

ONE-POT CATALYTIC VALORIZATION OF BIOMASS TO ETHYLENE GLYCOL OVER GLUCOSE-DERIVED CARBON-BASED CATALYSTS

Lucília S. RIBEIRO^{1,2,*}, Rafael G. MORAIS^{1,2}, José J.M. ÓRFÃO^{1,2}, M. Fernando R. PEREIRA^{1,2}

 ¹ LSRE-LCM – Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
 ² ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; * lucilia@fe.up.pt

Catalytic conversion of biomass is highly attractive for producing high added-value products, being ethylene glycol (EG) one of the most highlighted ^[1]. However, its production usually requires expensive metals (e.g., Ru) and carbon supports (e.g., carbon nanotubes (CNT), activated carbon). This work aimed to develop less expensive carbon-supported metal catalysts for the direct conversion of biomass to EG.

Glucose-based carbon materials were prepared by HTC. The materials were then carbonized (CG) or physically activated (AG_x) (Table 1). Ni-W catalysts were prepared by incipient wetness impregnation of the supports, and the one-pot conversion of cellulose/wastes to EG was performed in a reactor at 205 °C and 50 bar of H₂. The prepared Ni-W catalysts were in general highly efficient, with 100 % cellulose conversion (*X*) (Table 1). Ni-W/AG₁₀₀₀ was the most efficient: EG yield (Y_{EG}) up to 60 %. These results surpassed previous works using Ru-W supported on CNT ^[2] or glucose-based materials ^[3], indicating that both CNT and Ru can be successfully replaced by low-cost alternatives. The best catalyst is also being evaluated for the conversion of wastes (e.g., paper, food waste), which so far resulted in EG yields up to 50 %. Thus, these materials are herein presented as low-cost and sustainable catalysts.

	Support	Gas type and flow rate	T (°C)	<i>t</i> (h)	X (%)	Yeg (%)
	CG	N ₂ , 50 cm ³ min ⁻¹	700	2	100	51.6
	AG600	CO ₂ , 80 cm ³ g ⁻¹ min ⁻¹	700	2	100	41.8
	AG1000	CO ₂ , 80 cm ³ g ⁻¹ min ⁻¹	900	2	100	59.5
	AG2200	CO ₂ , 80 cm ³ g ⁻¹ min ⁻¹	900	6	100	56.3

Table 1. Experimental conditions of the materials and catalytic results after 5 h.

• Acknowledgements: This work was supported by national funds through FCT/MCTES (PIDDAC): LSRE-LCM, UIDB/50020/2020 (DOI: 10.54499/UIDB/50020/2020) and UIDP/50020/2020 (DOI: 10.54499/UIDP/50020/2020); ALiCE, LA/P/0045/2020 (DOI: 10.54499/LA/P/0045/2020); and project PTDC/EQU-EQU/1707/2020.

References:

[1] Baniamerian, H.; Hoj, M.; Beier, M.J.; Jensen, A.D. Appl. Catal. B: Environ., 2023, 330, 122650.

[2] Ribeiro, L.S.; Órfão, J.J.M.; Pereira, M.F.R. Bioresour. Technology, 2018, 263, 402.

[3] Ribeiro, L.S.; Rey-Raap, N.; Figueiredo, J.L.; Órfão, J.J.M.; Pereira, M.F.R. Cellulose, 2019, 26, 7337.