Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > Insulin encapsulation in reinforced alginate microspheres prepared by internal gelation
Publication

Insulin encapsulation in reinforced alginate microspheres prepared by internal gelation

Title
Insulin encapsulation in reinforced alginate microspheres prepared by internal gelation
Type
Article in International Scientific Journal
Year
2006
Authors
Catarina M Silva
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Antonio J Ribeiro
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. View Authenticus page Without ORCID
Domingos Ferreira
(Author)
FFUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page Without ORCID
Francisco Veiga
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Journal
Vol. 29
Pages: 148-159
ISSN: 0928-0987
Publisher: Elsevier
Scientific classification
FOS: Medical and Health sciences > Basic medicine
Other information
Authenticus ID: P-004-GSV
Abstract (EN): Insulin-loaded alginate microspheres prepared by emulsification/internal gelation were reinforced by blending with polyanionic additive polymers and/or chitosan-coating in order to increase the protection of insulin at simulated gastric pH and obtain a sustained release at simulated intestinal pH. Polyanionic additive polymers blended with alginate were cellulose acetate phtalate (CAP), Eudragit (R) L100 (EL100), sodium carboxymethylcellulose (CMC), polyphosphate (PP), dextran sulfate (DS) and cellulose sulfate (CS). Chitosan-coating was applied by using a one-stage procedure. The influence of additive polymers and chitosan-coating on the size distribution of microspheres, encapsulation efficiency and release profile of insulin in simulated gastrointestinal pH conditions was studied. The mean diameter of blended microspheres ranged from 65 to 106 mu m and encapsulation efficiency of insulin varied from 14 to 100%, reaching a maximum value when CS and DS were incorporated in the alginate matrix. Insulin release, at pH 1.2, was almost prevented by the incorporation of PP, DS and CS. When uncoated microspheres were transferred to pH 6.8, a fast dissolution occurred, independently of the additive polymer blended with alginate, and insulin was completely released. Increasing the additive polymer concentration in the alginate matrix and/or chitosan-coating the blended alginate microspheres did not promote a sustained release of insulin from microspheres at pH 6.8.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 12
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

Modeling and comparison of dissolution profiles (2001)
Another Publication in an International Scientific Journal
costa, p; manuel, j; lobo, s
Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: A review (2018)
Another Publication in an International Scientific Journal
Garces, A; Maria Helena Amaral; Sousa Lobo JM; Silva, AC
Topotecan effect on the structure of normal and cancer plasma membrane lipid models: A multi-model approach (2018)
Article in International Scientific Journal
Lopes de Araujo, J; Salette Reis; Nunes, C
Temperature and solvent effects in the solubility of some pharmaceutical compounds: Measurements and modeling (2009)
Article in International Scientific Journal
Fátima L. Mota; Aristides R. Carneiro; António J. Queimada; Simão P. Pinho; Eugénia A. Macedo
Targetability of hyaluronic acid nanogel to cancer cells: In vitro and in vivo studies (2017)
Article in International Scientific Journal
Pedrosa, SS; Pereira, P; Alexandra Correia; Gama, FM

See all (32)

Recommend this page Top