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Abstract. Recently, Yamamoto presented a new method for the conver-
sion from regular expressions (REs) to non-deterministic finite automata
(NFA) based on the Thompson ε-NFA (AT). The AT automaton has two
quotients discussed: the suffix automaton Asuf and the prefix automaton,
Apre. Eliminating ε-transitions in AT, the Glushkov automaton (Apos) is
obtained. Thus, it is easy to see that Asuf and the partial derivative
automaton (Apd) are the same. In this paper, we characterise the Apre

automaton as a solution of a system of left RE equations and express
it as a quotient of Apos by a specific left-invariant equivalence relation.

We define and characterise the right-partial derivative automaton (
←−
Apd).

Finally, we study the average size of all these constructions both exper-
imentally and from an analytic combinatorics point of view.

1 Introduction

Conversion methods from regular expressions to equivalent nondeterministic fi-
nite automata have been widely studied. Resulting NFAs can have ε-transitions
or not. The standard conversion with ε-transitions is the Thompson automaton
(AT) [15] and the standard conversion without ε-transitions is the Glushkov (or
position) automaton (Apos) [9]. Other conversions such as partial derivative au-
tomaton (Apd) [1, 13] or follow automaton (Af) [10] were proved to be quotients
of the Apos, by specific right-invariant equivalence relations [6, 10]. In particu-
lar, for REs under special conditions, Apd is an optimal conversion method [12].
Moreover, asymptotically and on average, the size of Apd is half the size of
Apos [3]. Reductions on the size of NFAs using left-relations was studied recently
by Ko and Han [11].

Yamamoto [16] presented a new conversion method based on the AT. Given
a AT, two automata are constructed by merging AT states: in one, the suffix
automaton (Asuf), states with the same right languages and in the other, the
prefix automaton (Apre), states with the same left languages. Asuf corresponds
to Apd, which is not a surprise because it is known that if ε-transitions are
eliminated from AT, the Apos is obtained [8]. Apre is a quotient by a left-invariant
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relation. In this paper, we further study conversions from REs to NFAs based on
left-invariant relations. Using the notion of right-partial derivatives introduced
by Champarnaud et. al [4], we define the right-partial derivative automaton
←−
Apd, characterise its relation with Apd and Apos, and study its average size. We
construct the Apre automaton directly from a regular expression without use the
AT automaton, and we show that it is also a quotient of the Apos. However, the
experimental results suggest that, on average, the reduction on the size of the
Apos is not large. Considering the framework of analytic combinatorics we study
this reduction.

2 Regular Expressions and Automata

Given an alphabet Σ = {σ1, σ2, . . . , σk} of size k, the set RE of regular expres-
sions α over Σ is defined by the following grammar:

α := ∅ | ε | σ1 | · · · | σk | (α+ α) | (α · α) | (α)?, (1)

where the · is often omitted. If two REs α and β are syntactically equal, we write
α ∼ β. The size of a RE α, |α|, is its number of symbols, disregarding parenthesis,
and its alphabetic size, |α|Σ , is the number of occurrences of letters from Σ. A
RE α is linear if all its letters occurs only once. The language represented by
a RE α is denoted by L(α). Two REs α and β are equivalent if L(α) = L(β),
and we write α = β. We define the function ε by ε(α) = ε if ε ∈ L(α) and
ε(α) = ∅, otherwise. This function can be naturally extended to sets of REs
and languages. We consider REs reduced by the following rules: εα = α = αε,
∅ + α = α = α + ∅, and ∅α = ∅ = α∅. Given a language L ⊆ Σ? and a word
w ∈ Σ?, the left quotient of L w.r.t. w is the language w−1L = {x | wx ∈ L},
and the right quotient of L w.r.t. w is the language Lw−1 = {x | xw ∈ L}.
The reversal of a word w = σ1σ2 · · ·σn is wR = σn · · ·σ2σ1. The reversal of
a language L, denoted by LR, is the set of words whose reversal is on L. The
reversal of α ∈ RE is denoted by αR. The reversal of set of REs is the set of the
reversal of its elements. It is not difficult to verify that Lw−1 = ((wR)−1LR)R.

A nondeterministic finite automaton (NFA) is a five-tuple A = (Q,Σ, δ, I, F )
where Q is a finite set of states, Σ is a finite alphabet, I ⊆ Q is the set of
initial states, F ⊆ Q is the set of final states, and δ : Q × Σ → 2Q is the
transition function. The transition function can be extended to words and to
sets of states in the natural way. When I = {q0}, we use I = q0. Given a state
q ∈ Q, the right language of q is Lq(A) = {w ∈ Σ? | δ(q, w) ∩ F 6= ∅}, and

the left language is
←−
L q(A) = {w ∈ Σ? | q ∈ δ(I, w)}. The language accepted

by A is L(A) =
⋃
q∈I Lq(A). Two NFAs are equivalent if they accept the same

language. If two NFAs A and B are isomorphic, we write A ' B. An NFA is
deterministic if for all (q, σ) ∈ Q×Σ, |δ(q, σ)| ≤ 1 and |I| = 1. The reversal of an
automaton A is the automaton AR, where the sets of initial and final states are
swapped and all transitions are reversed. Given an equivalence relation ≡ in Q,

the quotient automaton A�≡ = (Q�≡, Σ, δ�≡, I�≡, F�≡) is defined in the usual
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way. A relation ≡ is right invariant w.r.t. A if and only if: ≡⊆ (Q − F )2 ∪ F 2

and ∀p, q ∈ Q, σ ∈ Σ, if p ≡ q, then δ(p, σ)�≡ = δ(q, σ)�≡. A relation ≡ is a left
invariant relation w.r.t. A if and only if it is a right-invariant relation w.r.t. AR.

The right languages Li, for i ∈ Q = [0, n], define a system of right equations,

Li =
⋃k
j=1 σj

(⋃
m∈Iij Lm

)
∪ ε(Li), where Iij ⊆ [0, n], m ∈ Iij ⇔ m ∈ δ(i, σj),

and L(A) =
⋃
i∈I Li. In the same manner, the left languages of the states of A

define a system of left equations
←−
L i =

⋃k
j=1

(⋃
m∈Iij

←−
Lm

)
σj ∪ ε(

←−
L i), where

Iij ⊆ [0, n], m ∈ Iij ⇔ i ∈ δ(m,σj), and L(A) =
⋃
i∈F
←−
L i.

2.1 Glushkov and Partial Derivative Automata

In the following we review two constructions which define NFAs equivalent to
a given regular expression α ∈ RE. Let pos(α) = {1, 2, . . . , |α|Σ} be the set of
letter positions in α, and let pos0(α) = pos(α)∪{0}. We consider the expression

α obtained by marking each letter with its position in α, i.e. L(α) ∈ Σ?
where

Σ = {σi | σ ∈ Σ, 1 ≤ i ≤ |α|Σ}. The same notation is used to remove the
markings, i.e., α = α. For α ∈ RE and i ∈ pos(α), let first(α) = {i | ∃w ∈
Σ
?
, σiw ∈ L(α)}, last(α) = {i | ∃w ∈ Σ?

, wσi ∈ L(α)} and follow(α, i) = {j |
∃u, v ∈ Σ?

, uσiσjv ∈ L(α)}. The Glushkov automaton (or position automaton)
for α is Apos(α) = (pos0(α), Σ, δpos, 0, F ), with δpos = {(0, σj , j) | j ∈ first(α)} ∪
{(i, σj , j) | j ∈ follow(α, i)} and F = last(α) ∪ {0} if ε(α) = ε, and F = last(α),
otherwise. We note that the number of states of Apos(α) is exactly |α|Σ + 1.

The partial derivative automaton of a regular expression was introduced inde-
pendently by Mirkin [13] and Antimirov [1]. Champarnaud and Ziadi [5] proved
that the two formulations are equivalent. For a regular expression α ∈ RE and
a symbol σ ∈ Σ, the set of left-partial derivatives of α w.r.t. σ is defined induc-
tively as follows:

∂σ(∅) = ∂σ(ε) = ∅

∂σ(σ′) =

{
{ε} if σ′ = σ
∅ otherwise

∂σ(α+ β) = ∂σ(α) ∪ ∂σ(β)
∂σ(αβ) = ∂σ(α)β ∪ ε(α)∂σ(β)
∂σ(α?) = ∂σ(α)α?

(2)

where for any S ⊆ RE, S∅ = ∅S = ∅, Sε = εS = S, and Sβ = {αβ|α ∈ S} if
β 6= ∅, ε (and analogously for βS). The definition of left-partial derivatives can be
extended in a natural way to sets of regular expressions, words, and languages.
We have that w−1L(α) = L(∂w(α)) =

⋃
τ∈∂w(α) L(τ), for w ∈ Σ?. The set of all

partial derivatives of α w.r.t. words is denoted by PD(α) = ∂Σ?(α). The partial
derivative automaton of α is Apd(α) = (PD(α), Σ, δpd, α, Fpd), where δpd =
{(τ, σ, τ ′) | τ ∈ PD(α), σ ∈ Σ, τ ′ ∈ ∂σ(τ)} and Fpd = {τ ∈ PD(α) | ε(τ) = ε}.

As noted by Broda et al. [3] and Maia et al. [12], following Mirkin’s con-
struction, the partial derivative automaton of α can be inductively constructed.
A (right) support for α is a set of regular expressions {α1, . . . , αn} such that
αi = σ1αi1 + · · ·+ σkαik + ε(αi), i ∈ [0, n], α0 ∼ α and αij is a linear combina-
tion of αl, l ∈ [1, n] and j ∈ [1, k]. The set π(α) inductively defined below is a
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right support of α.

π(∅) = ∅
π(ε) = ∅
π(σ) = {ε}

π(α+ β) = π(α) ∪ π(β)
π(αβ) = π(α)β ∪ π(β)
π(α?) = π(α)α?.

(3)

Champarnaud and Ziadi proved that PD(α) = π(α)∪{α} and the transition func-
tion of Apd can also be defined inductively from the system of equations above.
Let ϕ(α) = {(σ, γ) | γ ∈ ∂σ(α), σ ∈ Σ} and λ(α) = {α′ | α′ ∈ π(α), ε(α′) = ε},
where both sets can be inductively defined using (2) and (3). We have, δpd =
{α}×ϕ(α)∪F (α) where the result of the × operation is seen as a set of triples
and the set F is defined inductively by:

F (∅) = F (ε) = F (σ) = ∅, σ ∈ Σ
F (α+ β) = F (α) ∪ F (β)
F (αβ) = F (α)β ∪ F (β) ∪ λ(α)β × ϕ(β)
F (α?) = F (α)α? ∪ (λ(α)× ϕ(α))α?.

(4)

Note that the concatenation of a transition (α, σ, β) with a RE γ is defined
by (α, σ, β)γ = (αγ, σ, βγ) (similarly γ(α, σ, β) = (γα, σ, γβ)), if γ 6∈ {∅, ε},
(α, σ, β)∅ = ∅ and (α, σ, β)ε = (α, σ, β). Then, Apd(α) = (π(α) ∪ {α}, Σ, {α} ×
ϕ(α) ∪ F (α), α, λ(α) ∪ ε(α){α}). In Fig. 1 are represented Apos(α) and Apd(α),
where α = βb and β = (a?b+ a?ba+ a?)?.
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Fig. 1. Automata for α = βb with β = (a?b+ a?ba+ a?)?.

Champarnaud and Ziadi [6] showed that the partial derivative automaton is
a quotient of the Glushkov automaton by the right-invariant equivalence relation
≡c, such that i ≡c j if ∂wσi(α) = ∂wσj (α), for i, j ∈ pos0(α) and let σ0 = ε. It is

known that ∂wσi(α) is either empty or an unique singleton for all w ∈ Σ?
.
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3 Right-Partial Derivative Automata

The concept of right-partial derivative was introduced by Champarnaud et. al.
For a regular expression α ∈ RE and a symbol σ ∈ Σ, the set of right-partial

derivatives of α w.r.t. σ,
←−
∂ σ(α), is defined in the same way as the set of left-

partial derivatives except for the following two rules:

←−
∂ σ(αβ) = α

←−
∂ σ(β) ∪ ε(β)

←−
∂ σ(α)

←−
∂ σ(α?) = α?

←−
∂ σ(α). (5)

This definition can be extended in a natural way to sets of regular expressions,
words, and languages. The set of all right-partial derivatives of α w.r.t. words is

denoted by
←−
PD(α) =

←−
∂ Σ?(α). The right- and left-partial derivatives of α w.r.t.

w ∈ Σ? are related by
←−
∂ w(α) = (∂wR(αR))R. Thus, L(

←−
∂ w(α)) = L(α)w−1. The

right-partial derivative automaton of α,
←−
Apd(α), can be defined inductively as a

solution of a left system of expression equations, αi = αi1σ1+ · · ·+αikσk+ε(αi),
i ∈ [0, n], α0 ∼ α, αij is a linear combination of αl, l ∈ [1, n] and j ∈ [1, k].

Proposition 1. The set of regular expressions ←−π (α) defined in the same way
as the set π, except for the concatenation and Kleene star rules, is a solution of
a left system of expression equations,

←−π (αβ) = α←−π (β) ∪←−π (α) ←−π (α?) = α?←−π (α). (6)

Again, the solution of the system of equations also allows to inductively define

the transition function. Let ←−ϕ (α) = {(γ, σ) | γ ∈
←−
∂ σ(α), σ ∈ Σ} and

←−
λ (α) =

{α′ | α′ ∈ ←−π (α), ε(α′) = ε}, where both sets can be inductively defined using

(5) and (6). The set of transitions of
←−
Apd(α) is ←−ϕ (α)× {α} ∪

←−
F (α) and the set

←−
F (α) is defined similarly to the set F (α) except for the two following rules:

←−
F (αβ) = α

←−
F (β) ∪

←−
F (α) ∪ ϕ(α)× (α

←−
λ (β))

←−
F (α?) = α?

←−
F (α) ∪ α?(←−ϕ (α)×

←−
λ (α)).

(7)

The right-partial derivative automaton of α is
←−
Apd(α) = (←−π (α)∪{α}, Σ,←−ϕ (α)×

{α}∪
←−
F (α),

←−
λ (α)∪ε(α){α}, {α}). In Fig. 3(a) is represented the

←−
Apd of the RE

βb considered in Fig. 1. Note that the sizes of π(α) and←−π (α) are not comparable
in general. For example, |π(βb)| > |←−π (βb)|, but if we consider α = b(ba?+aba?+
a?)? then |π(α)| < |←−π (α)|. The following result relates the functions defined
above to the ones used to define the Apd is given by the following result.

Proposition 2. Let α be a regular expression. Then←−π (α) = (π(αR))R,
←−
λ (α) =

(λ(αR))R, ←−ϕ (α) = (ϕ(αR))R and
←−
F (α) = (F (αR))R.

From the previous result and the fact that Apd(α) ' Apos(α)�≡c we have

Proposition 3. For any α ∈ RE,

1. (Apd(α
R))R '

←−
Apd(α).

2. L(
←−
Apd(α)) = L(α).

3.
←−
Apd(α) ' (Apos(α

R))R�≡c.
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4 Prefix Automata

Yamamoto [16] presented a new algorithm for converting a regular expression
into an equivalent NFA. First, a labeled version of the usual Thompson NFA
(Q,Σ, δ, I, F ) is obtained, where each state q is labeled with two regular ex-
pressions, one that corresponds to its left language, LP (q), and the other to its
right language, LS(q). States which in-transitions are labeled with a letter are
called sym-states. Then the equivalence relations ≡pre and ≡suf are defined on
the set of sym-states: for two states p, q ∈ Q, p ≡pre q if and only if LP (p) =
LP (q); and p ≡suf q if and only if LS(p) = LS(q). The prefix automaton Apre

and the suffix automaton Asuf are the quotient automata by these relations.
The final automaton is a combination of these two. The author also shows that
Asuf coincides with Apd. This relation between Apd and Asuf could lead us to

think that
←−
Apd coincide with Apre, which is not true. For instance, considering

α = a+b, the
←−
Apd(α) has 2 states and the Apre(α) has 3 states (see Fig. 2). Note

that both automata are obtained from another automaton by merging the states

with the same left language: while the
←−
Apd(α) is obtained from (Apos(α

R))R, we
will see that the Apre(α) is obtained from Apos(α).

q0

q1

q2

a

b

(a) Apos(α)

q0

q1

q2

a

b

(b) (Apos(α
R))R

ε

a

b

a

b

(c) Apre(α)

ε a + b
a, b

(d)
←−
Apd(α)

Fig. 2. Automata for α = a+ b.

The LP labelling scheme proposed by Yamamoto can be obtained as a solu-
tion of a system of expression equations for a RE α, as done both for Apd and
←−
Apd. Consider a system of left equations αi = αi1σ1 + · · · + αikσk, i ∈ [1, n],
where α =

∑
i∈I⊆[0,n] αi, αij =

∑
l∈Iij⊆[0,n] αl and α0 ∼ ε.

Proposition 4. The set Pre(α) inductively defined as follows:

Pre(∅) = ∅
Pre(ε) = ∅
Pre(σ) = {σ}

Pre(α+ β) = Pre(α) ∪ Pre(β)
Pre(αβ) = αPre(β) ∪ Pre(α)
Pre(α?) = α?Pre(α).

(8)

is a solution (left support) of the system of left equations defined above.

The set Pre0(α) = Pre(α) ∪ {ε} constitutes the set of states of the prefix
automaton Apre(α). It also follows from the resolution of the above system of
equations, that the set of transitions of Apre(α) can be inductively defined. Let
P(α), ψ(α), and T(α) be defined, respectively, as follows:

P(∅) = ∅
P(ε) = {ε}
P(σ) = {σ}

P(α+ β) = P(α) ∪ P(β)
P(αβ) = αP(β) ∪ ε(β)P(α)
P(α?) = α?P(α).

(9)
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ψ(∅) = ∅
ψ(ε) = ∅
ψ(σ) = {(σ, σ)}

ψ(α+ β) = ψ(α) ∪ ψ(α)
ψ(αβ) = ψ(α) ∪ ε(α) α ψ(β)
ψ(α?) = α?ψ(α)

(10)

T(∅) = T(ε) = T(σ) = ∅, σ ∈ Σ
T(α+ β) = T(α) ∪ T(β)

T(αβ) = T(α) ∪ αT(β) ∪ P(α)× (αψ(β))
T(α?) = α?T(α) ∪ α?(P(α)× ψ(α)).

(11)

Therefore,Apre(α) = (Pre0(α), Σ, {ε}×ψ(α)∪T(α), ε,P(α)∪ε(α)). In Fig.3(b)
we can see the Apre(βb), where the RE βb is the one of Fig. 1. From both figures

we observe that
←−
Apd(βb) is the smallest of the four automaton constructions. We

q0

q1

q2 q3

b

a, b

a, b

a

a

a

(a)
←−
Apd(βb) : q0 = βa?,
q1 = βa?b, q2 = β, q3 = βb

q0 q1
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q3 q4

a

b

b
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b
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b b

b

(b) Apre(βb) : q0 = ε, q1 = β(a?a),
q2 = β(a?b), q3 = β((a?b)a),
q4 = βb.

Fig. 3. Automata for βb, where β = (a?b+ a?ba+ a?)?

now show that the Apre is a quotient of Apos. If α is a linear regular expression,
Apos(α) is deterministic and thus all its states have distinct left languages. There-
fore, in this case, Apre(α) coincides with Apos(α) and |Pre(α)| = |α|Σ . For an
arbitrary RE α, Apre(α) ' Apos(α). Let ≡l be the equivalence relation in Pre(α)
such that for any regular expression α, ∀α1, α2 ∈ Pre(α), α1 ≡l α2 ⇔ α1 = α2.
It is not difficult to see that ≡l is a left-invariant relation.

Proposition 5. Let α be a regular expression. Then Apre(α) ' Apos(α)�≡l.

By construction, the Glushkov automaton is homogeneous, i.e. the in- transitions
of each state are all labelled by the same letter. It follows from Proposition 5
that this property also holds for Apre.

5 Average-Case Complexity

We conducted some experimental tests in order to compare the sizes of Apos,

Apd,
←−
Apd and Apre automata. We used the FAdo library1 that includes imple-

mentations of the NFA conversions and also several tools for uniformly random
generate regular expressions. In order to obtain regular expressions uniformly

1 http://fado.dcc.fc.up.pt
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generated in the size of the syntactic tree, a prefix notation version of the gram-
mar was used. For each alphabet size, k, and |α|, samples of 10 000 REs were
generated, which is sufficient to ensure a 95% confidence level within a 1% error
margin. Table 1 presents the average values obtained for |α| ∈ {100, 500, 1000}
and k ∈ {2, 10}. These experiments suggest that in pratice the

←−
Apd and the

k |α| |pos0| |δpos| |PD| |δπ|
|π|
|pos| |

←−
PD| |δ←−π | |

←−π |
|pos| |Pre0| |δpre|

|Pre|
|pos| 1− ηk

2
100 28.9 167.5 15.7 56.0 0.55 15.9 56.4 0.55 20.1 73.7 0.71

0.90
500 139.9 1486.5 71.6 389.8 0.51 71.5 393.1 0.51 91.9 530.8 0.66

10
100 42.5 159.4 23.8 73.7 0.56 23.8 72.9 0.56 38.5 130.4 0.91

0.99500 207.1 1019.1 113.2 423.8 0.55 112.4 425.6 0.54 186 807.1 0.90
1000 412.1 2182.1 223.7 884.1 0.54 223.1 884.5 0.54 369.5 1717.6 0.90

Table 1. Experimental results for uniform random generated regular expressions.

Apd have the same size and the Apre is not significantly smaller then the Apos.
By Proposition 3, |αR|Σ = |α|Σ and by the fact that ε ∈ π(α) if and only if
ε ∈ ←−π (α), the analysis of the average size of Apd(α) presented in Broda et al [2]

carries on to
←−
Apd(α). Thus the average sizes of Apd and

←−
Apd are asymptotically

the same. However,
←−
Apd(α) has only one final state and its number of initial

states is the number of final states of Apd(α
R). As studied by Nicaud [14], the

size of last(α) tends asymptotically to a constant depending on k and |λ(α)| is
half that size [3]. Thus, that constant value will be also the number of initial

states of
←−
Apd. Following, again, the ideas in Broda et al., we estimate the number

of mergings of states that arise when computing Apre from Apos. The Apre has
at most |α|Σ + 1 states and this only occurs when all unions in Pre(α) are dis-
joint. However there are cases in which this does not happen. For instance, when
σ ∈ Pre(β)∩Pre(γ), then |Pre(β+γ)| = |Pre(β)∪Pre(γ)| ≤ |Pre(β)|+ |Pre(γ)|−1
and |Pre(β?γ)| = |β?Pre(γ) ∪ β?Pre(β)| ≤ |Pre(β)| + |Pre(γ)| − 1. In what fol-
lows we estimate the number of these non-disjoint unions, which correspond to
a lower bound for the number of states merged in the Apos automaton. This is
done in the framework of analytic combinatorics as expounded by Flajolet and
Sedgewick [7]. The methods apply to generating functions A(z) =

∑
n anz

n for
a combinatorial class A with an objects of size n, denoted by [zn]A(z), and also
bivariate functions C(u, z) =

∑
α u

c(α)z|α|, where c(α) is some measure of the
object α ∈ A.

The regular expressions ασ for which σ ∈ Pre(ασ), σ ∈ Σ, are generated by
following grammar:

ασ := σ | ασ + α | ασ + ασ | ασ · α | ε · ασ (12)

The regular expressions that are not generated by ασ are denoted by ασ. The
generating function for ασ, Rσ,k(z) satisfies

Rσ,k(z) =z + zRσ,k(z)Rk(z) + z(Rk(z)−Rσ,k(z))Rσ,k(z)+

+ zRσ,k(z)Rk(z) + z2Rσ,k(z)
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From this one gets

Rσ,k(z) =
(z2 + 3zRk(z)− 1) +

√
(z2 + 3zRk(z)− 1)2 + 4z2

2z
. (13)

where Rk(z) =
1−z−

√
∆k(z)

4z is the generating function for REs given by gram-
mar (1) but omitting the ∅, ∆k(z) = 1− 2z − (7 + 8k)z2 and following Nicaud,

[zn]Rk(z) ∼
√

2(1− ρk)

8ρk
√
π

ρ−nk n−3/2, where ρk =
1

1 +
√

8k + 8
(14)

Using the techniques in Broda et. al and namely Proposition 3 one has

[zn]Rσ,k(z) ∼ 3

16
√
π

(
1− b(ρk)√

a(ρk)

)√
2(1− ρk)ρ

−(n+1)
k n−

3
2 , (15)

where a(z) and b(z) are polynomials. Thus, the asymptotic ratio of regular ex-
pressions with σ ∈ Pre(α) is:

[zn]Rσ,k(z)

[zn]Rk(z)
∼ 3

2

(
1− b(ρk)√

a(ρk)

)
. (16)

As lim
k→∞

ρk = 0, lim
k→∞

a(ρk) = 1, and lim
k→∞

b(ρk) = 1, this asymptotic ratio tends

to 0 with k →∞.
Let i(α) be the number of non-disjoint unions appearing during the compu-

tation of Pre(α) originated by the two cases above. Then i(α) verifies

i(ε) = i(σ) = 0
i(ασ + ασ) = i(ασ) + i(ασ) + 1
i(ασ + ασ) = i(ασ) + i(ασ)
i(ασ + α) = i(ασ) + i(α)

i(α?σασ) = i(α?σ) + i(ασ) + 1
i(α?σασ) = i(α?σ) + i(ασ)
i(αασ) = i(α) + i(ασ)
i(α?) = i(α).

From these equations we can obtain the cost generating function for the number
of mergings:

Iσ,k(z) =
(z + z2)Rσ,k(z)2√

∆k(z)
. (17)

Using again the same Proposition 3 from Broda et al., we conclude that:

[zn]Iσ,k(z) ∼ 1 + ρk
64

(
a(ρk) + b(ρk)2 − 2b(ρk)

√
a(ρk)

)
√
π
√

2− 2ρk
ρ
−(n+1)
k n−

1
2 . (18)

The cost generating function for the number of letters in α ∈ RE, computed
by Nicaud, is Lk(z) = kz√

∆k(z)
and [zn]Lk(z) ∼ kρk√

π(2−2ρk)
ρ−nk n−1/2. With these,

we get an asymptotic estimate for the average number of mergings given by:

[zn]Iσ,k(z)

[zn]Lk(z)
∼ 1− ρk

4ρ2k
λk = ηk, (19)
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where λk = (1+ρk)
16(1−ρk)

(
a(ρk) + b(ρk)2 − 2b(ρk)

√
a(ρk)

)
. It is not difficult to con-

clude that lim
k→∞

λk = 0, therefore lim
k→∞

ηk = 0. As it is evident from the last two

columns of Table 1, for small values of k, the lower bound ηk does not capture all
the mergings that occur in Apre. Although we must study other contributions for
those mergings, it seems that for larger values of k, the average number of states
of the Apre automaton approaches the number of states of the Apos automaton.
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