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Abstract

The state complexity of basic operations on regular languages considering com-
plete deterministic finite automata (DFA) has been extensively studied in the
literature. But, if incomplete DFAs are considered, transition complexity is also
an significant measure. In this paper we study the incomplete (deterministic)
state and transition complexity of some operations for regular and finite lan-
guages. For regular languages we give a new tight upper bound for the transition
complexity of the union, which refutes the conjecture presented by Y. Gao et
al.. For finite languages, we correct the published state complexity of concate-
nation for complete DFAs and provide a tight upper bound for the case when
the right operand is larger than the left one. We also present some experimental
results to test the behaviour of those operations on the average case, and we
conjecture that for many operations and in practical applications the worst-case
complexity is seldom reached.
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1. Introduction

In the last two decades the descriptional complexity of regular languages
has been extensively investigated. For deterministic finite automata (DFA),
the complexity measure usually studied is the state complexity, i.e. the num-
ber of states of the complete minimal DFA, [3, 23, 24, 11, 4, 25], while for
nondeterministic finite automata (NFA) both state and transition complexity
were considered [10, 7, 19, 12, 11]. For NFAs transition complexity is generally
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considered a more interesting measure. Considering complete DFAs, where the
transition function is total, the transition complexity is, obviously, the prod-
uct of the alphabet size by the state complexity. But in many applications
where large alphabets need to be considered or, in general, when very sparse
transition functions take place, partial transition functions are very convenient.
Examples include lexical analysers, discrete event systems, or any application
that uses dictionaries where compact automaton representations are essential,
for instance for manipulation on large Unicode alphabets [2, 17, 6, 18]. And, in
many cases, only finite languages are needed. Thus, it makes sense to investigate
the transition complexity of not necessarily complete DFAs.

In this paper we study the incomplete operational transition complexity of
several operations on regular and finite languages. To be comprehensive we
also analyse the state complexity of resulting languages. In general, transition
complexity bounds depend not only on the complexities of the operands but
also on other refined measures, as the number of undefined transitions or the
number of transitions that leave the initial state. For both families of languages
we performed some experimental tests in order to have an idea of the average-
case complexity of those operations.

The paper is organized as follows. Section 2 recalls some useful definitions
and notation. In Section 3, we study the state and transition complexity for the
union, concatenation, Kleene star and reversal operations on regular languages.
For all these operations tight upper bounds are given. The tight upper bound
presented for the transition complexity of the union operation refutes the con-
jecture presented by Y.Gao et al. [8]. We also present the same study for unary
regular languages. In Subsection 3.6 we analyse some experimental results. In
the Section 4 we continue the line of research of the Section 3 considering finite
languages. For the concatenation, we correct the upper bound for the state
complexity of complete DFAs [5], and show that if the right operand is larger
than the left one, the upper bound is only reached using an alphabet of vari-
able size. We also present some experimental results for finite languages. The
algorithms and the witness language families used in this work, although new,
are based on the ones of Yu et al. [26]; several proofs required new techniques.

Table 1 presents a summary and a comparison of the obtained results for
transition complexity on general and finite languages. Note that the values in
the table are obtained using languages for which the upper bounds are reached.
This paper expands the work presented in extended abstracts [16, 15] with full
proofs of theorems and experimental tests.

2. Preliminaries

We recall some basic notions about finite automata and regular languages.
For more details, we refer the reader to the standard literature [13, 22, 21].

Given two integers m,n ∈ N, let [m,n] = {i ∈ N | m ≤ i ≤ n} and
[m,n[ = {i ∈ N | n ≤ i < n}.

A DFA is a five-tuple A = (Q,Σ, δ, q0, F ) where Q is a finite set of states,
Σ is a finite input alphabet, δ is the transition function δ : Q × Σ → Q, q0
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Operation Regular |Σ| Finite |Σ|

L1 ∪ L2 2n(m+ 1) 2 3(mn− n−m) + 2 f1(m,n)

L1 ∩ L2 nm 1 (m−2)(n−2)(2+
∑min(m,n)−3
i=1 (m−

2− i)(n− 2− i)) + 2
f2(m,n)

LC m+ 2 1 m+ 1 1

L1L2

2n−1(6m+ 3)− 5,
3

2n(m− n+ 3)− 8, if m+ 1 ≥ n 2

if m,n ≥ 2 See Theorem 16(7) n− 1

L? 3.2m−1 − 2, if m ≥ 2 2
9 · 2m−3 − 2m/2 − 2, if m is odd

3
9 · 2m−3 − 2(m−2)/2 − 2, if m is even

LR 2(2m − 1) 2
2p+2 − 7, if m = 2p

2
3 · 2p − 8, if m = 2p− 1

Table 1: Incomplete transition complexity for regular and finite languages, where m and n
are the (incomplete) state complexities of the operands, f1(m,n) = (m − 1)(n − 1) + 1 and
f2(m,n) = (m− 2)(n− 2) + 1. The column |Σ| indicates the minimal alphabet size for which
the upper bound is reached.

in Q is the initial state, and F ⊆ Q is the set of final states. Let |Σ| = k,
|Q| = n, and without loss of generality, we assume Q = [0, n[ with q0 = 0.
The transition function can be naturally extended to subsets of Q and words
w ∈ Σ?. A DFA is called complete if the transition function δ is total. In this
paper we consider the DFAs to be not necessarily complete, i.e. with partial
transition functions. For q ∈ Q and σ ∈ Σ, if δ(q, σ) is defined we write δ(q, σ) ↓,
and δ(q, σ) ↑, otherwise, and, when defining a DFA, an assignment δ(q, σ) = ↑
means that the transition is undefined. The language accepted by A is L(A)
= {w ∈ Σ? | δ(q0, w) ∈ F}. Two DFAs are equivalent if they accept the same
language. For each regular language there exists a unique minimal complete
DFA with the minimum number of states. The left quotient of L ⊆ Σ? by x ∈ Σ?

is DxL = {z | xz ∈ L}. The equivalence relation RL ⊆ Σ? × Σ? is defined by
(x, y) ∈ RL if and only if DxL = DyL. The Myhill-Nerode Theorem states that
a language L is regular if and only if RL has a finite number of equivalence
classes, i.e., L has a finite number of left quotients. This number is the number
of states of the minimal complete DFA, whih is unique up to isomorphism.
Using Myhill-Nerode theorem, it is easy to prove that an automaton is minimal
if all its states correspond to different left quotients. Thus, to prove that a DFA
is minimal it is enough to show that for each state q, there is a word w such
that δ(q, w) ∈ F and δ(q′, w) /∈ F for all other states q′ 6= q. We say that this
word w distinguishes q from the other states. The state complexity, sc(L), of
a regular language L is the number of states of the minimal complete DFA of
L. If we consider the non-complete minimal DFA, its number of states is the
number of left quotients minus one, due to the removal of the dead state, that
we denote by Ω. The left quotient corresponding to Ω is the empty language.
The incomplete state complexity of a regular language L (isc(L)) is the number
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of states of the minimal DFA without states non conducting to a final state
(thus, not necessarily complete) that accepts L. Note that isc(L) differs at
most by 1 from sc(L) (isc(L) ∈ {sc(L) − 1, sc(L)}). The incomplete transition
complexity, itc(L), of a regular language L is the minimal number of transitions
over all DFAs that accept L. Whenever the model is explicitly given we refer
only to state or transition complexity, by omitting the term incomplete1. It is
well known that the minimal DFA of a language has also the minimal number
of transitions.

A transition labeled by σ ∈ Σ is called a σ-transition (represented by δ(q, σ),
where q ∈ Q) and the number of σ-transitions of a DFA A is denoted by tσ(A).
The σ-transition complexity of L, itcσ(L), is the minimal number of σ-transitions
of any DFA recognizing L. In [8, Lemma 2.1] it was proved that the minimal
DFA accepting L has the minimal number of σ-transitions, for every σ ∈ Σ.
From this it follows that itc(L) =

∑
σ∈Σ itcσ(L).

The complexity of an operation on regular languages is the (worst-case) com-
plexity of a language resulting from the operation, considered as a function of
the complexities of the operands. Usually an upper bound is obtained by provid-
ing an algorithm which, given representations of the operands (e.g. DFAs), con-
structs a model (e.g. DFA) that accepts the language resulting from the referred
operation. The number of states or transitions of the resulting DFA is an upper
bound for the state or the transition complexity of the operation, respectively.
To prove that an upper bound is tight, for each operand we can give a family
of languages (parametrized by the complexity measures), called witnesses, such
that the complexity of the resulting language achieves that upper bound. To
express the transition complexity of a language operation, we also use the fol-
lowing measures and refined numbers of transitions. Let A = (Q,Σ, δ, 0, F ) be
a DFA, with Q = [0, n[ , σ ∈ Σ, and i ∈ Q, we define

• f(A) = |F |;

• tσ(A, i) =

{
1, if there exists a σ-transition leaving i;

0, otherwise;

• tσ(A, i) is the negation of tσ(A, i);

• sσ(A) = tσ(A, 0);

• tσ(A) =
∑
i∈Q tσ(A, i);

• uσ(A) = |Q| − tσ(A); and

• ũσ(A) is the number of non-final states without σ-transitions.

Whenever there is no ambiguity we omitA from the above definitions. If tσ(A) =
|Q| we say that A is σ-complete, and σ-incomplete, otherwise. All the above

1In [8] the authors use the notation sc(L) and tc(L) instead of isc(L) and itc(L).
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Operation sc isc nsc

L1 ∪ L2 mn mn + m + n m+ n+ 1

L1 ∩ L2 mn mn mn

LC n n+ 1 2n

L1L2 m2n − f12n−1 (m + 1)2n − f12n−1 − 1 m+ n

L? 2m−1 + 2m−l−1 2m−1 + 2m−l−1 m+ 1

LR 2m 2m − 1 m+ 1

Table 2: State complexity of basic regularity preserving operations on regular languages.

Operation itc ntc

L1 ∪ L2 itc(L1)(1 + n) + itc(L2)(1 + m)−∑
σ∈Σ itcσ(L2) itcσ(L1)

ntc(L1) + ntc(L2) + s(L1) +
s(L2)

L1 ∩ L2 itc(L1) itc(L2)
∑
σ∈Σ

ntcσ(L1) ntcσ(L2)

LC |Σ|(itc(L) + 2)
|Σ|2ntc(L)+1

2
ntc(L)

2
−2 − 1

L1L2 |Σ|(m + 1)2n − |ΣL2
c |(f 2n−1 + 1)−

∑
σ∈Σ

L2
i

(2uσ + f 2itcσ(L2))−
∑

σ∈Σii

ũσ2uσ −
∑

σ∈Σic

ũσ

ntc(L1)+ntc(L2)+fin(L1)

L? |Σ|(2m−l−1 + 2m−1) +
∑
σ∈Σi

(sσ − 2ũσ ) ntc(L) + fin(L)

LR |Σ|(2m − 1) ntc(L) + f(L)

Table 3: Transition complexity of basic regularity preserving operations on general regular
languages.

measures can be defined, for a regular language L, considering the measure
values for its minimal DFA. Thus we can use following notation, f(L), sσ(L),
tσ(L), uσ(L), and ũσ(L), respectively.

3. Regular Languages

Y. Gao et al. [8] were the first to study the transition complexity of Boolean
operations on regular languages based on incomplete DFAs. For the intersection
and the complement, tight bounds were presented, but for the union operation
the upper and lower bounds differ by a factor of two. Nevertheless, they con-
jectured a tight upper bound for this operation.

In this section, we continue this study by extending the analysis to the
concatenation, the Kleene star and the reversal operations. For these operations
tight upper bounds are given. We also give a tight upper bound for the transition
complexity of the union, which refutes the conjecture presented by Y. Gao et
al., as we already mentioned. We also prove that the upper bounds are maximal
when f(L) is minimal. This study is also done for unary regular languages.

In the Tables 2 and 3 we summarize the results of this section (in bold) as
well as some known results for other descriptional complexity measures: state
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complexity (sc), and nondeterministic transition complexity (ntc). The last
measure was studied by Domaratzki and Salomaa [7, 19], and they also used
refined number of transitions for a more precise computation of the operational
transition complexity. In Table 3, s(L) is the minimal number of transitions
leaving the initial state of any transition-minimal NFA accepting L, and fin(L)
is the number of transitions entering the final states of any transition-minimal
NFA accepting L.

At the end of the section, we present some experimental results in order
to analyse the descriptional complexity measures when the referred operations
are performed with uniformly random generated DFAs as operands. These
experiments allow the reader to make an approximate prediction of the average-
case complexity of the operations.

3.1. Union

It was shown by Y. Gao et al. [8] that

itc(L1 ∪ L2) ≤ 2(itc(L1) itc(L2) + itc(L1) + itc(L2)).

The lower bound itc(L1) itc(L2) + itc(L1) + itc(L2)− 1 was given for particular
ternary language families which state complexities are relatively prime. The
authors conjectured, also, that

itc(L1 ∪ L2) ≤ itc(L1) itc(L2) + itc(L1) + itc(L2),

when itc(Li) ≥ 2, i = 1, 2.
We will present an upper bound for the state complexity and we give a new

upper bound for the transition complexity of the union of two regular languages.
We also present families of languages for which these upper bounds are reached,
witnessing, thus, that these bounds are tight.

Following, we describe the algorithm for the union of two DFAs, based
on the usual product construction, that was presented by Y. Gao et al. [8,
Lemma 3.1.]. Given two incomplete DFAs A = ([0,m[,Σ, δA, 0, FA) and B =
([0, n[,Σ, δB , 0, FB), and considering ΩA and ΩB as the dead states of A and
B, respectively, let C = (([0,m[∪{ΩA}) × ([0, n[∪{ΩB})),Σ, δC , (0, 0), (FA ×
([0, n[∪{ΩB})) ∪ (([0,m[∪{ΩA}) × FB)) be a new DFA where for σ ∈ Σ,
i ∈ [0,m[∪{ΩA}, and j ∈ [0, n[∪{ΩB},

δC((i, j), σ) =


(δA(i, σ), δB(j, σ)), if δA(i, σ) ↓ ∧ δB(j, σ) ↓;
(δA(i, σ),ΩB), if δA(i, σ) ↓ ∧ δB(j, σ) ↑;
(ΩA, δB(j, σ)), if δA(i, σ) ↑ ∧ δB(j, σ) ↓;
↑, otherwise.

Note that δA(ΩA, σ) and δB(ΩB , σ) are always undefined, and the pair (ΩA,ΩB)
never occurs in the image of δC . It is easy to see that DFA C accepts the
language L(A)∪L(B). The number of states and transitions which are sufficient
for any DFA C are obtained in the following theorem.
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Theorem 1. For any two regular languages L1 and L2 with isc(L1) = m and
isc(L2) = n, one has isc(L1 ∪ L2) ≤ mn+m+ n and

itc(L1 ∪ L2) ≤ itc(L1)(1 + n) + itc(L2)(1 +m)−
∑
σ∈Σ

itcσ(L1) itcσ(L2).

Proof. Let A and B be the minimal DFAs that recognize L1 and L2, respec-
tively. Consider the DFA C such that L(C) = L(A)∪L(B) and C is constructed
using the algorithm described above. The result for the isc(L1 ∪ L2) is given
by Gao et al. in [8]. Let us prove the result for the itc(L1 ∪ L2). Consider the
σ-transitions of A named by αi (i ∈ [1, tσ(A)]) and the undefined σ-transitions
of A named by ᾱl (l ∈ [1, uσ(A) + 1]). Consider also the σ-transitions of B
named by βj (j ∈ [1, tσ(B)]) and the undefined σ-transitions named by β̄z
(z ∈ [1, uσ(B) + 1]). We need to consider one more undefined transition in each
DFA which corresponds to ΩA and ΩB . The σ-transitions of the DFA C accept-
ing LA ∪ LB can only have one of the following three forms: (αi, βj), (ᾱl, βj),
and (αi, β̄z). Thus the DFA C has tσ(A)tσ(B) σ-transitions of the form (αi, βj);
tσ(A)(uσ(B) + 1) σ-transitions of the form (ᾱl, βj); and (uσ(A) + 1)tσ(B) σ-
transitions of the form (αi, β̄z). As we know that uσ(A) = m − tσ(A) and
uσ(B) = n− tσ(B), the number of σ-transitions is

tσ(A)tσ(B) + tσ(A)(n− tσ(B) + 1) + tσ(B)(m− tσ(A) + 1).

Therefore, with itcσ(L(A)) = tσ(A) and itcσ(L(B)) = tσ(B) the inequality
holds. �

3.1.1. Worst-case Witnesses

In this section, we show that the upper bounds established in Theorem 1 are
tight. We need to consider two cases, parametrized by the state complexities
of the language operands: m ≥ 2 and n ≥ 2; and m = 1 and n ≥ 2 (or vice
versa). Note that, in this section, we consider automaton families over a binary
alphabet, Σ = {a, b}.

Case 1: m ≥ 2 and n ≥ 2. Let A = ([0,m[,Σ, δA, 0, {0}) with δA(m− 1, a) = 0,
and δA(i, b) = i + 1, 1 ∈ [0,m − 1[; and B = ([0, n[,Σ, δB , 0, {n − 1}) with
δB(i, a) = i+ 1, i ∈ [0, n− 1[, and δB(i, b) = i, i ∈ [0, n[. These minimal DFAs
are represented in Fig. 1 and Fig. 2, respectively.

0 1 · · · m− 1
b b b

a

Figure 1: DFA A with m states.

0 1 · · · n− 1
a

b
a

b
a

b

Figure 2: DFA B with n states.
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Theorem 2. For any integers m ≥ 2 and n ≥ 2, there exist an m-state DFA
A with r = m transitions and an n-state DFA B with s = 2n − 1 transitions
such that any DFA accepting L(A) ∪ L(B) needs, at least, mn + m + n states
and (r + 1)(s+ 1) transitions.

Proof. Let us count the number of states of the DFA C accepting L(A)∪L(B),
constructed by the previous algorithm. Consider the pairs (i, j) representing
states of that DFA C. Then for each (i, j) where i ∈ ([0,m[∪ΩA) and j ∈
([0, n[∪ΩB) except the case when (i, j) = (ΩA,ΩB), there exists a word

w =


(bm−1a)jbi, if i 6= ΩA ∧ j 6= ΩB ;

(bm−1a)nbi, if i 6= ΩA ∧ j = ΩB ;

bmaj , if i = ΩA ∧ j 6= ΩB ;

which represents each state, i.e., a different left quotient. Thus there are at least
mn+m+ n distinct left quotients (states of C).

Let us consider the number of transitions of DFA C. If we name the defined
and undefined transitions of the DFAs A and B as in the proof of the Theorem 1
then C has:

• mn + n − m + 1 a-transitions because there exist n − 1 a-transitions of
the form (αi, βj); 2 a-transitions of the form (αi, β̄j); and m(n − 1) a-
transitions of the form (ᾱi, βj);

• mn+m+n−1 b-transitions because there exist (m−1)n b-transitions of the
form (αi, βj); m−1 b-transitions of the form (αi, β̄j); and 2n b-transitions
of the form (ᾱi, βj).

As r = m and s = 2n− 1, DFA C has (r + 1)(s+ 1) transitions. �

The referred conjecture itc(L1 ∪ L2) ≤ itc(L1) itc(L2) + itc(L1) + itc(L2)
fails for these families because, as we prove in the previous theorem, itc(L1 ∪
L2) = (r + 1)(s + 1), where r = itc(L1) and s = itc(L2), then itc(L1 ∪ L2) =
itc(L1) itc(L2) + itc(L1) + itc(L2) + 1.

Case 2: m = 1 and n ≥ 2. Let A = ({0},Σ, δA, 0, {0}) with δA(0, a) = 0, and
consider the DFA B defined in the previous case.

Theorem 3. For any integer n ≥ 2, there exists an 1-state DFA A with one
transition and an n-state DFA B with s = 2n−1 transitions such that any DFA
accepting L(A) ∪ L(B) has, at least, 2n+ 1 states and 2(s+ 1) transitions.

Proof. Consider the DFA C, accepting L(A) ∪ L(B), constructed by the pre-
vious algorithm. As in the proof of Theorem 2, let us see the states of DFA C
as pairs (i, j) where i ∈ ({0} ∪ ΩA) and j ∈ ([0, n[∪ΩB) except the case when
(i, j) = (ΩA,ΩB). For each of those pairs, there exists a word,

w =


aj , if i 6= ΩA ∧ j 6= ΩB ;

baj , if i = ΩA ∧ j 6= ΩB ;

an, if i 6= ΩA ∧ j = ΩB ;
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which represents a state of C, i.e., a different left quotient. Thus there are at
least 2n+ 1 distinct left quotients.

Let us consider the transitions named as in the proof of the Theorem 1, then
DFA C has:

• 2n a-transitions because there exist n−1 a-transitions of the form (αi, βj);
2 a-transitions of the form (αi, β̄j); and n − 1 a-transitions of the form
(ᾱi, βj);

• 2n b-transitions because by this symbol there are only transitions of the
form (ᾱ, βj).

Thus, the DFA C has 4n transitions. As r = 1 and s = 2n− 1, the DFA C has
2(s+ 1) transitions. Note that r = 1 and, thus, 2(s+ 1) = (r + 1)(s+ 1). �

3.2. Concatenation

In this section we deal with the incomplete descriptional complexity of the
concatenation of two regular languages.

The construction used is as follows. Given two incomplete DFAs, A =
([0,m[,Σ, δA, 0, FA) and B = ([0, n[,Σ, δB , 0, FB), a DFA accepting L(A)L(B)
is C = (R,Σ, δC , r0, FC) where for σ ∈ Σ, i ∈ [0,m[ , and P ⊆ [0, n[ , R ⊂
([0,m[∪{ΩA})× 2[0,n[ (precisely defined in the proof of Theorem 4); r0 is (0, ∅)
if 0 /∈ FA, and is (0, {0}) otherwise; FC = {(i, P ) ∈ R | P ∩ FB 6= ∅}; and

δC((q, T ), σ) =


(δA(q, σ), δB(T, σ) ∪ {0}), if δA(q, σ) ↓ ∧ δA(q, σ) ∈ FA;

(δA(q, σ), δB(T, σ)), if δA(q, σ) ↓ ∧ δA(q, σ) /∈ FA;

(ΩA, δB(T, σ)). if δA(q, σ) ↑ ∧ δB(T, σ) 6= ∅;
↑, otherwise.

In the following, we determine the number of states and transitions that are
sufficient for any DFA C resulting from the previous construction.

Given an automaton A, its alphabet can be partitioned in two sets, ΣAc and
ΣAi , such that σ ∈ ΣAc if A is σ-complete, and σ ∈ ΣAi otherwise. In the same
way, considering two automata A and B, the alphabet can be divided into four
disjoint sets Σci, Σcc, Σii and Σic. As before, these notations can be extended
to regular languages considering their minimal DFAs.

Theorem 4. For any regular languages L1 and L2 with isc(L1) = m, isc(L2) =
n, uσ = uσ(L2), f = f(L1) and ũσ = ũσ(L1), one has isc(L1L2) ≤ (m+ 1)2n−
f2n−1 − 1, and

itc(L1L2) ≤ |Σ|(m + 1)2n − |Σic ∪ Σcc|(f2n−1 + 1)−

−
∑

σ∈(Σci∪Σii)

(2uσ + f2itcσ(L2))−
∑
σ∈Σii

ũσ2uσ −
∑
σ∈Σic

ũσ.
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Proof. Let A and B be the minimal DFAs that recognize L1 and L2, respec-
tively. Consider the DFA C such that L(C) = L(A)L(B), constructed using
the algorithm described above. First, let us consider the problem of isc(L1L2).
The set R is a set of pairs (s, P ) where s ∈ ([0,m[∪ΩA), and P ⊆ [0, n[ . There
exist (m+1)2n such pairs. However, we know that R does not contain the pairs
in which s is a final state of A and the set P does not contain the initial state
of B. Thus, we need to remove f(A)2n−1 pairs from the first counting. As the
pair (ΩA, ∅) is not in R, we can also remove it. The resulting number of states
is, thus, (m+ 1)2n − f(A)2n−1 − 1.

Now, let us consider the problem of estimating itc(L1L2). We name the
σ-transitions of A and B as in the proof of the Theorem 1 with a slight mod-
ification: z ∈ [1, uσ(B)]. The σ-transitions of C are pairs (θ, γ) where θ is
either an αi or an ᾱl, and γ is a set of βj or β̄z. By construction, C can-
not have transitions where θ is an ᾱl, and γ is a set with only β̄k, because
these pairs would correspond to undefined transitions. If σ ∈ Σci, the num-
ber of C σ-transitions is (tσ(A) + 1)2tσ(B)+uσ(B) − 2uσ(B) − f(A)2tσ(B), be-
cause the number of θs is tσ(A) + 1 and the number of γs is 2tσ(B)+uσ(B). We
need to remove the 2uσ(B) sets of transitions of the form (v, ∅) where v cor-
responds to the undefined σ-transition leaving the state ΩA. If θ corresponds
to a transition that leaves a final state of A, then γ needs to include the ini-
tial state of B. Thus we also remove f(A)2tσ(B) pairs. If σ ∈ Σcc, C has
(tσ(A) + 1)2tσ(B) − 1 − f(A)2tσ(B)−1 σ-transitions. In this case, uσ(B) = 0.
The only pair we need to remove is (v, ∅) where v corresponds to the un-
defined σ-transition leaving the state ΩA. Analogously, if σ ∈ Σii, C has
(tσ(A)+uσ(A)+1)2tσ(B)+uσ(B)− (ũσ(A)+1)2uσ(B)−f(A)2tσ(B) σ-transitions.
Finally, if σ ∈ Σic, C has (tσ(A)+uσ(A)+1)2tσ(B)−(ũσ(A)+1)−f(A)2tσ(B)−1

σ-transitions. Thus, after some simplifications, the right side of the inequality
in the proposition holds. �

Corollary 1. The isc(L1L2) in the Theorem 4 is maximal when f(L1) = 1.

3.2.1. Worst-case Witnesses

In the following we show that the complexity upper bounds found in Theo-
rem 4 are tight. As in Section 3.1.1, we need to consider three different cases,
according to the state and transition complexities of the operands. Although
the tight bound for (complete) state complexity can be reached over a binary
alphabet [14], all automaton families used in this section have an alphabet
Σ = {a, b, c}.

Case 1: m ≥ 2 and n ≥ 2. Let A = ([0,m[,Σ, δA, 0, {m−1}) with δA(i, a) = i+
1 mod m, if i ∈ [0,m[, δA(i, b) = 0, if i ∈ [1,m[, and δA(i, c) = i if i ∈ [0,m[; and
B = ([0, n[,Σ, δB , 0, {n−1}) with δB(i, a) = i if i ∈ [0, n[, δB(i, b) = i+1 mod n,
if i ∈ [0, n[, and δB(i, c) = 1, i ∈ [1, n[. These automata are simple modifications
of the ones presented in the proof of the Theorem 2.1 in [26]: a b-transition from
the state 0 to itself on DFA A, and a c-transition from the state 0 to the state
1 were eliminated. Both automata are represented in Fig. 3.
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(A) 0 1 2 · · · m− 1
a

c
a

b

c
a

c

b

a

c

a, b

(B) 0 1 2 · · · n− 1
b

a ba, c
b

a
c b

a

c

b

Figure 3: DFA A with m states and DFA B with n states.

Theorem 5. For any integers m ≥ 2 and n ≥ 2, there exist an m-state DFA A
with r = 3m− 1 transitions and an n-state DFA B with s = 3n− 1 transitions
such that any DFA accepting L(A)L(B) has, at least, (m+1)2n−2n−1−1 states

and (r + 1)2
s+1

3 + 3.2
s−2

3 − 5 transitions.

Proof. Consider the DFA C such that L(C) = L(A)L(B) and C is constructed
using the concatenation algorithm described above. First we prove the result
for the number of states, following the proof of the Theorem 2.1 in [26]. From
each w ∈ {a, b}?, let S(w) = { i | w = w′w′′ such that w′ ∈ L(A) and i =
|w′′|b mod n }, where |w|b denotes the number of occurrences of the symbol
b in the word w. Consider w,w′ ∈ {a, b}? such that S(w) 6= S(w′). Let k ∈
S(w) \ S(w′) (or S(w′) \ S(w)). It is clear that wbn−1−k ∈ L(A)L(B) but
w′bn−1−k /∈ L(A)L(B).

For each w ∈ {a, b}?, define T (w) = max{ |w′′| | w = w′w′′ and w′′ ∈ a? }.
Consider w,w′ ∈ {a, b}? such that S(w) = S(w′) and T (w) > T (w′) mod m.
Let i = T (w) mod m and w′′ = am−1−ibn−1. Therefore ww′′ ∈ L(A)L(B), but
w′w′′ /∈ L(A)L(B) because it has at least less one a than ww′′.

For each subset s = {i1, . . . , it} ⊆ [0, n[ , where i1 > · · · > it, and an integer
j ∈ [0, . . . ,m[∪{ΩA} except the cases where 0 6∈ s and j = m − 1, and s = ∅
and j = ΩB , there exists a word

w =

{
am−1bi1 · · · am−1bitaj , if j 6= ΩA;

am−1bi1 · · · am−1bitbn, if j = ΩA;

such that S(w) = s and T (w) = j, which represents a different left quotient
induced by L(A)L(B) . Thus, C is minimal and has (m + 1)2n − 2n−1 − 1
states.

Considering, now, the number of transitions. As in the proof of Theorem 4,
the transitions of C are pairs (θ, γ). Then, C has:

11



• (m+ 1)2n − 2n−1 − 1, a-transitions. There are m+ 1 θs and 2n γs, from
which we need to remove the transition (ΩA, ∅). If θ is a transition which
leaves a final state of A, γ needs to include the transition that leaves the
initial state of B. Thus, 2n−1 pairs are removed.

• (m+ 1)2n− 2n−1− 2, b-transitions. Here, the transition (θ̄, ∅) is removed.

• (m+1)2n−2n−1−2, c-transitions. This is analogous to the previous case.

As m = r+1
3 and n = s+1

3 , the DFA C has (r+ 1)2
s+1

3 + 3.2
s−2

3 − 5 transitions.
�

Case 2: m = 1 and n ≥ 2. Let A = ({0},Σ, δA, 0, {0}) with δA(0, b) =
δA(0, c) = 0; and B = ([0, n[,Σ, δB , 0, {n − 1}) with δB(i, a) = i if i ∈ [0, n[,
δB(i, b) = i+ 1 mod n if i ∈ [0, n[, and δB(i, c) = i+ 1 mod n, if i ∈ [1, n[. The
automata A and B are represented in Fig. 4.

(A) (B) 0

b, c

(B) 0 1 · · · n− 1
b

a
b, c

a
b, c

a

b, c

Figure 4: DFA A with 1 state and DFA B with n states.

Theorem 6. For any integer n ≥ 2, there exist a 1-state DFA A with 2 tran-
sitions and an n-state DFA B with s = 3n − 1 transitions such that any DFA

accepting L(A)L(B) has, at least, 2n+1−2n−1−1 states and 3(2
s+4

3 −2
s−2

3 )−4
transitions.

Proof. Consider the DFA C = (R,Σ, δ, 0, F ), constructed by the concatena-
tion algorithm previously defined, such that L(C) = L(A)L(B). One needs to
prove that C is minimal, i.e. all states are reachable from the initial state and are
pairwise distinguishable. The automaton C has states (q, P ) with q ∈ {ΩA, 0},
P = {i1, . . . , ik}, 1 ≤ k ≤ n, and i1 < · · · < ik. There are two kinds of states:
final states where ik = n− 1; and non-final states where ik 6= n− 1. Note that,
whenever q = 0, we have i1 = 0.

Let f be a final state of the form (q, P ), where P = {i1, . . . , ik−1, n − 1}
and P̄ = [0, n[ \P . Let us construct a word w of size n, such that δ(0, w) = f .
We will count the positions (starting with zero) of the word w from the last to
the first. If f has q = ΩA, w has an a in the position i1; c’s in the positions
j ∈ P̄ \ {i1 − 1} if i1 6= 0, or j ∈ P̄ otherwise; all the other positions are b’s.
For example, if n = 5, P = {4} and P̄ = {0, 1, 2, 3} then w = abccc. If f has
q = 0 the word has c’s in all positions ij − 1, ij ∈ P̄ ; all the other positions are
b′s. For example, if P = {0, 4}, P̄ = {1, 2, 3} and n = 5 then w = bbccc. Now,
consider the non-final states p which have the same form (q, P ), but ik 6= n− 1
and P̄ = {0, . . . , n−2}\P . The word w for these non-final states is constructed

12



with the same rules described above for final states. This proves that all states
are reachable from initial state.

Now let us prove that all states are pairwise distinguishable. Final states
are trivially distinguishable from non-final states. We need to prove that states
of the same kind are distinguishable. Consider w,w′ ∈ Σ? such that δ(0, w) = q
and δ(0, w′) = p, q 6= p. Suppose that q and p are final. There are three cases
to consider. Let q = (0, {0, i2, . . . , ik, n− 1}) and p = (0, {0, j2, . . . , jk′ , n− 1}).
Suppose k ≥ k′ and i ∈ {0, i2, . . . , ik, n − 1} \ {0, j2, . . . , jk′ , n − 1}. Then
wcn−1−i ∈ L(C) but w′cn−1−i /∈ L(C). If q = (ΩA, {i1, . . . , ik, n− 1}) and p =
(ΩA, {j1, . . . , jk′ , n− 1}), we can take i as before and then wbn−1−i ∈ L(C) but
w′bn−1−i /∈ L(C). If q = (0, {0, i2, . . . , ik, n− 1}) and p = (ΩA, {j1, . . . , jk′ , n−
1}), then wcnbn−1 ∈ L(C) but w′cnbn−1 /∈ L(C). Now suppose that q and p
are non-final. Let q = (0, {0, i2, . . . , ik}) and p = (0, {0, j2, . . . , jk′}). Consider,
without loss of generality, k ≥ k′ and i ∈ {0, i2, . . . , ik} \ {0, j2, . . . , jk′}. It
is clear that wcn−1−i ∈ L(C) but w′cn−1−i /∈ L(C). If q = (ΩA, {i1, . . . , ik})
and p = (ΩA, {j1, . . . , jk′}), we can take i ∈ {i1, . . . , ik} \ {j1, . . . , jk′} and then
wbn−1−i ∈ L(C) but w′bn−1−i /∈ L(C ′). Finally, if q = (0, {0, i2, . . . , ik}) and
p = (ΩA, {j1, . . . , jk′}), clearly wcnbn−1 ∈ L(C) but w′cnbn−1 /∈ L(C). Thus
C is minimal and has 2n−2 + 2n−1 final states and 2n−2 + 2n−1 − 1 non-final
states. Therefore, it has 2n+1 − 2n−1 − 1 states.

The proof for the number of transitions is similar to the proof for the number
of transitions of Theorem 5. �

(A) 0 1 2 · · · m− 1 (B) 0
b, c

a
b

a
b, c

a
b, c

a

b, c

b, c

Figure 5: DFA A with m states and DFA B with 1 state.

Case 3: m ≥ 2 and n = 1. Let A = ([0,m[,Σ, δA, 0, {m− 1}) with δA(i, a) = i,
if i ∈ [0,m[, δA(i, b) = i + 1 mod m, if i ∈ [0,m[, δA(i, c) = i + 1 mod m if
i ∈ [0,m[\[1]; and B = ({0},Σ, δB , 0, {0}) with δB(0, b) = δB(0, c) = 0. A
representation of these DFAs can be seen in Fig. 5.

Theorem 7. For any integer m ≥ 2, there exist an m-state DFA A with r =
3m− 1 transitions and an 1-state DFA B with 2 transitions such that any DFA
accepting L(A)L(B) has at least 2m states and 2r transitions.

Proof. Consider the DFA C = (Q,Σ, δ, 0, F ), such that L(C) = L(A)L(B),
constructed with the previous algorithm. We only present the proof for the
number of states because the proof for the number of transitions is similar to
the proof of Theorem 5. By construction we know that C has two kinds of p
states:

13



• final states, which are of the form (x, {0}) where x ∈ [0,m[∪{ΩA}.

• non-final states, which are of the form (x, ∅) where x ∈ [0,m− 2].

For any state p we can find a word w for which δ(0, w) = p. If p is a final
state of the form (x, {0}) where x ∈ [0,m[ then w = bm+x. In case x = ΩA
then w = bm+1c. Finally, if p is a non-final state then w = bx. Thus, all
states are reachable from the initial state. Let us prove that the final states are
distinguishable:

• The final states where x ∈ [0,m[ are not equivalent because they corre-
spond to the states of the DFA A which is minimal.

• The final state where x = ΩA is not equivalent to the other final state
because it is the only final state which is σ-incomplete.

Let (i, ∅) and (j, ∅) be two distinct non-final states. Consider wi, wj ∈
Σ? such that δC(r0, wi) = (i, ∅) and δC(r0, wj) = (j, ∅). It is clear that
wia

i+1bm−1−iai+1 belongs to L(A)L(B) but wja
i+1bm−1−iai+1 does not. Then

wi and wj are in different left quotients induced by L(A)L(B). Hence, the DFA
C is minimal and has 2m states. �

3.3. Kleene Star

In this section we give a tight upper bound for the incomplete transition com-
plexity of the star operation. The incomplete state complexity of this operation
coincides with the one for the complete case.

Let A = ([0, n[ ,Σ, δ, 0, F ) be a DFA. Consider F0 = F \ {0} and suppose
that l = |F0| ≥ 1. If F = {0}, then L(A)? = L(A). The following algorithm
constructs a DFA for the Kleene star of A. Let A′ = (Q′,Σ, δ′, q′0, F

′) be a new
DFA where q′0 /∈ Q is a new initial state, Q′ = {q′0} ∪ {P | P ⊆ (Q \ F0) ∧ P 6=
∅} ∪ {P | P ⊆ Q∧ 0 ∈ P ∧ P ∩ F0 6= ∅}, F ′ = {q′0} ∪ {R | R ⊆ Q∧R ∩ F 6= ∅},
and for σ ∈ Σ,

δ′(q′0, σ) =


{δ(0, σ)}, if δ(0, σ) ↓ ∧ δ(0, σ) /∈ F0;

{δ(0, σ), 0}, if δ(0, σ) ↓ ∧ δ(0, σ) ∈ F0;

∅, if δ(0, σ) ↑;

and

δ′(R, σ) =


δ(R, σ), if δ(R, σ) ∩ F0 = ∅;
δ(R, σ) ∪ {0}, if δ(R, σ) ∩ F0 6= ∅;
∅, if δ(R, σ) = ∅.

It is easy to verify that A′ recognizes the language L(A)?. In the following
we present the upper bounds for the number of states and transitions for any
DFA A′ resulting from the algorithm described above.

Theorem 8. For any regular language L, with isc(L) = n, sσ = sσ(L), one
has isc(L?) ≤ 2n−1 + 2n−l−1 and itc(L?) ≤ |Σ|(2n−1 + 2n−l−1) +

∑
σ∈Σi

(sσ − 2ũσ ).
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Proof. Let A be the minimal DFA that recognizes L. Consider the DFA A′

such that L(A′) = L(A?) and A′ is constructed using the algorithm defined
above. Let us prove the result for the isc(L?). Note that Q′ is defined as the
union of three different sets. The first set contains only the initial state. The
states generated by the second set of Q′ are the non-empty parts of Q disjoint
from F0. So in this set we have 2n−l − 1 states (we also remove the empty set).
The states in the third set of Q′ are the parts of Q that contains the initial state
of A and are non-disjoint from F0. Those are at most (2l− 1)2n−l−1. Therefore
the number of states is lesser or equal than 2n−1 + 2n−l−1.

Let us consider the itc(L?). Following the analysis done for the states, the
number of σ-transitions of A′ is the summation of:

1. sσ σ-transitions leaving the initial state of A.

2. the number of sets of σ-transitions leaving only non-final states of A:

(a) (2tσ−l) − 1, if A is σ-complete, because we have tσ − l σ-transitions of
this kind, and we remove the empty set;

(b) 2tσ−l+uσ − 2ũσ , if A is σ-incomplete because we have tσ − l + uσ of
this kind, and we subtract the number of sets with only undefined σ-
transitions of A.

3. the number of sets of σ-transitions leaving final and non-final states of A.
We do not count the transition leaving the initial state of A because, by
construction, if a transition of A′ contains a transition leaving a final state of
A then it also contains the one leaving the initial state of A. Thus, we have

(a) (2l − 1)2tσ−l−1, if A is σ-complete;

(b) (2l − 1)2tσ−l−1+uσ , if A is σ-incomplete.

Thus, the inequality in the proposition holds. �

Corollary 2. The isc(L?) presented in Theorem 8 is maximal when l = 1.

3.3.1. Worst-case Witnesses

Let us present an automaton family, with Σ = {a, b}, for which the upper
bounds in Theorem 8 are reached.

Define A = ([0, n[,Σ, δA, 0, {n−1}) with δA(i, a) = i+1 mod n for i ∈ [0, n[,
and δA(i, b) = i+ 1 mod n for i ∈ [1, n[. This DFA is depicted in Fig.6.

0 1 · · · n− 1
a a, b a, b

a, b

Figure 6: DFA A with n states.
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Theorem 9. For any integer n ≥ 2, there exist an n-state DFA A with r =
2n−1 transitions such that any DFA accepting L(A)? has, at least, 2n−1 +2n−2

states and 2
r+1

2 + 2
r−1

2 − 2 transitions.

Proof. For n = 2 it is clear that L = {w ∈ {a, b}? | |w|a is odd} is accepted by
a two-state DFA, and L? = {ε} ∩ {w ∈ {a, b}? | |w|a ≥ 1} cannot be accepted
with less than 3 states. For n > 2, we consider the automaton family A which
is shown in Fig. 6. Consider the DFA A′ such that L(A′) = L(A?). First we
prove the result for the number of states, following the proof of the Theorem
3.3 in [26]. In order to prove that A′ is minimal, thus we need to prove the
following.

• Every state is reachable from the start state. As each state of A′ is a
subset of states of A, we proceed by induction on the size of these states.
If |q| = 1 we have:

q =


{1} = δ′(q′0, a); (1)

{i} = δ′({i− 1}, a), for 1 < i < n− 1; (2)

{0} = δ′({n− 1, 0}, b). (3)

Note that we reach q = {0} from a state with size two, but we reach the
state {n− 1, 0} by δ′({n− 2}, a) and {n− 2} is already considered in (2).
Thus we can reach all states such that |q| = 1. Now, assume that, for
every state q, if |q| < m then q is reachable. Let us prove that if |q| = m
then it is also reachable. Consider q = {i1, i2, . . . , im} such that 0 ≤ i1 <
i2 < · · · < im < n− 1 if n− 1 /∈ q, 0 = i1 < i2 < · · · < im−1 < im = n− 1
otherwise. There are three cases to consider:

(i) {n − 1, 0, i3, . . . , im} = δ′({n − 2, i3 − 1, . . . , im − 1}, a) where the
state {n− 2, i3 − 1, . . . , im − 1} contains m− 1 states.

(ii) {0, 1, i3, . . . , im} = δ′({n−1, 0, i3−1, . . . , im−1}, a) where the state
{n− 1, 0, i3 − 1, . . . , im − 1} is considered in case (i).

(iii) {t, i2, . . . , im} = δ′({0, i2 − t, . . . , im − t}, at), t > 0, where the state
{0, i2 − t, . . . , im − t} is considered in case (ii).

• Each state defines a different left quotient induced by L(A′). Consider p,
q ∈ Q′, p 6= q and i ∈ p\q. Then δ′(p, an−1−i) ∈ F ′ but δ′(q, an−1−i) /∈ F ′.

Let us consider, now, the problem of the number of transitions. The DFA A′

has:

• 2n−1 + 2n−2 a–transitions because it has one a–transition which corre-
sponds to sa, 2n−1 − 1 a–transitions which corresponds to case 2. of
Theorem 8 and 2n−2 a–transitions which corresponds to case 3. of Theo-
rem 8.

• 2n−1 − 2 + 2n−2 b–transitions because it has 2n−2+1 − 2 b–transitions
which corresponds to case 2. of Theorem 8, and 2n−3+1 b–transitions
which corresponds to case 3. of Theorem 8.
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As n = r+1
2 , A′ has 2

r+1
2 + 2

r−1
2 − 2 transitions. �

3.4. Reversal

It is known that when considering complete DFAs the state complexity of the
reversal operation reaches the upper bound 2n, where n is the state complexity of
the operand language. By the subset construction, a (complete) DFA resulting
from the reversal has a state which corresponds to ∅, which is a dead state.
Therefore, if we remove that state the resulting automaton is not complete
and the incomplete state complexity is 2n − 1. Consequently the transition
complexity is |Σ|(2n − 1). It is easy to see that the worst case of the reversal
operation is reached when the operand is complete.

3.5. Unary Languages

In the case of unary languages, if a DFA is not complete it represents a finite
language. Thus, the worst-case state complexity of operations occurs when the
operand DFAs are complete. For these languages the (incomplete) transition
complexity coincide with the (incomplete) state complexity. The study for union
and intersection was made by Y. Gao et al. [8], and using similar methods,
it is not difficult to obtain the corresponding results for the other operations
addressed in this article.

3.6. Experimental Results

Hitherto we studied the descriptional complexity of several operations con-
sidering the worst-case analysis. However, for practical applications, it is im-
portant to know how significant are these worst-case results, i.e. if these upper
bounds are reached for a significant number of cases or, on the contrary, only
rarely occur. To evaluate this, we performed some experimental tests in order
to analyse how often the upper bounds were, in practice, achieved. Although
we fixed the size of the alphabet and consider small values of n and m, the
experiments are statistically significant and provide valuable information about
the average case behaviour of these operations.

Almeida et al. [1] presented an uniform random generator for complete DFAs.
We can use this generator to obtain incomplete DFAs, if we consider the exis-
tence of a dead state. However, in this case, the probability that a state has
a transition to the dead state is 1

n+1 , where n is the number of useful states
of the generated incomplete DFA. Although this corresponds to a uniform dis-
tribution, for very large values of n, the referred probability is very low, and
thus the generated DFAs are almost always complete. Therefore, in order to
generate random incomplete DFAs, we can increase the number of void transi-
tions in the generated DFAs to change the referred probability. For that, the
generator accepts a parameter b that defines the multiplicity of dead states.
Using b (0 < b < 1), we compute the integer part of m = b×n

1−b , which indicates
the number of dead states in the generated DFA. Note that the generated DFA
becomes “more incomplete” when b tends to 1.
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All the tests were performed using the random generator described above.
The tests and the generator were implemented in Python2 using the FAdo sys-
tem, and are both publicly available3. In the following experiments (Table 4)
we consider b = 0.7.

As the DFAs were obtained with a uniform random generator, the size of
each sample (20000 elements) is sufficient to ensure a 95% confidence level within
a 1% error margin. Table 4 shows the results of experimental tests with 20000
pairs of incomplete DFAs as operands. We present the results for operands
with m,n ∈ {2, 4, 6, 8, 10, 12, 14, 16, 18} states, such that m + n = 20, over an
alphabet of k = 5 symbols. As union and intersection are symmetric operations,
we only present the results for m ∈ {10, 12, 14, 16, 18} and n ∈ {10, 8, 6, 4, 2}.
We considered the following measures for the DFA resulting from the operation:
the state and transition complexity, sc and tc, respectively; the upper bounds
for these measures, ubsc and ubtc, respectively; its transition density d = tc

k·sc ;
and the ratios rs = sc

ubsc and rt = tc
ubtc . Note that the results presented in

this table are averages, i.e. we calculate all the referred measures for each pair
of operands and then we compute the average of each measure. The columns
labeled m1, m2, m3 and m4 give the maximal values of sc, ubsc, tc and ubtc,
respectively. For example, considering m = 10 and n = 10 we calculate the ubsc
for the concatenation of each pair of random incomplete DFAs. Then we do the
average of the 20000 obtained values and the result is 8557.90, as we can see
in the table. We need to do this because every measure depends of parameters
that can be different in each pair of generated DFAs.

As it was expected, for the complement operation, the upper bound for
the state complexity was always reached on the experiments. For all the other
operations the number of states of the DFA obtained during the experimentation
(sc) was much lower than the upper bounds. For example, for m = 10 and
n = 10 the upper bound was 150 times larger than the number of states of the
DFA resulting from the concatenation in the experiment. Even the largest DFA
obtained during the experimentation has less states than what was expected
in the worst case. Considering the same example, the largest DFA has 295
states and the upper bound is 8557.90. Nevertheless, for binary operations,
whenever the difference between m and n increase, the number of states of
the DFA resulting from the operations, in the experiment, was closer to the
upper bound. For Kleene star and reversal operations, the upper bound was
far from being reached. For m = 18 the upper bound for Kleene star was 1900
times larger than the number of states of the resulting DFA. Note that, the
DFAs resulting from all the operations in the experimentation (excluding the
complement) were also incomplete.

The experimental results for the transition complexity were very similar to

2http://www.python.org
3The code used to performed the tests and a more complete set of results are available at

http://khilas.dcc.fc.up.pt/∼eva/ and the necessary library to perform the tests, including
the referred DFA generator, can be obtained at http://fado.dcc.fc.up.pt.
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b=0.7

Concatenation

m n ubsc rs m1 m2 tc ubtc rt m3 m4 d

2 18 54.2 604404.76 0.00009 416 655359 182.90 3141223.07 0.00006 1929 3792832 0.62

4 16 55.85 253077.73 0.0002 430 294911 190.69 1316341.55 0.0001 1962 1533056 0.64

6 14 59.81 88087.17 0.0007 303 106495 210.30 468266.14 0.0004 1377 537856 0.67

8 12 59.11 28115.99 0.002 431 34815 210.50 151521.51 0.001 1928 173280 0.68

10 10 54.79 8557.90 0.01 295 10751 194.56 46208.83 0.004 1378 53300 0.68

12 8 50.72 2523.72 0.02 219 3199 180.17 13481.26 0.01 1001 15568 0.69

14 6 44.73 725.28 0.06 179 927 156.79 3760.56 0.04 750 4336 0.68

16 4 36.35 204.44 0.18 117 263 121.18 1002.60 0.12 481 1171 0.65

18 2 28.16 56.31 0.50 54 71 88.10 250.02 0.35 231 289 0.62

Union

10 10 33.08 120 0.28 89 120 90.46 378.97 0.24 346 480 0.53

12 8 33.33 116 0.29 89 116 91.87 367.46 0.25 323 463 0.53

14 6 32.38 104 0.31 90 104 88.74 326.77 0.27 336 414 0.53

16 4 29.96 84 0.36 73 84 79.87 255.68 0.31 283 340 0.52

18 2 27.84 56 0.50 55 56 73.23 162.12 0.45 209 225 0.51

Intersection

10 10 7.98 100 0.08 59 100 9.74 46208.83 0.0002 120 53300 0.19

12 8 8.18 96 0.09 60 96 10.09 445.26 0.02 109 825 0.19

14 6 7.78 84 0.09 56 84 9.58 389.08 0.02 101 722 0.18

16 4 6.61 64 0.10 52 64 7.93 283.61 0.03 99 624 0.17

18 2 6.03 36 0.17 34 36 7.45 155.84 0.05 70 396 0.17

Star

2 2.07 3.23 0.64 3 4 5.22 8.73 0.60 15 19 0.50

4 4.64 10.72 0.43 12 16 13.96 40.72 0.34 51 74 0.55

6 8.79 38.20 0.23 31 64 30.55 170.63 0.18 136 302 0.68

8 14.39 141.73 0.10 74 256 53.93 676.34 0.08 333 1219 0.73

10 21.61 542.92 0.040 113 1024 85.40 2662.98 0.03 493 4987 0.77

12 30.98 2118.42 0.015 156 4096 127.16 10510.73 0.01 723 19620 0.80

14 41.10 8346.26 0.005 226 12288 173.13 41603.90 0.004 1115 60981 0.83

16 53.20 33113.56 0.002 263 49152 228.74 165364.25 0.001 1209 244731 0.85

18 68.04 131851.28 0.001 304 196608 298.15 658938.51 0.0004 1466 974212 0.87

Reversal

2 2.43 3 0.81 3 3 5.28 15 0.35 13 15 0.42

4 6.46 15 0.43 15 15 16.48 75 0.22 63 75 0.49

6 12.18 63 0.19 48 63 34.63 315 0.11 181 315 0.54

8 18.72 255 0.07 105 255 55.43 1275 0.043 468 1275 0.56

10 26.46 1023 0.0259 129 1023 80.79 5115 0.0158 536 5115 0.58

12 36.08 4095 0.0088 187 4095 113.74 20475 0.0056 804 20475 0.60

14 45.94 16383 0.0028 224 16383 146.93 81915 0.0018 989 81915 0.61

16 57.05 65535 0.0009 353 65535 185.02 327675 0.0006 1504 327675 0.62

18 70.55 262143 0.0003 337 262143 232.92 1310715 0.0002 1476 1310715 0.63

Complement

2 3 3 1 3 3 9.62 29.79 0.32 15 55 0.64

4 5 5 1 5 5 22.11 50.81 0.44 25 85 0.88

6 7 8 1 7 7 33.91 73.84 0.46 35 120 0.97

8 9 9 1 9 9 44.61 95.35 0.47 45 155 0.99

10 11 11 1 11 11 54.87 116.90 0.47 55 175 1.00

12 13 13 1 13 13 64.94 140.16 0.46 65 205 1.00

14 15 15 1 15 15 74.99 162.05 0.46 75 235 1.00

16 17 17 1 17 17 85 183.96 0.46 85 265 1.00

18 19 19 1 19 19 95 207.13 0.46 95 280 1.00

Table 4: Experimental results for general regular languages with b = 0.7
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the previous ones. For the union, the difference was not so notorious, but for
all the other operations it was very high, mainly for the Kleene star and the
reversal operations. For example, considering m = 10 and n = 10, for union,
the upper bound was only 4 times larger than the number of transitions of the
resulting DFA. However, for the concatenation, the upper bound was 1300 times
larger. For m = 18 the upper bound for reversal was 5600 times larger than
the number of transitions of the resulting DFA. Note that, although the DFA
resulting from the complement was complete, the upper bound for the transition
complexity was much higher than the number of transitions of that DFA. This
happens because Gao et al. chose to give an upper bound as a function of the
transition complexity of the operand, and because of this the upper bound, in
some situations, is greater than the |Σ|(m + 1), which is the maximal number
of transitions of any DFA with m+ 1 states.

Although this sample was made for few values of n and m, we expect that
the experimental results for other cases would be very similar. Thus, we can
conjecture that the upper bounds for all operations studied are excessively pes-
simistic, when considering practical applications.

4. Finite Languages

For finite languages, Salomaa and Yu [20] showed that the state complexity
of the determinization of an NFA with m states and k symbols is Θ(k

m
1+log k )

(lower than 2m as it is the case for general regular languages). Câmpeanu et
al. [5] studied the operational state complexity of concatenation, Kleene star,
and reversal. Finally, Han and Salomaa [9] gave tight upper bounds for the
state complexity of union and intersection on finite languages.

In this section we give tight upper bounds for the state and transition com-
plexity of all the operations considered in the last section, for incomplete DFAs
representing finite languages, with an alphabet size greater than 1. Note that,
for unary finite languages the incomplete transition complexity is equal to the
incomplete state complexity of that language, which is always equal to the state
complexity of the language minus one. For the concatenation, we correct the
upper bound for the state complexity of complete DFAs [5], and show that if
the right automaton is larger than the left one, the upper bound is only reached
using an alphabet of variable size. In the Tables 5 and 6 we summarize the
results of these section and the tight upper bounds for the state complexity on
complete DFAs. As in the previous section, we also present some experimen-
tal results in order to compare the worst case with the average case for these
operations.

Let A be a minimal DFA with n states accepting a finite language, where
the states are assumed to be topologically ordered, i.e., p′ = δ(p, σ) implies that
p′ > p. We will denote by inσ(A, i) the number of transitions reaching i, and
omit argument A whenever there is no ambiguity. Then,

∑
σ∈Σ inσ(0) = 0 and

there is exactly one final state which, because of the topological order is n− 1,
called pre-dead, such that

∑
σ∈Σ tσ(n − 1) = 0. The level of a state i is the

length of the shortest path from the initial state to i which never exceeds n− 1.
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Operation isc sc

L1 ∪ L2 mn− 2 mn− (m+ n)

L1 ∩ L2 mn− 2m− 2n+ 6 mn− 3(m+ n) + 12

LC m+ 1 m

L1L2

m−1∑
i=0

min

{
ki,

f(A,i)∑
j=0

(n−1
j

)}
+

f(A)∑
j=0

(n−1
j

)
− 1

m−2∑
i=0

min

{
ki,

f(A,i)∑
j=0

(n−2
j

)}
+

f(A)∑
j=0

(n−2
j

)
L? 2m−f(A)−1 + 2m−2 − 1 2m−f(A)−2 + 2m−3

LR
∑l−1
i=0 k

i + 2m−l − 1
∑l−1
i=0 k

i + 2m−l−1

Table 5: State complexity of basic regularity preserving operations on finite languages

Operation itc

L1 ∪ L2

∑
σ∈Σ (sσ(L1) � sσ(L2)− (itcσ(L1)− sσ(L1))(itcσ(L2)− sσ(L2))) +

n(itc(L1)− s(L1)) +m(itc(L2)− s(L2))

L1 ∩ L2

∑
σ∈Σ (sσ(L1)sσ(L2) + (itcσ(L1)− sσ(L1)

− aσ(L1))(itcσ(L2)− sσ(L2)− aσ(L2)) + aσ(L1)aσ(L2))

LC |Σ|(m+ 1)

L1L2

k
∑m−2
i=0 min

{
ki,
∑f(L1,i)
j=0

(n−1
j

)}
+

+
∑
σ∈Σ

(
min

{
km−1 − sσ(L2),

∑f(L1)−1
j=0 ∆j

}
+
∑f(L1)
j=0 Λj

)
L?

2m−f(L)−1
(
k +

∑
σ∈Σ 2eσ(L)

)
−
∑
σ∈Σ 2tσ(L)−sσ(L)−eσ(L)

−
∑
σ∈X 2tσ(L)−sσ(L)−eσ(L)

LR
∑l
i=0 k

i − 1 + k2m−l −
∑
σ∈Σ 2

∑l−1
i=0

tσ(L,i)+1, m even∑l
i=0 k

i − 1 + k2m−l −
∑
σ∈Σ

(
2
∑l−2
i=0

tσ(L,i)+1 − cσ(l)

)
, m odd

Table 6: Transition complexity of basic regularity preserving operations on finite languages
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The level of A is the level of its pre-dead state. A DFA is called linear if its
level is n− 1.

4.1. Union

Consider the algorithm for the union operation based on the usual product
construction already defined in the Section 3.1. Let tσ([k, l]) =

∑
i∈[k,l] tσ(i).

The following theorem presents the upper bounds for the number of states and
transitions of any DFA accepting the union of two finite languages. Note that
the result for the number of states is similar to the one for the complete case,
omitting the dead state.

Theorem 10. For any two finite languages L1 and L2 with isc(L1) = m and
isc(L2) = n, one has isc(L1 ∪ L2) ≤ mn− 2 and

itc(L1 ∪ L2) ≤
∑
σ∈Σ

(sσ(L1) � sσ(L2)− (itcσ(L1)− sσ(L1))(itcσ(L2)− sσ(L2)))

+ n(itc(L1)− s(L1)) +m(itc(L2)− s(L2)),

where for x, y Boolean values, x� y = min(x+ y, 1).

Proof. Let A = ([0,m[,Σ, δA, 0, FA) and B = ([0, n[,Σ, δB , 0, FB) be the min-
imal DFAs that recognize L1 and L2, respectively. Let us consider, first, the
counting of the number of states. In the product automaton, the set of states
is a subset of ([0,m[∪{ΩA}) × ([0, n[∪{ΩB}). The states of the form (0, i),
where i ∈ [ 1, n[∪{ΩB}, and of the form (j, 0), where j ∈ [1,m[∪{ΩA}, are not
reachable from (0, 0) because the operands represent finite languages; the states
(m−1, n−1), (m−1,ΩB) and (ΩA, n−1) are equivalent because they are final
and they do not have out-transitions; the state (ΩA,ΩB) is the dead state and
because we are dealing with incomplete DFAs we can ignore it. Therefore the
number of states of the union of two incomplete DFAs accepting finite languages
is at most (m+ 1)(n+ 1)− (m+ n)− 2− 1 = mn− 2.

Consider the number of transitions. In the product automaton, the σ-
transitions can be represented as pairs (αi, βj) where αi ( respectively βj) is
0 if there exists a σ-transition leaving the state i (respectively j) of DFA A (re-
spectively B), or −1 otherwise. The resulting DFA can have neither transitions
of the form (−1,−1), nor of the form (α0, βj), where j ∈ [ 1, n[∪{ΩB}, nor of
the form (αi, β0), where i ∈ [ 1,m[∪{ΩA}, as happened in the case of states.
Thus, the number of σ-transitions for σ ∈ Σ are:

sσ(A) � sσ(B)+tσ(A, [1,m[ )tσ(B, [1, n[ ) + tσ(A, [1,m[ )(tσ(B, [1, n[ ) + 1)

+(tσ(A, [1,m[ ) + 1)tσ(B, [1, n[ ) =

sσ(A) � sσ(B)+ntσ(A, [1,m[ ) + mtσ(B, [1, n[ )− tσ(A, [1,m[ )tσ(B, [1, n[ ).

Because the DFAs are minimal,
∑
σ∈Σ tσ(A, [1,m[ ) corresponds to itc(L1) −

s(L1), and analogously for B. Therefore the theorem holds. �
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4.1.1. Worst-case Witnesses

In the following we show that the upper bounds described above are tight.
Han and Salomaa proved [9, Lemma 3] that the upper bound for the number of
states can not be reached for any alphabet with a fixed size. The witness fam-
ilies for the incomplete complexities coincide with the ones that these authors
presented for the state complexity. As we are not including the dead state, our
representation is slightly different. Let m,n ≥ 1 and Σ = {b, c} ∪ {aij | i ∈
[ 1,m[, j ∈ [1, n[, (i, j) 6= (m − 1, n − 1)}. Let A = ([0,m[,Σ, δA, 0, {m − 1})
where δA(i, b) = i+ 1 for i ∈ [0,m− 2] and δA(0, aij) = i for j ∈ [1, n[, (i, j) 6=
(m − 1, n − 1). Let B = ([0, n[,Σ, δB , 0, {n − 1}), where δB(i, c) = i + 1 for
i ∈ [0, n[ and δB(0, ai,j) = j for j ∈ [1, n[, i ∈ [1,m[, (i, j) 6= (m− 1, n− 1). See
Figure 7 for the case m = 5 and n = 4.

(A) 0 1 2 3 4
a11, a12, a13, b

a21, a22, a23

a31, a32, a33

a41, a42, a43

b b b

(B) 0 1 2 3
a11, a21, a31, a41, c

a12, a22, a32, a42

a13, a23, a33

c c

Figure 7: DFA A with m = 5 and DFA B with n = 4.

Theorem 11. For any two integers m ≥ 2 and n ≥ 2, there exist an m-state
DFA A and an n-state DFA B, both accepting finite languages, such that any
DFA accepting L(A)∪L(B) needs at least mn−2 states and 3(mn−n−m) + 2
transitions, with an alphabet of size depending on m and n.

Proof. The proof for the number of states is the same as the proof of [9,
Lemma 2], considering the language families above. Let us prove the result
for the number of transitions. The DFA A has m − 1 b-transitions and one
aij-transition, for each aij . The DFA B has n − 1 c-transitions and the same
number of aij-transitions as A. Thus, the DFA resulting for the union operation
has:

• mn− 2n+ 1 b-transitions;

• mn− 2n+ 1 c-transitions;

• one aij-transitions for each aij and there are mn− n−m different aij .

Thus, the total number of transitions is 3(mn− n−m) + 2. It is easy to prove
that the resulting DFA is minimal. �
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4.2. Intersection

Given two DFAs A = ([0,m[,Σ, δA, 0, FA) and B = ([0, n[,Σ, δB , 0, FB), a
DFA accepting L(A) ∩ L(B) can be also obtained by the product construction.
Once more, the result for the state complexity is similar to the one for the
complete case, omitting the dead state. Let aσ(A) =

∑
i∈F inσ(A, i), and a(L) =∑

σ∈Σ aσ(L).

Theorem 12. For any two finite languages L1 and L2 with isc(L1) = m and
isc(L2) = n, one has isc(L1 ∩ L2) ≤ mn− 2m− 2n+ 6 and

itc(L1 ∩ L2) ≤
∑
σ∈Σ

(sσ(L1)sσ(L2) + (itcσ(L1)− sσ(L1) −

aσ(L1))(itcσ(L2)− sσ(L2)− aσ(L2)) + aσ(L1)aσ(L2)) .

Proof. Let A and B be the minimal DFAs that recognize L1 and L2, re-
spectively. Consider the DFA accepting L(A) ∩ L(B) obtained by the prod-
uct construction. Let us prove the result for isc(L1 ∩ L2). For the same rea-
sons as in Theorem 10, we can eliminate the states of the form (0, j), where
j ∈ [ 1, n[∪{ΩB}, and of the form (i, 0), where i ∈ [ 1,m[∪{ΩA}; the states
of the form (m − 1, j), where j ∈ [1, n − 2], and of the form (i, n − 1), where
i ∈ [1,m−2] are equivalent to the state (m−1, n−1) or to the state (ΩA,ΩB); the
states of the form (ΩA, j), where j ∈ [1, n[∪{ΩB}, and of the form (i,ΩB), where
i ∈ [1,m[∪{ΩA} are equivalent to the state (ΩA,ΩB) which is the dead state of
the DFA resulting from the intersection, and thus can be removed. Therefore,
the number of states is at most (m+ 1)(n+ 1)− 3((m+ 1)(n+ 1)) + 12− 1 =
mn− 2(m+ n) + 6.

Let us consider the itc(L1∩L2). Using the same technique as in Theorem 10
and considering that in the intersection we only have pairs of transitions where
both elements are different from −1, the number of σ-transitions is as follows,
which proves the theorem,

sσ(A)sσ(B) + (tσ(A, [1,m[ ) \ inσ(A,FA))(tσ(B, [1, n[ ) \ inσ(B,FB)) + aσ(A)aσ(B).

�

4.2.1. Worst-case Witnesses

The next result shows that the complexity upper bounds found above are
reachable. The witness languages for the tightness of the bounds for this oper-
ation are different from the families given by Han and Salomaa, because those
families are not tight for the transition complexity. For m ≥ 2 and n ≥ 2, let
Σ = {aij | i ∈ [1,m− 2], j ∈ [1, n− 2]} ∪ {aij | i = m− 1, j = n− 1}. Let A =
([0,m[,Σ, δA, 0, {m− 1}) where δA(x, aij) = x+ i for x ∈ [ 0,m[, i ∈ [1,m− 2],
and j ∈ [1, n− 2], and let B = ([0, n[,Σ, δB , 0, {n− 1}) where δB(x, aij) = x+ j
for x ∈ [0, n[, i ∈ [1,m− 2], and j ∈ [1, n− 2]. The new families are presented
in Figure 8 for m = 5 and n = 4.
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(A) 0 1 2 3 4
a11, a12

a21, a22

a31, a32

a43

a11, a12

a21, a22

a31, a32

a11, a12

a21, a22

a11, a12

(B) 0 1 2 3
a11, a21, a31

a12, a22, a32

a43

a11, a21, a31

a12, a22, a32

a11, a21, a31

Figure 8: DFA A with m = 5 and DFA B with n = 4.

Theorem 13. For any two integers m ≥ 2 and n ≥ 2, there exist an m-
state DFA A and an n-state DFA B, both accepting finite languages, such that
any DFA accepting L(A) ∩ L(B) needs at least mn − 2(m + n) + 6 states and

(m− 2)(n− 2)(2 +
∑min(m,n)−3
i=1 (m− 2− i)(n− 2− i)) + 2 transitions, with an

alphabet of size depending on m and n.

Proof. To prove that the minimal DFA accepting L(A) ∩ L(B) needs mn −
2m − 2n + 6 states we can use the same technique which is used in the proof
of [9, Lemma 6]. For that, we define a set R of words which are not equivalent
under ≡L(A)∩L(B). Let ε be the null string. We choose R = R1 ∪ R2 ∪ R3,
where R1 = {ε}, R2 = {aij | i = m − 1, j = n − 1}, and R3 = {aij | i ∈
[1,m− 2] and j ∈ [1, n− 2]}. It is easy to see that all words of each set are not
equivalent to each other. As |R1| = |R2| = 1 and |R3| = (m−2)(n−2), we have
that |R| = mn− 2m− 2n+ 6. Thus the result for the number of states holds.

Let us consider the number of transitions. The DFA A has (n−2)
∑m−3
i=0 (m−

1 − i) + 1 aij- transitions. The DFA B has (m − 2)
∑n−3
i=0 (n − 1 − i) + 1 aij-

transitions. Let k = (m − 2)(n − 2) + 1. As in proof of Theorem 12, the DFA
resulting from the intersection operation has the following number of transitions:

• k, corresponding to the pairs of transitions leaving the initial states of the
operands;

•
∑min(m,n)−3
i=1 (n − 2)(m − 2 − i)(m − 2)(n − 2 − i), corresponding to the

pairs of transitions formed by transitions leaving non-final and non-initial
states of the operands;

• k, corresponding to the pairs of transitions leaving the final states of the
operands.
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Thus the total number of transitions is 2k + (m − 2)(n − 2)
∑min(m,n)−3
i=1 (m −

2− i)(n− 2− i). �

4.3. Complement

The state and transition complexity for this operation on finite languages
are similar to the ones on regular languages [8]. This happens because the
DFA must be completed. Let A = ([0,m[,Σ, δA, 0, FA) be a DFA accepting
the language L. The complement of L, Lc, is recognized by the DFA C =
([0,m[∪{ΩA},Σ, δC , 0, ([0,m[ \FA) ∪ {ΩA}), where for σ ∈ Σ and i ∈ [0,m[ ,
δC(i, σ) = δA(i, σ) if δA(i, σ) ↑; δA(i, σ) = ΩA otherwise. Therefore one has,

Theorem 14. For any finite language L with isc(L) = m one has isc(LC) ≤
m+ 1 and itc(LC) ≤ |Σ|(m+ 1).

Proof. Concerning the isc(LC), it is only necessary to add a dead state to the
operand DFA. The maximal number of σ-transitions is m + 1, because this is
the number of states. Thus, the maximal number of transitions is |Σ|(m+ 1).�

Gao et al. [8] gave the value |Σ|(itc(L) + 2) for the transition complexity of
the complement. In some situations, this bound is higher than the bound here
presented, but contrasting to that one, it gives the transition complexity of the
operation as a function of the transition complexity of the operand.

The witness family for this operation is exactly the same presented in [8],
i.e. {bm}, for m ≥ 1. It is easy to see that the bounds are tight for this family.

4.4. Concatenation

Câmpeanu et al. [5] studied the state complexity of the concatenation of an
m-state complete DFA A with an n-state complete DFA B over an alphabet of
size k and proposed the upper bound

m−2∑
i=0

min

ki,
f(A,i)∑
j=0

(
n− 2

j

)+ min

km−1,

f(A)∑
j=0

(
n− 2

j

) , (4)

where f(A, i) is the larger number of final states of any path from the initial
state to the state i. They proved that this upper bound is tight for m > n− 1.

It is easy to see that the second term of (4) is

f(A)∑
j=0

(
n− 2

j

)
if m > n − 1, and

km−1, otherwise. The value km−1 indicates that the DFA resulting from the
concatenation has states with level at most m − 1. But that is not always the
case, as we can see by the example4 in Figure 9. This implies that (4) is not an
upper bound if m < n. Thus, we have

4Note that we are omitting the dead state in the figures.
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Theorem 15. For any two finite languages L1 and L2 with sc(L1) = m and
sc(L2) = n over an alphabet of size k ≥ 2, one has

sc(L1L2) ≤
m−2∑
i=0

min

ki,
f(L1,i)∑
j=0

(
n− 2

j

)+

f(L1)∑
j=0

(
n− 2

j

)
. (5)

Proof. The proof follows the one in [5] considering the changes described
above. �
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Figure 9: DFA resulting from the concatenation of DFA A with m = 3 and DFA B with n = 5,
of Fig. 11. The states with dashed lines have level > 3 and are not accounted by formula (4).

Consider the algorithm for the concatenation presented in the Section 3.2,
and let sσ(A) = tσ(A, 0). The next theorem presents the upper bounds for the
number of states and transitions of any DFA accepting L1L2. Note that the
result for the number of states is similar to the Theorem 15, omitting the dead
state.

Theorem 16. For any two finite languages L1 and L2 with isc(L1) = m and

isc(L2) = n over an alphabet of size k ≥ 2, and making Λj =
(
n−1
j

)
−
(
tσ(L2)−sσ(L2)

j

)
,

∆j =
(
n−1
j

)
−
((
tσ(L2)−sσ(L2)

j

)
∗ sσ(L2)

)
one has

isc(L1L2) ≤
m−1∑
i=0

min

ki,
f(L1,i)∑
j=0

(
n− 1

j

)+

f(L1)∑
j=0

(
n− 1

j

)
− 1 (6)

and

itc(L1L2) ≤ k
m−2∑
i=0

min

ki,
f(L1,i)∑
j=0

(
n− 1

j

)+

+
∑
σ∈Σ

min

km−1 − sσ(L2),

f(L1)−1∑
j=0

∆j

+

f(L1)∑
j=0

Λj

 . (7)
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Proof. Let A = ([0,m[,Σ, δA, 0, FA) and B = ([0, n[,Σ, δB , 0, FB) be the mini-
mal DFAs that recognize L1 and L2. Consider the DFA C accepting L(A)L(B).
Let us prove the result for isc(L1L2). Each state of the DFA C has the form
(x, P ) where x ∈ [0,m[∪{ΩA} and P ⊆ [0, n[ . The first term of (6) corresponds
to the maximal number of states of the form (i, P ) with i ∈ [0,m[ . Such a state
(i, P ) is at a level ≤ i, which has at most ki−1 predecessors. Thus, the level i
has at most ki states. The maximal size of the set P is f(A, i). For a fixed i,
the initial state of the DFA B either belongs to all sets P (if i ∈ FA) or it is

not in any of them. Thus, the number of distinct sets P is at most
f(A,i)∑
j=0

(
n−1
j

)
.

The number of states of the form (i, P ) is the minimal of these two values. The
second term of (6) corresponds to the maximal number of states where the first
component is ΩA. In this case, the size of P is at most f(A). Lastly, we remove
the dead state.

Consider now the result for itc(L1L2). The σ-transitions of the DFA C have
three forms: (i, β) where i represents the transition leaving the state i ∈ [0,m[ ;
(−1, β) where −1 represents the absence of the transition from state m−1 to ΩA;
and (−2, β) where −2 represents any transition leaving ΩA. In all forms, β is a
set of transitions of DFA B. The number of σ-transitions of the form (i, β) is at

most
∑m−2
i=0 min{ki,

∑f(L1,i)
j=0

(
n−1
j

)
} which corresponds to the number of states

of the form (i, P ), for i ∈ [0,m[ and P ⊆ [0, n[ . The number of σ-transitions of

the form (−1, β) is min{km−1 − sσ(L2),
∑f(L1)−1
j=0 ∆j}. We have at most km−1

states in this level. However, if sσ(B, 0) = 0 we need to remove the transition
(−1, ∅) which leaves the state (m−1, {0}). On the other hand, the size of β is at
most f(L1)− 1 and we know that β has always the transition leaving the initial
state by σ, if it exists. If this transition does not exist, i.e. sσ(B, 0) = 1, we
need to remove the sets with only non-defined transitions, because they originate
transitions of the form (−1, ∅). The number of σ-transitions of the form (−2, β)

is
∑f(L1)
j=0 Λj and this case is similar to the previous one. �

4.4.1. Worst-case Witnesses

To prove that the bounds are reachable, we consider two cases depending
whether m+ 1 ≥ n or not.

Case 1: m+1 ≥ n. The witness languages are the ones presented by Câmpeanu
et al. (see Figure 10).

(A)

0 1 · · · m− 1
a, b a, b a, b

(B)
0 1 · · · n− 1

b a, b a, b

Figure 10: DFA A with m states and DFA B with n states.

Theorem 17. For any two integers m ≥ 2 and n ≥ 2 such that m+1 ≥ n, there
exist an m-state DFA A and an n-state DFA B, both accepting finite languages,
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such that any DFA accepting L(A)L(B) needs at least (m−n+3)2n−1−2 states
and 2n(m− n+ 3)− 8 transitions.

Proof. The proof for the number of states is similar to the proof of [5, Theorem
4]. Let us consider the number of transitions. The DFA A has m − 1 σ-
transitions for each σ ∈ {a, b}. The number of final states in the DFA A is m.
The DFA B has n − 2 a-transitions and n − 1 b-transitions. Consider m ≥ n.
If we analyse the transitions as we did in the proof of the Theorem 16 we have
2n−1(m − n + 1) − 1 a-transitions and 2n−1(m − n + 1) − 1 b-transitions that
correspond to the transitions of the form (i, β); 2n−1− 2 a-transitions and 2n−1

b-transitions that correspond to the transitions of the form (−1, β); and 2n−1−2
a-transitions and 2n−1−2 b-transitions that correspond to the transitions of the
form (−2, β). Thus, we calculate that the total number of transitions is

2(2n−1(m− n+ 1)− 1) + 2n−1 − 2 + 2n−1 − 2 + 2n−1 + 2n−1 − 2

= 2n(m− n+ 3)− 8.

�

Case 2: m+1 < n. Let Σ = {b}∪{ai | i ∈ [1, n−2]}. LetA = ([0,m[,Σ, δA, 0, [0,m[ )
where δA(i, σ) = i + 1, for any σ ∈ Σ. Let B = ([0, n[,Σ, δB , 0, {n − 1}) where
δB(i, b) = i+1, for i ∈ [0, n−2], δB(i, aj) = i+j, for i, j ∈ [1, n−2], i+j ∈ [2, n[ ,
and δB(0, aj) = j, for j ∈ [2, n− 2].

(A) 0 1 2
b, a1, a2, a3 b, a1, a2, a3

(B)

0 1 2 3 4
b

a2

a3

a1, b

a2

a3

a1, b

a2

a1, b

Figure 11: DFA A with m = 3 states and DFA B with n = 5 states.

Theorem 18. For any two integers m ≥ 2 and n ≥ 2, with m + 1 < n, there
exist an m-state DFA A and an n-state DFA B, both accepting finite languages
over an alphabet of size depending on m and n, such that the number of states
and transitions of any DFA accepting L(A)L(B) reaches the upper bounds.

Proof. We need to show that the DFA C, resulting from the concatenation
algorithm already defined and accepting L(A)L(B), is minimal, i.e. (i) every
state of C is reachable from the initial state; (ii) each state of C defines a
distinct equivalence class. To prove (i), we first show that all states (i, P ) ⊆ R
with i ∈ [1,m[ are reachable. The following facts hold for the automaton C:

1. every state of the form (i + 1, P ′) is reached by a transition from a state
(i, P ) (by the construction of A) and |P ′| ≤ |P |+ 1, for i ∈ [1,m− 2];
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2. every state of the form (ΩA, P
′) is reached by a transition from a state

(m− 1, P ) (by the construction of A) and |P ′| ≤ |P |+ 1;

3. for each state (i, P ), P ⊆ [0, n[ , |P | ≤ i+ 1 and 0 ∈ P , i ∈ [1,m[ ;

4. for each state (ΩA, P ), ∅ 6= P ⊆ [0, n[ , |P | ≤ m and 0 /∈ P .

Suppose that for a i ∈ [1,m− 2], all states (i, P ) are reachable. The number
of states of the form (1, P ) is m − 1 and of the form (i, P ) with i ∈ [2,m −
2] is

∑i
j=0

(
n−1
j

)
. Let us consider the states (i + 1, P ′). If P ′ = {0}, then

δC((i, {0}), a1) = (i+ 1, P ′). Otherwise, let l = min(P ′ \ {0}) and Sl = {s− l |
s ∈ P ′ \ {0}}. Then,

δC((i, Sl), al) = (i+ 1, P ′) if 2 ≤ l ≤ n− 2

δC((i, {0} ∪ S1), a1) = (i+ 1, P ′) if l = n− 1

δC((i, S1), b) = (i+ 1, P ′) if l = 1

Thus, all
∑i+1
j=0

(
n−1
j

)
states of the form (i + 1, P ′) are reachable. Let us

consider the states (ΩA, P
′). P ′ is always a non-empty set by construction of

C. Let l = min(P ′) and Sl = {s− l | s ∈ P ′}. Thus,

δC((m− 1, Sl), al) = (ΩA, P
′) if 2 ≤ l ≤ n− 2

δC((m− 1, {0} ∪ S1), a1) = (ΩA, P
′) if l = n− 1

δC((m− 1, S1), b) = (ΩA, P
′) if l = 1

Thus, all
∑m
j=0

(
n−1
j

)
− 1 states of the form (ΩA, P

′) are reachable.

To prove (ii), consider two distinct states (i, P1), (j, P2) ∈ R. If i 6= j, then
δC((i, P1), bn+m−2−i) ∈ FC but δC((j, P2), bn+m−2−i) /∈ FC . If i = j, suppose
that P1 6= P2 and both are final or non-final. Let P ′1 = P1 \P2 and P ′2 = P2 \P1.
Without loss of generality, let P ′1 be the set which has the minimal value, let us
say l. Thus δC((i, P1), an−1−l

1 ) ∈ FC but δC((i, P2), an−1−l
1 ) /∈ FC . Thus C is

minimal.
Let us consider the number of transitions. The DFA A has m − 1 σ-

transitions, for σ ∈ Σ. The DFA B has n− 1 b-transitions, n− 2 a1-transitions,
and n− i ai-transitions, with i ∈ [2, n− 2]. Thus DFA A has |Σ|(m− 1) transi-

tions, DFA B has 2n− 3 +
∑n−2
i=2 (n− i) transitions and |Σ| = n− 1. The proof

is similar to the proof of Theorem 16. �

Theorem 19. The upper bounds for state and transition complexity of concate-
nation presented in Theorem 16 cannot be reached for any alphabet with a fixed
size for m ≥ 0, n > m+ 1.

Proof. Consider the construction for the concatenation presented in the Sec-
tion 3.2. Let us define the subset S = {(ΩA, P ) | 1 ∈ P} of R. In order for a
state (ΩA, P ) to belong to S it has to satisfy the following condition:

∃i ∈ FA∃P ′ ⊆ 2[0,n[ ∃σ ∈ Σ : δC((i, P ′ ∪ {0}), σ) = (ΩA, P ).
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The maximal size of S is
∑f(A)−1
j=0

(
n−2
j

)
, because by construction 1 ∈ P and

0 /∈ P . Assume that Σ has a fixed size k = |Σ|. Then, the maximal number

of words that reach states of S from r0 is
∑f(A)
i=0 ki+1 since the words that

reach a state s ∈ S are of the form wAσ, where wA ∈ L(A) and σ ∈ Σ. As
n > m, for some l ≥ 0 we have n = m + l. Thus for an l sufficiently large∑f(A)
i=0 ki+1 �

∑f(A)−1
j=0

(
m+l−2

j

)
, which is absurd and resulted from supposing

that k is fixed. �

4.5. Kleene Star

Consider the algorithm for the Kleene star operation presented in the Sec-
tion 3.3. If f(A) = 1 then L(A)? = L(A). Thus, we will consider DFAs with at
least two final states. Let eσ(A) =

∑
i∈F tσ(A, i) and eσ(A) =

∑
i∈F tσ(A, i).

The following results give the number of states and transitions which are suffi-
cient for any DFA B accepting L(A)?.

Theorem 20. For any finite language L with isc(L) = m and f(L) ≥ 2, one
has isc(L?) ≤ 2m−f(L)−1 + 2m−2 − 1 and

itc(L?) ≤ 2m−f(L)−1

(
k +

∑
σ∈Σ

2eσ(L)

)
−
∑
σ∈Σ

2nσ −
∑
σ∈X

2nσ ,

where nσ = tσ(L)− sσ(L)− eσ(L) and X = {σ ∈ Σ | sσ(L) = 0}.

Proof. The proof for the states is similar to the proof presented by Câmpeanu
et al. [5]. Let A = ([0,m[,Σ, δA, 0, FA) be the minimal DFA that recognize L.
Note that in the star operation the states of the resulting DFA are sets of states
of the DFA A. The minimal DFA B accepting L(A)?, obtained by the referred
algorithm, has at most the following states:

(i) the initial state 0B which corresponds to the initial state of A: 1 state;

(ii) all P ⊆ [1,m[ \FA and P 6= ∅: 2m−f(A)−1 − 1 states;

(iii) all P ⊆ [0,m−2] such that P ∩FA 6= ∅ and 0 ∈ P : 2m−f(A)−1(2f(A)−1−1)
states;

(iv) all P = P ′ ∪ {m− 1, 0} where P ′ ⊆ [1,m[ \FA and P ′ 6= ∅: 2m−f(A)−1 − 1
states.

Therefore, the number of states of the DFA B is at most 2m−f(A)−1 + 2m−2−1.
As in [5, Theorem 1], in the above description we are considering that 0 /∈ FA.
If 0 ∈ FA the values suffer a few changes but the formula which is obtained,
when reaches its maximum, is the same.

The proof for the itc(L?) is similar to the one for the isc(L?). Enumerating
the σ-transitions as done for the states, we have that:

(i) the presence or the absence of the transition leaving the initial state: sσ(L)
σ-transitions;
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(ii) the set of transitions leaving non-initial and non-final states: 2m−f(L)−1−
2tσ(L)−sσ(L)−eσ(L);

(iii) the set of transitions leaving the final states (excluding the pre-dead):
2m−f(L)−1(2eσ(L) − 1) σ-transitions;

(iv) the set of transitions leaving the pre-dead state: 2m−f(L)−1−1 σ-transitions
if there exists a σ-transition leaving the initial state, 2m−f(L)−1 − 2nσ σ-
transitions otherwise, where nσ = tσ(L)− sσ(L)− eσ(L).

Thus the upper bound for itc(L?) holds. �

4.5.1. Worst-case Witnesses

The theorem below shows that the previous upper bounds are reachable. The
witness family for this operation is the same as the one presented by Câmpeanu
et al., but we have to exclude the dead state.

Let A = ([0,m[, {a, b, c}, δA, 0, {m−2,m−1}), m ≥ 4, be a incomplete DFA
accepting a finite language (see Figure 12) where:

δ(i, a) = i+ 1, for i ∈ [0,m[

δ(i, b) = i+ 1, for i ∈ [ 1,m[ and δ(0, b) = m− 1

δ(i, c) = i+ 1, for i ∈ [ 0,m[ and m− i is even.

(1) 0 1 2 3 · · · m− 2 m− 1
a, c

b

a, b a, b, c a, b a, b a, b, c

(2) 0 1 2 3 · · · m− 2 m− 1
a

b

a, b, c a, b a, b, c a, b a, b, c

Figure 12: DFA A with m states, with m even (1) and odd (2).

Theorem 21. For any integer m ≥ 4, there exist an m-state DFA A accepting a
finite language, such that any DFA accepting L(A)? needs at least 2m−2+2m−3−
1 states and 9 ·2m−3−2m/2−2 transitions if m is odd, or 9 ·2m−3−2(m−2)/2−2
transitions, otherwise.

Proof. The proof for the states is the same as presented by Câmpeanu et al..
Note that we do not count the dead states, and because of this we have one
state less in A and in the resulting DFA. Considering the transitions as in the
proof of Theorem 20, the DFA resulting for the star operation has: 3 · 2m−3− 1
a-transitions, 3 · 2m−3 − 1 b-transitions, and 3 · 2m−3 − 2m/2 c-transitions if m
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is odd, or 3 · 2m−3 − 2(m−2)/2 transitions otherwise. Therefore the resulting
DFA has 9 · 2m−3 − 2m/2 − 2 transitions if m is odd, or 9 · 2m−3 − 2(m−2)/2 − 2
transitions, otherwise. �

4.6. Reversal

Given an incomplete DFA A = ([0,m[,Σ, δA, 0, FA), to obtain a DFA B that
accepts L(A)R, we first reverse all transitions of A and then determinize the
resulting NFA. Let cσ(A, i) = 0 if inσ(A, i) > 0 and 1 otherwise. In the following
result we present upper bounds for the number of states and transitions of B.

Theorem 22. For any finite languages L with isc(L) = m, m ≥ 3, and over
an alphabet of size k ≥ 2, , where l is the smallest integer such that 2m−l ≤ kl,
one has isc(LR) ≤

∑l−1
i=0 k

i + 2m−l − 1 and if m is odd,

itc(LR) ≤
l∑
i=0

ki − 1 + k2m−l −
∑
σ∈Σ

2
∑l−1
i=0 tσ(L,i)+1,

or, if m is even,

itc(LR) ≤
l∑
i=0

ki − 1 + k2m−l −
∑
σ∈Σ

(
2
∑l−2
i=0 tσ(L,i)+1 − cσ(L, l)

)
.

Proof. Let A be the minimal DFA accepting L. The proof for isc(LR) is
similar to the proof of [5, Theorem 5]. We only need to remove the dead state.

Let us prove the result for itc(LR). The smallest l that satisfies 2m−l ≤ kl

is the same for m and m+ 1, and because of that we have to consider whether
m is even or odd.

Suppose m odd. Let T1 be the set of transitions corresponding to the first∑l−1
i=0 k

i states and T2 be the set corresponding to the other 2m−l−1 states. We

have that |T1| =
∑l−1
i=0 k

i−1, because the initial state has no transition reaching
it. As the states of DFA B are sets of states of DFA A, we also consider each
σ-transition of B as a set of σ-transitions of A. If all σ-transitions were defined
in A, T2 would have 2m−l σ-transitions. But, as not all σ-transitions are defined,
we remove from 2m−l the sets which only have undefined σ-transitions of A. As
the initial state of A has no transitions reaching it, we need to add one to the

number of undefined σ-transitions. Thus, |T2| =
∑
σ∈Σ 2m−l − 2(

∑l−1
i=0(tσ(i)))+1.

Let us consider m even. In this case we also need to consider the set of
transitions that connect the states with the highest level in the first set (T1)
with the states with the lowest level in the second set (T2). As the highest level
is l−1, we have to remove the possible transitions that reach the state l in DFA
A. �
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(1) 0 1 · · · p− 2 p− 1 · · · 2p− 2
a, b a, b a, b b a, b a, b

(2) 0 1 · · · p− 2 p− 1 · · · 2p− 3
a, b a, b a, b b a, b a, b

Figure 13: DFA A with m = 2p− 1 states (1) and with m = 2p− 2 (2).

4.6.1. Worst-case Witnesses

The following result proves that the upper bounds presented above are tight.
The witness family for this operation is the one presented by Câmpeanu et al.
but we omit the dead state. It is depicted in Figure 13.

Theorem 23. For any integer m ≥ 4, there exist an m-state DFA A accepting
a finite language, such that any DFA accepting L(A)R needs at least 3 · 2p−1 + 2
states and 3 · 2p − 8 transitions if m = 2p − 1 or 2p+1 − 2 states and 2p+2 − 7
transitions if m = 2p.

Proof. The proof for the states is the same as the one presented by Câmpeanu
et al. [5]. Considering the transitions as in the proof of Theorem 22, the DFA
resulting for the reversal operation, in case m = 2p− 1, has:

• (
∑p−1
i=0 2i)− 1 transitions in T1;

• 2p − 22 a-transitions in T2;

• 2p − 2 b-transitions in T2.

Thus, the resulting DFA has 3 · 2p − 8 transitions. In the other case, the
resulting DFA has:

• (
∑p−1
i=0 2i)− 1 transitions in T1;

• 2p − 2 a-transitions in T2;

• 2p−1 − 1 a-transitions in the intermediate set;

• 2p − 2 b-transitions in T2;

• 2p−1 b-transitions in the intermediate set.

Therefore the resulting DFA has 2p+2 − 7 transitions. �

4.7. Experimental Results

Similarly to the previous section, we performed some experimental tests in
order to analyse the practical behaviour of the operations over finite languages.
All the tests were performed with uniformly random generated acyclic DFAs.

Table 7 shows the results of 20000 experimental tests. The number of states
of the operands and the measures are the same as used in Section 3.6.
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Concatenation

m n ubsc rs m1 m2 tc ubtc rt m3 m4 d

2 18 37.11 88.64 0.42 108 159 163.43 417.57 0.39 530 786 0.85

4 16 63.26 634.06 0.1 236 2096 289.27 2913.99 0.10 1147 10471 0.89

6 14 76.09 2480.07 0.03 268 7256 350.93 8249.58 0.04 1305 36267 0.91

8 12 78.28 3803.77 0.02 252 7024 360.60 11050.80 0.03 1236 35105 0.91

10 10 73.52 2670.73 0.03 260 3296 336.23 8314.19 0.04 1285 16463 0.91

12 8 63.8 1158.59 0.06 170 1208 287.97 4143.13 0.07 837 6031 0.90

14 6 51.2 396.78 0.13 123 398 226.61 1615.26 0.14 600 1981 0.88

16 4 37.69 122.99 0.31 75 123 162.18 540.69 0.30 363 610 0.86

18 2 25.09 36 0.70 33 36 104.01 165.38 0.63 152 175 0.83

Union

10 10 30.95 98 0.32 57 98 125.41 8314.19 0.02 260 16463 0.81

12 8 29.86 94 0.32 52 94 120.75 416.94 0.29 225 455 0.81

14 6 26.55 82 0.32 47 82 106.98 360.17 0.30 203 395 0.80

16 4 21.84 62 0.35 36 62 88.5 267.03 0.33 151 297 0.81

18 2 18.8 34 0.55 22 34 77.06 142.41 0.54 97 163 0.82

Intersection

10 10 12.93 66 0.20 33 66 29.54 110.7 0.27 106 256 0.44

12 8 11.91 62 0.19 33 62 26.71 102.39 0.26 92 239 0.43

14 6 9.02 50 0.18 25 50 18.96 79.85 0.24 79 168 0.40

16 4 5.02 30 0.17 14 30 8.76 43.92 0.20 39 114 0.33

18 2 1.78 2 0.89 2 2 1.29 2.47 0.52 5 5 0.13

Star

2 1 0.75 1.33 1 1 2.59 1.94 1.33 5 5 0.52

4 3.05 4.67 0.65 5 7 11.81 15.07 0.78 25 35 0.78

6 7.43 18.82 0.40 23 31 32.86 65.17 0.50 112 154 0.88

8 14.59 71.46 0.20 73 127 68.05 241.79 0.28 362 631 0.93

10 25.11 274.14 0.092 121 511 120.19 888.33 0.135 598 2549 0.955

12 38.75 1066.12 0.036 192 2047 188.05 3297.08 0.057 949 10226 0.969

14 57.18 4190.58 0.014 416 8191 279.82 12436.48 0.023 2078 40896 0.977

16 79.35 16599.54 0.005 481 32767 390.42 47644.04 0.008 2400 163810 0.982

18 108.37 66019.6 0.002 751 98303 535.28 184747.27 0.003 3745 491492 0.986

Reversal

2 2 2 1 2 2 2.59 2.59 1 5 5 0.26

4 5.58 7.99 0.70 8 8 12.93 31.72 0.41 29 35 0.46

6 11.87 20.10 0.57 20 21 33.96 96.08 0.35 76 100 0.57

8 21.99 62.00 0.35 44 62 70.66 298.14 0.24 182 305 0.63

10 37.35 158 0.24 94 158 129.88 779.05 0.17 401 785 0.69

12 59.34 411 0.14 144 411 217.31 2042.01 0.11 640 2050 0.72

14 89.91 1179 0.08 247 1179 342.91 5882.71 0.06 1115 5890 0.75

16 130.19 2828 0.05 355 2828 511.46 14126.25 0.04 1629 14135 0.78

18 184.32 8001 0.02 460 8001 742.56 39989.92 0.02 2057 40000 0.80

Complement

2 3 3 1 3 3 7.77 8 1 8 8 1

4 5 5 1 5 5 24.12 25 1 25 25 1

6 7 7 1 7 7 34.97 35 1 35 35 1

8 9 9 1 9 9 45 45 1 45 45 1

10 11 11 1 11 11 55 55 1 55 55 1

12 13 13 1 13 13 65 65 1 65 6s5 1

14 15 15 1 15 15 75 75 1 75 75 1

16 17 17 1 17 17 85 85 1 85 85 1

18 19 19 1 19 19 95 95 1 95 95 1

Table 7: Experimental results for finite languages.
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The results obtained were similar to the ones for regular languages. How-
ever, for finite languages, the difference between the worst and the average case
was not as high as for regular languages. For example, for reversal operation,
considering m = 18 and regular languages, the upper bound for the number of
states was 3700 times larger than the number of states observed and the upper
bound for the number of transitions was 5600 times larger than the number of
transitions, whereas for finite languages the upper bound for states was only 43
times larger and for transitions 53 times larger. As for regular languages, the
DFAs resulting from all the operations (excluding the complement) were also
incomplete.

Thus, as what happened for regular languages, we can conjecture that the
upper bounds are seldom reached in practical applications.

5. Final Remarks

In this paper we presented tight upper bounds for the incomplete state and
transition complexities for union, concatenation, Kleene star, complement and
reversal on general and finite regular languages. Transition complexity bounds
are expressed as functions of several more fine-grained measures of the operands,
such as the number of final states, the number of undefined transitions or the
number of transitions that leave the initial state. Table 1 summarizes the results
for incomplete transition complexity, using the witnesses parameters.

Tables 2 and 3 summarize some of the results on state complexity and tran-
sition complexity of basic operations on general regular languages, respectively.
In Table 2 we present the state complexity (sc), based on complete DFA [26],
incomplete DFA (isc), the new results here presented, and the ones from Gao et
al. [8]; finally, the results for state complexity for NFAs (nsc) [10]. The upper
bound for the nondeterministic transition complexity of the complement is not
tight, and thus we inscribe the corresponding lower and the upper bounds.

Table 5 and Table 6 have the formulae for the upper bounds of state and
transition complexity for all the studied operations on finite regular languages.

The experimental results for both cases show that the upper bounds for state
and transition complexities are much higher than the observed number of states
and transitions of the DFAs resulting from the operations, with uniform random
generated operands. Thus, although the study of the descriptional complexi-
ties considering the worst-case analysis is fundamental, in order to have good
estimates of the amount of resources required to manipulate representations of
a given language in practical applications, average-case complexity results need
to be considered.
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