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Abstract: Landfill leachates result from the degradation of solid residues in sanitary landfills, thus
presenting a high variability in terms of composition. Normally, these effluents are characterized
by high ammoniacal-nitrogen (N–NH4

+) concentrations, high chemical oxygen demands and low
phosphorus concentrations. The development of effective treatment strategies becomes difficult,
posing a serious problem to the environment. Phycoremediation appears to be a suitable alternative
for the treatment of landfill leachates. In this study, the potential of Chlorella vulgaris for biomass
production and nutrients (mainly nitrogen and phosphorus) removal from different compositions
of a landfill leachate was evaluated. Since microalgae also require phosphorus for their growth,
different loads of this nutrient were evaluated, giving the following N:P ratios: 12:1, 23:1 and 35:1.
The results have shown that C. vulgaris was able to grow in the different leachate compositions
assessed. However, microalgal growth was higher in the cultures presenting the lowest N–NH4

+

concentration. In terms of nutrients uptake, an effective removal of N–NH4
+ and phosphorus

was observed in all the experiments, especially in those supplied with phosphorus. Nevertheless,
N–NO3

− removal was considered almost negligible. These promising results constitute important
findings in the development of a bioremediation technology for the treatment of landfill leachates.

Keywords: biomass production; Chlorella vulgaris; landfill leachate; microalgae; nutrient removal
kinetics; wastewater treatment

1. Introduction

At the present time, the disposal of solid waste material in sanitary landfills continues to be an
extensively used option, since it still has short-term economic advantages when compared to other
waste management alternatives [1]. However, during its long-term process of transforming waste
into stabilized material, considerable volumes of gaseous and liquid effluents are produced and those
constitute new problems to deal with.

Landfill leachate is a highly contaminated liquid that outcomes from a group of processes
occurring within landfill cells: rainwater percolation, moisture accumulation and biochemical
degradation [1,2]. Its ability to induce lethal and pre-pathological alterations on human cells [3,4],
mice [5], marine organisms [6,7] and plants [8] is well known and, as a consequence, its proper
treatment is imperative. The composition of this kind of effluent is influenced by various factors
such as the amount, composition and moisture of the solid waste, age of the landfill, hydrogeology
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and climate of the site and seasonal weather variations [9]. This variability requires a flexible and
broad-ranging treatment system, which results in increased costs. Some common aspects that can be
identified among leachates of different ages and sites are the high levels of N–NH4

+, the high chemical
oxygen demands and the low phosphate concentrations [10,11].

As was reported by several authors, leachate treatment can be performed using conventional
wastewater treatment processes or membrane processes [1,10]. The simplest and cheapest conventional
options are recycling [12], combined treatment with domestic wastewater [13,14], and lagooning with
recycling. More complex conventional techniques include the biological (aerobic, anaerobic, or mixed)
and the chemical/physical processes, such as coagulation-flocculation, chemical precipitation and air
stripping. Among the membrane processes, physical porous barriers can be used to retain certain sized
particles from the leachate (microfiltration, ultrafiltration, or nanofiltration). The use of semipermeable
membranes coupled with the induction of differences in solute concentrations and pressure levels can
also be used with the goal of decreasing concentrations of certain ions, molecules and/or particles
(reverse osmosis). The possibility of using just one of the cited processes to produce a safe and legally
dischargeable treated effluent is remote. Accordingly, different techniques must be combined in order
to effectively treat a landfill leachate. Classical treatments are currently insufficient in achieving high
depuration levels, mainly due to the increasing discharge restrictions and standards [1]. More recently,
with the advances on membrane processes, higher treatment effectiveness has been achieved, but with
substantially greater costs and subsequent problems (i.e., the production of an unusable concentrate
and membrane fouling). In response to these flaws, sustainable remediation technologies that allow
for the reduction of the treatment operational costs must be developed, optimized and implemented.

Phycoremediation is a suitable option, since it combines metabolic incorporation of pollutants with
biomass production, which in turn can be used as feedstock for biofuels production [15]. By definition,
phycoremediation is the process of depuration of waste or wastewater carried out by micro- and
macroalgae [16,17], not only in terms of nitrogen and phosphorus (which are macronutrients), but also
in terms of heavy metals and organic pollutants. It can be used as a complementary step to existing
treatment systems that produce effluents that still have high concentrations of inorganic nitrogen and
phosphorus (tertiary treatment). The use of this kind of bioremediation process in leachate treatment
is not yet well developed. Its utilization is still dependent on a set of conditions and cannot be done
independently. For example, Cheung, et al. [18] proved that microalgal growth in leachates without
inhibition is only possible by avoiding the acute toxicity effects of the inhibitory compounds present
in the leachate, which can be accomplished through a dilution in water or wastewater or by using
specific pollutant-tolerant species. Even though some of these compounds are essential micronutrients
in trace concentrations (e.g., metals) and can be obtained from the culture medium, they can have
severe toxic effects by metabolic interference if present at high concentrations [19,20]. This sustainable
depuration process has proved to be beneficial and efficient by several authors in a variety of test
conditions [21–27] and it is now a growing area of interest in biological wastewater treatment. The fact
that precursors of biofuels can be produced with these processes also makes them appealing to the
biofuels industries, since they can be used as a sustainable low-cost input source of raw-materials.

The growth of microalgae in leachates must be studied under a variety of conditions to allow
a standardization of approaches in the future. Therefore, the main goal of the present study was to
evaluate biomass production and nutrient uptake by C. vulgaris cultivated in different compositions of
a pre-treated leachate, with special focus on nitrogen consumption. Additionally, the feasibility of using
this biological process as a complementary treatment step for an existing system was also assessed.

2. Results

2.1. Biomass Production

Maximum biomass concentrations, average biomass productivities and specific growth rates
determined for the assays I, II, and III are shown in Table 1. Analysis of these data suggests
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that C. vulgaris growth was favoured in cultures performed in leachates presenting lower N–NH4
+

concentrations. Figure 1 presents an example of the growth curves obtained in this study for assay III
(the one presenting the highest nitrogen concentration). According to these data, C. vulgaris growth
curves in the different N:P ratios and with no phosphorus addition show similar behaviour.

Table 1. Biomass production parameters determined for assays I, II and III under different N:P ratios.

Assay N:P Ratio Xi (g·L−1) Xmax (g·L−1) PX (g·L−1·Day−1) µ (Day−1)

I

12:1 0.194 0.91 ± 0.03 a 0.107 ± 0.004 – b

23:1 0.194 0.83 ± 0.03 a 0.095 ± 0.004 – b

35:1 0.194 0.86 ± 0.03 a 0.101 ± 0.005 – b

No P 0.194 0.81 ± 0.09 a 0.09 ± 0.02 – b

II

12:1 0.607 1.52 ± 0.05 0.0988 ± 0.0004 0.13 ± 0.02
23:1 0.606 1.71 ± 0.06 0.11 ± 0.09 0.099 ± 0.005
35:1 0.607 1.70 ± 0.05 0.11 ± 0.02 0.109 ± 0.003
No P 0.608 1.44 ± 0.08 0.057 ± 0.002 0.068 ± 0.002

III

12:1 0.701 0.970 ± 0.004 0.034 ± 0.003 0.060 ± 0.007
23:1 0.695 0.894 ± 0.007 0.020 ± 0.006 0.028 ± 0.003
35:1 0.704 1.04 ± 0.02 0.049 ± 0.009 0.0724 ± 0.0007
No P 0.693 1.06 ± 0.01 0.038 ± 0.002 0.085 ± 0.007

Xi—initial biomass concentration (g·L−1); Xmax—maximum biomass concentration (g·L−1); PX—average
biomass productivity (g·L−1·day−1); µ—specific growth rate (day−1). a Maximum biomass concentrations
determined for assay I correspond to those obtained on the seventh day of culturing; b Specific growth rates
for the assay I were not determined because it was not possible to obtain enough data corresponding to the
exponential growth phase.
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2.2. Nutrient Uptake

In this study, different nutrients were monitored within the cultivation time to evaluate the
potential of C. vulgaris in nutrients uptake from different compositions of landfill leachate. Figure 2
presents the variation of nitrogen concentration in the forms of N–NH4

+ and N–NO3
−. As it is

possible to see in Figure 2, N–NH4
+ concentrations decreased within the cultivation time. On the

other hand, N–NO3
− concentrations remained approximately constant during the cultivation period.

Regarding phosphorus (P–PO4
3−) concentration, variation of this parameter can be observed in

Figure 3. These results show that P–PO4
3− concentrations also decreased within the cultivation time.

Figure 4 presents the variation of sulphur (S–SO4
2−) concentration in microalgal cultures, evidencing

only a slight decrease during the cultivation period. Similarly, the potassium ion (K+) concentration
has also shown a slight decrease, as it is represented in Figure 5. Inorganic and organic carbon (IC and
OC, respectively) concentrations were also monitored with the purpose of verifying the metabolism
adopted by C. vulgaris, which has shown to be mainly autotrophic (Figure 6).
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The experimental data regarding nutrients concentrations in the culture medium from each culture
were used for the determination of removal efficiencies and average removal rates. Additionally, in the
case of nitrogen (N–NH4

+) and phosphorus removal, pseudo-first-order kinetic constants and biomass
yields based on these nutrients consumption were determined. These parameters are presented in
Table 2 (in the case of nitrogen and phosphorus) and Table 3 (in the case of sulphur and potassium ion).
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Table 2. NH4
+, NO3

− and PO4
3− removal parameters determined for assays I, II and III under different N:P ratios.

Assay N:P Ratio N–NH4
+

k (Day−1)
N–NH4

+

RE (%)
N–NO3

−

RE (%)
Total-N

RR (mg·L−1·Day−1)
YX/N

(gX·gN
−1)

P–PO4
3−

k (Day−1)
P–PO4

3−

RE (%)
P–PO4

3−

RR (mg·L−1·Day−1)
YX/P

(gX·gP
−1)

I

12:1 0.51 ± 0.08 100% 22% 4.4 24 a 0.16 ± 0.08 54% 1.4 76 a

23:1 0.7 ± 0.2 100% 27% 5.1 19 a 0.20 ± 0.03 92% 1.2 80 a

35:1 0.7 ± 0.2 100% 25% 4.8 21 a 0.6 ± 0.2 100% 0.87 116 a

No P 0.41 ± 0.06 100% 21% 4.3 22 a – – – – a

II

12:1 0.135 ± 0.005 77% <0% 4.1 24 0.089 ± 0.006 38% 1.3 74
23:1 0.120 ± 0.003 73% 1% 4.7 23 0.093 ± 0.007 65% 1.2 95
35:1 0.128 ± 0.006 75% <0% 4.2 27 0.09 ± 0.02 63% 0.77 150
No P 0.034 ± 0.007 22% <0% 1.2 46 – – – –

III

12:1 0.091 ± 0.007 63% 6% 5.0 6.8 0.045 ± 0.005 41% 1.7 20
23:1 0.080 ± 0.002 57% 9% 5.0 4.1 0.11 ± 0.02 48% 1.0 20
35:1 0.090 ± 0.006 64% 7% 5.1 9.5 0.043 ± 0.008 54% 0.76 64
No P 0.040 ± 0.002 36% 10% 3.7 10 – – – –

k—kinetic constant (day−1); RE—removal efficiency (%); RR—average removal rate (mg·L−1·day−1); YX/N—biomass yield on nitrogen consumption (gX·gN
−1); YX/P—biomass yield

on phosphorus consumption (gX·gN
−1). a Specific yields of assay I were obtained using average biomass productivities determined for the first seven days of culturing.
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Table 3. SO4
2− and K+ ion removal parameters determined for assays I, II and III under different

N:P ratios.

Assay N:P Ratio S–SO4
2− RE (%) S–SO4

2− RR (mg·L−1·Day−1) K+ RE (%) K+ RR (mg·L−1·Day−1)

I

12:1 7% 2.5 2% 0.63
23:1 12% 4.3 10% 4.1
35:1 11% 3.9 11% 4.3
No P 10% 3.5 12% 4.6

II

12:1 0% <0 <0% <0
23:1 4% 1.9 <0% <0
35:1 0% <0 <0% <0
No P 2% 1.1 <0% <0

III

12:1 11% 6.0 10% 4.9
23:1 11% 6.4 10% 4.7
35:1 8% 4.4 7% 3.3
No P 10% 5.6 9% 4.0

RE—removal efficiency (%); RR—average removal rate (mg·L−1·day−1).

3. Discussion

3.1. Biomass Production

The daily monitoring of biomass concentration allowed the evaluation of C. vulgaris growth under
different conditions. Figure 1 shows the different growth phases of C. vulgaris during 12 days of culture.
The adaptation phase was generally short, similar to those already reported in the literature for this
microalga [28,29]. This can be explained by the fact that these cultures were previously adapted to grow
in a landfill leachate [30]. In the exponential phase, microalgal growth suggests some sort of growth
limitation, either from a shading phenomenon or from difficulties in nutrient transfer from the medium
to the cell interior [31]. Another possible inhibition factor could be the presence of heavy metals in
the effluent. However, according to the literature [32–34], the concentrations of these pollutants were
not high enough to negatively affect microalgal growth. In assay II, the presence of phosphorus has
proved to be an enhancement aspect, since the supplemented cultures presented increased growth in
the same period of time. This can be observed in Table 1, where it is possible to determine an increase
in average biomass productivities of supplemented cultures of about 86% when compared to that of
non-supplemented cultures.

With lower nutrient concentrations and similar initial biomass concentrations, the cultures from
assay II performed better than those of assay III, indicating that high concentrations of some of the
nutrients present in the leachate can negatively impact C. vulgaris growth. These results reinforce the
hypothesis of Cheung, et al. [18], which states that microalgal growth in leachate is only possible by
avoiding the acute toxicity of the inhibitory compounds, for example, ammonium when present at
high concentrations [35].

The determined average biomass productivities (0.020–0.11 g·L−1·day−1) were similar to
those observed by Griffiths, et al. [36] when growing C. vulgaris on a synthetic medium
(0.016–0.373 g·L−1·day−1). In the specific case of assays I and II, average biomass productivities are
situated amongst the array of values reported by Silva, et al. [37] when using a synthetic wastewater
as growth medium. On the other hand, specific growth rates (0.028–0.13 day−1) were globally low
when compared to typical values reported in the literature of 0.11 and 1.37 day−1 [38,39]. The lower
specific growth rates observed in assays II and III can be explained by a self-shading phenomenon,
since significantly higher inoculation concentrations were used in these assays.

3.2. Nutrient Uptake

For nitrogen (N–NH4
+ and N–NO3

−), it was expected that N–NH4
+ would be the preferential

inorganic species to be consumed by C. vulgaris, since it is the only species whose assimilation
does not involve oxidation-reduction reactions. This trend has already been reported by several
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authors [37,40,41] and it was also demonstrated in this study, as can be seen in Figure 2 (no adaptation
phase was observed). Total N–NH4

+ removal was achieved in assay I, pairing with considerable
N–NO3

− removal efficiencies of about 21%–27%. On the other hand, minimum variations in N–NO3
−

concentrations were observed in the other assays (no more than 10%), along with appreciable N–NH4
+

removal efficiencies (up to 77%). The differences observed for the different N:P ratios indicate that
nitrogen removal was enhanced by the addition of phosphorus to the cultures. Silva, et al. [37]
have reported N–NH4

+ kinetic constants ranging between 0.19 and 3.86 day−1, which are higher
than those determined in the assays II and III. These results are associated with the lower specific
growth rates in these assays caused by the self-shading phenomenon. On the other hand, kinetic
constants determined for the assay with the lowest initial N–NH4

+ concentration (assay I) were close
to those reported in the referred study. Similarly, the removal rates of total nitrogen determined in this
study (1.2–5.1 mg·L−1·day−1) have already been reported for C. vulgaris in the literature [38,39,42–44].
Silva, et al. [37] have also determined biomass yields based on nitrogen consumption, obtaining values
between 13.5 and 75.2 gX·gN

−1. These values are similar to those determined in this study for assays
I and II. However, lower values were obtained for assay III, which is in accordance with the kinetic
growth parameters determined in the experiments concerning this leachate composition. Regarding
phosphorus consumption, removal rates obtained (0.76–1.7 mg·L−1·day−1) were higher than the range
of rates already reported in the literature (0.07–0.52 mg·L−1·day−1) [38,44]. This can be explained by
other phosphorus removal mechanisms rather than assimilation. In microalgal cultures, phosphorus
removal can also occur through chemical precipitation (at pH values higher than 8) or through luxury
uptake, a mechanism adopted by microalgae that consists of the assimilation of high phosphorus
amounts and storage in the form of polyphosphates [37,45,46]. In the studied cultures, pH values
were close to 8 (data not shown), meaning that some phosphorus precipitation might have occurred.
The low biomass yields based on phosphorus consumption obtained in this study (20–150 gX·gP

−1)
also indicate that other phosphorus removal mechanisms might have occurred. Regarding the kinetic
constants, values obtained in this study for the N:P ratios of 12:1 and 23:1 of assay I (0.16 and 0.20 day−1,
respectively) were similar to those reported by Wang, et al. [47] (0.17–0.32 day−1). On the other hand,
a kinetic constant of 0.6 day−1 was obtained for the N:P ratio of 35:1. In the assays II and III, low
values were obtained for the kinetic constants (0.043–0.11 day−1), indicating that the pseudo-first-order
kinetic model might be inadequate to describe phosphorus uptake in these conditions.

Even though reasonable removal efficiencies of nitrogen and phosphorus were achieved, according
to the European Union (EU) legislation for wastewater deposition [48,49], the final concentrations
in all assays were insufficient to allow a safe and legal discharge of the treated leachate (emission
limits established by EU legislation are 15 mgN·L−1 and 2 mgP·L−1 for nitrogen and phosphorus,
respectively) [48,49]. Despite the fact that the addition of phosphorus potentiates biomass growth and
nitrogen removal, it is indeed a delicate step. That is, if a scale-up of a phycoremediation process is to
be done with the addition of phosphorus, the treatment time must be sufficient to allow a reduction of
the added concentration until at least the legal emission limit is achieved. Otherwise, the addition step
will end up polluting the wastewater that is being treated. Further developments must be done in this
regard in order to assess the conditions in which the process can be viable.

With respect to sulphur, its initial concentration in all cultures was already below the EU emission
limit (668 mgS·L−1) [48,49]. Accordingly, sulphur removal was not as imperative as nitrogen and
phosphorus removal in the designed assays. Although it is an important element for microalgae,
being present in essential amino acids [50], its assimilation is still a poorly documented topic and
the currently available information is limited to very few species [51]. Analysing the variations of
sulphate concentrations (Figure 5) and the calculated removal efficiencies (Table 3), it is possible to
conclude that no significant removal occurred in any case, since the variations were almost negligible
(maximum removal efficiencies obtained were 12%). However, removal rates determined in the present
study (1.1–11 mg·L−1·day−1) were significantly higher than those already reported in the literature
(0.275–0.543 mg·L−1·day−1) [37]. This discrepancy can be explained by the differences observed
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between the initial conditions used in this study and those of the cited one. Comparing the removal
efficiencies and removal rates obtained for the different N:P ratios evaluated, it is possible to conclude
that the addition of phosphorus did not contribute to increased sulphur removal.

Lastly, potassium ion removal was also insignificant. A maximum removal efficiency of 12%
and a maximum removal rate of 4.9 mg·L−1·day−1 were achieved in assays I and III, respectively.
Even though it plays a crucial role in osmotic regulation of microalgal cells and protein synthesis
processes [52], little is known about its assimilation by microalgae.

Regarding the variation of IC and OC concentrations present in the culture medium, the decrease
observed in the IC concentration indicates the assimilation of this carbon source during photosynthetic
growth of the studied microalga. However, in assay III, where initial IC concentration was lower
than in the other assays, a decrease in OC concentration was also observed. This might be due to the
mixotrophic growth of C. vulgaris. Although microalgal growth is mainly autotrophic, when both IC
and OC are present in the culture medium, microalgae perform both photosynthesis and oxidative
assimilation [53,54].

4. Materials and Methods

4.1. Landfill Leachates

Landfill leachates evaluated in this study (corresponding to assays I, II and III) resulted from
different batches of a sanitary landfill located in the north of Portugal. They were collected at the
exit of an aerated stabilization pond and subjected to three of the four stages of a patented treatment
process [55]: (i) biological oxidation in anoxic and aerobic regimes; (ii) coagulation-flocculation
stage with iron(III) chloride (240 mgFe(III)·L−1) at pH 4.2, followed by 12-h sedimentation; and (iii)
a photo-oxidation process using natural sunlight (2.08 m2 of Compound Parabolic Collectors), by a
photo-Fenton reaction, with the addition of iron(II) sulphate and hydrogen peroxide, followed by a
neutralisation step.

Since the leachate did not contain significant amounts of inorganic phosphorus, additions of
KH2PO4 were made in order to evaluate microalgal growth under different N:P molar ratios of 12:1, 23:1
and 35:1. Parallel experiments without phosphorus addition were also conducted. The empiric Redfield
ratio (16:1) was in the base of the ratio selection, since it describes the atomic composition usually
found in aquatic photosynthetic microorganisms [56]. Table 4 presents the chemical composition of
leachates I, II and III. These effluents also contained the following heavy metals: cadmium (up to
0.005 mg·L−1), copper (up to 0.005 mg·L−1), lead (up to 0.005 mg·L−1), chromium (up to 1.1 mg·L−1)
and zinc (up to 0.3 mg·L−1). Research studies showed that these concentrations do not significantly
affect microalgal growth [32–34]. In addition, microalgae were able to assimilate these nutrients and to
remove them from wastewater.

Table 4. Chemical composition of the different landfill leachates used in the assays I, II and III.

Assay [N–NH4
+] (mg·L−1) [N–NO3

−] (mg·L−1) [P–PO4
3−] (mg·L−1) [S–SO4

2−] (mg·L−1) [K+] (mg·L−1)

I 15 144 <0.1 377 416
II 67 136 1 561 412
III 75 153 1 627 490

4.2. Microalgal Cultivation

The used species was C. vulgaris since the growth and nutrient-consumption rates associated with
its cultivation on different wastewaters are favourable, as demonstrated by several authors [37–39,42–44].
The used strain (C. vulgaris CCAP 211/11B) was obtained from the United Kingdom’s Culture
Collection of Algae and Protozoa. Cultivation was performed in 1-L borosilicate glass flasks under
continuous exposure to a photon flux density of 32–42 µmol·m−2·s−1 obtained by a set of fluorescent
lightbulbs. Mixing was guaranteed by atmospheric air injection at approximately 90 L·h−1 using TARP
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D-2463 air pumps (Trixie, Tarp, Germany). The injected air along with the superficial area (75 cm2)
were the only options for gas-transfer processes between the cultures and the atmosphere. To avoid
carbon dioxide stripping at pH levels lower than 7 [57], Na2CO3 was added to the cultures whenever
their pH levels were low. To evaluate the effect of different leachate compositions on microalgal
growth and nutrient uptake, the leachates I, II and III were used as culture medium, thus resulting
in assays I, II and III. Additionally, for each of these assays, different concentrations of phosphorus
were added, so that N:P molar ratios were approximately 12:1, 23:1 and 35:1. Microalgal growth with
no phosphorus addition was equally evaluated. For each condition, two independent experiments
were performed at room temperature, being the average of the culture temperatures 16 ± 2, 20 ± 2
and 21 ± 2 ◦C for the assays I, II and III, respectively. C. vulgaris previously grown in the leachate and
presenting the lowest nitrogen concentration (leachate I) with a N:P ratio ranging between 20:1 and
24:1 was used as inoculum.

4.3. Analytical Methods

Culture pH and temperature were monitored daily using a HI 8424 sensor (HANNA Instruments,
Vöhringen, Germany). On the other hand, illuminance measurements were performed during
day-time and night-time periods using a ISO-TECH LUX-1335 device (RS Components, Corby, UK).
Optical density (OD) at 440 nm was also measured on a daily basis using a Spectroquant Pharo 100
spectrophotometer (Merck, Lisbon, Portugal). Selection of this wavelength was based on the fact that
maximum absorbance for the genus Chlorella at this value has already been reported [58]. At the same
time, 40-mL samples were collected during the cultivation period to determine biomass concentrations
(X) in terms of cell dry weight. OD measurements, together with cell dry weight values were used to
determine a calibration curve between these variables (data not shown), so that growth monitoring
could be easily assessed through the OD measurements. Coefficients of determination obtained for
these models were higher than 0.992.

On days 0, 1, 2, 4, 7 and 11, 10-mL samples from each of the cultures were collected, centrifuged
at 4000 rpm for 15 min using a Himac CT66 centrifuge (VWR, Carnaxide, Portugal) and filtered using
0.45-µm nylon membranes. Inorganic anions (NO3

−, NO2
−, PO4

3− and SO4
2−) were determined by

ion chromatography by injecting 10 µL of sample into a Dionex ICS-2100 LC (Thermo Scientific Dionex,
Linda-a-Velha, Portugal) equipped with an IonPac® AS11-HC 250 mm × 4 mm column (Thermo
Scientific Dionex) at 30 ◦C and an anion self-regenerating suppressor ASRS® 300, 4 mm (Thermo
Scientific Dionex) under isocratic elution of 30 mM NaOH at a flow rate of 1.5 mL·min−1. Inorganic
cations (NH4

+ and K+) were also determined by ion chromatography by injecting 25 µL of sample into
a Dionex DX-120 LC (Thermo Scientific Dionex) equipped with an IonPac® CS12A 250 mm × 4 mm
column (Thermo Scientific Dionex) at ambient temperature and a cation self-regenerating CSRS®

Ultra II, 4 mm (Thermo Scientific Dionex) suppressor under isocratic elution of 20 mM methanesulfonic
acid at a flow rate of 1.0 mL·min−1. Total dissolved carbon (TC) and dissolved inorganic carbon (IC)
were measured in a TOC-VCSN analyser (Shimadzu, Duisburg, Germany) equipped with an ASI-V
autosampler and dissolved organic carbon was determined by the difference between TC and IC.

4.4. Kinetic Models and Parameters

Biomass concentration values allowed the determination of specific growth rates (µ, day−1) and
average biomass productivities (PX, g·L−1·day−1) according to Equations (1) and (2), respectively.

dX
dt

= µ× X ⇔ µ =
ln (X1/X0)

t1 − t0
(1)

where t1 and t0 represent the end and the beginning, respectively, of the exponential growth phase and
X1 and X0 correspond to the biomass concentrations at time-steps t1 and t0, respectively.
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PX =
X f − Xi

t f − ti
(2)

where steps tf and ti, represent the end and the beginning, respectively, of the cultivation period, and Xf
and Xi correspond to the biomass concentrations at time-steps tf and ti, respectively.

Regarding nutrient uptake by microalgae, removal efficiencies (RE, %) and average removal rates
(RR, mg·L−1·day−1) of all the considered nutrients were calculated using Equations (3) and (4).

RE =
S0 − S f

S0
(3)

RR =
S0 − S f

t f
(4)

where S0 and Sf correspond to the initial and final substrate concentrations, respectively, and tf
corresponds to the total time of the experiment.

The temporal evolutions of ammonium and phosphate concentrations were assumed to follow a
pseudo-first-order kinetic model, represented by Equation (5), in which S0 corresponds to the substrate
initial concentration. The linearization of this equation allowed the determination of kinetic constants
(k, day−1).

dS
dt

= k× t⇔ ln (S) = ln (S0)− k× t (5)

Using the different values of average biomass productivities and removal rates, specific biomass
yields based on nutrients consumption (YX/S, gX·gS

−1) were determined (Equation (6)). These values
represent the biomass produced for the mass of substrate consumed.

YX/S =
PX
RR

(6)

5. Conclusions

In this study, C. vulgaris growth in different compositions of a landfill leachate was evaluated.
At the same time, phosphorus was added to the landfill leachate at different concentrations so that
different N:P ratios could be evaluated (12:1, 23:1 and 35:1). Together with microalgal growth, the
nutrient uptake ability of the microalgae was also assessed. For this, concentrations of different
nutrients (nitrogen, phosphorus, sulphur and potassium ion) were monitored within the cultivation
period to allow the characterization of nutrient uptake kinetics. The results have shown that C. vulgaris
was able to grow in different formulations of the landfill leachate. However, increased growth was
observed in the experiments performed with the lowest N–NH4

+ concentration (assay I). Additionally,
this study has shown that microalgal growth was favoured by the addition of phosphorus to the
culture medium. Landfill leachate typically presents a high N:P ratio, which can be harmful for
microalgal growth and thus phosphorus supplementation prior to microalgal culturing should be
added to promote an effective removal of the excessive nitrogen. Regarding nutrient uptake, an
effective removal of N–NH4

+ was observed in all the experiments, especially in those supplied with
phosphorus. On the other hand, only a slight decrease in N–NO3

− concentrations was observed,
which may be related to the higher affinity of microalgae to N–NH4

+. Phosphorus removal from
the culture medium was also observed. However, the low yields on biomass based on phosphorus
consumption suggest another removal mechanism rather than P–PO4

3− assimilation. Taking into
account the obtained results, it is possible to conclude that C. vulgaris growth in landfill leachate for
remediation purposes can be effectively used. However, it should be noted that it must not contain
high levels of toxic compounds, such as high N–NH4

+ concentrations and there must be enough
phosphorus present to avoid growth limitation due to low phosphorus levels.
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