINREACT kit, ref. 1001230, Spain). 

The mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH) and mean 

corpuscular haemoglobin concentration (MCHC) were also calculated as follows: 

𝐌𝐂𝐇 (𝐩𝐠 𝐜𝐞𝐥𝐥−𝟏) = (𝐇𝐛
𝐑𝐁𝐂⁄ ) ∗ 𝟏𝟎  

𝐌𝐂𝐕 (µ𝐦𝟑) = (𝐇𝐭
𝐑𝐁𝐂⁄ ) ∗ 𝟏𝟎  

𝐌𝐂𝐇𝐂 (𝐠 𝟏𝟎𝟎 𝐦𝐥−𝟏) = (𝐇𝐛
𝐇𝐭⁄ ) ∗ 𝟏𝟎  

 

 

Figure 13. Leucocytes classified as thrombocytes, lymphocytes, monocytes and neutrophils in 
Solea senegalensis. Blood smear, Wright’s stain (Haemacolor; Merck), Microscope at 1000x. 
Photo taken at the CIIMAR facilities. 

Immediately after blood collection, blood smears were performed from homogenized 

blood, air dried, and stained with Wright's stain (Haemacolor; Merck) after fixation with 

formolethanol (10% of 37% formaldehyde in absolute ethanol). Detection of peroxidase 

activity to label neutrophils was carried out according to Afonso et al. (1998). The slides 

were examined under oil immersion (1,000×), and at least 200 leucocytes were counted 

and classified as thrombocytes, lymphocytes, monocytes and neutrophils as shown in 

Fig. 14. The absolute values (×104 µl-1) of each leucocyte type were calculated. 
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5.6. Humoral immune parameters  

5.6.1. Natural haemolytic complement activity (ACH50) 

The natural haemolytic complement activity (ACH50) was measured according to Sunyer 

and Tort (1995) with some modifications. The following buffers were used: GVB (Isotonic 

veronal buffered saline), pH 7.3, containing 0.1% gelatin; EDTA-GVB, as previous one 

but containing 20 mM EDTA; and Mg-EGTA-GVB, which is GVB with 10 mM Mg+2 and 

10 mM EGTA. Horse red blood cells (HoRBC; Probiologica Lda, Portugal) were used for 

haemolytic complement activity determination. HoRBC were washed four times in GVB 

and resuspended in GVB to a concentration of 2.5 x 108 cells ml-1. Twenty μl of HoRBC 

suspension was then added to 60 μl of serially diluted plasma and skin mucus in Mg-

EGTA-GVB buffer. The values of maximum (100%) and minimum (spontaneous) 

haemolysis were obtained by adding 40 µl of distilled water or Mg-EGTA-GVB buffer to 

20 µl samples of HoRBC, respectively. Samples were incubated at room temperature for 

100 min with regular shaking. The reaction was stopped by adding 150 µl of cold EDTA-

GVB. Samples were then centrifuged, and the extent of haemolysis was estimated by 

measuring the optical density of the supernatant at 414 nm in a microplate reader 

(Synergy HT). The degree of haemolysis (Y) was estimated and the lysis curve for each 

specimen was obtained by plotting Y (1-Y)-1 against the volume of plasma and skin 

mucus homogenates added on a log-log scaled graph. The volume of plasma and skin 

mucus homogenates producing 50% haemolysis (ACH50) was determined and the 

number of ACH50 units ml-1 obtained for each experimental fish. It was not possible to 

determine the complement in the plasma in experiment 2 due to lack of sample. 

5.6.2. Peroxidase activity 

Peroxidase activity in plasma and skin mucus was measured using the procedure 

described by Quade and Roth (1997). Briefly, 15 µl of plasma and 30 µl of skin mucus 

were diluted with 135 or 120 µl of Hank’s Balanced Salt Solution (HBSS) without Ca2+ 

and Mg2+ in flat-bottomed 96-well plates. Then, 50 µl of 20 mM 3,3’,5,5’-

tetrametilbenzidine hydrochloride (TMB; Sigma-Aldrich) and 50 µl of 5 mM H2O2 were 

added. The reaction was stopped after 2 min by adding 50 µl of 2 M sulphuric acid and 

the optical density (OD) was read at 450 nm in a microplate reader (Synergy HT). Wells 

without plasma and skin mucus were used as blanks. One unit of peroxidase was defined 
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as the amount producing an absorbance change of 1 and the final results were 

expressed as units ml-1. 

5.6.3. Lysozyme activity 

Lysozyme activity was measured according to the turbidimetric method described by 

Swain et al. (2007) with some modifications. Briefly, 20 μl of plasma or skin mucus were 

placed in flat-bottomed 96-well plates. To each well, 180 µl of freeze-dried Micrococcus 

lysodeikticus (0.2 mg ml-1, Sigma) in 40 mM sodium phosphate (pH 6.2) was added as 

lysozyme substrate. As blanks of each sample, 20 μl of plasma or skin mucus were 

added to 180 μl of sodium phosphate buffer. The absorbance at 450 nm was measured 

after 20 min at 35 ºC in a microplate reader (Synergy HT). The amounts of lysozyme 

present in plasma and skin mucus were obtained from a standard curve made with hen 

egg white lysozyme (HEWL, Sigma) through serial dilutions in the above buffer. Plasma 

or skin mucus lysozyme values are expressed as μg ml-1 equivalent of HEWL activity.  

5.6.4. Protease 

Protease activity was quantified in plasma and skin mucus samples using the azocasein 

hydrolysis assay according to Guardiola et al. (2016) with some modifications. Briefly, 

100 μl of skin mucus was incubated with 100 μl of 100 mM ammonium bicarbonate buffer 

containing 0.7% azocasein (Sigma) for 24 h at 30ºC. In the case of plasma, 10 μl of 

plasma was diluted in 100 μl of ammonium bicarbonate (100 mM) and incubated with 

equal volume of 100 mM ammonium bicarbonate containing 2% azocasein (Sigma) at 

the same conditions (24 h at 30ºC). The reaction was stopped by adding 4.6% (skin 

mucus) or 10% (plasma) trichloroacetic acid (TCA) and the mixture centrifuged (6000 x 

g, 5 min). The supernatants were transferred to a 96-well plate in triplicate containing 

100 µl well-1 of 0.5 N NaOH in the case of skin mucus samples and 1 N in the plasma 

ones. The OD read at 450 nm using a microplate reader (Synergy HT). Skin mucus and 

plasma were replaced by trypsin solution (5 mg ml-1, Sigma), as the positive control 

(100% of protease activity), or by buffer, as the negative control (0% activity). The 

percentage of trypsin activity compared to the positive control was calculated. 

% 𝐧𝐨𝐧 𝐢𝐧𝐡𝐢𝐛𝐢𝐭𝐞𝐝 𝐭𝐫𝐲𝐩𝐬𝐢𝐧 =
𝐒𝐚𝐦𝐩𝐥𝐞 𝐀𝐛𝐬. 𝐱 𝟏𝟎𝟎

𝐀𝐛𝐬. 𝐨𝐟 𝐭𝐡𝐞 𝐫𝐞𝐟𝐞𝐫𝐞𝐧𝐜𝐞 𝐬𝐚𝐦𝐩𝐥𝐞
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5.6.5. Antiprotease activity 

Total antiprotease activity was determined by the ability of skin mucus or plasma to inhibit 

trypsin activity with some modifications (Machado et al., 2015). Briefly, 50 µl of skin 

mucus or 10 µl of plasma were incubated for 10 min at 22ºC with 10 µl of standard trypsin 

solution (5 mg ml-1 in NaHCO3, 5 mg ml-1, pH 8.3) for 10 min at 22 ºC in polystyrene 

microtubes (Fig. 14). To the incubation mixture, 60 µl or 100 µl of 115 mM PBS 

(NaH2PO4, 13.9 mg ml-1, pH 7.0) for skin mucus and plasma samples, respectively, and 

125 μl of 2% azocasein (in 60 mM sodium bicarbonate, pH 8.3) was added and the 

samples incubated for 60 min at 22ºC. Finally, 250 µl of 10% of TCA (trichloroacetic acid) 

was added a new incubation for 30 min at 22ºC was done. The mixture was then 

centrifuged (10,000 x g, 5 min) being the supernatants transferred to a 96-well plate in 

triplicate containing 100 µl well-1 of 1 N NaOH, and the OD read at 450 nm using a 

microplate reader 

(Synergy HT). PBS in 

place of skin mucus, 

plasma and trypsin 

served as blank whereas 

the reference sample 

was PBS in place of skin 

mucus and plasma. The 

percentage inhibition of 

trypsin activity compared 

to the reference sample 

was calculated.  

Figure 14. Material used for antiprotease activity assay. Photo taken at the CIIMAR facilities. 

 

% 𝒏𝒐𝒏 𝒊𝒏𝒉𝒊𝒃𝒊𝒕𝒆𝒅 𝒕𝒓𝒚𝒑𝒔𝒊𝒏 =
𝑺𝒂𝒎𝒑𝒍𝒆 𝑨𝒃𝒔. 𝒙 𝟏𝟎𝟎

𝑨𝒃𝒔. 𝒐𝒇 𝒕𝒉𝒆 𝒓𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆 𝒔𝒂𝒎𝒑𝒍𝒆
 

 

% 𝒊𝒏𝒉𝒊𝒃𝒊𝒕𝒆𝒅 𝒕𝒓𝒚𝒑𝒔𝒊𝒏 = 𝟏𝟎𝟎 −  % 𝒏𝒐𝒏 𝒊𝒏𝒉𝒊𝒃𝒊𝒕𝒆𝒅 𝒕𝒓𝒚𝒑𝒔𝒊𝒏 
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5.7. Bactericidal activity 

Bactericidal activity present in skin mucus and plasma samples was determined using 

two marine pathogenic bacteria: P. damselae piscicida and V. anguillarum (strains PP3 

and PC696.1 respectively). Bacteria were grown in agar plates at 25ºC in tryptic soy 

media (TSB, Sigma) for V. anguillarum and P. damselae piscicida for 24 h. Afterwards, 

fresh single colonies of 1-2 mm were diluted in 5 ml of appropriate liquid culture medium 

and cultured for 24 h at 25ºC on an orbital incubator (250 rpm) until exponential growing, 

at which point bacteria were resuspended in sterile HBSS and adjusted to 1 × 106 and 1 

× 108 colony-forming unit (cfu) ml-1 for P. damselae piscicida and V. anguillarum, 

respectively.  

Skin mucus and plasma bactericidal activity were then determined by evaluating their 

effects on the bacterial growth curves according to Machado et al., (2015) with some 

modifications. Briefly, 20 μl of skin mucus or plasma were added to duplicate wells of a 

U-shaped 96-well plate as it was shown in fig.15. Hank’s balanced salt solution was 

added to some wells instead of sample and served as positive control. To each well, 20 

μl of each bacteria solution were added and plates were incubated for 2.5 h at 25ºC. To 

each well, 25 μl of 3-(4,5 dimethyl-2-yl)-2,5-diphenyl tetrazolium bromide (MTT, 1 mg ml-

1; Sigma-Aldrich) was added and incubated for 10 min to allow the formation of formazan. 

Plates were then centrifuged at 2,000 x g for 10 min and the precipitate was dissolved in 

200 μl of dimethyl sulfoxide (DMSO, Sigma-Aldrich). The absorbance of the dissolved 

formazan was measured at 560 nm in a microplate reader (Synergy HT). Bactericidal 

activity is expressed as percentage, calculated from the difference between bacteria 

surviving compared to the number of bacteria from positive controls (100%). 

 

% 𝒗𝒊𝒂𝒃𝒍𝒆 𝒃𝒂𝒄𝒕𝒆𝒓𝒊𝒂 =
𝑺𝒂𝒎𝒑𝒍𝒆 𝑨𝒃𝒔. 𝒙 𝟏𝟎𝟎

𝑨𝒃𝒔. 𝒐𝒇 𝒕𝒉𝒆 𝒓𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆 𝒔𝒂𝒎𝒑𝒍𝒆
 

 

% 𝒏𝒐 𝒗𝒊𝒂𝒃𝒍𝒆 𝒃𝒂𝒄𝒕𝒆𝒓𝒊𝒂 (𝒃𝒂𝒄𝒕𝒆𝒓𝒊𝒄𝒊𝒅𝒂𝒍 𝒂𝒄𝒕𝒊𝒗𝒊𝒕𝒚) = 𝟏𝟎𝟎 − % 𝒗𝒊𝒂𝒃𝒍𝒆 𝒃𝒂𝒄𝒕𝒆𝒓𝒊𝒂 
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Figure 15. U-shaped 96-well microplates used for bactericidal activity assay. 

 

5.8. Statistical analysis  

 

All analyses were conducted in triplicates and the results are expressed as means ± 

standard error of the mean (SEM). Data were analysed by Two-way analysis of variance 

(ANOVA) (haemotological profile and plasma immune-related analysis) or Multifactorial 

ANOVA (mucosal immune-related analysis) with experimental group, sampling time and 

origin (ocular or blind sides) as variables. Both procedures were followed by Tukey post 

hoc test (sampling time) or t-test student (experimental group and skin mucus origin) to 

identify differences in the experimental groups. Normality of the data was previously 

assessed using a Shapiro-Wilk test and homogeneity of variance was also verified using 

the Levene test and, when necessary, outliers were removed using the SPSS tool for 

outliers and extremes removal. All statistical analyses were conducted using SPSS 19.0 

and differences were considered statistically significant when p < 0.05. 
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6.1. Experiment 1  

6.1.1. Haematological profile and differential cell counts 

Ht, Hb, MCV, MCH, MCHC, RBC and WBC of unchallenged and challenged with T. 

maritimum Senegalese soles are shown in Table 1 whilst the relative proportion and 

absolute values of peripheral blood leucocytes are represented in Table 2. Overall, 

bacterial bath challenge did not affect the haematological parameters, as well as the 

relative proportion and absolute numbers of the different leucocyte types. Only a 

decreased in the absolute value of monocytes was observed at 2 weeks in challenged 

fish compared to control group (unchallenged). Comparing each experimental group with 

the time, no variations were observed in any parameters (data not shown).  

 

Table 1. Haematocrit (Ht), haemoglobin (Hb), mean corpuscular volume (MCV), mean 
corpuscular haemoglobin (MCH), mean corpuscular haemoglobin concentration (MCHC), red 
blood cells (RBC) and white blood cells (WBC) in Senegalese sole control (unchallenged) and 
challenged with T. maritimum during 24 hours at 1, 2 and 3 weeks. Values are expressed as 
means ± SE (n=6). 

Parameters 

Experimental time (weeks) 

1  2 3 

Control Challenged Control Challenged Control Challenged 

Ht (%) 13 ± 1.38 13 ± 1.41 13.17 ± 3.02 13.60 ± 4.03 
14.83 ± 

3.02 
17.00 ± 2.97 

Hb (g dl-1) 0.38 ± 0.14 0.55 ± 0.22 0.62 ± 0.24 0.81 ± 0.30 0.60 ± 0.28 0.86 ± 0.09 

MCV (µm3) 
124.1 ± 

19.2 119.3 ± 4.3 123.6 ± 19.2 133.5 ± 37.7 

123.3 ± 

20.6 135.3 ± 37.6 

MCH   
(pg cell-1) 3.59 ± 1.58 5.05 ± 2.26 6.18 ± 2.99 7.85 ± 2.75 4.85 ± 1.77 6.76 ± 0.47 

MCHC  
(g 100 ml-1) 

2.80 ± 0.87 4.21 ± 1.85 5.22 ± 2.74 6.40 ± 2.86 3.88 ± 1.02 5.19 ± 0.86 

RBC (×106 µl-1) 1.08 ± 0.21 1.09 ± 0.12 1.06 ± 0.15 1.04 ± 0.18 1.22 ± 0.22 1.29 ± 0.16 

WBC (×104 µl-1) 9.78 ± 3.83 8.98 ± 1.56 7.95 ± 2.04 7.08 ± 1.38 7.02 ± 3.56 8.96 ± 1.75 

 

 



Results  56 
 

Table 2. Relative proportion and absolute values of peripheral blood leucocytes (thrombocytes, 
lymphocytes, monocytes and neutrophils) of Senegalese sole control (unchallenged) and 
challenged with T. maritimum during 24 hours at 1, 2 and 3 weeks. Values are expressed as 
means ± SE (n=6). Asterisk denotes significant differences between treatment groups (p<0.05). 

 

Parameters 

Experimental time (weeks) 

1 2 3 

Control Challenged Control Challenged Control Challenged 

Thrombocytes 

(% WBC) 
34.15 ± 

5.42 32.47 ± 3.60 

38.68 ± 

14.7 46.64 ± 9.46 

41.80 ± 

5.95 47.6 ± 5.54 

(×104 µl-1) 
3.84 ± 

1.22 3.49 ± 0.78 

3.41 ± 

1.33 3.75 ± 1.31 

3.72 ± 

1.41 5.92 ± 1.32 

Lymphocytes 

(% WBC) 
58.36 ± 

4.06 
59.83 ± 5.63 

51.54 ± 

14.9 
43.67 ± 11.4 

49.79 ± 

7.64 
46.00 ± 5.68 

(×104 µl-1) 
6.68 ± 

2.32 6.38 ± 1.05 

4.66 ± 

2.17 3.34 ± 0.70 

4.62 ± 

2.11 5.68 ± 0.92 

Monocytes 

(% WBC) 
1.81 ± 

0.38 1.81 ± 0.37 

2.41 ± 

0.60 1.20 ± 0.51* 

1.50 ± 

0.57 1.1 ± 0.37 

(×104 µl-1) 
0.20 ± 

0.07 0.19 ± 0.05 

0.22 ± 

0.08 0.09 ± 0.03 

0.13 ± 

0.08 0.14 ± 0.06 

Neutrophils 

(% WBC) 
5.68 ± 

2.32 5.90 ± 4.29 

7.40 ± 

2.49 8.49 ± 2.33 

6.91 ± 

2.54 5.3 ± 1.29 

(×104 µl-1) 
0.69 ± 

0.44 0.60 ± 0.37 

0.65 ± 

0.24 0.69 ± 0.29 

0.56 ± 

0.25 0.64 ± 0.12 
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6.1.2. Innate immune parameters and bactericidal activity in 

plasma 

Protease (Fig. 16A), antiprotease (Fig. 16B), Natural haemolytic complement (Fig. 17A), 

peroxidase (Fig. 17B) and lysozyme (Fig. 17C) activities were unaffected by bacterial 

challenge. 

The bactericidal activity against pathogenic bacterium P. damselae piscicida (Fig. 18A) 

was not modified by challenge whilst an increase in bactericidal activity against V. 

anguillarum in plasma from challenged fish compared to the control group was observed 

at 1 week (Fig. 18B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Protease (%) (A) and antiprotease (%) (B) activities in plasma samples of Senegalese 
sole control (unchallenged) and challenged with T. maritimum during 24 hours at 1, 2 and 3 
weeks. Bars represent the means ± SE (n=6). Asterisk denotes significant differences between 
experimental groups (T-test; p <0.05). 
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Figure 17. Natural haemolytic complement (ACH50 units ml-1) (A), peroxidase (units ml-1) (B) and 
lysozyme (µg ml-1) (C) activities in plasma samples of Senegalese sole control (unchallenged) 
and challenged with T. maritimum during 24 hours at 1, 2 and 3 weeks. Bars represent the means 
± SE (n=6). Different letters denote significant variations among experimental groups regarding 
to time (Two way ANOVA; p<0.05). 
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Respect to time factor, the increases of bactericidal activity against P. damselae piscicida 

(Fig. 18A) observed in both experimental times at 3 weeks were significant respect to 

values found at 1 week. In the case of haemolytic complement (Fig. 17A), the activity 

was increased at 2 weeks compared to values observed at first sampling point (1 week). 

 

 

Figure 18. Bactericidal activity (%) against Photobacterium damselae subsp. piscicida (A) and 
Vibrio anguillarum (B) in plasma samples of Senegalese sole control (unchallenged) and 
challenged with T. maritimum during 24 hours at 1, 2 and 3 weeks. Bars represent the means ± 
SEM (n=6). Asterisk denotes significant differences between experimental groups (T-test; p<0.05) 
whilst letters denote significant variations among experimental groups regarding to time (Two way 
ANOVA; p<0.05). 
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6.1.3. Immune parameters and bactericidal activity in skin mucus 

from ocular and blind sites 

Natural haemolytic complement increased in skin mucus from the blind side of 

challenged fish respect to unchallenged (control) ones at 2 weeks of trial (Fig. 20A). After 

2 weeks of the challenge, peroxidase (Fig. 20B) and bactericidal activities against V. 

anguillarum (Fig. 21B) were higher in ocular skin mucus of challenged fish respect to 

control group. Similarly, bactericidal activity against P. damselae piscicida was also 

incremented in ocular skin mucus of challenged fish compared to unchallenged ones but 

at the end of the experiment (3 weeks) (Fig. 21A). Contrarily, bactericidal activity against 

V. anguillarum was reduced in blind skin mucus of challenged fish comparatively to 

control group (Fig. 21B). Finally, no variations were observed in protease (Fig. 19A), 

antiprotease (Fig. 19B) and lysozyme (Fig. 20C), activities in skin mucus of challenged 

fish compared to control group from both origins (ocular and blind) at any sampling point. 

Comparing each experimental group with both origins (ocular and blind), the activities of 

haemolytic complement (2 week), lysozyme (1 and 3 weeks), protease (1, 2 and 3 

weeks), bactericidal against P. damselae piscicida (1 and 2 weeks) and V. anguillarum 

(1 week) were higher in ocular skin mucus of control fish (unchallenged) compared to 

blind site, except to peroxidase activity at 2 weeks (Fig. 22). Following a similar pattern, 

the activities of haemolytic complement (1 week), lysozyme (1 and 2 weeks), protease 

(1, 2 and 3 weeks), bactericidal against P. damselae piscicida (2 and 3 weeks) and V. 

anguillarum (2 and 3 weeks) were higher in ocular skin mucus of challenged fish respect 

to values found in blind skin mucus, except to peroxidase activity at 1 week (Fig. 22).  

In respect of time, only the bactericidal activity against V. anguillarum showed variations 

(Table 3). Concretely, a decrease in bactericidal activity in ocular skin mucus of 

unchallenged and challenged fish was observed at 3 weeks compared to values found 

at 1 and 2 weeks. Similarly, a bactericidal activity reduction was observed at 2 and 3 

weeks in blind skin mucus of control fish respect to first sampling point (1 week).  

Regarding to skin mucus origins (ocular and blind) and independently of time and 

experimental group variables, a higher activity was observed of all immune-related 

parameters measured in the ocular side compared to blind one, except for peroxidase 

which showed more activity in skin mucus from blind side. 
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Figure 19. Protease (%) (A) and antiprotease (%) (B) activities in ocular and blind skin mucus 
samples of Senegalese sole control (unchallenged) and challenged with Tenacibaculum 
maritimum during 24 hours at 1, 2 and 3 weeks. Bars represent the means ± SE (n=6). Asterisk 
denotes significant differences between experimental groups (T-test; p<0.05). Small and capital 
letters denote significant variations between ocular and blind skin mucus at the same time, 
respectively (T-test; p<0.05). 

  



Results  62 
 

Figure 20. Natural haemolytic complement (ACH50 units ml-1) (A), peroxidase (units ml-1) (B) and 
lysozyme (µg ml-1) (C) activities in ocular and blind skin mucus samples of Senegalese sole 
control (unchallenged) and challenged with Tenacibaculum maritimum during 24 hours at 1, 2 
and 3 weeks. Bars represent the means ± SE (n=6). Asterisks denote significant differences 
between experimental groups whilst small and capital letters denote significant variations 
between ocular and blind skin mucus at the same time, respectively (T-test; p<0.05). 
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Figure 21. Bactericidal activity (%) against Photobacterium damselae subsp. piscicida (Pdp) (A) 
and Vibrio anguillarum (B) in ocular and blind skin mucus samples of Senegalese sole control 
(unchallenged) and challenged with Tenacibaculum maritimum during 24 hours at 1, 2 and 3 
weeks. Bars represent the means ± SEM (n=6). Asterisks denote significant differences between 
experimental groups whilst small and capital letters denote significant variations between ocular 
and blind skin mucus at the same time, respectively (T-test; p<0.05). In the table, different letters 
denote significant variations between among experimental groups regarding to time (Two way 
ANOVA; p<0.05). Ns: non-significant.

 

Bactericidal activity (%) Origin 

Experimental times 

(weeks) P 

values 
1 2 3 

A) Pdp 
Ocular side - - - ns 

Blind  side - - - ns 

B) V. anguillarum 
Ocular  side a a b 0.00 

Blind  side a b b 0.00 
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Figure 22. Comparative graphic diagram showing the activity levels (> or <) of the immune-related 
parameters found in skin mucus from ocular versus (vs) blind sides of Senegalese sole control 
(unchallenged) and challenged with T. maritimum during 24 hours at 1, 2 and 3 weeks. ACH50: 
natural haemolytic complement; PER: peroxidase; LYZ lysozyme; PRO: protease; ANTI: 
antiprotease; Pdp: bactericidal activity against Photobacterium damselae subsp. piscicida; V. 
ang: bactericidal activity against Vibrio anguillarum. 
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Table 3. Differences found in the parameters evaluated in ocular and blind skin mucus of 
Senegalese sole control (unchallenged) and challenged with T. maritimum during 24 hours 
respect to time (1, 2 and 3 weeks) regardless of experimental group (n=6). Different letters denote 
significant differences between experimental groups regarding to time. One-way ANOVA was 
performed: ns: non-significant (p<0.05). 

Parameters evaluated Origin 
Experimental 

groups 

Experimental 
times (weeks) 

 
P 

values 

1 2 3  

HUMORAL 
FACTORS 

Haemolytic 
complement 

(ACH50 units ml-1) 

Ocular 
Control - - - ns 

Challenged - - - ns 

Blind 
Control - - - ns 

Challenged - - - ns 

Peroxidase 
(units ml-1) 

Ocular 
Control - - - ns 

Challenged - - - ns 

Blind 
Control - - - ns 

Challenged - - - ns 

Lysozyme 
(µg ml-1) 

Ocular 
Control - - - ns 

Challenged - - - ns 

Blind 
Control - - - ns 

Challenged - - - ns 

Protease (%) 

Ocular 
Control - - - ns 

Challenged - - - ns 

Blind 
Control - - - ns 

Challenged - - - ns 

Antiprotease (%) 

Ocular 
Control - - - ns 

Challenged - - - ns 

Blind 
Control - - - ns 

Challenged - - - ns 

BACTERICIDAL 
ACTIVITY  

(%) 

Photobacterium 
damselae 

Ocular 
Control - - - ns 

Challenged - - - ns 

Blind 
Control - - - ns 

Challenged - - - ns 

Vibrio anguillarum 

Ocular 
Control a a b 0.00 

Challenged a b c 0.00 

Blind 
Control a b b 0.00 

Challenged - - - ns 
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6.2. Experiment 2 

6.2.1. Innate immune parameters and bactericidal activity in 

plasma  

Lysozyme (Fig. 23B), protease (Fig. 24A) and antiprotease (24B) activities were 

unaffected after bacterial challenge. However, peroxidase activity (Fig. 23A) was 

incremented in challenged fish compared to values found in both controls after 4 weeks 

post-challenge. The bactericidal activity against opportunist pathogenic bacterium P. 

damselae (Fig. 25A) was not modified by T. maritimum challenge whilst an decrease in 

this activity against V. anguillarum was observed in challenged fish compared to the 

control groups at 4 weeks of trial (Fig. 24B). 

 

 

 

 

 

 

 

 

 

 

 

Figure 23. Peroxidase (units ml-1) (A) and lysozyme (µg ml-1) (B) activities in plasma samples of 
Senegalese sole control-control, control and challenged with Tenacibaculum maritimum during 
24 hours at 4 weeks. Bars represent the means ± SE (n=12). Different letters denote significant 
differences between experimental groups (ANOVA; p<0.05).  
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Figure 24. Protease (%) (A) and antiprotease (%) (B) activities in plasma samples of Senegalese 
sole control-control, control and challenged with Tenacibaculum maritimum during 24 hours at 4 
weeks. Bars represent the means ± SE (n=12).  
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Figure 25. Bactericidal activity (%) against Photobacterium damselae subsp. piscicida (A) and 
Vibrio anguillarum (B) in plasma samples of Senegalese sole control-control, control and 
challenged with Tenacibaculum maritimum during 24 hours at 4 weeks. Bars represent the means 
± SE (n=12). Different letters denote significant differences between experimental groups 
(ANOVA; p<0.05). 
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6.2.2. Immune parameters and bactericidal activity in skin mucus 

from ocular and blind sites  

No variations were observed in haemolytic complement (Fig. 26A), peroxidase (Fig. 

26B), lysozyme (Fig. 26C) and protease (Fig. 27A) activities in ocular skin mucus 

samples between experimental groups. Contrarily, antiprotease activity was reduced in 

the ocular skin mucus of challenged fish compared to both control ones (Fig. 27B). A 

similar pattern was observed in skin mucus from the blind side where no differences 

were found between experimental groups in none of the activities evaluated (Figs 26 and 

27). In addition, no variations were detected in the bactericidal activity against P. 

damselae piscicida (Fig. 28A) and V. anguillarum (Fig. 28B) between the experimental 

groups from ocular and blind skin mucus.  

Comparing each experimental group with both origins (ocular and blind), no variations 

were found in haemolytic complement (Fig. 26A), peroxidase (Fig. 26B) and lysozyme 

(Fig. 26C) activities in skin mucus from ocular side respect to blind side in none 

experimental groups. Interestingly, the protease activity was higher in skin mucus from 

ocular side of all experimental groups compared to blind site one (Fig. 27A), whilst an 

opposite pattern was observed in the antiprotease activity (Fig. 27B), which was lower in 

ocular skin mucus respect to values found in skin mucus from blind side of all 

experimental fish. Regarding bactericidal activity, whilst no variations were observed in 

bactericidal activity against P. damselae piscicida, this activity against V. anguillarum 

was lower in skin mucus from ocular side compared to blind one.  
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Figure 26. Natural haemolytic complement (ACH50 units ml-1) (A), peroxidase (units ml-1) (B) and 
lysozyme (µg ml-1) (C) activities in ocular and blind skin mucus samples of Senegalese sole 
control-control, control and challenged with Tenacibaculum maritimum during 24 hours at 4 
weeks. Bars represent the means ± SE (n=12).  
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Figure 27. Protease (%) (A) and antiprotease (%) (B) activities in ocular and blind skin mucus 
samples of Senegalese sole control-control, control and challenged with Tenacibaculum 
maritimum during 24 hours at 4 weeks. Bars represent the means ± SE (n=12). Different letters 
denote significant variations between experimental groups (ANOVA; p<0.05) whilst asterisks 
denote significant differences between ocular and blind skin mucus of each experimental group 
(T-test; p<0.05). 
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Figure 28. Bactericidal activity (%) against Photobacterium damselae subsp. piscicida (A) and 
Vibrio anguillarum (B) in ocular and blind skin mucus samples of Senegalese sole control-control, 
control and challenged with Tenacibaculum maritimum during 24 hours at 4 weeks. Bars 
represent the means ± SE (n=12). Asterisk denotes significant differences between ocular and 
blind skin mucus of each experimental group (T-test; p<0.05).  
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6.2.3. Disease resistance  

After 5 weeks of challenge with T. maritimum, a second challenged were carry out on 

one of control group (control) and the previous challenged group whilst the other control 

group (control-control) was challenged under the same conditions with sterile MB 

(instead of bacteria) and served as control of the second challenge.  

The mortality of Senegalese soles after the second experimental challenge was 

assessed for 12 days post-inoculation and survival rates were calculated (Fig. 29). The 

results showed no mortality in fish from control group. Contrarily, the group challenged 

for the first time (control-challenged) suffered mortalities after 4 and 7 days post-

challenge, reaching a 50 % survival rate at the end of experiment. However, the survival 

rate was around 80 % in fish from group challenged for the second time, showing 

mortalities after 10 and 12 days of challenge. Interestingly, significant differences were 

found between the control and the challenged groups respect to the control-challenged 

group. 

 

Figure 29. Survival curves of Senegalese sole control-control, control (challenged) and 
challenged (2nd challenge) with T. maritimum (2.7 x 106 CFU ml-1) during 24 hours after 5 weeks 
from the first infection (2.7 x 105 CFU ml-1). Curves represent the survival percentages during 14 
days (n=12). Asterisk denotes significant differences between experimental groups (Log-rank 
Mantel-Cox test; p<0.05).  
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7. Discussion  
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Fish skin surfaces are in constant interaction with a wide range of pathogenic 

microorganisms present in the aquatic environment and consequently, they are provided 

with a highly effective physical, chemical and biological barrier (Shephard, 1994; 

Subramanian et al, 2007). Due to this localization, skin mucus represents an interface 

between the environment and the interior milieu, making it of vital importance for aquatic 

animals (Benhamed et al., 2014). To date, several physico-chemical and biological 

parameters of skin mucus were already determined in many fish-related aquaculture 

species, such us gilthead seabream, European seabass, rainbow trout or Atlantic salmon 

(Fast et al., 2002; Subramanian et al., 2007; 2008; Guardiola et al., 2014). It is likely that 

the variation in these innate immune factors has different influences on the response of 

each species to disease processes (Fast et al., 2002). However, few studies have 

reported data about these parameters in skin mucus of Senegalese sole (Mabrok et al., 

2016; Guardiola et al., 2017), thus it is necessary to gather more knowledge about the 

biology and function of this defensive barrier in Senegalese sole, one of the most 

valuable flatfish species in Southern Europe.  

In the last years, many studies have revealed that the skin mucus of several fish species 

has strong anti-bacterial and/or bacteriostatic activities against a broad range of 

microbial pathogens (Kanno et al. 1989, Fouz et al. 1990, Magariños et al. 1995, Fast et 

al. 2002, Guardiola et al., 2015b). However, despite the important role of skin mucus in 

fish defense, the knowledge of the mucosal immune response during the bacterial 

infection process or after bacterial challenge remains limited. For instance, the results 

after the challenge of thirteen marine fish species with ten different bacteria showed that 

the most active skin mucus against Gram-positive bacteria was extracted from brill (S. 

rhombus) and common sole (S. solea) whilst the most active skin mucus against Gram-

negative bacteria were Ballan wrasse (Labrus bergylta) and common sole, being most 

of them flatfish species (Hellio et al., 2002). Considering that the first report about bath 

challenge with T. maritimum in Senegalese sole was reported recently by Mabrok et al. 

(2016), there is a great lack of knowledge about the properties of skin mucus in flatfish 

species, especially in Senegalese sole after bacterial challenge against one of its main 

pathogens.  

Despite the impressive gaps concerning T. maritimum route of entry, it is suggested that 

the primary infection site of the pathogen could be the body surface of fish species 

(Magariños et al., 1995; Avendaño-Herrera et al., 2006; Mabrok et al., 2016). 

Interestingly, no comparative studies have been reported between skin mucus from both 

sides of flatfish after a bacterial challenge. To the best of our knowledge, this is the first 

study presenting data regarding differences in the skin mucus immune defense between 
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the ocular and blind sides of the flatfish Senegalese sole against T. maritimum. 

Therefore, the present study intended to bring some insight regarding systemic (plasma) 

and local (ocular and blind skin mucus) immune responses in Senegalese sole after a 

bath challenge with T. maritimum.  

 

7.1. Experiment 1 

In this first study, the haematological profile and several immune-related parameters in 

plasma and skin mucus of Senegalese sole were determined after bacterial bath-

challenge to evaluate the systemic and local immune responses in both fish sides.  

7.1.1. Haematological profile after T. maritimum challenge 

The involvement of neutrophils and macrophages in phagocytosis, killing and 

degradation of invading microorganisms, as well as different patterns of localization and 

mobilization into the infected areas is well documented in fish (Steinhagen & Jendrysek 

1994; Afonso et al. 1998; do Vale et al., 2002). However, in our study, the dose 

administered of T. maritimum (2.7 x 105 CFU ml-1) did not change the haematological 

profile of Senegalese sole, neither the relative proportion and absolute numbers of the 

different leucocyte types in any of the experimental times. These data are in line with the 

findings found in Mabrok et al. (2016), where changes at haematological level occurred 

during the first 7 days of challenge and in our case the first sampling was at 1 week, so 

probably it was not possible to determine these changes. In addition, in Mabrok’s 

experience, peripheral lymphocyte and circulating thrombocyte number in challenged 

fish remained similar to control individuals until 14 days of challenge at the same 

conditions as in our experience. This fact could indicate that the first steps in the defence 

against infection do not translate into a leukocyte migration from the first week of 

infection, when our first sampling was made. However, they found a significant 

lymphocytosis in bath challenged specimens which could be attributed to the migration 

of lymphocyte to the tissues at the end of the trial (Mabrok, 2016).  

Costas et al., (2013) determined that plasma lysozyme and peroxidase contents 

correlated well with the increase in peripheral neutrophils. These phagocytes are thought 

to be the source of plasma lysozyme (Murray & Fletcher, 1976) and peroxidase (Ellis, 

1999), and increases in lysozyme and peroxidase levels have been associated with 

increases in neutrophil numbers (Muona & Soivio 1992; Cerezuela et al. 2016). This 
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correlation was also found in kelp grouper (Epinephelus bruneus) against Vibrio 

carchariae, where the activation of the phagocytic cell population had also produced an 

increased in the serum lysozyme, bactericidal and haemolytic complement activities (Kim 

et al., 2011). These results were in line with our findings since no significant differences 

neither in the number of neutrophils nor in the plasma lysozyme and peroxidase activity 

between the unchallenged and challenged fish were observed but it could be due to the 

lack of information at the initial phases of the bath-challenge. 

7.1.2. Immune response at systemic level after T. maritimum 

challenge 

In general, the present study showed no differences at the systemic level (blood) 

between unchallenged and bath challenged Senegalese sole. Indeed, other humoral 

factors beyond lysozyme and peroxidase activities, such as protease, antiprotease and 

haemolytic complement activities, followed a similar trend and no changes were 

observed between control and challenged fish. Interestingly, the haemolytic complement 

activity in plasma of unchallenged fish presented similar values than to the challenged 

ones, suggesting that the complement system has no major role against T. maritimum, 

at least through the alternative pathway. As it was described previously in Mabrok et al. 

(2016), the resistance of T. maritimum to the defence of the alternative complement 

system may be attributed to the presence of a lipopolysaccharide compound (LPS O-

chain) which enhances biofilm formation and seems to be unique for T. maritimum 

(Vinogradov et al. 2003). This fact is due to that contains an unusual linkage ([R]-2-

hydroxyglutaric acid residue).  In another study, Wiklund and Dalsgaard (2002) reported 

that both virulent and non-virulent strains of Flabobacterium psychrophilum can resist 

alternative complement activity in serum of rainbow trout. However, T. maritimum 

resistance could also be related to certain evolving strategies to withstand fish innate 

immunity as recorded in many other Gram-negative pathogens (Rooijakkers and Strijp, 

2007). This fact could explain that the parameters studied did not present any variation 

at systemic level after the T. maritimum challenge. However, these studies developed in 

Mabrok’s phD thesis (2016), in vitro plasma was compared with complement activity and 

without activity (heat-inactivated). Future works with some references as in that work 

would help to clarify if the systemic response does not exist due to strategies of evasion 

of the pathogen or other factors interfere as pathogen-host interactions, different 

dispersion of the bacteria during the bath or interaction of the bacteria with the microbiota 

of the water system. 
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At the same time, the present study showed an increase in the bactericidal activity 

against V. anguillarum in plasma of the fish challenged with T. maritimum. Contrarily, 

plasma incubated with P. damselae piscicida did not present any reaction after the 

challenge with T. maritimum. These results suggest that the systemic immune response 

of Senegalese sole after the bath challenge is more effective against V. anguillarum than 

against P. damselae piscicida. Similarly, plasma of gilthead seabream presented more 

bactericidal activity against bacteria of the Vibrio genus (V. harveyi) than against P. 

damselae piscicida and proposed that the bacteria virulence of Vibrio genus depend on 

the site of the wound whilst P. damselae piscicida was not-dependent (Ceballos-

Francisco et al., 2018). Other studies also suggested that a possible portal of entry for 

T. maritimum and Vibrio alginolyticus into the fish body could be the skin while the 

pathways of entry of P. damselae piscicida may vary depending on the host so that some 

fish can be infected by ingestion of the pathogen (Benhamed et al., 2014). This could 

explain why Senegalese sole could present a more effective response against Vibrio 

anguillarum, since its entry is more localized.  

7.1.3. Immune response at local level (skin mucus) after T. 

maritimum challenge 

In agreement with the data observed in plasma, the skin mucus of Senegalese sole also 

showed some significant differences between the unchallenged and the bath challenged 

fish respect to bactericidal activity against the pathogenic bacteria tested. In fact, the 

bactericidal activity against V. anguillarum also increased in ocular skin mucus of 

challenged fish after 2 weeks post-challenge whilst the increases in bactericidal activity 

against P. damselae piscicida were only observed at 3 weeks. This different capacity to 

react against T. maritimum could be explained in other studies that observed that P. 

damselae piscicida showed lower adhesive rates to Senegalese sole skin mucus than 

other bacterial pathogens, such as Vibrio anguillarum, Flavobacterium psychrophilum or 

Aeromonas salmonicida (Nikoskelainen et al., 2001; Chabrillón et al., 2005).  

The fish skin mucus seems to have an important selective role to discriminate between 

bacterial strains and it plays a critical role in the defence mechanisms of fish by also 

acting as a biological barrier (Benhamed et al., 2014). Vibrio anguillarum is able to 

adhere preferentially to fish integument, modifying the thickness, quality, and secretory 

pattern of skin immune defences (Hickey & Lee, 2017). This fact may influence the 

mucous adherence and may destabilize the host–microbiota interaction in favour of 

opportunistic pathogens as T. maritimum (Rombout et al., 2011). Therefore, as we 
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mentioned above, T. maritimum and Vibrio spp. could present similar ways to enter into 

the fish body through the skin while the portal of entry of P. damselae piscicida may vary 

depending on the host (Toranzo & Barja, 1993; Magariños et al., 1995; Benhamed et al., 

2014; Mabrok et al., 2016).  

Recently, Guardiola et al. (2017) showed that the bactericidal activity of Senegalese sole 

skin mucus (from a mix of ocular and blind sides) had a bactericidal capacity around to 

25% to kill P. damselae, followed by V. anguillarum (15%) and finally V. harveyi (10%) 

(In decreasing order of bactericidal capacity). However, our results showed that the 

bactericidal activity against V. anguillarum and P. damselae were higher in the ocular 

side (around 40%) than in the blind side (around 20%) in most of the sampling times, 

independently of experimental group. The differences found in both studies could be due 

to the origin of mucus (ocular or blind) since Guardiola et al. (2017) evaluated the 

bactericidal activity in the skin mucus of Senegalese sole from a pool of both sides of 

this flatfish. This fact increases the importance of measuring all the innate parameters 

separately to discern if there is a difference due to their location in the fish (from ocular 

or blind sides). 

Regarding the immune-related enzymes tested in skin mucus, it has been seen that only 

the protease activity presented significant variations (in all experimental times) between 

the ocular and the blind sides in both experimental groups (unchallenged and challenged 

ones), being higher in ocular than in the blind side. In addition, the values of other 

parameters measured as haemolytic complement and lysozyme were also higher in 

ocular side compared to values observed in the blind side but at specific sampling times. 

By contrast, only peroxidase activity was higher in the blind side than in the ocular one 

in some experimental times. Independently of time and experimental group variables, 

our results revealed more activity in all immune-related parameters measured in the 

ocular side compared to blind one with the exception of peroxidase activity that showed 

an opposite pattern. These differences could be due to the fact that the ocular part of the 

flatfish is more exposed to invasion by pathogens than the blind part and the distribution 

of the immune cells is different. Nevertheless, further studies are needed for this 

hypothesis to be clarified. 

Comparing the immune parameters evaluated between the unchallenged and the 

challenged fish (independently of the origin of mucus), our results revealed that most of 

the parameters that varied significantly did it in an increased way in challenged fish. 

These results are consistent with other studies as Firth et al. (2000) or Rajan et al. (2013) 

where skin mucus showed differential expression of different immune-related 
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components between the challenged and unchallenged fish. Thus, our findings underline 

the important role of skin mucus, as a biological barrier and a key component of the 

innate immune system, in the defence mechanisms of the fishes against bacterial 

challenge with potential application in aquaculture. These results could be of great 

relevance for future studies related to bacteria diseases in flatfish and more specifically 

on Tenacibaculosis, one of the most dangerous bacterial diseases in Senegalese sole 

culture. In addition, as were reported by Guardiola et al. (2018), the method of collecting 

skin mucus is simple, fast and of low invasiveness than other sample methods. Already 

in some studies with other flatfish species as in Hellio et al. (2002) or Loganathan et al. 

(2011), they tried not collect on the ventral side to avoid intestinal and sperm 

contamination. For all these reasons, these differences could facilitate more efficient 

sampling in future studies with this species, could help us to understand how the innate 

immune system works in Senegalese sole and perhaps this knowledge could be 

extrapolated to other flatfish species.  

7.1.4. Immune response at systemic level (plasma) versus local 

level (skin mucus) after T. maritimum challenge 

Comparing the activity of parameters measured in plasma and skin mucus, more 

variations were found in skin mucus samples after the bath challenge than in plasma. As 

in the plasma samples, no variations were found after the challenge in lysozyme and 

protease activities in skin mucus of Senegalese sole at our sampling times. This fact may 

mean that these parameters are not activated at the systemic and local level by the dose 

of T. maritimum tested. However, as it was said before, other factors could interfere in 

these results as pathogen-host interactions, different dispersion of the bacteria during 

the bath or interaction of T. maritimum with the microbiota present in the water. 

Interestingly, haemolytic complement activities increased after 2 weeks of challenge 

which could suggest the important role of these in the bacterial fight. Peroxidase is an 

important microbicidal agent that maintains the redox balance of the immune system and 

it is tempting to consider that peroxidase in skin mucus is essential for mucosal immunity 

and skin defence (Guardiola et al., 2014). To our knowledge, there are very few studies 

in which the activity of peroxidase in fish skin mucus was measured after a bacterial 

challenge. Contrarily to our results, peroxidase activity in skin mucus of the Atlantic 

salmon challenged with a pathogenic strain of Aeromonas salmonicida significantly 

decreased at day 4 and 6, indicating the decreased lytic capacity of the challenged fish 

(Du et al., 2015). In addition, Guardiola et al. (2016) showed that peroxidase levels 
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present in the skin mucus of gilthead seabream were stable during and after exposure 

to stress conditions while were significantly altered in gilthead seabream serum after 

some stressors.  

These studies and a previous PhD Thesis carried out in our research group (Mabrok, 

2016) seem to suggest the importance of time in the mucosal immune response. Mabrok 

(2016) reported a delay in the mucosal immune response compared to that found at 

systemic level (i.e. blood and plasma) in Senegalese sole challenged with T. maritimum. 

More concretely, a significant increase in skin mucus lysozyme, complement, protease 

and antiprotease activities were observed at the end of the experiment (14 days post-

challenge) suggesting that late response is mainly due to phagocytes recruitment to 

mucosal surfaces against this pathogen. 

 

7.2. Experiment 2 

In a second study, all the immune-related parameters studied in the previous experiment 

were also determined in plasma and skin mucus of Senegalese sole after 4 weeks of 

challenge and before a second bacterial challenge with a lethal dose of T. maritimum 

(ten times higher than in the first challenge) in order to evaluate the disease resistance. 

All these parameters are present in fish mucus and plasma and have already been used 

as indicators for disease induction in other studies (Magnadóttir et al., 2006). Our results 

did not show differences between lysozyme, protease and antiprotease activities in 

plasma of unchallenged or bath challenged fish. Only, peroxidase activity appeared in 

higher levels in plasma of fish challenged after 4 weeks of challenge with T. maritimum 

compared to control groups. Contrarily, whilst the bactericidal activity against V. 

anguillarum was reduced in challenged fish, the activity against P. damselae piscicida 

did not suffer variations.  

In the same line, no variations were detected in haemolytic complement, peroxidase, 

lysozyme and protease activities measured in skin mucus (independently of the origin of 

mucus) between experimental groups. However, the antiprotease activity showed a 

significant decrease in ocular skin mucus of bath challenged fish respect to the other 

experimental groups. The decrease of antiprotease activity at 4 weeks of challenge 

disagreed with the experiment 1, where this activity did not show any variations during 

three weeks after the bacterial challenge. Interestingly, the results of protease activity in 

skin mucus are in agreement with those of previous experiment (Experiment 1) where 

this activity was higher in ocular side compared to values found in blind part. However, 
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the antiprotease and bactericidal (against V. anguillarum) activities showed an opposite 

pattern being higher in blind side than ocular one, although no variations were found in 

any of the activities in blind skin mucus between unchallenged and bath challenged fish.  

In general, the bacterial challenge revealed that both skin mucus and plasma samples 

do not seem to present a clear answer against T. maritimum, suggesting that Senegalese 

sole does not contain adequate compounds, either local (i.e. skin mucus) or systemically 

(i.e. plasma), with potent bactericidal activity to act against the pathogen or could even 

indicate possible evasion strategies of the bacteria. However, it would be interesting to 

determine if the plasma and skin mucus have bacteriostatic activity that can inhibit the 

growth of T. maritimum. 

These results are in line with those previously reported by Magariños et al. (1995), who 

stated that T. maritimum has the ability to strongly attach to the external body surface of 

turbot, gilthead seabream and European seabass thus overcoming the skin mucus 

antimicrobial activities. However, when a lethal dose of T. maritimum was administered 

in a second bath challenge, lower mortality rates were observed in this group. In fact, the 

survival rate in unchallenged and bath challenged fish for a second time was significantly 

higher compared to fish challenged for the first time. The fish challenged twice with T. 

maritimum had around an 80% of survival rate while the group challenged only one time 

with the bacteria presented around a 50% of survival. This may suggest that the 

Senegalese sole could have activated an acquired immune response derived from the 

first contact with the pathogen turning the fish more resistant than the group that had not 

come into contact with the bacteria before. Little is known about immunization in flatfish 

species. However, after a first approach in Senegalese sole, it seems that the fish that 

survived to the first challenge developed an acquired response with antibodies and 

competent T cells. By remembering, in the second challenge they survived more. This 

means that vaccination will be a good prophylactic strategy against tenacibaculosis, but 

more studies are required to affirm this fact. 

Regarding immunization by vaccination, there is nowadays a commercially available 

bacterin to prevent the disease caused by T. maritimum in turbot (Icthiovac TM®), which 

is applied by bath in fish from 1 to 2 g followed by a booster injection in fish from 20 to 

30 g (Avendaño- Herrera et al. 2006). Although no licensed commercial vaccines are yet 

available for sole family, auto-vaccines made using the strains isolated from the farms 

can also be used in these species. Therefore, more investigations are required to define 

the role of systemic and mucosal immune response against T. maritimum to understand 

their infection mechanisms and assist future studies to increase the vaccine. 
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In summary, the present study provides detailed information about immune response 

after the challenge with T. maritimum in Senegalese sole, a high-value flatfish that 

presents a great potential for future farming at commercial scale. Our results revealed 

that all the studied innate immune-related molecules were constitutively present in both 

skin mucus sides and seem to play a different role in the mucosal immune response. 

This could indicate that immune response is always alert and fish resistance is not limited 

to only one factor. In our study, fish were bath challenged with T. maritimum in order to 

evaluate the skin mucus role from ocular and blind sides due to their condition of flatfish. 

All the innate immune-related enzymes were constitutively present in both sides but in 

different levels. Interestingly, the activities measured were higher on the ocular side than 

on the blind side, possibly due to the high exposure to invasion by pathogens on this 

side. Nonetheless, further studies should be performed to deepen in the knowledge of 

the fish skin mucus molecules and their precise role in the mucosal immunity. Our results 

showed that there is a response to the first contact with T. maritimum and that makes 

the Senegalese sole more resistant to a new contact with the pathogen. The present 

study opened a new window of research in comparative mucosal immunity and further 

studies should be performed to deepen our knowledge in fish mucosal immunity. Thus, 

more studies would be required to improve knowledge of the biology and function of this 

essential barrier in Senegalese sole and in other flatfish species, against one of their 

main pathogens (T. maritimum), which could have important applications for fish farmers.
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