Fish and seafood in Portugal -

- a review of its availability and consumption

A. Teixeira (I), S. Rodrigues (I), A. Cavadas (II), B. Neto (II)

(I) Faculdade de Ciências da Nutrição e Alimentação da Universidade do Porto
(II) Faculdade de Engenharia da Universidade do Porto

Report for the IJUP 2012-2013 Project (PP_IJUP2011_235)
Impact Evaluation of the consumption of Fish and Seafood in Portugal
(Avaliação Ambiental do Consumo de Pescado em Portugal)

Index

1 - Introduction 2
2 - National supply 3
2a - Context 3
2b - Food Balance Sheets 4
3 - Household availability 10
3a - Context 10
3b - Household Budget Surveys 11
4 - Consumption 25
4a - Context 25
4b - National Health Surveys 25
4c - SPCNA/Nestle study 25
4d - EpiPorto study 28
4e - IPMA study 32
5 - Conclusions 35
6 - References 37
7 - Appendix 38
7a - Appendix Index 38

1. Introduction

As an important health and environmental determinant that is subject to change, the characterization and monitoring of dietary habits are of paramount importance.

Following the general objective of evaluating the environmental impact of fish and seafood consumption in Portugal, the aim of the present report is to review and compile the published data that would allow the characterization of the Portuguese consumption of this particular food group.

Although dietary habits are not easy to capture, to identify and to follow up its trends from a given population it is essential to have updated, reliable and comparable data.

As illustrated by Figure $1{ }^{(1)}$ dietary consumption measurements might be performed at three main levels: the national supply (levels I and II), the household availability (levels III and IV) and the individual consumption (level V).

Figure 1 - Different levels of food consumption measurement ${ }^{(1)}$

Following the food consumption measurement levels, this report is structured in three main chapters focusing on data from the national supply, the household availability and the individual consumption. Some other different information sources that were considered relevant are also included. At the end, a chapter with general comments and conclusions is presented.

2. National Supply

a) Context

The national food supply estimates were obtained from the Food and Agriculture Organization (FAO) food balance sheets (FBS) ${ }^{(2)}$. In order to know the historical trends, data were collected from 1961 to 2009 (the oldest available and the most recent). Comparison of Portuguese national availability values with those from the world and other countries, as well as values for production, imports and exports are presented.

FBS, which are usually compiled by the national statistics institutes, rely on countries' governmental and other administrative statistic sources and are computed in a regular basis referring to one year periods. FBS data relate not only to the quantities available for consumption in private households but also in the non-household sector, i.e. catering establishments, boarding schools, hospitals, prisons, armed forces bases and other communities. Non-commercial or subsistence-level productions are not included because they are not officially registered. All processed food items (ex: bread) are converted back into their primary form (ex: such as wheat). The data is expressed in mean per capita food supply (through the division by the country's population in the middle of the corresponding year) but it is worth noting that tourists and illegal immigrants are not considered in this estimations.

b) Food Balance Sheets

2b.1) Supply - world positioning

In 2009, Portugal was the $4^{\text {th }}$ country in the world with the higher fish and seafood supply. The average values in the world and in the European Union increased from 1961 up to 2009. (Graph 1)

Fish and seafood supply - world positioning

Graph 1 - Fish and seafood supply quantity (values relate to the years 1961 and 2009), the world positioning of Portugal and other countries, including the mean of the World and the European Union. FAO ${ }^{(2)}$

2b.2) Supply by fish and seafood groups

FAO aggregates the data from fish and seafood supply by groups (for detailed information see appendix). (Table 1 and Graph 2)

Table 1 - Portuguese food supply quantity by groups, 1961 to 2009. FAO

Food supply quantity \| 1961 to 2009														
Years	1961		1970		1980		1990		2000		2005		2009	
Items	$\mathrm{g} / \mathrm{capi}$ ta / d	t/yr	$\begin{gathered} \mathrm{g} / \mathrm{capi} \\ \text { ta/d } \end{gathered}$	t/yr	g/capi ta / d	t/yr	$\begin{array}{\|c\|} \hline \text { g/capit } \\ \text { a/d } \end{array}$	t/yr	$\begin{array}{\|c} \hline \text { g/capit } \\ \text { a/d } \\ \hline \end{array}$	t/yr	$\begin{array}{\|c} \hline \text { g/capita } \\ / \mathrm{d} \end{array}$	t/yr	$\begin{gathered} \hline \text { g/capita } \\ / \mathrm{d} \end{gathered}$	t/yr
Freshwat er Fish	0	0	0	0	0,27	964,41	0,82	2970,55	2,47	9318,42	3,29	12661,7 6	4,38	17037,3 5
Demersal Fish	108,49	352746,5 6	129,59	$\begin{gathered} 410756,2 \\ 4 \end{gathered}$	41,37	147769,0 9	112,33	$\begin{gathered} 406929,4 \\ 7 \end{gathered}$	90,68	$\begin{gathered} 342103,0 \\ 0 \end{gathered}$	89,86	$\begin{array}{\|c\|} 345831, \\ 6 \end{array}$	91,23	$\begin{array}{\|c} 354866, \\ 91 \end{array}$
Pelagic Fish	29,04	94421,24	33,42	105930,0 4	27,4	97869,79	27,95	101252,3 7	26,03	98201,82	22,19	$\begin{gathered} 85399,5 \\ 5 \end{gathered}$	35,89	$\begin{array}{\|c\|} \hline 139605, \\ 10 \end{array}$
Marine Fish, Other	12,33	40090,01	16,99	53852,52	5,75	20538,37	8,77	31770,42	6,85	25842,58	5,48	$\begin{array}{\|c} 21090,1 \\ 1 \end{array}$	6,85	$\begin{array}{\|c} 26645,1 \\ 6 \end{array}$
Crustacea ns	0,27	877,88	0,55	1743,31	0,55	1964,54	2,74	9925,99	3,84	14486,94	6,03	23206,8 2	6,3	$\begin{array}{\|c\|} \hline 24505,7 \\ 7 \end{array}$
Cephalop ods	1,64	5332,33	0,27	855,81	3,56	12715,93	7,4	26807,43	8,77	33086,05	10,68	$\begin{array}{\|c\|} \hline 41102,6 \\ 2 \end{array}$	11,23	$\begin{array}{\|c\|} \hline 43682,5 \\ 1 \end{array}$
Molluscs, Other	0,82	2666,16	0,27	855,81	0,27	964,41	2,47	8947,88	7,4	27917,54	9,04	34790,9 8	11,51	$\begin{array}{\|c} 44771,6 \\ 6 \end{array}$
Fish, Seafood + (Total)	152,60	$\begin{array}{\|c\|} \hline 496166,6 \\ 9 \end{array}$	181,1	$\begin{gathered} 574025,4 \\ 3 \end{gathered}$	78,63	$\left\|\begin{array}{c} 280857,7 \\ 1 \end{array}\right\|$	162,47	$\begin{array}{\|c} 588567,8 \\ 8 \end{array}$	146,03	$\begin{array}{\|c\|} 550918,6 \\ 2 \end{array}$	146,58	$\begin{array}{\|c} 564121 \\ 9 \end{array}$	167,4	$\begin{gathered} 651153, \\ 36 \end{gathered}$
Portugal Populatio n		8.000	8.68	84.000	9.78	8.000	9.92	5.000	10.3	36.000	10.54	4.000	10.65	7.000

Food Supply Quantity ${ }_{\text {E/capita/day }}$

Graph 2 - Fish and seafood supply quantity, total and by groups. FAO ${ }^{(2)}$

2b.3) Production

In accordance to FAO, production data relates to the farm level for primary crops (i.e. excluding harvesting losses for crops) and livestock items and in terms of live weight (i.e. the actual ex-water weight of the catch at the time of capture) for primary fish items. As production data describes, the slope of linear regression indicates that the total production quantity has declined over the years. (Table 2 and Graph 3)

Table 2 - Fish and seafood production quantity in Portugal, 1961 to 2009. FAO ${ }^{(2)}$

Production $^{\text {(1000 tonnes) }}$							
Fish groups Year	$\mathbf{1 9 6 1}$	$\mathbf{1 9 7 0}$	$\mathbf{1 9 8 0}$	$\mathbf{1 9 9 0}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 9}$
Freshwater Fish	0	0	1	2	1	1	1
Demersal Fish	238	219	89	125	68	75	76
Pelagic Fish	213	180	153	148	103	116	161
Marine Fish, Other	40	54	15	28	3	1	1
Crustaceans	1	1	1	2	4	2	2
Cephalopods	6	4	12	16	12	14	13
Molluscs, Other	4	5	1	8	7	9	7
Fish, Seafood + (Total)	502	463	271	330	198	218	260

Graph 3 - Fish and seafood production quantity in Portugal, 1961 to 2009. A linear regression equation was applied to see the slope. FAO ${ }^{(2)}$

2b.4) Import

In Portugal, import quantities of fish and seafood have been increasing overtime. (Table 3 and Graph 4)

Table 3 - Fish and seafood import quantity in Portugal, 1961 to 2009. FAO ${ }^{(2)}$

Import Quantity									(1000tonnes)
Fish groups \years	$\mathbf{1 9 6 1}$	$\mathbf{1 9 7 0}$	$\mathbf{1 9 8 0}$	$\mathbf{1 9 9 0}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 9}$		
Freshwater Fish	0	0	0	0	8	13	18		
Demersal Fish	115	193	59	317	309	329	340		
Pelagic Fish	10	120	72	67	152	114	137		
Marine Fish, Other	0	0	12	11	41	42	52		
Crustaceans	0	0	4	11	16	25	28		
Cephalopods	0	0	1	13	27	34	39		
Molluscs, Other	0	2	0	5	22	32	46		
Fish, Seafood + (Total)	126	315	147	424	575	589	660		

Graph 4 - Fish and seafood import quantity in Portugal, 1961 to 2009. A linear regression equation was applied in order to calculate the slope. FAO ${ }^{(2)}$

2b.5) Export

Together with import quantities, Portugal has also increased its export quantities of fish and seafood. (Table 4 and Graph 5)

Table 4 - Fish and seafood export quantity in Portugal, 1961 to 2009. FAO ${ }^{(2)}$

Export Quantity (1000 tonnes)							
Groups \Years	$\mathbf{1 9 6 1}$	$\mathbf{1 9 7 0}$	$\mathbf{1 9 8 0}$	$\mathbf{1 9 9 0}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 9}$
Freshwater Fish	0	0	0	0	1	1	2
Demersal Fish	0	1	0	48	34	58	61
Pelagic Fish	126	80	78	62	67	73	102
Marine Fish, Other	0	0	3	8	11	19	23
Crustaceans	0	0	3	2	5	5	6
Cephalopods	1	3	0	2	6	7	8
Molluscs, Other	2	6	0	4	2	6	8
Fish, Seafood + (Total)	129	90	84	126	126	169	209

Graph 5 - Fish and seafood export quantity in Portugal, 1961 to 2009. A linear regression equation was applied in order to calculate the slope. FAO ${ }^{(2)}$

2b.6) Stock variation

The definition of stock variation presented in the FAO glossary describes that this term comprises changes in stocks occurring during the reference period at all levels between the production and the retail levels, i.e. it comprises changes in government stocks, in stocks with manufacturers, importers, exporters, other wholesale and retail merchants, transport and storage enterprises and in stocks on farms. In the absence of information on opening and closing stocks, changes in stocks are also used for shifting production from the calendar year in which it is harvested to the year in which it is consumed. Net increases in stocks (add to stock) are generally indicated by the sign "". No sign denotes net decreases (from stock). (Table 5)

Table 5 - Fish and seafood stock variation quantity in Portugal, 1961 to 2009. FAO ${ }^{(2)}$

Stock Variation (1000 tonnes)							
Groups \ Years	1961	1970	1980	1990	2000	2005	2009
Freshwater Fish	0	0	0	0	0	0	0
Demersal Fish	0	0	0	12	0	0	0
Pelagic Fish	-2	0	0	0	0	0	0
Marine Fish, Other	0	0	0	0	0	0	0
Crustaceans	0	0	0	0	0	0	0
Cephalopods	0	0	0	0	0	0	0
Molluscs, Other	-	-	-	-	-	-	-
Fish, Seafood + (Total)	-2	0	0	13	0	0	0

2b.7) Self-sufficiency

The self-sufficiency ratio (SSR) is defined as: SSR = production*100/(production + imports - exports). The SSR can be calculated for individual commodities, groups of commodities of similar nutritional values and, after appropriate conversion of the commodity equations, also for the aggregate of all commodities. In the context of food security, the SSR is often taken to indicate the extent to which a country relies on its own production resources, i.e. the higher the ratio the greater the self-sufficiency.

In 1961 the SSR for fish and seafood in Portugal was around 1, which indicates the independence of the country in this group of products. Along time SRR has been decreasing and the most recent data presents a ratio of 0.37 , meaning a decrease in production and a large increase in the imports. (Table 6)

Table 6 - Fish and seafood self-sufficiency ratio [SSR = production*100/(production + imports - exports)] in Portugal, 1961 to 2009. FAO ${ }^{(2)}$

Self-Sufficiency Ratio (SRR)							
Group \Years	$\mathbf{1 9 6 1}$	$\mathbf{1 9 7 0}$	$\mathbf{1 9 8 0}$	$\mathbf{1 9 9 0}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 9}$
Fish, Seafood + (Total)	1,01	0,67	0,81	0,53	0,31	0,34	0,37

3. Household Availability

3a) Context

The program DAFNE-ANEMOSSoft ${ }^{(3)}$, that compiles data collected through the Household Budget Surveys (HBS), was used to get information for household availability. The data available for Portugal refers to the years 1990, 1995, 2000 and 2005.

Conducted regularly by the national statistic institutes for economic purposes, HBS data collecting techniques are based on a self-recorded diary of cash inputs and outputs completed by each member of the household. In order to capture seasonal variability data collection within the whole country is distributed along one year period. The sample unit is the household and thus institutions or communities are excluded. Food acquisitions (including not only purchases but also contributions from the household's own production and food items received as gifts) are recorded in quantities during a period of time, from one week to one month. Food purchased for consumption outside the home is usually only registered in price value but not fully recorded in kind or weight. The food and beverages registered are subsequently grouped and made available in a list of predefined codes. The mean per capita daily availability is generally estimated through a division of the household daily availability by the number of household members, without considering outside the house food consumption, food wasted, spoiled, or fed to pets. Usually inedible weight factors are applied but no assumption regarding food waste is considered.

3b) Household Budget Surveys

3b.1) Total household availability

Portugal was the European country with the highest household availability of fish and seafood. The major contributor for this availability was the fish group. It is also important to note that the availability of fish dishes was smaller in Portugal than in the other European countries. (Graph 6 and Table 7)

Household availability in European countries (g/capitalday)

Graph 6 - Fish and seafood household availability in Europe. The listed years are the most recent available for each country. DAFNE-ANEMOSSoft ${ }^{(3)}$

Table 7 - Fish and Seafood household availability in Portugal, 1990 to 2005. DAFNEANEMOSSoft ${ }^{(3)}$

Fish and seafood household availability in Portugal				
(g/capita/day)				
Groups \Years	$\mathbf{1 9 9 0}$	$\mathbf{1 9 9 5}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 5}$
Fish	68,00	77,00	71,00	63,00
Seafood	5,77	6,47	9,41	9,67
Fish Dishes	1,01	2,04	2,06	2,81
Total	74,78	85,51	82,47	75,48

3b.2) Household availability by disaggregated species in 2005

Although apparently available in the DAFNE-ANEMOSSoft, such information was not shown accurately (many items had no attributed values and legends were difficult to interpret). In the absence of sound published data disaggregated by species and processing methods, data was retrieved from the original database of the ANEMOS project (including Portuguese household budget survey data) by one of the authors (personal data not published). (Tables 8, 9 and 10).

Table 8 - Household availability disaggregated by fish species. All values refer to 2005 and are ordered from the highest to the lowest value. ANEMOS project (data not published)

Fish	
Fish	Mean (g/person/day)
Jack-Fish. horse mackerel	8.4
Sardines	6.61
Other Fish (Fresh or refirgerated)	6.27
Hake - frozen	5.95
Saltv and dried cod fish - Grown un	5.18
Saltv and dried cod fish - average	4.56
Canned Tuna Fish	2.98
Saltv and dried cod fish - big	2.68
Hake	2.22
other frozen fishes	2.1
Hake fillets - frozen	1.87
Sword fish	1.81
Red Fish - Frozen	1.27
Big Jack-Fish	1.17
Whitine. bib. nout	0.9
Red snapber	0.87
Other Parts of saltv and dried cod fish lheads.	0.74
Saltv and dried cod fish - special	0.74
Maruca	0.7
Other fish fillets - frozen	0.68
Snanish mackerel	0.54
Canned Sardines	0.41
Sardines - Frozen	0.39
Measre sea bass	0.36
Sole like fishes	0.36
Red Fish	0.35
Conger eel	0.29
Hake (small)	0.27
Wreckfish. grouner	0.27
Tuna Fish	0.25
Fork-beard - frozen	0.23
lack-Fish. horse mackerel - frozen	0.22
Saltv and dried cod fish - in pieces	0.15
Blacksnot sea bream	0.14
Mackerel	0.13
Fork-beard	0.11
Other Canned fishes	0.09
Pomfret	0.05
Sea bream	0.05
Smoked Salmon	0.05
Other saltv. dried or smoked fishes	0.04
Snaber	0.04
Black Snapoer	0.03
John Dorv. moonfish	0.03
Red snanner - frozen	0.03
Bogue	0.01
Sea bream - frozen	0.01
Alfonsino. Imnerador. Red Bream	0
Snabser - Frozen	0

Table 9 - Household availability Quantity disaggregated in fish dish items. All values refer to 2005 and are ordered from the highest to the lowest value. ANEMOS project (data not published)

Fish Dishes	
Fish Dish	Mean (g/person/day)
Fish or Seafood cakes and croquettes	1.07
Other convenience products based on fish,	0.68
Immitation seafood sticks	0.39
Boiled shrimps and prawns	0.28
Ready to eat pasta with fish and seafood	0.22
Fish or seafood patie	0.1
Cooked rice with fish	0.03
Other boiled crustaceans and molluscs n.d.	0.03

Table 10 - Household availability Quantity disaggregated in seafood items. All values refer to 2005 and are ordered from the highest to the lowest value. ANEMOS project (data not published)

Seafood	
Item	Mean (g/person/day)
Octopus, fresh, refrigerated	1.61
Octopus, frozen	1.32
Sauids, frozen	1.23
Other frozen crustacean, molluscs	1.17
Shrimps and prawns, frozen	1.04
Squids, fresh, refrigerated	0.85
Cuttlefish, fresh, refrigerated	0.62
cuttlefish, frozen	0.49
Shrimps and prawns, fresh, refrigerated	0.33
Mussels, fresh, refrigerated	0.21
Fish liver, roes - frozen	0.15
Other fresh, crustacean, molluscs	0.11
Spider crabs, fresh, refrigerated	0.1
cockles, fresh, refrigerated	0.1
Snails, fresh, refrigerated	0.04
canned crustaceans, molluscs	0.03
cockles, frozen	0.02
Fish liver, rees - fresh	0
Crabs, fresh, refrigerated	0
Lavagante fresh, refrigerated	

3b.3) Household availability by Portuguese regions

Algarve was the region presenting the highest availability, while Azores and Madeira presented the lowest values. (Tables 11.1 and 11.2 and Graph 7)

Table 11.1 - Household availability in Portugal - Mainland regions, 1990 to 2005. ${ }^{(4)}$

	North				Centre				Lisbon area				Alentejo				Algarve			
	1990	1995	2000	2005	1990	1995	2000	2005	1990	1995	2000	2005	1990	1995	2000	2005	1990	1995	2000	2005
Total	71,11	82,5	77,61	79,14	65,83	76,27	74,99	69,29	86,84	96,6	94,73	79,15	57,94	65,92	76,03	68,98	106,94	117,96	104,84	88,22
Fresh/frozen fish	42,14	46,67	42,4	67,62	39,01	45,2	42,19	59,68	56,75	63,98	60,45	62,05	38,72	43,37	49,64	57,48	77,79	90,98	79,93	70,87
Salted/canned fish	22,88	27,46	24,09		22,87	26,04	24,52		20,53	21,39	19,85		13,76	15,85	15,55		16,97	14,19	11,77	
Seafood	5,47	6,17	9,24	9,06	3,21	4,06	6,53	7,68	7,97	8,47	11,91	13,03	3,72	5,39	8,61	8,34	11,09	10,96	11,06	13,72
Fish dishes	0,61	2,2	1,88	2,46	0,74	0,96	1,75	1,92	1,59	2,76	2,52	4,07	1,74	1,32	2,24	3,16	1,08	1,82	2,06	3,63

Table 11.2 - Household availability in Portugal and its Autonomous regions, 1990 to 2005. ${ }^{(4,5)}$

(g/capita/day)	Azores				Madeira				Portugal			
	1990	1995	2000	2005	1990	1995	2000	2005	1990	1995	2000	2005
Total	56,40	85,93	66,74	54,02	31,39	46,36	40,13	41,21	74,51	85,63	82,68	75,09
Fresh/frozen fish	44,61	67,58	44,25	47,77	28,51	39,61	31,33	37,46	47,18	53,89	49,95	62,61
Salted/canned fish	9,76	14,01	15,29		2,78	6,09	7,46		20,54	23,23	21,25	
Seafood	1,73	3,11	5,44	4,15	0,09	0,35	0,91	2,92	5,77	6,47	9,41	9,67
Fish dishes	0,3	1,23	1,76	2,11	0,01	0,31	0,43	0,83	1,01	2,04	2,06	2,81

Graph 7 - Household availability of fish and seafood by Portuguese regions, 1990 and 2005. (4, 5)

3b.4) Household availability by locality urbanization degree

Fish and Seafood (g)

Seafood (g)

Mean availability by Locality (quantity/person/day)

	\square Rural	SemiUrban	Urban
Portugal 1990	3,72	4,53	7,16
Portugal 1995	2,91	5,77	7,89
Portugal 2000	4,95	8,77	11
Portugal 2005	6,31	6,82	11

Fish (g)

Fish Dishes (g)

Mean availability by Locality (quantity/person/day)

	\square Rural	SemiUrban	\square Urban
Portugal 1990	0,60	0,78	1,29
Portugal 1995	0,62	1,35	2,81
Portugal 2000	1,48	2,08	2,23
Portugal 2005	2,15	2,29	3,05

Figure 2 - Household availability of fish and seafood by locality urbanization degree in Portugal, 1990 to 2005. (although designated only by fish and seafood, this category also includes fish dishes). DAFNE-ANEMOSSoft ${ }^{(3)}$

3b.5) Household availability by education level of the household head

Fish and Seafood (g)

	Elementary	Secondary	\square Higher
Portugal 1990	74	79	78
Portugal 1995	85	86	91
Portugal 2000	81	91	79
Portugal 2005	77	68	80

Seafood (g)

Mean availability by Education of household head (quantity/person/day)

	Elementary	Secondary	Higher
Portugal 1990	4,85	10	11
Portugal 1995	5,43	9,66	13
Portugal 2000	7,91	15	13
Portugal 2005	8,31	11	16

Fish (g)

Fish Dishes (g)

Figure 3 Household availability of fish and seafood by education of household head (Elementary, Secondary and Higher)in Portugal, 1990 to 2005. (although designated only by fish and seafood, this category also includes fish dishes). DAFNE-ANEMOSSoft ${ }^{(3)}$

3b.6) Household availability by occupation of household head

Fish and Seafood (g)

Seafood (g)

Mean availability by Occupation of household head (quantity/person/day)

	Manual	Non Manual	Retired	Unemployed	Others
Portugal 1990	4,73	9,74	4,67	6,63	3,52
Portugal 1995	5,33	11	4,75	8,58	4,01
Portugal 2000	8,10	13	8,66	9,01	6,25
Portugal 2005	N/A	N/A	10	N/A	6,76

Fish (g)

Fish Dishes (g)

Mean availability by Occupation of household head (quantity/person/day)

	Manual	Non Manual	Retired	Unemployed	Others
Portugal 1990	1,03	1,59	0,58	0,08	0,71
Portugal 1995	1,99	2,55	1,57	2,53	2,19
Portugal 2000	2,11	2,60	1,53	2,01	2,00
Portugal 2005	N/A	N/A	2,71	N/A	2,30

Figure 4 - Household availability of fish and seafood by occupation of household head (Manual, Non Manual, Retired and Unemployed) in Portugal, 1990 to 2005. (although designated only by fish and seafood, this category also includes fish dishes). DAFNE-ANEMOSSoft ${ }^{(3)}$

3b.7) Household availability by household composition

Fish and Seafood (g)

Seafood (g)

Mean availability by Household Composition (quantity/person/day)

Adult Single	Adult 2 Members	Elderly Single	Elderly 2 Members	
Portugal 1990	9,03	7,54	1,93	5,33
Portugal 1995	6,48	10	3,29	4,56
Portugal 2000	12	15	3,65	6,21
Portugal 2005	13	14	6,26	9,88

Fish (g)

Fish Dishes (g)

	Adult Single	Adult 2 Members	Elderly Single	Elderly 2 Members
Portugal 1990	1,16	1,46	0,66	0,08
Portugal 1995	2,00	4,97	1,41	1,29
Portugal 2000	4,00	2,49	1,25	1,01
Portugal 2005	7,19	4,28	2,31	2,22

Figure 5 -Household availability of fish and seafood by household composition (adult single, 2 adult members, elderly single and 2 elderly members) in Portugal, 1990 to 2005. (although designated only by fish and seafood, this category also includes fish dishes). DAFNE-ANEMOSSoft ${ }^{(3)}$

3b.8) Household availability by household income

Table 12 - Household availability by household income quartiles in Portugal, 1990 to 2005. (N.a - data not available). (data not published)

Group Survex year	Income (euro/ca pita)	Total (g/capita /day)	Fish (g/capita /day)	Fresh and frozen fish (g/capita/d ay)	Salty and dried fish (g/capita/ day)	Smoked and canned fish (g/capita/d ay)	Seafood (g/capita /day)	Fish dishes (g/capita/ day)
1990	1st quartil	64.06	59.57	41.64	16.59	1.32	3.84	0.65
	2nd quartil	85.94	77.85	53.79	22.26	1.79	6.70	1.38
	3rd quartil	94.50	81.12	57.06	22.77	1.27	11.97	1.41
	4th quartil	103.57	86.36	59.71	24.61	2.03	13.91	3.29
1995	1st quartil	65.93	62.16	45.48	14.68	2.00	3.12	0.64
	2nd quartil	78.91	73.20	50.30	20.54	2.35	4.43	1.27
	3rd quartil	96.29	85.83	58.52	24.69	2.61	7.58	2.87
	4th quartil	97.07	82.85	59.83	20.43	2.58	10.99	3.22
2000	1st quartil	59.70	53.80	37.52	14.51	1.77	4.69	1.20
	2nd quartil	71.54	63.25	43.76	16.88	2.60	6.73	1.55
	3rd quartil	82.17	70.94	48.83	19.52	2.59	9.03	2.19
	4th quartil	104.67	87.21	63.09	20.77	3.34	14.68	2.77
2005	1st quartil	41.13	37.12	n.a.	n.a.	n.a.	3.49	0.50
	2nd quartil	54.33	49.14	n.a.	n.a.	n.a.	3.76	1.42
	3rd quartil	66.71	57.64	п.a.	п.a.	n.a.	6.93	2.13
	4th quartil	84.10	68.33	n.a.	n.a.	n.a.	12.28	3.47

4. Consumption

4a) Context

Consumption data refers to individual intake information. In the absence of a regularly collected national dietary survey (the first and only one was carried out in 1980), the food and nutrient consumption data was retrieved from four different sources.

4b) National Health Surveys

The individual-based National Health Survey provides qualitative information on national food habits. However, this source of information is also very limited as food groups are simply reported as eaten or not in the previous day and only quantitative data on consumption of milk and alcoholic beverages are available ${ }^{(6,7,8)}$. (Table 13)

Table 13 - Percentage of respondents from the Portuguese National Health Surveys $(6,7,8)$ who ate fish or seafood in a main meal the day before. The first three surveys were applied only in the mainland.

National Health Survey		1st	2nd	3rd	4th
	1987	$1995 / 1996$	$1998 / 1999$	$2005 / 2006$	
Portugal	Mainland	56%	55%	53%	49%
	Madeira	Not considered			

4c) SPCNA/Nestlé study

More recently, in 2009, a study conducted by the Portuguese society for food and nutrition (SPCNA) sponsored by Nestlé, also conveyed information on national food habits. Based on an individual survey collected through 24 h recall data, the sample of this study included 3529 adults (age ranging from 18 to 93 year old - 45 as median; 52.2% female) from all the Portuguese regions (mainland and autonomous regions). However, its potentiality has not yet been fully achieved and few published data are available. Graphs 9, 10,11 and 12 summarize some of the available information ${ }^{(9,10)}$.

Graph 9 - Percentage of respondents that consumed a specific food group on the day before the interview. Data from the SPCNA/Nestle study (2009) ${ }^{(9)}$. The name of the columns from left to right: meat, sausages, offal, seafood, fish, eggs and omelets.

Graph 10 - Percentage of respondents by gender that consumed a specific food group on the day before the interview. Data from the SPCNA/Nestle study (2009) ${ }^{(9)}$. The name of the columns from left to right: meat, sausages, offal, seafood, fish, eggs and omelets. Blue refers to male and red to female.

Graph 11 - Percentage of respondents by age groups that consumed a specific food group on the day before the interview. Data from the SPCNA/Nestle study (2009) ${ }^{(9)}$. The name of the columns from left to right: meat, sausages, offal, seafood, fish, eggs and omelets.

Graph 12 - Percentage of respondents by Portuguese regions that consumed a specific food group on the day before the interview. Data from the SPCNA/Nestle study (2009) ${ }^{(9)}$. The name of the columns from left to right: meat, sausages, offal, seafood, fish, eggs and omelets.

4d) EpiPorto study

The EpiPorto study ${ }^{(11)}$ aimed to collect information about health and nutrition in adults. The study was made from 1990 to 2003 into individuals that lived in the Porto area (located in the North region, Porto is the second largest city of Portugal).

EpiPorto reveals the consumption from one final sample composed by 2415 individuals, of these 61.7% are women and 38.3% are men with ages ranged between 18 and 92 years old (mean age 52.9 ± 15.0 years). The sample was selected by random digital dialling (response rate 70\%) and method used to assess quantitative information of food consumption was one validated semi-quantitative food frequency questionnaire (FFQ), relative for the period of 12 months previous the interview moment.

Regarding the consumption of fish and seafood, six different items/groups were assessed (fatty fish: sardines, mackerel, jack-fish, salmon; lean fish: hake, whiting, sea bream; cod fish; canned fish: tuna, sardines; octopus, squids; shrimps, clams, mussels) and data is available either as consumption frequency (Tables 14 and 15), average quantity (Table 16) or energy and nutrient contribution (Figures 6, 7 and 8).

4d.1) Frequency of fish and seafood consumption

Table 14 - Frequency of fish and seafood consumption by gender (F- Female; M Male). Data obtained from EpiPorto study ${ }^{(11)}$

Frequency of fish and seafood consumption by gender
n (\%)

	Gender	Never or less than $1 x /$ month	$\begin{aligned} & 1-4 x \\ & \text { /month } \end{aligned}$	2-6 x/week	$\begin{gathered} 1-3 \\ \text { x/day } \end{gathered}$	4 or more x/day
Fatty Fish: sardines, mackerel, jack-fish, salmon	F	226 (15.3)	861 (58.3)	388 (26.3)	2 (0.01)	0 (0.0)
	M	143 (15.5)	538 (58.4)	239 (26.0)	1 (0.01)	0 (0.0)
lean fish: hake, whiting, sea bream	F	60 (4.1)	756 (51.2)	648 (43.9)	13 (0.9)	0 (0.0)
	M	52 (5.6)	486 (52.8)	374 (40.6)	9 (1.0)	0 (0.0)
Cod fish	F	118 (8.0)	1071 (72.5)	288 (19.5)	0 (0.0)	0 (0.0)
	M	55 (6.0)	637 (69.2)	229 (24.9)	0 (0.0)	0 (0.0)
Canned fish: tuna, sardines	F	817 (55.3)	633 (42.9)	27 (1.8)	0 (0.0)	0 (0.0)
	M	440 (47.8)	455 (49.4)	26 (2.8)	0 (0.0)	0 (0.0)
octopus, squids	F	539 (36.5)	917 (62.1)	21 (1.4)	0 (0.0)	0 (0.0)
	M	268 (29.1)	633 (68.7)	20 (2.2)	0 (0.0)	0 (0.0)
shrimps, clams, mussels	F	1063 (72.0)	406 (27.5)	8 (0.5)	0 (0.0)	0 (0.0)
	M	617 (67.0)	294 (31.9)	10 (1.1)	0 (0.0)	0 (0.0)

Table 15 - Frequency of fish and seafood consumption (fresh and total) by gender and age groups. Data obtained from EpiPorto study ${ }^{(11)}$

Frequency of fish and seafood consumption by gender and age

Female	Male
$\mathrm{n}(\%)$	$\mathrm{n}(\%)$

	Age (years)	```Monthly 1-4 x/month```	Weekly 2-6 x/week	Daily 1 ou + x/day	```Monthly 1-4 x/month```	Weekly 2-6 x/week	Daily 1 ou $+x / d a y$
Total	18-39	4 (1.3)	212 (70.7)	82 (27.3)	3 (1.7)	137 (76.5)	36 (20.1)
	40-49	3 (0.9)	242 (71.0)	95 (27.9)	1 (0.5)	131 (65.5)	67 (33.5)
	50-64	8 (1.6)	311 (62.6)	178 (35.8)	3 (1.0)	178 (60.1)	115 (38.9)
	≥ 65	3 (0.9)	230 (67.8)	106 (31.3)	3 (1.2)	152 (61.8)	91 (37.0)
	Total	18 (1.2)	$\begin{gathered} 995 \\ (67.4) \\ \hline \end{gathered}$	$\begin{gathered} 461 \\ (31.2) \\ \hline \end{gathered}$	10 (1.1)	$\begin{gathered} 598 \\ (64.9) \\ \hline \end{gathered}$	$\begin{gathered} 309 \\ (33.6) \\ \hline \end{gathered}$
Fresh	18-39	67 (22.3)	187 (62.3)	39 (13.0)	53 (29.6)	101 (56.4)	17 (9.5)
	40-49	48 (14.1)	250 (73.3)	38 (11.1)	30 (15.0)	136 (68.0)	30 (15.0)
	50-64	50 (10.1)	352 (70.8)	91 (18.3)	31 (10.5)	217 (73.3)	45 (15.2)
	≥ 65	35 (10.3)	251 (74.0)	53 (15.6)	38 (15.4)	169 (68.7)	38 (15.4)
	Total	$\begin{gathered} 200 \\ (13.5) \end{gathered}$	$\begin{gathered} 1040 \\ (70.4) \end{gathered}$	$\begin{gathered} 221 \\ (15.0) \end{gathered}$	$\begin{gathered} 152 \\ (16.5) \end{gathered}$	$\begin{gathered} 623 \\ (67.6) \end{gathered}$	$\begin{gathered} 130 \\ (14.1) \end{gathered}$

4d.2) Fish and Seafood consumption quantity

Table 16 - Daily consumption of fish and seafood by gender and age groups. The weight is in edible form. (dp - Standard deviation). Data obtained from EpiPorto study ${ }^{\text {(11) }}$

Daily consumption of fish and seafood by gender and age groups

		Female						
	Age	Mean (dp)	P25	P50	P75	Mean (dp)	P25	P50
groups	$70.8(36.6)$	43.2	66.8	90.3	$63.4(31.6)$	38.1	59	83.6
Total	$18-39$	70.8						
Fish	$40-49$	$73.7(33.2)$	49.3	71.4	94.8	$81.5(40.3)$	51.3	76.3
and	$50-64$	$80.6(34.3)$	54.1	79	104.8	$85.0(36.0)$	58.3	82.9
Seafood	≥ 65	$74.4(32.4)$	50.9	71.8	100	$79.6(36.3)$	49.9	79
(g/day)	Total	$\mathbf{7 5 . 6 (3 4 . 3)}$	$\mathbf{4 9 . 5}$	$\mathbf{7 3 . 3}$	$\mathbf{1 0 0 . 4}$	$\mathbf{7 8 . 6 (3 7)}$	$\mathbf{5 0 . 9}$	$\mathbf{7 6}$
	$18-39$	$40.2(28.2)$	16.3	28.6	57.1	$34.3(24.4)$	14.3	28.6
Fresh	$40-49$	$41.6(23.9)$	21	42.9	57.1	$44.4(27.4)$	21	48
Fish	$50-64$	$47.9(27.3)$	28.6	49.5	57.1	$46.6(26.8)$	25	49.5
(g/day)	≥ 65	$47.8(25.6)$	28.6	49.5	57.1	$44.3(26)$	21	42.9
	Total	$\mathbf{4 4 . 8 (2 6 . 6)}$	$\mathbf{2 1}$	$\mathbf{4 6 . 4}$	$\mathbf{5 7 . 1}$	$\mathbf{4 3 . 1}(\mathbf{2 6 . 6})$	$\mathbf{2 1}$	$\mathbf{4 2 . 9}$
	$\mathbf{5 7 . 1}$							

4d.3) Contribution of Fish and Seafood consumption in the total daily intake

Figure 6 - Contribution of fish and seafood in the total daily intake (Energy, Protein, Carbohydrates and Fats). The numbers refer to: 1- Milk and dairy; 2- Meat, meat products and offal; 3- Fish and seafood; 4- Eggs; 5- Oils and fats; 6- Cereals and tubers; 7-Pulses; 8-Sweets and pastries; 9- Fresh fruit; 10- Vegetables; 11- Beverages; 12- Fast-food; 13- Soup; 14- Other products. Data obtained from EpiPorto study ${ }^{(11)}$

Figure 7 - Contribution of fish and seafood in the total daily cholesterol intake. The numbers refer to: 1- Milk and dairy; 2- Meat, meat products and offal; 2.1-Red meat and offal's; 2.2- White meat; 2.3- Smoked sausages; 3- Fish and seafood; 3.1- Fresh fish; 3.2- Cod; 3.3- Canned fish; 3.4Shellfish and crustaceans; 4- Eggs; 5- Oils and fats; 6- Cereals and tubers; 7- pulses; 8-Sweets and pastries; 9- Fresh fruit; 10- Vegetables; 11- Beverages; 12- Fast-food; 13- Soup; 14- Other products. Data obtained from EpiPorto study ${ }^{(11)}$
\qquad

Polyunsaturated fatty acids

Figure 8 - Contribution of fish and seafood in the total daily intake of polyunsaturated fatty acids. The numbers refer to: 1- Milk and dairy; 2- Meat, meat products and offal; 3- Fish and seafood; 4Eggs; 5- Oils and fats; 6- Cereals and tubers; 7- Pulses; 8- Sweets and pastries; 9- Fresh fruit; 10Vegetables; 11- Beverages; 12- Fast-food; 13- Soup; 14- Other products. Data obtained from EpiPorto study ${ }^{\text {(11). }}$

4e) IPMA study

The consumption of fish and seafood have also been studied by the Portuguese Institute for the Sea and Atmosphere (IPMA) ${ }^{(12)}$. The developed survey, applied via internet to 1083 adults in 2011/2012, intended to know the consumption frequencies, the average meal portions and the usual culinary treatments. The survey sample was biased in the age (only 2.2% of individuals older than 65 years old), in gender (64% women) and in the education level (more than 80% with higher education).

4e.1) Consumption preferences

Wild fish vs Farmed fish

The results showed that Portuguese consumers prefer wild to farmed fish, 62.9% vs 29.3%. (Figures 9 and 10).

Fat fish vs Lean fish

They also displayed higher preference for fat fish than for lean fish, 57.3\% vs 31.4%; concerning to intake frequency, soaked cod and hake meals 20.8% and 19.7% consumed more than two meals per week, respectively in comparison to fatty fish species, such as, salmon or horse mackerel 11.6% and 10.4%, respectively. (Figure 9).

Fresh fish vs other ways
Fresh fish is preferred (83.1\%) to frozen (11.2\%), smoked (11.4\%), salted/dried (16.6\%) and canned fish (11.5\%). On the other extreme of the scale, smoked fish is particularly disliked (19.3\%). In other categories, frozen fish (72.2% like or like much) seems to be better accepted than canned (60.9% like or like much) and salty/dried fish (60.6% like or like much). The meals with higher frequency of consumers were soaked cod (with more than once monthly - 83.4\%) and canned tuna (66.6\%). Canned sardine consumption frequency values are below than once monthly (77.3\%). (Figures 9 and 11).

Whole fish vs fish steaks vs fish fillets

Portuguese consumers like whole fish products much more than fish steaks or fish fillets, 49.0% vs 35.5% and 34.1%, respectively. (Figure 9).

4e.2) Consumption Frequency

Results showed that soaked cod, hake and canned tuna are the image of fish products in Portugal, with approximately 20% of the respondents ascribing them frequencies equal to or above two weekly meals. Gilthead sea bream and salmon, also presented relatively high consumption levels (that could indicate the significant penetration of farmed fish products in the Portuguese diet). On the other hand, traditional Portuguese fish such as sardine and horse mackerel, seem to have lost some importance, though keeping a prominent role. Soaked cod (62.6\%), hake (45.1%), canned tuna (45.8%), sea bream (44.1%), salmon (45.7%), sardine (32%) and horse mackerel (32.9\%) are consumed at least once a week. (Figure 9).

General results (\%) for Sections A and B of the survey into the seafood consumption preferences and patterns in the Portuguese population.

	Utterly dislike (\%)	Dislike (\%)	Indifferent (\%)	Like (\%)	Like much (\%)
A - Consumption preferences					
Wild fish	$0.6{ }^{2}$	$4.2{ }^{2}$	$2.9{ }^{2}$	$29.5{ }^{\text {a }}$	$62.9{ }^{\text {b }}$
Farmed fish	$3.2{ }^{2}$	$12.3{ }^{\text {b }}$	$5.4{ }^{2}$	$49.8{ }^{\text {b }}$	$29.3{ }^{2}$
Lean fish	$1.0{ }^{2}$	$9.8{ }^{\text {b }}$	$9.4{ }^{\text {b }}$	$48.4{ }^{\text {b }}$	$31.4{ }^{2}$
Fat fish	$0.8{ }^{2}$	$2.7{ }^{2}$	$3.0{ }^{2}$	$36.2{ }^{2}$	$57.3{ }^{\text {b }}$
Fresh fish	$0.4{ }^{2}$	$0.6{ }^{\text {a }}$	$1.8{ }^{2}$	$14.2{ }^{2}$	$83.1{ }^{\text {b }}$
Frozen fish	$2.2{ }^{2}$	$12.2{ }^{\text {b }}$	$13.4{ }^{\text {bC }}$	61.0^{4}	$11.2^{\text {a }}$
Smoked fish	$19.3{ }^{\text {c }}$	$24.4{ }^{\text {c }}$	$18.8{ }^{\text {c }}$	$26.1{ }^{\text {b }}$	$11.4{ }^{2}$
Salted/dried fish	$11.4{ }^{\text {b }}$	$15.1{ }^{\text {bc }}$	$12.9{ }^{\text {b }}$	44.0*	$16.6{ }^{2}$
Canned fish	$6.1{ }^{\text {2 }}$	$19.2{ }^{\text {c }}$	$13.8{ }^{\text {bC }}$	$49.4{ }^{\text {c }}$	11.5^{2}
Whole fish	$1.3{ }^{2}$	$4.1{ }^{2}$	10.2^{2}	$35.4{ }^{\text {a }}$	$49.0{ }^{\text {b }}$
Fish steaks	$0.6{ }^{2}$	$3.1{ }^{2}$	7.6^{2}	$53.2{ }^{\text {b }}$	$35.5{ }^{\text {a }}$
Fish fillets	$1.1{ }^{2}$	6.0^{2}	$9.9{ }^{2}$	48.9 ${ }^{\text {b }}$	$34.1{ }^{2}$
	Never (\%)	<1 meal/month (\%)	1-4 meal/month (\%)	2-4 meal/week (\%)	5-7 meal/week (\%)
B - Consumption frequency					
Squid	$9.0{ }^{2}$	53.6	$35.3{ }^{\text {c }}$	$1.8{ }^{2}$	$0.4{ }^{2}$
Octopus	$10.0{ }^{2}$	56.0f	$31.8{ }^{\text {bc }}$	$1.8{ }^{2}$	$0.5{ }^{2}$
Cuttlefish	$20.8{ }^{\text {b }}$	54.9f	$22.7{ }^{\text {b }}$	$1.1{ }^{2}$	$0.5{ }^{2}$
Shrimp	$7.9{ }^{2}$	57.7	$30.5{ }^{\text {bc }}$	$3.6{ }^{2}$	$0.3{ }^{2}$
Edible crab	$34.6{ }^{\text {c }}$	59.6	$4.9{ }^{2}$	0.5^{2}	$0.5{ }^{\text {a }}$
Common mussel	$40.0{ }^{\text {cd }}$	$52.1{ }^{\text {c }}$	$6.7{ }^{2}$	$0.9{ }^{2}$	$0.3{ }^{2}$
Grooved carpet shell	$21.7{ }^{\text {b }}$	$63.4{ }^{\text {c }}$	$13.4{ }^{\text {ab }}$	$0.9{ }^{\text {a }}$	$0.6{ }^{2}$
Cod (soaked)	$2.8{ }^{2}$	$13.8{ }^{\text {a }}$	$62.6{ }^{\text {d }}$	$18.8{ }^{\text {c }}$	$2.0{ }^{2}$
Gilthead sea bream	$7.9{ }^{2}$	$37.1{ }^{\text {b }}$	$44.1{ }^{\text {d }}$	$10.2^{\text {b }}$	$0.6{ }^{2}$
Sea bass	13.9*	$41.9^{\text {bc }}$	$36.8{ }^{\text {c }}$	$6.6{ }^{2}$	$0.7{ }^{\text {a }}$
Salmon	12.4*	$30.3{ }^{\text {ab }}$	$45.7{ }^{\text {ca }}$	$10.2{ }^{\text {b }}$	$1.4{ }^{2}$
Panga	$74.5{ }^{\text {f }}$	$16.3{ }^{2}$	$7.3{ }^{2}$	$1.4{ }^{2}$	$0.6{ }^{2}$
Hake	$9.9{ }^{2}$	$25.4{ }^{\text {2b }}$	$45.1{ }^{\text {cd }}$	$18.1{ }^{\text {c }}$	$1.6{ }^{2}$
Pink cusk-eel	$37.0{ }^{\text {c }}$	$35.1{ }^{\text {b }}$	$22.8{ }^{\text {b }}$	$4.9{ }^{2}$	0.2^{2}
Redfish	$44.0{ }^{\text {d }}$	$36.5{ }^{\text {b }}$	$15.7{ }^{\text {ab }}$	3.5^{2}	$0.3{ }^{2}$
Black scabbard fish	$32.9{ }^{\text {cd }}$	$44.0^{\text {bc }}$	$19.6{ }^{\text {b }}$	$3.1{ }^{2}$	$0.5{ }^{2}$
Perch	$54.7{ }^{\text {de }}$	$30.5{ }^{\text {2b }}$	$12.7{ }^{\text {2b }}$	$1.6{ }^{2}$	$0.6{ }^{2}$
Sole	$35.2{ }^{\text {c }}$	$47.4{ }^{\text {b }}$	$14.5{ }^{\text {2b }}$	$2.6{ }^{2}$	$0.4{ }^{2}$
Sardine	16.7*	$42.4{ }^{\text {b }}$	$32.0{ }^{\text {bx }}$	$7.4{ }^{2}$	$1.5{ }^{2}$
Horse mackerel	14.1*	$42.7{ }^{\text {b }}$	$32.9{ }^{\text {bx }}$	$9.0{ }^{\text {ab }}$	$1.4{ }^{2}$
Chub mackerel	$58.5{ }^{\text {e }}$	$29.5^{\text {2b }}$	$9.3{ }^{2}$	$2.4{ }^{2}$	$0.3{ }^{2}$
Canned tuna	$5.5{ }^{\text {a }}$	$27.9{ }^{\text {2b }}$	$45.8{ }^{\text {cd }}$	$17.5{ }^{\text {c }}$	$3.3{ }^{2}$
Canned sardine	$43.9{ }^{\text {d }}$	$33.4{ }^{\text {b }}$	$17.1{ }^{\text {2b }}$	4.5^{2}	$1.1{ }^{2}$

For each preference alternatives (wild vs farmed fish; lean vs fat fish; fresh fish and others; whole fish and others), values within a column with different letters are significantly different ($p<0.05$).

Figure 9 - Fish and seafood consumption preferences and frequency in the Portugal. Data obtained from the IPMA study ${ }^{(12)}$

Figure 10 - Wild fish and seafood preferences by gender and geographical area (coastal distance and region) in Portugal. Bars with different letters are significantly different ($p<0.05$). Data obtained from the IPMA study ${ }^{\text {(12) }}$

Figure 11 - Fresh, frozen, smoked, salted/dried and canned fish and seafood preferences by gender in Portugal. Bars with different letters are significantly diferent ($p<0.05$). Data obtained from the IPMA study ${ }^{(12)}$

5. Conclusions

Considering the available information, it is evident that Portugal has high levels of fish and seafood availability and consumption but that the information is hardly comparable between sources. Different methodologies and timelines of data collection are the most acknowledged reasons. It is however important to highlight that to be effectively useful, efforts should be taken for the identified data sources to be regularly accessible and updated.

Direct assessment methods such as national representative dietary surveys based on individual food consumption questionnaires are commonly regarded as retrieving the best information. Despite ideal in regarding the detail and accuracy of collected data, this approach not only implies specialized and very well trained technicians but it is also time and cost consuming. When it is not possible to obtain such detailed information on national food consumption, the use of food balance sheets (FBS) and household budget surveys (HBS) is an acceptable and useful alternative that allows to indirectly estimating consumption. In the particular case of fish and seafood products, comparison of Portuguese data from the 3 main measurement sources showed very similar amounts either when using HBS or FFQ individual retrieved data (Graph 13).

Graph 13 - Portuguese average food and beverages national supply, household availability and individual consumption derived from Food Balance Sheets (BA, 2000), Household Budget Surveys (IOF, 2000) and Food Frequency Questionnaires (Porto, estudo EpiPorto). ${ }^{(5,11)}$

For this specific project objective, once all the food products entering the food chain convey an environmental impact, independently of being consumed by individuals, it is believed that national supply data should be used instead of food consumption data. The latter would refer only to individuals' ingestion of fish and seafood and would not allow estimating the global amount of fish and seafood circulating in the national market.

As for the environmental impact evaluation the identification of fish and seafood consumption by species would be of great relevance, the detailed data available in HBS and some individual surveys should be used simultaneously.

In fact, the diverse data obtained from the different consumption measurement levels may be used not in substitution but to complement each other.

6. References

(1) Encyclopaedia of Food Science, Food technology and Nutrition. Dietary Surveys. Academic Press; 1993. Pg. 1397.
(2) FAO Food Balance Sheets (Accessible at: http://www.fao.org/)
(3) Dafne-AnemosSoft (Accessible at: http://www.hhf-greece.gr/dafnesoftweb/)
(4) Rodrigues SSP, Trichopoulou A, de Almeida MDV. Regional food availability in representative samples of Portuguese households from 1990 to 2000. In: Culinary Arts and Sciences VI. Global, National and Local Perspectives. Kai Victor Hanson, Svein Larsen \& JSA Edwards (eds). The Worshipful Company of Cooks and Norwegian School of Hotel Management. 2008: 137-145. University of Stavanger.
(5) Rodrigues SSP, Lopes C, Naska A, Trichopoulou A, de Almeida MDV. Comparison of national food supply, household food availability and individual food consumption data in Portugal. J Public Health. 2007; 15 (6): 447-455.
(6) Marques-Vidal P, Ravasco P, Dias CM, Camilo ME. Trends of food intake in Portugal, 1987-1999: results from the National Health Surveys. European Journal of Clinical Nutrition. 2006; 1-9.
(7) Dias CM. 25 anos de Inquérito Nacional de Saúde em Portugal. Revista Portuguesa de Saúde Pública. 2009; Edição especial 25 anos: 51-60. (Acessible at: http://run.unl.pt/bitstream/10362/4409/1/25Anos-DIAS\ p-51.pdf)
(8) INE/INSA. Inquérito Nacional de Saúde 2005/2006. Lisboa, 2009. (Acessible at: http://repositorio.insa.pt/bitstream/10400.18/268/1/4\�\�INS 05 06.pdf)
(9) SPCNA/Nestlé. Estudo Alimentação e Estilos de Vida da População Portuguesa, 2009. (Acessible at: http://www.spcna.pt/)
(10) Poínhos R, Franchini B, Afonso C, Correia F, Teixeira VH, Moreira P, Durão C, Pinho O, Silva D, Lima Reis JP, Veríssimo T, de Almeida MDV. Alimentação e estilos de vida da população portuguesa: metodologia e resultados preliminares. Alimentação Humana. 2009; 15 (3): 43-60.
(11) Lopes C, Oliveira A, Santos AC, Ramos E, Gaio AR, Severo M, Barros H. Consumo alimentar no Porto. Faculdade de Medicina da Universidade do Porto - 2006. (Acessible at: http:// www.consumoalimentarporto.med.up.pt)
(12) Cardoso C, Lourenço H, Costa S, Gonçalves S, Nunes ML. Survey into the seafood consumption preferences and patterns in the Portuguese population. Gender and regional variability. Appetite. 2013; 64: 20-31.

7. Appendix

7a - Appendix Index

I - English-Portuguese translation of the fish and seafood species and dishes44
II - Glossary of fish and seafood groups 48
III - Nutritional facts from fish and seafood 49

Appendix I

Table A - Fish and seafood translation (English - Portuguese)

Fish and seafood translation (English-Portuguese)

Fish and seafood	Peixe e Derivados
Fish - fresh, refrigerated or frozen	Peixe Fresco, Frigorificado ou Congelado
Fish - fresh or refrigerated	Peixe Fresco ou Frigorificado
Fork-beard (Phycis phycis)	Peixe Fresco - Abrótea
Tuna fish	Peixe Fresco - Atum
Blackspot sea bream	Peixe Fresco - Besugo
Bogue	Peixe Fresco - Boga
Snaper	Peixe Fresco - Cachucho
Black snapper	Peixe Fresco - Capatão ou Pargo Negro
Jack-fish/horse mackerel	Peixe Fresco - Carapau
Spanish mackerel	Peixe Fresco - Cavala
Pomfret	Peixe Fresco - Xaputa ou Freira
Wreckfish/grouper	Peixe Fresco - Cherne
Big jack-fish	Peixe Fresco - Chicharro
Meagre/sea bass	Peixe Fresco - Corvina
Whiting/bib/pout	Peixe Fresco - Faneca
Sea bream	Peixe Fresco - Goraz
Alfonsino, Imperador, Red Bream (Beryx	
decadactylus)	Peixe Fresco - Imperador
Sole like fishes	Peixe Fresco - Linguado, Azevia, Palma, Pregado ou Solha
Hake (small)	Peixe Fresco - Marmota
Red snapper	Peixe Fresco - Pargo
Sword fish	Peixe Fresco - Peixe Espada
John Dory/moonfish	Peixe Fresco - Peixe Galo
Red fish	Peixe Fresco - Peixe Vermelho ou Red Fish
Hake	Peixe Fresco - Pescada
Conger eel	Peixe Fresco - Safio ou Congro
Mackerel (Scomber scombrus Linnaeus)	Peixe Fresco - Sarda
Sardines	Peixe Fresco - Sardinha
Fish liver, roes	Miudezas de Peixe (ovas, fígados, etc.)
Other fish - fresh or refrigerated n.d.	Outros Peixes Frescos ou Frigorificados n.d.
(boca negra, peixe alfacim, peixe juliana, peixe	
rei, etc.)	
Fish - frozen	Peixe Congelado
Fork-beard (Phycis phycis) - frozen	Peixe Congelado - Abrótea

Snaper - frozen	Peixe Congelado - Cachucho
Jack-fish/horse mackerel - frozen	Peixe Congelado - Carapau
Hake fillets - frozen	Peixe Congelado - Filetes de Pescada
Other fish fillets - frozen n.d.	Outros Filetes Congelados (de bacalhau, de linguado, de tamboril, etc.)
Sea bream - frozen	Peixe Congelado - Goraz
Maruca (Genypterus Blacodes)	Peixe Congelado - Maruca
Red snapper - frozen	Peixe Congelado - Pargo
Red fish - frozen	Peixe Congelado - Peixe Vermelho ou Red Fish
Hake - frozen	Peixe Congelado - Pescada
Sardines - frozen	Peixe Congelado - Sardinha
Fish liver, roes - frozen	Miudezas de Peixe Congeladas (ovas, fígados, etc.)
Other frozen fishes n.d.	Outros Peixes Congelados n.d.
Crustacean/molluscs - fresh, refrigerated or frozen	Crustáceos e Moluscos Frescos, Frigorificados ou Congelados
Crustacean/molluscs - fresh or refrigerated	Crustáceos e Moluscos Frescos ou Frigorificados
Mussels	Amêijoas - Frescas
Cockles	Berbigão - Fresco
Shrimps and prawns	Camarão e Gambas - Frescos
Snails	Caracóis (terrestres e do mar) - Frescos
Cuttlefish	Chocos - Frescos
Lobster	Lagosta - Fresca
Crayfish	Lagostim - Fresco
Lavagante (Homarus gammarus)	Lavagante - Fresco
Squids	Lulas e Potas - Frescas
Crabs	Navalheiras e Caranguejos - Frescos
Octopus	Polvo - Fresco
Spider crabs	Santola e Sapateira
Other fresh/refrigerated crustacean/molluscs species n.d.	Outros Crustáceos e Moluscos Frescos ou Frigorificados n.d. (canivetes, cavaco, cracas, etc.)
Crustacean/molluscs - frozen	Crustáceos e Moluscos Congelados
Cockles	Berbigão - Congelado
Shrimps and prawns	Miolo de Camarão ou Gambas - Congelado
Cuttlefish	Chocos - Congelados
Squids	Lulas e Potas - Congeladas
Octopus	Polvo - Congelado
Other frozen crustacean/molluscs species n.d.	Outros Crustáceos e Moluscos Congelados n.d.
Fish, crustacean/molluscs dried, salty or smoked	Peixe, Crustáceos e Moluscos Secos, Salgados ou Fumados
Fish - dried, salty or smoked	Peixe Seco, Salgado ou Fumado

Salty and dried cod fish - special	Bacalhau Especial
Salty and dried cod fish - big	Bacalhau Graúdo
Salty and dried cod fish - grown up	Bacalhau Crescido
Salty and dried cod fish - average	Bacalhau Corrente
Salty and dried cod fish in pieces	Bacalhau Sortido
Other parts of salty and dried cod fish (heads/tongues/small pieces)	Partes de Bacalhau (caras de bacalhau, línguas de bacalhau, migas de bacalhau, etc.)
Smoked salmon	Salmão Fumado
Other salty, dried or smoked fishes n.d.	Outros Peixes Secos, Salagados ou Fumados n.d.
Crustaceans/Molluscs - dried, salty or smoked	Crustáceos e Moluscos Secos, Salgados ou Fumados
Crustaceans/Molluscs - dried, salty or smoked	Crustáceos e Moluscos Secos, Salgados ou Fumados
Canned/Convenience crustaceans and molluscs	Conservas de Peixe, Crustáceos e Moluscos, Produtos Preparados ou Semi - Preparados à base de Peixe
Canned fish	Conservas de Peixe
Canned tuna fish	Conserva de Atum
Canned sardines	Conserva de Sardinha
Other canned fishes n.d.	Outras Conservas de Peixe n.d.
Canned crustaceans/molluscs	Conservas de Crustáceos e Moluscos
Canned crustaceans/molluscs	Conservas de Crustáceos e Moluscos
Convenience products based on fish, crustaceans or molluscs	Produtos preparados ou semi - preparados à base de peixe, crustáceos e moluscos
Boiled shrimps and	Camarão e Gambas Cozidos
Other boiled crustaceans and molluscs n.d.	Outros Crustáceos e Moluscos Cozidos n.d.
Immitation seafood	Delicias do Mar (de caranguejo, de lagosta, etc.)
Fish or seafood cakes and croquettes	Pasteis de Bacalhau e Rissóis
Fish or seafood patée	Patê de peixe (atum, sardinha, lagosta,)
Other convenience products based on fish, crustaceans or molluscs n.d.	Outros Produtos Preparados ou Semi - Preparados à base de Peixe n.d.

APPENDIX II

Table B - Glossary of fish and seafood groups according to the definition criteria established by FishBase.org (FishBase. Glossary. System Glossary from FishBase.org. Disponível em: http://fishbase.org)

Glossary of fish and seafood groups

Freshwater

In a broad sense 'freshwater' is used for all continental aquatic systems such as rivers and lakes. In a technical sense it refers to water with less than 0.5 grams per liter of total dissolved mineral salts.

Demersal

Sinking to or lying on the bottom; living on or near the bottom and feeding on benthic organisms. (Benthic definition: Dwelling on, or relating to, the bottom of a body of water).

Pelagic

Living and feeding in the open sea; associated with the surface or middle depths (usually from 0 to 200 m) of a body of water; free swimming in the seas, oceans or open waters; not in association with the bottom. Many pelagic fish feed on plankton.

Marine

Pertaining to the sea, from the open oceans to high water mark and into estuaries; salinity modifier of bay coastlines for coastlines where waters are seawater.

Molluscs

Invertebrate animals belonging to the phylum Mollusca that includes the snails, clams, chitons, tooth shells, and octopi.

Cephalopods

Literally 'head-foot'; animals such as squid and octopus whose tentacles converge at the head; a group of mollusks which have a tubular siphon under the head and a group of muscular suckered arms around the mouth.

Crustaceans

Major group of animals, including crabs, shrimps, prawns, lobsters and crayfish; invertebrate organisms whose members have a hard outer skeleton, and occurring in marine and fresh waters and on land.

APPENDIX III

Table C - Nutritional facts from fish and seafood - Energy and macronutrients
Data retrieved from the Portuguese food composition table (Nutrição IDdAe. Tabela de
composição de Alimentos Portuguesa. 2006)

Nutritional facts from fish and seafood					
Name (per 100g raw edibel portions)	Energy (kcal)	Water (g)	Proteín (g)	Fat (g)	Carbohydrates (g)
	76	80	17,8	0,5	0
Fresh Cod	76	76,2	19	0,4	0
Salty and dried cod fish	80	75,6	19,7	2,9	0
Horse mackerel	105	75,6	19,7	2,9	0
Big Jack-Fish	105	64,3	20,3	13,4	0
Spanish mackerel	202				
Mackerel		80	17,6	1,4	0
Hake (mean value)	83	63,4	18,4	16,4	0
Fat sardine	221	68,9	18,9	9,1	0
Half fat sardine	158				
Canned sardine		68,7	24,1	4,9	0
Fresh Tuna	140	61	24,3	13	0
Tuna (pickled oil)	214	81,4	15,8	0,9	0
Squids	71	78,6	18,9	0,4	0
Cuttlefish	79	83,1	15,6	1,2	0
Octopus	73	79,7	15,7	2,8	0
Black sword fish	88	74,4	20,3	4	0
White sword fish	117	60,5	16,2	21,9	0
Salmon	262				

Table D - Nutritional facts from fish and seafood - Fatty acids, Cholesterol, vitamins and minerals.

Data retrieved from the Portuguese food composition table (Nutrição IDdAe. Tabela de
composição de Alimentos Portuguesa. 2006)
Nutritional facts from fish and seafood

Name (per 100g raw edibel portions)	Fatty Acids				Cholesterol (mg)	Vitamins					Minerals						
	Saturated	Mono	Poli	Trans		A	D	B6	B12	C	Na	K	Ca	P	Mg	Fe	Zn
Fresh Cod	0,1	0,1	0,2		44	7	1	0,21	1	0	65	362	15	200	26	0,3	0,5
Salty and dried cod fish	0,1	0,1	0,1	0	52	4	4,5	0,072	0,95	0	1483	36	33	116	23	0,2	0,8
Horse mackerel	0,7	0,8	0,9	0	36	15	4,1	0,36	5,7	0	80	403	69	263	33	1,2	1,2
Big Jack-Fish	0,7	0,8	0,9	0	36	15	4,1	0,36	5,7		80	403	69	263	33	1,2	1,2
Spanish mackerel	3,6	3,7	4,7	0,3	45	28	2,4	1	14		78	360	39	282	37	1,1	2,2
Mackerel																	
Hake (mean value)	0,2	0,4	0,4	0	19	10	0,5	0,063	0,72	0	100	359	31	193	31	0,3	0,6
Fat sardine	4,7	4	5,6	0,5	20	47	21	0,57	10	0	65	367	72	314	31	1	1,6
Half fat sardine	2,5	2,2	3,3	0,3	28	12	17	0,41	10	0	65	404	70	296	29	1,7	1,7
Canned sardine																	
Fresh Tuna	1,7	1,7	0,8	0	30	11	4,2	0,56	2,4	0	45	355	4	257	37	2,2	1,5
Tuna (pickled oil)	0,9	3,8	7,1	0,2	41	23	0,4	0,23	2,4	0	423	255	9	202	40	0,7	0,9
Squids	0,2	0,1	0,4	0	140	10	3,5	0,05	1,1	0	196	225	18	261	49	0,3	1
Cuttlefish	0,1	0,1	0,1	0	76	9	0	0,06	1,2	0	200	320	8	273	49	0,1	1,7
Octopus	0,3	0,1	0,6	0	64	3	0	0,06	1,3	0	259	236	13	165	43	0,7	1,3
Black sword fish	0,5	1,6	0,2	0	24	23	2,1	0,16	1,7	0	138	332	14	181	29	0,1	0,5
White sword fish	1	1,7	0,8	0	38	17	1,1	0,19	2,2	0	77	252	16	183	26	0,4	0,6
Salmon	4,2	10	5,1	0	40	33	11	0,45	1,9	0	38	301	12	209	23	0,5	0,5

