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ABSTRACT 

 

In high eukaryotes alternative splicing is one of the most important steps of pre-mRNA 

processing as it allows the existence of a large and complex proteomic spectrum. It is also 

a valuable strategy for a rapid and efficient adaptation of the immune system to the 

environment stimuli. Several molecules of the immune system undergo alternative splicing 

of their pre-mRNA, giving rise to different protein isoforms. The T cell surface glycoprotein 

CD6 is a modulator of cellular responses and has been implicated in several autoimmune 

diseases such as multiple sclerosis, rheumatoid arthritis and psoriasis. During antigen 

presentation, CD6 is targeted to the immunological synapse in a ligand binding-dependent 

manner, where CD6 domain 3 directly contacts CD166, expressed on the antigen-

presenting cell. T cell activation results in the induction of CD6d3, an alternatively spliced 

isoform that lacks the ligand-binding domain and thus no longer localizes at the 

immunological synapse. In the present work the molecular mechanisms regulating the 

expression of CD6d3 upon activation of human primary T cells were identified and 

characterized. By chromatin immunoprecipitation we observed an increase in RNA 

polymerase II occupancy along the CD6 gene and augmented CD6 transcription. We also 

showed that T cell activation results in transcription-related chromatin modifications, 

revealed by higher CD6 acetylation levels. The usage of a histone deacetylase inhibitor to 

increase acetylation and modulate the chromatin structure caused an increase of exon 5 

skipping. By directed mutagenesis we identified a splicing regulatory element in CD6 

intron 4 and we further showed that the splicing factors SRSF1, SRSF3 and hnRNP A1 

bind to this regulatory element and modulate exon 5 inclusion. Concomitant with T cell 

activation-induced exon 5 skipping, we observed a down-regulation of SRSF1 expression 

and that in activated T cells the SRSF1 recruitment to CD6 transcript is impaired. The 

results presented in this thesis show that that upon T cell activation there is an increase in 

CD6 transcription and chromatin acetylation and SRSF1 becomes limiting. This causes 

insufficient SRSF1 recruitment to intron 4 resulting in an increase of CD6 exon 5 skipping 

and CD6d3 production. Regulation of CD6 alternative splicing thus holds several players 

and represents a clear example of integration between transcription and pre-mRNA 

processing molecular mechanisms. 
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SUMÁRIO 

 

Nos eucariotas superiores o splicing alternativo é um dos passos do processamento do 

pre-mRNA (pre-RNA mensageiro) que resulta na existência de um grande e complexo 

espectro proteómico. É também uma valiosa estratégia para o sistema imunitário 

permitindo uma rápida e eficiente adaptação aos estímulos do meio ambiente. O splicing 

alternativo ocorre em vários transcritos primários percursores de moléculas expressas em 

células do sistema imunitário, dando origem a diferentes isoformas proteicas. O CD6 é 

uma glicoproteína expressa na superfície de linfócitos T, modeladora de respostas 

celulares,  implicada em várias doenças autoimunes tais como, esclerose múltipla, artrite 

reumatoide e psoríase. Durante a apresentação de um antigénio à célula T, o CD6 migra 

para a sinapse imunológica conectando através do seu terceiro domínio extracelular com 

o seu ligando CD166, expresso na célula apresentadora de antigénio. A activação da 

célula T induz a expressão de uma nova isoforma da proteína CD6, originada por splicing 

alternativo, que não possui o domínio de ligação ao CD166, comprometendo a exclusiva 

localização do CD6 na  sinapse imunológica. No presente trabalho investigamos os 

mecanismos moleculares que regulam a expressão do CD6d3 após a activação das 

células T. Em linfócitos T activados, observamos um aumento nos níveis de mRNA do 

CD6 e também, por imunoprecipitação da cromatina um aumento da localização da RNA 

polymerase II no gene CD6. Mostramos também que a activação das células T leva a 

uma alteração da estrutura da cromatina devido a um aumento dos níveis acetilação do 

gene CD6. A modelação da estrutura da cromatina usando um inibidor de deacetilases de 

histonas causou um aumento da exclusão do exão 5. Por mutagenese direcionada 

identificamos uma sequência reguladora de splicing localizada numa região conservada 

no intrão 4 do CD6. Mostramos também que os factores de splicing SRSF1, SRSF3 e 

hnRNPA1 regulam o splicing alternativo do exão 5. Simultaneamente com a activação da 

célula T observamos a diminuição da expressão do SRSF1 e uma diminuição no 

recrutamento deste factor para a sequência reguladora existente no intrão 4. Este 

recrutamento mostrou-se igualmente diminuído após a indução de um aumento de 

acetilação da cromatina por tratamento com um inibidor de deacetilases. Os resultados 

presentes nesta tese mostram que após a activação das células T, o SRSF1 torna-se 

limitante, e a seu recrutamento torna-se insuficiente face ao aumento dos níveis de 

acetilação da cromatina e do consequente aumento do número de transcritos do gene 

CD6. A Regulação do splicing alternativo do CD6 integra vários níveis de regulação, 
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representando assim um exemplo claro de integração entre os mecanismos moleculares 

de transcrição e processamento do pre-mRNA.
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INTRODUCTION 
 

1. The Immune System  

1.1. Immune System and Immune Response 

 

From a single cell organism to the more complex of the eukaryotes, all organisms 

have developed anti-pathogen strategies (1). In mammals the immune system is 

responsible for the ability of the host organism to fight foreign invaders. It includes an 

array of cells and molecules with specialized roles in defending the host against 

pathogenic microorganisms and cancer cells. The first lines of defense are the chemical 

and physical barriers of the organism. These are skin, mucociliary clearance mechanisms, 

low stomach pH, lysozyme in tears, saliva and other secretions (2). If the pathogen 

escapes this hostile environment it can be detected by the innate immune system, which 

is activated to eliminate the foreign body. This type of immunity is not specific to a 

particular pathogen and depends on germ line-encoded receptors that recognize highly 

conserved pathogen associated molecular patterns (PAMPs) that are characteristic of 

microbes such as bacteria, fungi and parasites. These receptors have therefore been 

termed pattern recognition receptors (PRRs) (3). PRRs can also recognize endogenous 

molecules released by damaged cells, called damage-associated molecular patterns 

(DAMPs). DAMPs can be a result of metabolic consequences of infection and 

inflammation (4). 

If the innate immune response is not sufficient to eliminate the invader, the adaptive 

immune system is then activated. Adaptive immunity (also known as acquired immune 

response) is mediated by a specialized group of cells, the T and B lymphocytes, also 

known as T and B cells that respond to the challenge with a high degree of specificity to a 

diverse range of antigens (Ags). The adaptive immune system has the ability of 

generating an extremely large lymphocyte receptor repertoire capable of recognizing all 

potential invading pathogens (5). The T cell receptor (TCR) is generally composed by a 

heterodimer of α and β chains, however a small subset T cells can have TCR composed 

by γ and δ chains (6). The B cell receptor (BCR) is composed by two heavy (IgH) and two 

light (Igλ or Igκ) chains and recognizes soluble or membrane bound antigens (6). 

Basically, T cells can have cytolytic and helper function and B cells produce antibodies 

(7). 
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Finally, the immune system normally responds only to foreign antigens, indicating that 

it is capable of self/nonself recognition. The ability of the immune system to distinguish 

self from nonself and respond only to nonself molecules is essential, avoiding an 

inappropriate response to self-molecules – autoimmunity – that can be fatal (8).  

 

 

 

1.2.     T-cell Activation and Immunological Synapse 

 

When the TCR encounters and interacts with MHC-Ag complex of mature APCs, 

there is an arrangement of membrane proteins in the area of contact between the two 

cells, which is a critical event, that leads to T-cell activation (9). TCR engagement initiates 

innumerous biochemical events such as kinase activation, protein and lipid 

phosphorylations, phospholipid turn-over, increases of intracellular calcium, among 

others, ultimately leading to the activation of transcription factors of specific genes within 

the nucleus (10). This results in a number of different cellular responses such as 

proliferation, differentiation and secretion of cytokines and growth factors.  

The interface between T-cell and APC is called the Immunological Synapse (IS) due 

to its similarities to neuronal synapses (11).  

During the formation of the IS, the T-cell suffers cytoskeleton rearrangements and 

polarization, and different cell surface receptors and signaling components migrate to the 

contact area (12). The mature synapse is an organized structure that is composed of two 

concentric regions having different macromolecular composition. They are called Supra-

Molecular Activation Clusters (SMACs), the central area - cSMAC - which is enriched in 

TCRs, and the peripheral - pSMAC – which contains adhesion molecules, such as, 

lymphocyte function associated-1 (LFA-1) and cytoskeletal proteins like talin. APC surface 

components are also integral to these clusters, such that MHC-peptide complexes are 

found in the cSMAC, whereas ICAM-1, the LFA-1 ligand, is concentrated in the pSMAC 

(13, 14). Another more peripheral region named distal SMAC - dSMAC – is present, to 

where the large glycocalyx molecules such as CD43 and CD45 were shown to be 

localized upon TCR stimulation (14, 15). 
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1.3.    T cell Surface Molecules 

 

Currently there are approximately one hundred different T cell surface molecules, 

such as immunoreceptors, cytokine and chemokine receptors, as well as adhesion 

molecules (16). In figure I.1 are represented some of the protein molecules involved in T 

cell recognition.  

T cells can be divided into two populations – Helper T cells, which express CD4, and 

cytotoxic T cells, which are CD8 positive. The major histocompatibility complex (MHC), a 

highly polymorphic membrane-bound protein complex that has the capacity to bind almost 

any peptide, presents the antigen to the T cell receptor. TCRs from helper T cells 

recognize antigenic peptides, of 12-20 amino acids, loaded on MHC class II molecules 

expressed at the surface of APCs, such as phagocytes, dendritic and B cells (17). 

 

 

 

 

 

Figure I.1 – Immunological Synapse. Cell surface molecules involved in T cell antigen 

recognition. A schematic view of the architecture and dimensions of important cell surface 

proteins involved in T cell antigen recognition. Image adapted from Oliveira M, 2007 (18). 
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The CD4 positive lymphocyte population, upon antigen recognition, has the function 

of secreting cytokines and growth factors that lead to the proliferation and differentiation of 

other leukocytes in order to fight the invader (19). TCRs expressed in cytotoxic T cells 

recognize 8-9 amino acid-long antigenic peptides embedded in MHC class I molecules, 

present in the target cell (infected cell or invader cell) surface (17). This population kills 

the target cell through the production and secretion of granzyme and perforin (20). 

It is important to note that T cell surface is not a restricted concept. T cells comprise 

diverse subsets that, at different activation stages, might display an altered profile due to 

lineage commitment or activation-induced expression of additional molecules or isoforms. 

More than a list of proteins that are expressed, it is critical to understand their complex 

interactions in the unique membrane environment; how they can be functionally regulated 

and how their interactions contribute to T cell Ag recognition.  

 

 

 

1.4.    T cell Signaling 

 

The TCR engagement, during antigen recognition, leads firstly to the activation of the 

tyrosine kinase – Lck that will phosphorylate the ITAM motifs present in CD3ζ subunits. 

This promotes binding of another tyrosine kinase, ZAP-70 to the phosphorylated ITAMs 

(21). After ZAP-70 recruitment to the phosphorylated tyrosine residues of CD3ζ subunits, 

ZAP-70 phosphorylates LAT and SLP-76. The activation of LAT and SLP-76 leads to the 

phosphorylation of phospholipase Cγ1 (PLCγ1) and Vav1 (22, 23). PLCγ1 together with 

another intervenient – PI3 kinase (PI3K), catalyze the recruitment of other messengers 

such as inositol 1,4,5-triphosphate (IP3) and Diacylglycerol (DAG) that lead to cytosolic 

calcium flux, the initiation of MAPK signaling cascades and the activation of transcription 

factors that will determine the fate of T cells (24, 25). 

 

 

 

1.5.    CD6 – The Accessory Receptor 

 

The human CD6 cell surface receptor is a type I glycoprotein of 105-130 kDa 

expressed on thymocytes, mature T and B1a cells (26), and in brain regions (27). CD6 

belongs to the scavenger receptor cysteine-rich (SRCR) superfamily of protein receptors 
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based on the presence in its extracellular region of three cysteine-rich domains that are 

characteristic of that family (28). CD5 (29), SSC5D (30) and CD163 (31) are some 

examples of SRCR members. During thymocyte development, CD6-dependent signals 

contribute to thymocyte survival and positive selection (32). Nevertheless, the functional 

role of CD6 has not been definitively established. Whereas it is undeniable that increased 

expression of CD6 results in repression of T cell receptor (TCR)-mediated signaling (33, 

34), direct binding of CD6 with specific antibodies or recombinant ligand may enhance 

cellular responses, presumably through the induced aggregation of protein kinases 

associated with the cytoplasmic tail of CD6 (33, 35, 36). Notwithstanding the uncertain 

nature of CD6, possibly even having a dual role, the fact is that CD6 impacts on cell 

growth and differentiation, and misregulation of the function of CD6 may result in 

physiological imbalances and autoimmunity. CD6 has been associated with several 

autoimmune diseases such as multiple sclerosis (37, 38), rheumatoid arthritis (39), 

psoriasis (40) and Sjögren's syndrome (41), and has been considered as a possible 

therapeutic target for some of these pathologies (42).  

Additionally, it has been shown that CD6 may sense the presence of pathogen-

associated molecular patterns, such as LPS and LTA, present on gram positive and gram-

negative bacteria (43). 

Human CD6 is encoded by 13 exons. The amino terminal sequence, extracellular 

region and transmembrane domains are encoded by the first seven exons (1-7), while the 

cytoplasmic domain is encoded by the remainder six exons (8-13). Each of the three 

extracellular SRCR domains is encoded by a separate exon. Fluorescence in situ 

hybridization studies and screening of chromosome-specific YAC (yeast artificial 

chromosome) library revealed that CD6 gene is located on chromosome 11 at 11q13 in 

close proximity to the gene encoding the related molecule CD5 and within 600 Kb of 

CD20 (44). 

CD6 closely resembles CD5, both in structure and expression pattern, and their 

genes are hypothesized to come from the duplication of a common ancestor. While some 

information is already available on the transcriptional regulation of CD5 in human (45) and 

mouse (46), very little is known about the CD6 gene in any species. It has been described 

that CD6 is transcriptionally regulated by RUNX and Ets transcription factors in T cells 

(47). 

The known ligand for CD6 is the IgSF receptor CD166/ALCAM (Activated Leukocyte 

Cell Adhesion Molecule). CD166 is expressed on conventional antigen presenting cells 

(APC) and also in thymic epithelia, with the CD6-CD166 interaction being determinant on 

thymocyte selection (32). CD166 is also expressed in spleen, lymph nodes, tonsil, 
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digestive tract epithelia, breast, liver, pancreas, kidney, skin and brain (48-50). 

Interestingly, the interaction between CD6 and CD166 involves the binding of the 

membrane distal IgSF domain of CD166 to the membrane-proximal SRCR domain 3 of 

CD6 (49). This binding mode is unusual in that it occurs laterally, rather than in the “head 

to head” manner commonly seen in most cell surface contacts. Importantly, this 

interaction is fairly strong and can help strengthening and stabilizing T cell-APC contacts 

(51). 

 CD166 is additionally expressed in the epithelial layer of the blood-brain barrier and 

enables the transmigration of CD4+ T cells into the brain (52). Besides CD166, other 

molecules from human epithelial cells, with 45 and 90 kDa, have been described to 

interact with CD6 through CD6-d1 or CD6-d2 (53-55). 

On thymocytes and resting mature T cells, CD6 associates with CD5 and with 

TCR/CD3 complex at the central part of the mature IS (36, 56, 57) and are implicated in 

CD2 function (58-60) affecting the initial steps of T cell activation. CD6 can interfere in 

early T cell-APC contacts affecting the maturation of the IS and also T cell proliferative 

responses (57, 61). 

The signaling pathway used by CD6 to influence T and B cell activation and 

maturation is mostly unknown. CD6 has a long cytoplasmatic region devoid of intrinsic 

enzymatic activity, but containing several consensus sequences related to signal 

transduction (62). The usage of CD6 mAb on both normal and leukemic human T cells 

leads to the activation of MAPK cascades (ERK1/2, p38 and JNK) (63). The cytoplasmic 

tail of CD6 has been found to directly interact with syntenin-1, an adaptor protein binding 

to cytoskeletal proteins and signal transduction effectors (64). Moreover, the costimulatory 

effect of CD6 on T cells upon ALCAM ligation is mediated through phosphorylation 

dependent binding of the CD6 cytoplasmatic tail to the adaptor protein SLP-76 (33).  

The CD6 cell surface levels are tightly regulated during T and B cell development and 

activation. CD6 expression increases during the transition from immature to mature 

thymocytes. The level of CD6 expression in thymocytes has been related to the relative 

avidity of their respective TCR for MHC-antigen complexes and to higher resistance to 

apoptosis (32). 
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1.6. CD6Δd3 – A New CD6 Isoform Arised by Alternative Splicing 

 

Castro and collaborators obtained from rat and human thymocytes and peripheral T 

cells, cDNAs of CD6 omitting exon 5, whose corresponding translated polypeptides, lack 

the SRCR domain 3 (65). This CD6 isoform, CD6∆d3, was present in all T lineage cells 

studied and is up-regulated upon T cell activation, paralleling a decline in the expression 

of full-length CD6. In this study it was shown that this CD6 isoform lacking the 

extracellular domain 3, could no longer bind its ligand CD166, because the missing 

domain 3 is exactly the domain involved in this ligation. 

 It was also observed that while CD6 full-length migrates to the contact area between 

the two cells during IS formation, CD6∆d3 does not specifically go to the IS but remains in 

all the cytoplasmatic membrane extension. The unaccomplished binding of CD6∆d3 to 

CD166 highlights the importance of the third domain in conduce CD6 to the IS, and the 

exclusion of domain 3 induced by T cell activation reveals a unusual way of positional 

control of cell surface receptors dependent on alternative pre-mRNA splicing. CD6∆d3 is 

expressed in 40 % of T lymphocytes, being the dominant isoform in a quarter of this sub-

population in rat (65). However, upon CD3 + CD28 stimulation, nearly 90 % of T cells co-

express CD6∆d3 together with full-length CD6, implying that a large proportion of CD6 

molecules are not capable to remain positioned at the interface with the APC during 

physiological T cell activation. Double positive thymocytes show a decrease in the 

proportion of CD6∆d3, whereas in single positive CD4 or CD8 thymocytes CD6∆d3 is 

expressed in 50 % of the cells.  

Analysis of CD6 isoforms at the protein level is made possible in human T cells due to 

the availability of mAbs against the different SRCR domains. Concordantly with the 

analysis in the rat system, activation of human T cells induces a large proportion of full-

length CD6 protein to be replaced by the CD6∆d3 isoform. As the total amount of CD6 

remains roughly constant, this suggests that a significant displacement of CD6 away from 

the immunological synapse occurs during the course of activation. 

The down-modulation of domain 3 of CD6 thus reveals not only a very interesting 

mode of positional control of cell surface receptors in physiological processes such as cell 

activation and thymocyte selection, but can also have an impact on the development of 

pathology. A recent study showed that the multiple sclerosis associated SNP 

rs17824933GG in intron 1 of CD6 was associated with an increase of CD6∆d3 and 

decrease of full-length CD6 expression in T cells, which resulted in a diminished long-term 

proliferation of CD4+ T cells, suggesting the involvement of CD6∆d3 in the disease (66).  
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Other CD6 isoforms have also been reported that result from alternative splicing of 

exons coding for the cytoplasmatic domain (44, 62), but no specific physiological function 

has been attributed to any of these isoforms. 

 

 

 

 

 

Figure I.2 – The interaction between CD6 and CD166. The 3rd extracellular SRCR 

domain (membrane proximal) of CD6 protein binds to the 1st IgG-like domain (membrane 

distal) of its ligand, CD166. Image taken from Oliveira M., 2007 (18). 

 

 

 

2. Alternative Splicing 

2.1. The Eukaryotic Constitutive Splicing 

 

During mRNA maturation an important step of eukaryotic gene expression known as 

pre-mRNA splicing occurs. Pre-mRNA splicing consists in the removal of the non-coding 

regions, introns, from pre-mRNA sequence followed by the joining of the coding regions, 

exons. This process is carried out by the splicing machinery, the spliceosome – a 

macromolecular complex composed of five small nuclear ribonucleoprotein particles 

(snRNPs) assembled from proteins and uridine-rich snRNAs  (U snRNAs: U1, U2, U4, U5 

and U6), and many other proteins (67, 68). The assembly of the spliceosome on the 

nascent transcript requires recognition of highly degenerated short sequences present in 

the pre-mRNA, cis-acting elements located within the intron (Figure I.3): at the most 5’-
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end is the 5’ splice site (5’ss), which includes the conserved GU dinucleotide; and at the 

3’-end, the 3’ splice site (3’ss) containing the branch-point (BP) adenosine, followed by the 

polypyrimidine tract (PPT) and the conserved AG dinucleotide (69).  

 

 

 

 

Figure I.3 – Consensus splicing signals. The nearly invariant GU and AG dinucleotides 

at the ends of the intron, the polypyrimidine tract (Y) before the 3’ AG and the branchpoint 

adenosine residue (A) are represented. Below the represented two exon pre-mRNA are 

the sequence motifs that surround these conserved consensus nucleotides. For each 

consensus motif, the size of a nucleotide at a given position is proportional to the 

frequency of that nucleotide at that position in an alignment of conserved sequences from 

1,683 human introns. Nucleotides that are part of the classic consensus motifs are shown 

in blue, except for the branch-point A, which is shown in yellow (Adapted from Cartegni et 

al., 2002).  

 

 

 

Within the assembled spliceosome, intron excision occurs in two chemical steps, that 

are two trans esterification reactions:  (1) a nucleophilic attack by the 2’OH group of the 

BP adenosine on the phosphodiester bond at 5’ splice site (donor site), releases the 

upstream exon and forms an intermediate lariat structure; and (2) the 3’OH group of the 

upstream exon attacks the phosphodiester bond at 3’ splice site (acceptor site) leading to 

the ligation of the two exons and the excision of the intron lariat which is subsequently 

degraded (70, 71). 

In vitro studies in mammalian and S. cerevisiae extracts revealed that the 

spliceosome components assemble on the pre-mRNA in a series of complexes (E, A, B 

and C) (72, 73). The spliceosome assembly begins with the ATP-independent formation of 

E (early) complex. During this step U1 snRNP recognizes and interacts by RNA base 
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pairing with the 5’ splice site (74, 75) while the protein factors SF1/BBP and U2AF bind to 

the BP and polypyrimidine tract/3’ splice site, respectively (76). U2AF (U2 Auxiliatory 

Factor) is a dimer composed by two subunits: one of 35 kDa, which specifically binds to 

the 3’ splice site, and another with 65 kDa which binds to the polypyrimidine tract, 

promoting the stable association of U2 snRNP during A complex assembly. All 

subsequent steps are ATP-dependent. The pre-spliceosome, or A complex, forms upon 

stable ATP-dependent interaction of U2 snRNP with the pre-mRNA BP region that leads 

to BP adenosine protrusion, facilitating subsequent nucleophilic attack on the 5’ splice site 

(77, 78). U2 snRNP-pre-mRNA association leads to the displacement of SF1/mBBP from 

the branch site (79). The U2AF65 RS domain (RS - arginine and serine rich domain) 

promotes base pairing between U2 snRNA and the BP. The positively charged RS 

domain of U2AF65 contacts with the BP sequence neutralizing the negatively charged 

phosphate sequence and stabilizing the base pairing between U2 snRNA and BP (80). 

Binding U4/U6.U5 tri-snRNP particle to the 5’ splice site follows and produces the B 

complex. Although B complex contains all the snRNP components for splicing, it lacks an 

active site. Structural rearrangements are required to activate the spliceosome. The 

conformational changes destabilize U1 and U4 snRNP interactions to produce B* 

complex, which is poised to catalyze the first chemical step of splicing (81). In the B* 

complex U6 and U2 interact by base pairing and U6 also interacts with the 5’ splice site, 

contributing to the fidelity of 5’ splice site recognition and reinforcing the contact with the 

BP. The conformational rearrangements resulting from a reaction cascade involving the 

NTPase activity of three U5 snRNP components: Prp28, Brr2 and Snu114, are essential 

for the generation of activated B* complex and, finally, for the first chemical step of 

splicing, resulting in the release of a free 5’ exon and a lariat-3’ exon intermediates (82, 

83). 

A further set of rearrangements generates the C complex, in which the second step of 

splicing (cleavage at the 3’ splice site and ligation of exons) occurs (84). The products of 

the first step of splicing must be realigned to displace the lariat and position the 5’ exon for 

a nucleophilic attack on the phosphodiester bond at the 3’ splice site (85). Within C 

complex, the 5’ and 3’ splice sites are held in close proximity by bridging interactions 

involving U2 and U6 snRNAs and also a stem loop of U5 snRNA, which interacts with 

both 3’ and 5’ exons (86). The cleavage occurs at the 3' splice junction and the 5' 

phosphate of the downstream exon is joined to the 3' OH of the upstream exon. 

After the completion of the second step, additional structural reorganizations are 

required to release the spliced exons and disassemble the splicing machinery so that it 
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can engage the next substrate pre-mRNA.  In figure I.4 is depicted the typical steps for 

introns removal. 

 

 

 

 

Figure I.4 – Spliceosome assembly and catalytic events during eukaryotic 

constitutive pre-mRNA splicing. The trans-esterification pathway of pre-mRNA splicing 

consists, in a first step, in the 5’ splice site attack by the 2’-hydroxyl of the branch site 

adenosine, releasing the upstream exon and forming a branched intron “lariat” still 

attached to the downstream exon. In the second step, the 3’ splice site is attacked by the 

3’-hydroxyl of the free upstream exon. The final products are the spliced mRNA and the 

excised intron in a “lariat” form. Adapted from Kornblihtt et al., 2013 (87). 
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2.2. Alternative Splicing – “One Gene, Many Proteins”    

 

In contrast to the central dogma of molecular biology, which stated that “one gene 

gives rise to one protein”, it was suggested in 1977 that variations in splicing, such as the 

joining of different 5’ and 3’ splice sites in a pre-mRNA sequence, leads to the production 

of different mRNAs (messenger RNAs) (88, 89). Thus, alternative splicing events allow an 

individual gene to express distinct protein isoforms with different and even antagonist 

functions, revealing what is likely to be the primary source of human proteomic diversity. 

Nearly 95% of human genes undergo alternative splicing (AS) (90, 91) but this process 

not only affects protein diversity but also controls gene expression by removing or 

inserting regulatory elements controlling translation, mRNA stability and degradation, or 

localization (92).  

One of the best examples of the complexity of alternative splicing comes from the 

Drosophila Down syndrome cell adhesion molecule (Dscam) gene, which potentially 

generates 38,016 isoforms by the alternative splicing of 95 variable exons (93). Dscam is 

conserved in all insects and has important functions in both Nervous and Immune 

systems (94-96). Dscam is a cell adhesion molecule that belongs to the immunoglobulin 

(Ig) family of receptors presenting 18,000 alternative isoforms in the immune-competent 

cells of Drosophila. Watson and colleagues have detected secreted protein isoforms of 

Dscam in the hemolymph and that the efficiency of phagocytic uptake of bacteria was 

impaired by hemocyte-specific loss of Dscam, possibly due to reduced bacterial binding 

(96). 

A large fraction of alternative splicing undergoes tissue-specific regulation in which 

splicing events are regulated according to cell type, developmental stage, gender, or in 

response to external stimuli (97-102). 

 

 

 

2.3. Different Patterns of Alternative Splicing 

 
The term alternative splicing is used to describe any situation in which a primary 

transcript can be spliced in more than one pattern to generate multiple, distinct mRNAs. 

Most common AS events include exon inclusion/skipping (cassette exons), mutually 

exclusive exons, alternative selection of competing 5’ or 3’ splice sites and intron 

retention. However, there are also the alternative promoter/first exon and alternative 
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terminal exon due to multiple poly(A) sites (103).   Figure I.5 depicts the different patterns 

of alternative splicing. 

 

 

 

 

 

Figure I.5 – Patterns of Alternative splicing.  Constitutive sequences are 

represented as blue boxes; alternative sequences are represented as pink boxes. A - 

cassette exons, B – mutually exclusive exons, C - competing 5’ splice sites, D – 

competing 3’ splice sites, E – intron retention, F – multiple promoters, G – multiple 

poly(A) sites. 

 

 

 

3. Alternative Splicing Regulation 

 

Both constitutive and alternative splicing requires the assembly of the basal splicing 

machinery on consensus regulatory sequences present at the boundaries between introns 
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and exons (the 5’ and 3’ splice sites). However, the efficiency with which the spliceosome 

acts on an exon is determined by a balance of several features, such as the strength of a 

splice site, exon size, the presence of auxiliary cis elements, the formation of RNA 

secondary structures that can expose or hide these elements, and the concentration or 

post-translation modifications of specific trans-acting factors (104, 105). 

In humans, as in all vertebrates, a typical gene contains relatively short exons (50-

250 base pairs in length) between much larger introns (typically, hundreds to thousands of 

base pairs) that on average account for > 90% of the primary transcript (106).  This 

transcript geometry, is consistent with the idea that, in mammals, splice sites are 

predominantly recognized in pairs across the exon, involving interaction between splicing 

factors and the 5’ splice site (5’ss) and the upstream 3’ splice site (3’ss), in the so-called 

“exon definition model” (107, 108). In contrast, in lower eukaryotes a gene usually 

contains larger exons and much smaller introns and the interactions therefore occurs first 

across the intron between factors recognizing the 5’ss and the downstream 3’ss – in an 

intron definition strategy (109). 

The sequences constituting the splice sites provide insufficient information to 

distinguish true splice sites from the greater number of cryptic splice sites existent within 

the pre-mRNA. There is additional information used for exon recognition in a large number 

of positively or negatively acting elements that lie both within the exons and in the 

adjacent introns, which have an important role regulating alternative splicing (110). 

Barash and collaborators have thus proposed a “splicing code” that could usefully 

predict how a transcript can be spliced in different tissues. (91). The authors mapped 

genome-wide splicing factor binding, combined with genome-wide RNA expression. They 

used data profiling 3,665 cassette-type alternative exons in different tissues, such as 

central nervous system, muscle, digestive system and embryos. They also compiled 

approximately 1,000 of RNA features, including putative binding sites for splicing factors, 

validated positive and negative acting elements in both exons and introns, conserved 

short sequences (5-7 nucleotides) that are present in introns flanking alternative exons, 

exon and intron length, RNA secondary structures and also considered if the inclusion or 

exclusion of an exon could introduce premature stop codons, leading to nonsense-

mediated mRNA decay (NMD). Nevertheless, this study has excluded other types of 

alternative splicing regulation such as epigenetic marks, chromatin structure and 

transcription dynamics. The real picture is more complex because as splicing is mostly co-

transcriptional and pre-mRNA processing is coupled with transcription, factors that 

regulate RNA polymerase II transcription may also modulate splicing (111-113). 
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3.1. Auxiliary Cis Elements 

 

Generally, the auxiliary cis elements responsible for the regulation of alternative 

splice sites choice by the spliceosome have in common typical features, such as: a short 

and variable sequence, individually weak and may exist in several copies. Although they 

are normally single stranded, secondary structure can occur and affect the function of the 

sequence elements (110, 114). These auxiliary regulatory sequences are frequently 

conserved across species, however occasionally they can be somewhat degenerated. 

They may be located in introns, laying upstream, downstream, or flanking the alternative 

exon or they can be located in the alternative exon (Figure I.6). Although intronic auxiliary 

cis elements are often near the alternative exon, they may also be located within 100 -

1000 nucleotides from the regulated exon. Moreover, auxiliary cis elements function by 

enhancing or inhibiting the recognition of the splice sites by the spliceosome. Thus, 

depending on their location and their effect on splice sites choice, they are identified as 

ESE (Exonic Splicing Enhancers), ESS (Exonic Splicing Silencers), ISE (Intronic Splicing 

Enhancers) or ISS (Intronic Splicing Silencers) (104). These additional regulatory 

elements function by recruiting trans-acting regulatory factors. 

However, several lines of evidence suggest that the influence of cis-regulatory 

elements exerted on splice site choices is context-dependent, and consequently the term 

“ESE” (or any other) is correct only in so far as the context is considered. In fact, these 

sequences are present and repeated in all the genome, suggesting a high degree of 

redundancy and that only a few of them are in fact involved in alternative splicing 

regulation (87). Many of these sequences, enhancers and silencers, can act in both ways 

depending on the sequence and the position of the target site (115-117) for example, Ule 

and collaborators showed that the outcome of alternative splicing is determined by the 

position of Nova binding sites in pre-mRNA sequence. In this study, an RNA map was 

derived, combining bioinformatics, genetics and biochemistry approaches, showing that 

two main Nova splicing enhancers were intronic, located downstream of the alternative 

exon regulated by this splicing factor and the silencer sequences that are also binding 

sites for Nova were located immediately upstream of the alternative exon, or near the 

upstream constitutive exon (115). 

 



Chapter I - Introduction 

 
 
 

  18  

 

Figure I.6 – Alternative splicing regulatory cis-elements. Image adapted from 

Matlin AJ. et al., 2005   (118). 

 

 

 

3.2.    Trans-acting Splicing Factors 

 

3.2.1 SR Proteins 

 

Typically, the splicing enhancers (ESE and ISE) are bound by members of the SR 

proteins family (119). These proteins have an arginine-serine (RS)-rich domain that can 

interact with other proteins for example; they may recruit a number of different splicing 

factors to the pre-mRNA during spliceosome assembly (120), and other domain that 

interact with the RNA (121). RS domain is also found in many other proteins, which are 

collectively referred to as RS-related factors, for example, U2AF35 and U2AF65 (122). 

The great majority of SR proteins regulate splicing by binding ESE through their N-

terminal RRM domains (RNA Recognition Motifs). 

SR proteins can play an important role in splice site recognition for instance by 

recruiting U1 snRNP to the 5’splice site and U2AF complex and U2snRNP to the 3’ splice 

site (Figure I.7a) or can antagonize the effect of an inhibitory protein bound to a silencer 

element, an RS-domain independent function (Figure I.7b) (69, 123-125).  

In addition, several SR proteins can regulate mRNA nuclear export (126), nonsense-

mediated mRNA decay (127) and translation (128) genome stability (129, 130) and cell-

cycle progression (131). 
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Figure I.7 – Models for SR proteins regulation of splice sites recognition. Image 

adapted from Cartegni et al., 2002. 

 

 

 

SRSF1, also known as SF2/ASF, is a well-characterized member of the SR family of 

proteins. It contains an arginine-serine (RS)-rich sequence at the C-terminal domain, 

important for nuclear-cytoplasmic shuttling and two RRMs (RNA Recognition Motifs) at the 

N-terminal domain (132-134). SRSF1 is known to regulate constitutive and alternative 

splicing (135-139), however it can also regulate nuclear export, nonsense-mediated 

mRNA decay (NMD), translation, genome stability and miRNA processing (126-129, 140, 

141). 

CLIP-seq analysis revealed that SRSF1 binds preferentially to exons (142, 143) in 

consensus sequences rich in adenine and guanine, AG-rich elements (144, 145). In order 

to regulate splicing, SRSF1 binds ESE elements present on target pre-mRNAs and favors 

exon definition and the usage of proximal 5’ss or 3’ ss (139, 142). Cho and collaborators 

showed that the RRMs of SRSF1 interacts with the U1-70K subunit to recruit U1 snRNP 

to the 5’ss, forming the early (E) spliceosomal complex. In this work it has also been 

shown that SRSF1 phosphorylation state affects its function. The RS domain of 

hypophosphorylated SRSF1 interacts with its own RRM1/2, conferring a close 

conformation to SRSF1. Upon hyperphosphorylation of SRSF1, the intramolecular 

connection is lost and the RRMs of SRSF1 become available to bind to the RRM of U1-

70K, by RRM-RRM interaction (146). 
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Several studies have revealed an important function for SRSF1 in alternative splicing 

of physiological relevant pre-mRNAs. Spinal Muscular Atrophy (SMA) results from lack of 

expression of the SMN1 gene and from the transition of a translationally silent C to T in 

exon 7 of the SMN2 gene (147). Cartegni and collaborators have shown that this single 

nucleotide change occurs in within an ESE, located in exon 7, which in SMN1 sequence is 

a putative binding site for SRSF1 (148). Additionally in this study, the authors generated a 

minigene with a compensatory mutation in exon 7, creating a SRSF1 binding site and 

restoring exon 7 inclusion (148). Martins de Araújo and colleagues showed that the C to T 

transition present in exon 7 of SMN2, drastically decreases U2AF in vitro binding to the 3’ 

ss in intron 6. This suggests that this difference in U2AF recruitment impairs splice site 

choice and therefore may be responsible for the exon 7 skipping. In this study it was also 

shown that SRSF1 promotes U2AF recruitment (149). 

Krainer and collaborators have shown that SRSF1 levels influences 5’ ss selection: 

high concentrations of SRSF1 favors the usage of a proximal 5’ ss in in vitro splicing 

assays with pre-mRNAs templates that contain multiple cis-competing 5’ splice sites 

(137). It was also described that hnRNP A1 can competes with SRSF1 in a concentration-

dependent manner and antagonizes exon inclusion (138, 150, 151). Caceres and 

collaborators have overexpressed SRSF1 and hnRNP A1 in HeLa cells, and showed that 

high levels of SRSF1 promote the usage of proximal 5’ ss and inclusion of a neuron 

specific exon whereas high levels of hnRNP A1 promote the usage of distal 5’ ss (150). 

Pollard and collaborators have shown that the expression of hnRNP A1 and SRSF1 is 

spatially and temporally regulated in the human myometrium during fetal maturations 

(152). In this work it was reported that SRSF1 expression levels are increased in the lower 

uterine region, associated with a decreased expression of hnRNP A1 in the same uterine 

region. Contrarily, in the upper uterine region, it was observed the opposite pattern, 

hnRNP A1 was predominantly expressed in comparison to SRSF1. The authors have also 

shown that SRSF1 expression levels in lower uterine region are highest in pregnant 

women, and decrease during labor. In the case of hnRNP A1, the expression levels in the 

upper uterine region are increased in pregnant women and remain high during labor. In 

this work it was suggested that the variations of expression of these two splicing factors, 

could be regulating the expression of several myometrium specific protein isoforms, as for 

example G proteins isoforms, during gestation and parturition (152). 

Eperon and collaborators have shown that SRSF1 and hnRNP A1 modulate in vitro 

the binding of U1 snRNP to the 5’ ss. SRSF1 was shown to promote the binding of U1 

snRNP to the 5’ ss whereas hnRNP A1 has an opposite effect inhibits the recognition of 

5’ss by the U1 snRNP (153). 
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The tyrosine kinase receptor for macrophage-stimulating protein – Ron, involved in 

cell dissociation, mobility and invasion of extracellular matrices also undergoes alternative 

splicing regulation (154). Cells expressing the alternative isoform Ron, lacking exon 11 

present higher mobility (155). Ghigma and collaborators have identified two regulatory 

elements, an ESE and an ESS, in exon 12 of Ron. By UV-crosslinking and 

immunoprecipitation assays SRSF1 was identified binding to the ESE. Overexpression 

and knockdown of SRSF1 shown in this case that SRSF1 plays a different role in AS 

regulation, in contrast to the events mentioned above, silencing exon 11 and leading to 

the expression of Ron (156). 

 

 

 

3.2.2. hnRNP Proteins  

 

The splicing silencers (ESS and ISS) are frequently bound by splicing repressors of 

the hnRNP (heterogeneous nuclear ribonucleoprotein) family, a diverse group of RNA 

binding proteins containing one or more RNA recognition motifs (RRMs) that bind pre-

mRNA sequence, and protein-protein interaction domains such as glycine-rich motifs, 

RGG (Arginine-Glycine-Glycine) (157, 158). 

As SR proteins, hnRNPs bind preferentially to specific sequence motifs on the pre-

mRNA, however they can also bind many other sequences with less complementarity 

(159). 

The strategies used by hnRNP proteins to control splice site selection may be 

summarized as following (160):  

 

a) The binding of hnRNP proteins close to splicing signals can occlude the binding of 

U1 snRNP or U2AF. Likewise, the binding of hnRNP proteins to exonic 

sequences can antagonize the interactions of SR proteins with ESEs (Figure I.8 

A); 

b) The propagation of hnRNP binding from a site of high-affinity located in an exon 

may occlude the binding of SR proteins. A similar situation has been proposed to 

occur when PTB (also known as hnRNP I) binds to an intron sequence (161) 

(Figure I.8 B); 
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c) Inhibition of exon definition when bound to an exon (Figure I.7 C, left) or inhibition 

of intron definition when bound to an intron (Figure I.8 C, right); 

d) Interactions between bound hnRNP proteins that may loop out portions of a pre-

mRNA can promote exon skipping (Figure I.8 D, left) or stimulate intron definition 

(Figure I.8 D, right); 

 

 

 

Figure I.8 – Strategies used by hnRNP proteins to control splice site selection. 

Adapted from Martinez-Contreras et al., 2007. 

 

 

 

A well-studied member of the hnRNP family is hnRNP I, commonly known as PTB 

(Polypyrimidine tract-binding protein) (162, 163). PTB is structurally composed by four 

RRMs (RNA recognition motifs) and a N-terminal NLS (Nuclear Localization Signal) 

necessary for nuclear-cytoplasmic shuttling (164). Functionally PTB was associated with 

CU-rich elements, repressing alternative spliced exons (165-167), and also modulating 3’ 

end processing (168-170) mRNA stability, translation and localization (171-173). The 

repressive effect of PTB on alternative exons is achieved by multiple ways. It may 

antagonize exon definition, via direct competition with U2AF65 for the binding to the 
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polypyrimidine tract, it may bind and “coat” the exon, or it may loop out portions of RNA of 

containing the alternative exon by binding to elements flanking the exon (161, 167, 174, 

175). Nevertheless, CLIP-seq analysis showed that PTB can also lead to exon inclusion in 

some alternative splicing events (176).  

In non-neuronal cells, high levels of PTB expression leads to the exclusion of the c-

src N1 exon, whereas in neurons PTB is expressed in lower levels and thus the N1 exon 

is included in the c-src mRNA (175, 177). The binding of PTB to the N1 exon has been 

characterized using extracts of neuronal and non-neuronal cells (177, 178) and revealed 

that PTB binding does not disturb the binding of U1 snRNP to the N1 5’ ss, but blocks the 

interaction between U1 snRNP and U2AF, preventing the binding of U2AF to the 3’ ss and 

the formation of the E complex (179). Recently, Sharma and collaborators have shown 

that repression of N1 exon by PTB was due to its binding to CU-rich elements flanking the 

N1 exon and also to the interaction between PTB and U1 snRNP stem-loop 4 (SL4), 

which prevents the interaction of U1 with the spliceosome complex at the downstream 3’ 

ss (180). Another event regulated by PTB is the FAS exon 6 alternative splicing (181).  

Inclusion of FAS exon 6 is activated by TIA-1 RNA binding protein, by promoting the 

binding of U1 snRNP to the 5’ ss on intron 6 and helping in exon definition. This effect is 

antagonized by the binding of PTB to an ESS located in exon 6, which although does not 

inhibit the binding of U1 snRNP to the 5’ ss, blocks its interaction with the 3’ss complex 

leading to exon skipping (181). 

The alternative splicing of α-actinin mutually exclusive exons SM (Smooth Muscle) 

and NM (Non Muscle) is also PTB-regulated (182). The SM exon is excluded in the 

majority of cells whereas NM exon is included (183); in smooth muscle cells the SM exon 

is included and NM exon is excluded. Southby and collaborators have shown that in in 

vitro splicing assays using HeLa nuclear extracts, SM exon is skipped in primary 

transcripts, unless the repressive elements present between the exon and its upstream 

distant branch point are removed or unless a depletion of PTB occurs (184). Matlin and 

collaborators have shown that PTB molecules spread throughout the α-actinin intron 

localized upstream of the SM exon, which represses its inclusion (182). 

SM and NM alternative exons are also regulated by other proteins, in particular by 

CELF proteins (CUG-BP and ETR3-like factors). CUG-BP directly competes with PTB for 

the binding to the 3’ end of the PPT upstream of the of SM exon and favors the binding of 

U2AF65, leading to splicing of the intron and SM inclusion (185). 

Although SR proteins mainly bind to enhancer sequences and hnRNP proteins to 

silencer sequences, many of them can act in both ways, depending on the sequence and 

position of the target site in the primary transcript (115). 
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Table 1 – Alternative splicing events regulated by SR and hnRNP splicing factors. 

Splicing 
Factor 

Domains 
Target genes 

(regulated exon) 
AS event References 

SRSF1 
2 RRM 
1 RS 

FN (exon EDI) inclusion 

(148, 150, 
156, 186-188) 

SMN2 (exon 7) inclusion 

Ron (exon 11) skipping 

c-src (exon N1) inclusion 

MCL1 (exon 2) inclusion 

CASP-9 (exon 4) inclusion 

SRSF2 
(SC35) 

1 RRM 
1 RS 

CD44 (exon v6) 

Inclusion (189-191) Tau (exon 10) 

β-tropomyosin (exon 6B) 

SRSF3 
(SRp20) 

1 RRM 
1 RS 

CD44 (exon v9) inclusion 

(192-195) 

SRSF3 (exon 4) inclusion 

CASP-2 (exon 9) skipping 

INSR (exon 11) inclusion 

SRSF5 
(SRp40) 

2 RRM 
1 RS 

GR (exon 9α) skipping 

(196-198) CFTR (exon 9) skipping 

PKC (exon βII) inclusion 

SRSF6 
(SRp55) 

2 RRM 
1 RS 

CD45 (exon 4) 

inclusion (140, 199) 

FGFR1 (exon α) 

SRSF7 
(9G8) 

1 RRM 
1 RS 

Tau (exon 10) skipping 

(192, 200) 

CD44 (exon v9) inclusion 
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Splicing 
Factor 

Domains 
   Target genes 
(regulated exon) 

AS event References 

hnRNP A1 
2 RRM 
1 RGG 

c-src (exon N1)  
 
 
 

skipping 
 
 
 
 
 

(150, 
201-205) 

MAG (exon 12) 

Rac1 (exon 3b) 

INSR (exon 11) 

SMN2 (exon 7) 

  hnRNP I 
   (PTB) 

4 RRM 

c-src (exon N1) 

skipping 
(177, 

181, 182, 
206, 207) 

FAS (exon 6) 

α-actin (exon SM) 

FGFR2 (exon IIIb) 

α-tropomyosin (exon 3) 

hnRNP H 3 RRM 

CHRNA1 (exon P3A) skipping 

(208-211) 

FGFR2 (exon IIIc) skipping 

β-tropomyosin (exon 7) skipping 

c-src (exon N1) inclusion 

hnRNP F 3 RRM 

INSR (exon 11) inclusion 

(204, 211, 
212) 

FGFR2 (exon IIIc) skipping 

c-src (exon N1) inclusion 

hnRNP  L   4 RRM 

CD45 (exon 5) 

skipping (213, 214) 

CD45 (exon 4) 
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3.3.    Transcription Machinery and RNA Polymerase II Elongation Rate 

 
Subsequently to the observation of co-transcriptional splicing firstly described in 1988 

by Beyer and Osheim, several studies have shown indeed a co-transcriptional recruitment 

of splicing factors to the primary transcript. However, in the majority of the cases the 

complete excision of the intron did not occur before transcript release (215-218).  

The first evidence that alternative splicing was coupled to transcription was described 

in 1997 by Cramer and collaborators (219) and followed by Pagani and collaborators 

(220). In these studies it was shown that the outcome of alternative splicing was affected 

by the promoter structure used. Also transcription factors (221, 222), co-activators (223, 

224), transcription enhancers (225) and chromatin remodelers (226) were also shown to 

affect the outcome of alternative splicing.  

The finding that RNA Polymerase (Pol) II could recruit in its C-terminal domain (CTD) 

some RNA processing factors such as splicing factors (113, 227-229) and that other 

factors involved in transcription could affect splicing (226, 230-233) supported that not 

only splicing could occur co-transcriptionally but also that it could be coupled to 

transcription.   

Co-transcriptional means that splicing occurs, or is committed to occur, before 

transcript release by RNA Pol II. Coupling implies that splicing and transcription 

machineries interact with each other. 

 

 

 

3.3.1.    RNA polymerase II: The Importance of CTD for the Recruitment of 

Splicing Factors  

 

The eukaryotic RNA Pol II is the nuclear enzyme responsible for the transcription of 

mRNA, some small nuclear RNAs and microRNAs. It is composed by multisubunits and 

an extension that evolved from the largest subunit, Rpb1 that has been shown by X-ray 

crystallography to be the unique tail-like C-terminal repeat domain (CTD) (234). The CTD 

consists of highly conserved heptapeptide repeats (52 in mammals) of the consensus 

sequence YSPTSPS (Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7) (235).  

During transcription CTD residues undergo differential and reversal post translation 

modifications, such as phosphorylation, glycosylation and proline isomerization (236-238). 

CDK7, the cyclin-dependent kinase subunit of TFIIH (transcription factor II human), 
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phosphorylates Ser5 and Ser7 at the promoter region of the gene, an important step for 

transcription initiation (239) and for the 5’ end capping of the primary transcript (240). The 

entry of RNA Pol II into the elongation phase of transcription occurs with a change in the 

CTD phosphorylation pattern, characterized by an enrichment of Ser 2 and Thr4 

phosphorylation, achieved mainly by CDK9, the cyclin-dependent kinase subunit of P-

TEFb (positive transcription elongation factor b) (241, 242). The Ser 5 phosphorylation 

decreases while Ser2 increases towards the 3’end of the gene, favoring the recruitment of 

factors important for transcription elongation, such as Spt6, and also for pre-mRNA 

processing (243).  

The simultaneous phosphorylation of Ser2/Ser5 leads to the recruitment of the 

methyltransferase Set2 that methylates lysine 36 of histone H3, thus increasing 

H3K36me3 levels at the body of the gene (244). As long as the polymerase approaches 

the poly(A) site, Tyr 1 phosphorylation levels decrease enabling the recruitment of 

important factors for pre-mRNA 3’ end cleavage, polyadenylation and transcription 

termination, such as Rtt103 and Pcf11 (245-247). 

The capacity of the residues of this heptapeptide to be modified post translationally 

during the different stages of the transcription process is an important feature of CTD, that 

enables its interaction with different other molecules, making the CTD an essential 

docking platform for a great diversity of factors necessary not only for transcription but 

also for mRNA maturation, such as 5’ end capping, splicing and polyadenylation (237, 

240, 248). In respect to splicing, David and collaborators have shown that the Ser2 and 

Ser5 double phosphorylation leads to the recruitment of the splicing factor U2AF65 that 

binds directly to the phosphorylated CTD (249). U1 snRNP and the SR proteins, SRSF1 

and 9G8, are also co-transcriptionally recruited to the nascent pre-mRNA, in association 

with RNA Pol II (228). 

Recently, Huang and collaborators have shown that the mediator subunit MED23, 

known to be responsible for the recruitment of the elongation factor P-TEFb through the 

binding of CDK9 (250), has also the capacity to interact, in vivo and in vitro, to RNA 

processing factors, such as hnRNP L, U1/U2 snRNPs and U2AF65 (230). Moreover, in 

this study it was shown, by minigene reporters and exon array analysis, that MED23 

regulates a subset of alternative splicing, alternative cleavage and polyadenylation events 

(230). 

These studies show that the recruitment of splicing factors by RNA Pol II CTD, to the 

local where the nascent pre-mRNA is being transcribed, is an important strategy to 

facilitate spliceosome assembly and increase splicing efficiency (228, 249). 
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3.3.2.    RNA Polymerase II Elongation Rate 

 

The extensive work of Kornblihtt’s lab added a significant insight of how RNA Pol II 

elongation rate, and its kinetics could regulate alternative splicing in the fibronectin gene 

(221, 225, 251, 252). The authors showed that usage of SV40 large T antigen, a 

replication activator that induces DNA replication, led to the inclusion of EDI (Fibronectin 

Extra Domain I) alternative exon of fibronectin gene. On the other hand, the increase of 

RNA Pol II elongation rate, induced by the usage of the VP16, an activator of transcription 

initiation and elongation, had the opposite effect leading to the skipping of exon EDI (221, 

225). In this case the exclusion of the alternative exon EDI from mRNA sequence occurs 

due to a suboptimal 3’ ss of the upstream intron compared to the stronger 3’ ss of the 

downstream intron. 

 

 

 
Figure I.9 – RNA polymerase II kinetic model for alternative splicing. Adapted from 

Luco et al., 2011. 
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If a decreased RNA Polymerase II elongation rate occurs in this region, the synthesis of 

the downstream intron will be delayed favoring the recognition of the upstream weak 3’ ss 

and exon EDI inclusion. However, in an opposite scenario, when an increased RNA Pol II 

elongation rate is induced, only the strong splice site located downstream is recognized 

leading to exon skipping (252-254). The model proposed for the regulation of alternative 

splicing by RNA Pol II kinetics is depicted in figure I.9.  

To study the role of RNA Pol II transcription in alternative splicing De la Mata and 

collaborators used a mutant RNA Pol II with a point mutation at the large subunit Rbp1 

that confers low processivity to the polymerase, that they named “slow” RNA Pol II. 

Human hepatoma cells (Hep3B) were transfected with a plasmid coding for this mutant 

slow polymerase, which is resistant to α-amanitin, together with a wild type (WT) RNA Pol 

II also α-amanitin resistant, and a fibronectin minigene containing the alternative exon 

EDI. The RT-PCR analysis of the EDI splicing pattern showed that the transcripts that 

have been synthetized by the slow polymerase presented higher inclusion of the EDI exon 

in comparison to the ones that have been transcribed by the WT polymerase (251), 

confirming the previous observed effects of RNA polymerase elongation rate on EDI 

alternative splicing (221, 225).  

Generally, when a slow elongation rate is induced the inclusion of an alternative exon 

is generally promoted (222, 252, 255). Slow RNA Pol II elongation rates can be induced 

by sequences that cause RNA Pol II pausing (256), or drugs that affect elongation (252, 

255), like for example Camptothecin, that  creates topoisomerase I-DNA adducts which 

physically interfere with  RNA Pol II elongation (257), and D-ribofuranosylbenzimidazole 

(DRB) that inhibits kinases that phosphorylate CTD domain of RNA Pol II and thus impair 

RNA Pol II elongation (255). On the other hand, a rapid RNA Pol II elongation leads to 

more exon skipping. A fast RNA Pol II elongation rate can be induced by drugs that 

promote a more opened chromatin structure, such as the histone deacetylase (HDAC) 

inhibitor Trichostatin A (TSA) (258, 259) or the usage of transcriptional activators such as, 

Sp1, CTF/NF1, HIV-1 Tat, GAL4-VP16 and SV40 enhancer that favor elongation (222). 

In another study, Munoz and collaborators have shown that CTD Ser5 and Ser2 

hyperphosphorylation induced by UV irradiation, led to a decrease of RNA Pol II 

elongation rate and consequently to an increase of the inclusion of fibronectin alternative 

exon EDI, confirming a role for RNA Pol II elongation rate in alternative splicing, via CTD 

phosphorylation. In this study it was also shown that UV irradiation induced an increased 

expression of proapoptotic isoforms of the genes Bcl-x and caspase 9 (231). 

Montes and collaborators have also supported the model of alternative splicing 

control by RNA Pol II elongation rate, by showing that the elongation factor TCERG1 was 
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necessary to induce the expression of the pro-apoptotic Bcl-x alternative isoform. Bcl-x 

gene has competing 5’ splice sites at the 3’ end of exon 2. The usage of the proximal 5’ ss 

lead to the expression of a shortest and pro-apoptotic isoform (Bcl-xS) whereas the 

recognition of the distal 5’ss give rise to the longest and anti-apoptotic isoform (Bcl-xL). 

The existence of a negative regulatory element – SB1- upstream of Bcl-x exon 2 proximal 

5’ ss, inhibits the recognition of this splice site and favors the usage of the distal 5’ ss. 

Upon TCERG1 overexpression, the transcriptional elongation of the Bcl-x gene is 

stimulated, providing less time for the binding of a negative trans-acting factor to the SB1 

element, thus favoring the usage of the proximal 5’ ss, and producing the shortest and 

pro-apoptotic isoform (260). 

The recently identified complex DBIRD binds directly to RNA Pol II and is enriched in 

genomic regions characterized by high frequency of adenines and thymines (A+T) that 

are typically difficult to transcribe (233). These (A+T)-rich regions were shown to be 

located upstream and downstream of the splice sites of included exons. Moreover, 

DBIRD-depleted HEK293 cells presented increased RNA Pol II occupancy levels at the 

genomic region of regulated exons of RAD50 and SLC36A4 genes. Montes and 

collaborators proposed that the DBIRD complex could act as an elongation factor that 

enhances transcription elongation in (A+T)-rich regions, affecting the inclusion of 

alternative exons present in these regions (233). 

 

 

 

3.4.     Chromatin Structure and Histone Modifications 

 

Fox-Walsh & Hertel described in 2009 that transcripts that contain splicing cis-

elements with errors in their sequence could often recruit with accuracy the splicing 

machinery to a given exon (261). Notwithstanding differences in RNA Pol II elongation 

rate have been shown to modulate alternative splicing events, how RNA Pol II processivity 

is modulated and how its elongation rate is controlled is still not completely understood. 

These two open questions suggested that other mechanisms are involved in AS 

regulation. 

The answer was given during the last decade, when several researchers in the pre-

mRNA splicing field showed that chromatin structure and epigenetic histone modifications 

played a role in those processes and could regulate AS. 



Chapter I - Introduction 

 
 
 

  31  

The finding that fibronectin exon E33, inclusion could be modulated by TSA treatment 

and by a more compacted chromatin structure of a replicated reporter plasmid was the 

first evidence that chromatin structure was important for AS regulation (221, 222). 

Interestingly, the average size of a mammalian exon coincides with the length of the 

DNA wrapped around the octamer of histone proteins that constitutes a nucleosome that 

is 147 bp, suggesting a role for nucleosome positioning in exon definition (262, 263). 

Schwartz and collaborators used the micrococcal nuclease (MNase) digestion assay 

combined with computational prediction methods to map the nucleosome positioning in 

different species and shown that nucleosomes are particularly enriched at intron-exon 

junctions in comparison to intronic regions, thus “marking” the exons (262). These results 

indicate that the basis for this differential nucleosome occupancy along the genes is the 

DNA sequence itself and that splicing signals are also important at the DNA level, 

organizing the chromatin landscapes of exons and introns. It has been also shown that 

excluded alternative spliced exons are less enriched in nucleosomes than the included 

ones (262). 

 Tilgner and collaborators found that the nucleosome density is higher in exons 

defined by weak splice sites in comparison to exons defined by strong splice sites. 

Moreover in this study it has been shown that pseudoexons that despite being defined by 

strong splice sites are skipped from mRNAs, show nucleosome depletion (263). These 

evidences highlight the role of nucleosome positioning in exon definition and also in the 

regulation of splicing. 

Zhou and collaborators have shown that the splicing regulators Hu proteins interact 

with RNA Pol II and histone deacetylases. Hu proteins were shown to inhibit HDAC2, 

leading to increased chromatin acetylation in the genomic region of FAS alternative exon 

6 and Nf1 alternative exon 23a. The change in chromatin structure created by the local 

hyperacetylation induced by HDAC2 inhibition, enhanced RNA Pol II elongation rate in 

ES-derived neurons and a consequently increased skipping of Fas and Nf1 alternative 

exons (264). 

Another study showed that the chromatin remodeler SWI/SNF binds to CD44 gene 

and its Brm subunit associates with the splicing factor Sam68, that forms a roadblock to 

RNA Pol II, leading to increased inclusion of alternative exons (226).  
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3.4.1.    Histone Modifications and Adaptor Proteins 

 

In the cell nucleus, on average 147 bp of DNA is packed and wrapped around 

histones composing one nucleosome. This state of DNA compacted with proteins form the 

chromatin. Each nucleosome, the fundamental unit of chromatin, is composed by an 

octamer of four core histones (H2A, H2B, H3 and H4). Generally, the N-terminal ends of 

histones can be post-translationally modified on several sites. It has been identified 

several different types of histone modifications such as methylations, acetylations, 

phosphorylations, ubiquitylations and sumoylations among others, that can play a role in 

transcription, DNA repair, replication and chromatin condensation.  There are 60 residues 

at histone tails that can be post-translation modified, but in great majority the ones that are 

known to have an impact on splicing regulation are the methylation and acetylation of 

lysine residues (K). Methylations at lysines can be complex because they may have 

increasing levels of modification forms: mono-, di- or trimethyl- if there are one, two or 

three methylated lysine residues respectively (265, 266). 

Recently, histone post-translation modifications emerged as major regulators of 

alternative splicing (267-269). The human fibroblast growth factor receptor 2 (FGFR2) 

gene is an example of how chromatin conformation and histone modifications can change 

the splicing outcome. FGFR2 has two mutually exclusive alternative exons FGFR2 IIIb 

and IIIc, giving rise to two different and tissue-specific isoforms: in epithelial cells exon IIIb 

is predominantly included whereas in mesenchymal cells IIIb is repressed and IIIc is 

exclusively used (270). Luco and collaborators showed that in mesenchymal cells, the 

FGFR2 region where these two alternative exons are located is enriched in H3K36me3 

and H3K4me1 histone marks leading to exon IIIc inclusion, and in epithelial cells this 

region is enriched in H3K27me3 and H3K4me3 leading to exon IIIb inclusion. Moreover, 

the modulation of the expression levels of SETD2 and ASH2 histone methyltransferases, 

lead to the changes in the alternative splicing pattern of IIIb and IIIc exons (207). Schor 

and collaborators have shown that upon human neuronal cells depolarization, an increase 

of H3K9 acetylation and H3K36 methylation in the genomic region around the alternatively 

spliced exon 18 of NCAM gene was observed, leading to exon skipping. However, no 

changes in acetylation levels of NCAM promoter were detected (268). 

Another study has shown that high levels of the epigenetic mark H3K9me3 were a 

characteristic of alternative exons of several genes including CD44. On CD44 gene this 

enrichment of H3K9me3 levels at the variant exons region creates a binding site to HP1γ, 
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and the accumulation of HP1γ in this chromatin region facilitates the inclusion of CD44 

alternative exons conceivably through a decreasing of RNA Pol II elongation rate (271). 

The example described above, pointing to a modulation of chromatin structure by 

histone modifications, suggest that this effect on chromatin structure can regulate 

alternative splicing through a consequent modulation of the RNA Pol II elongation rate. 

 Another possible mechanism involving chromatin histone marks in alternative 

splicing regulation is through an adapter system that can recruit splicing factors during 

transcription. Such mechanisms are very well illustrated by the PTB-dependent alternative 

splicing events (207). It had already been described that the repression of exon IIIb of 

FGFR2 in human mesenchymal cells was dependent on the polypyrimidine tract-binding 

protein (PTB) splicing factor, by binding to a pyrimidine-rich ISS present in the intron 

upstream of exon IIIb (272). Luco and collaborators showed that in these cells PTB is 

recruited to the primary transcript through the binding to an adaptor protein called MRG15. 

MRG15 is a component of the retinoblastoma binding protein 2 (RBP2) H3-K4 

demethylase complex and binds directly to the histone mark H3K36me3 that is present in 

high levels at the FGFR2 gene in human mesenchymal cells. Thus, by modulating the 

levels of H3K36me3 and MRG15 it was possible to modulate the binding of PTB to the 

nascent RNA and control alternative splicing of exon IIIb (207). Another study showed in 

vivo and in vitro that H3K4me3 is specifically recognized by the chromodomain of the 

chromatin adaptor protein 1 (CHD1) and that CHD1 can interact with components of the 

U2 snRNP complex (273). Loomis and collaborators performed a protein microsequencing 

analysis and showed that the chromatin binding protein HP1α/β bind to the methylated 

lysine 9 of histone H3 (H3K9me3) and that HP1 associates with SRSF1 in mitotic HeLa 

cells. Moreover SRSF1 knockdown led to retention of HP1 on mitotic chromatin (274). 

 

 

 

3.5.    Non-coding RNAs (ncRNAs) 

 

Small interfering RNAs (siRNAs) can be used in order to change the splicing pattern 

of an alternative exon (269). Allo and collaborators have shown that it is possible to 

interfere with an AS event using a siRNA sequence targeting the intron downstream of the 

alternative exon. The binding of the siRNA to the intron involves the recruitment of the 

RNA-associated protein Argonaute 1 (AGO1) inducing high intragenic levels of silencing 

histone marks such as H3K9me2 and H3K27me3 that could afterwards lead to the binding 
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of heterochromatin binding protein 1 α (HP1α) to the condensed chromatin structure. This 

creates a roadblock to RNA Pol II, slowing down transcription elongation rate and 

increasing the inclusion of the given alternative exon (269). 

MicroRNAs can regulate alternative splicing simply controlling the expression levels 

of important splicing factors as in the case of miR-124 that regulates the expression of 

PTB (275).  

Another different way of regulation by ncRNAs is the case of the long non-coding 

RNA MALAT-1. Tripathi and collaborators have shown that MALAT-1 can bind to SR 

proteins, such as SRSF1, SRSF2, SRSF3 and SRSF5, sequestering these proteins at 

nuclear speckles. Downregulation of MALAT-1 expression in HeLa cells led to an 

increased availability of the SR proteins at the nucleoplasm and increased inclusion of 

alternative exons in different genes, such as CDK7 (cyclin-dependent kinase 7), SAT1 

(spermidine/spermine N1-acetyltransferase 1), MGEA6 (meningioma expressed antigen-

6) (276).  

An additional study has shown that smaller variants of a brain specific small nucleolar 

RNA (snoRNA) HB-52II bind to a silence element in exon Vb of the serotonin receptor 5-

HT2C pre-mRNA. The binding of Hb-52II snoRNAs will presumably inhibit the binding of 

repressor splicing factors to the silencer element and lead to the inclusion of exon Vb 

(277, 278). 

 

 

 

3.6.  Signal Transduction and Alternative Splicing Regulation 

 

Changes in the extracellular environment can lead to the alteration of splice site 

selection as an adaption of cells to specific stimuli such as growth factors, cytokines, 

hormones and depolarization of cell membrane potential. Consequently alternative 

splicing regulators and the kinases that regulate them can be affected by signaling 

molecules. Post-translation modifications such as phosphorylation and changes in 

subcellular localization of splicing factors can be a consequence of signal transduction 

triggered by an extracellular stimuli (279). 

In humans, there are some examples of signal-induced alternative splicing events that 

occur for example upon neuronal cell depolarization, T cell activation and insulin signaling 

(268, 280-283). 
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The example of the T cell phosphatase CD45 alternative splicing, shows that in resting 

T cells the glycogen synthase kinase 3 (GSK3) directly phosphorylates the splicing factor 

PSF (PTB-associated splicing factor) promoting the interaction of PSF with TRAP 150 (an 

arginine/serine-rich subunit of the transcription regulatory complex TRAP/mediator) and 

preventing the binding of PSF to CD45 pre-mRNA. Upon T cell stimulation and activation 

of the RAS pathway, GSK3 activity is reduced, and consequently PSF phosphorylation 

levels decrease, leading to the release of PSF from TRAP150 allowing PSF to bind to 

CD45 pre-mRNA and repress CD45 exon 4 inclusion (284, 285). 

The CD44 cell receptor, which is critical for organ development, neuronal axon 

guidance, immune functions, haematopoiesis and tumor development is another example 

of signal-induced AS (286). The Ras-Raf-MEK-ERK signaling cascade was described as 

being involved in the inclusion of variable exon 5 (v5) of CD44 upon T cell activation 

(287). The RNA binding protein Sam68 has been described being the final target of ERK. 

Phosphorylated Sam68 binds to a cis-acting element in CD44 pre-mRNA and leads to the 

inclusion of v5 exon (288). 

In skeletal muscle cells, the activation of the insulin receptor by insulin recruits 

p85/p110 phosphatidylinositol 3-kinase (PI3K) and leads to the synthesis of 

phosphatidylinositol 3,4,5-triphosphate. This substance activates several serine-threonine 

kinases resulting in the phosphorylation of SRp40 leading to the inclusion of an alternative 

exon βII of protein kinase C (PKC) pre-mRNA (197). 

The splicing factor SRSF1 may be modulated by the AKT signaling pathway 

promoting changes in alternative splicing in response to epidermal growth factor (EGF) 

signaling. AKT activation leads to auto-phosphorylation and activation of SR protein 

kinase 1 (SRPK1) which phosphorylates SRSF1 and other splicing factors members of 

the SR family (289).  

Stress caused by pH changes, osmotic or temperature shock can affect AS regulation 

(279), as illustrated by muscle-specific alternative splicing of F1γ exon 9, which is altered 

by acidic treatment. Human fibrosarcoma HT1080 cells cultured in acidic DMEM exhibited 

the expression of the F1γ muscle specific isoform that excludes exon 9. This event 

possibly occurs due to the expression and binding of a negative regulatory splicing factor 

to a regulatory sequence present in F1γ pre-mRNA, in response to an environment with 

lower pH (290).  Another study have shown that the exposure of NIH-3T3 cells to osmotic 

stress, induced by sorbitol, led to the activation of the MKK376-p38-Mnk1/2 signaling 

cascade and to hnRNPA1 accumulation in the cytoplasm affecting the splicing pattern of 

the E1A reporter minigene (291). Denegri and collaborators have shown that the heat 

shock of HeLa cells for 1h at 42oC, lead to the formation of HAT (hnRNPA1 interacting 
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protein) bodies. HAT stressed-induced bodies also presented accumulation of different 

splicing factors such as SRSF1 and 9G8, thus altering the subnuclear distribution of these 

splicing factors and culminating in the perturbation the splicing pattern of the E1A reported 

gene (292).   

Recently, it has been described that depolarization of neuroblastoma cell membrane 

potential causes an accumulation of several SR proteins, such as SRSF1, SRSF2 and 

SRSF3, in the nuclear speckles impairing alternative splicing (259). 

The myriad of examples described above show that alternative splicing is not only a 

huge source of protein diversity, but its regulation at different levels contribute to a specific 

and fine-tuning of cellular responses.  

 

 

 

4. Alternative Splicing and the Immune System 

 

It is remarkable the plasticity that immune cells ought to have in order to respond to a 

changing environment that challenges the immune system with a giant number of different 

antigens and pathogens. As a result, immune cells are able to change their function very 

rapidly and precisely, in response to a given stimulus. The stimuli captured at the cell 

surface, through the T cell receptor (TCR) is transmitted by signaling cascades through 

the cytoplasm to the nucleus that will lead to cell proliferation, cytokines and cytotoxins 

secretion, cell migration and changes of morphology and a myriad of effector functions 

(10). 

Alternative splicing (AS) is a very important process that produces a vast diversity of 

transcripts and protein isoforms from the code present in a single gene. Given the diverse 

number of responses and flexibility needed, it is expectable that cells of the immune 

system rely on alternative splicing in order to control their protein levels and function 

(293). Despite the importance of alternative splicing in the immune system, very little is 

still known about which signaling pathways, splicing factors, and sequences are involved 

in the regulation of this mRNA maturation process. However, a growing list of autoimmune 

diseases and other immune-related pathologies have been correlated with misregulated 

splicing events (294, 295). 
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4.1.    Molecules of the Immune System Affected by Alternative 

Splicing: Physiological Consequences 

 

Alternative splicing in cells of the immune system is physiologically relevant, as it 

allows a diversified number of cellular responses and results in a rapid adaptation to the 

challenging environment (293). However, the molecular mechanisms involved in some of 

these alternative splicing events, in particular those occurring during T cell activation, are 

mostly uncharacterized. One of the first described examples of AS in the immune system 

was the immunoglobulin heavy chain (IgH), which encodes both membrane-associated 

and secreted proteins through alternative RNA processing reactions (296, 297).  

More recently, Lynch and collaborators have identified several AS splicing events in 

immune cells using a microarray and RNAseq profiling of naïve and PMA (phorbol 

myristate acetate) stimulated T cells (99, 298).  

The AS of exon 8 CD3ζ has an impact on the expression of this protein receptor 

chain impairing T cell activation as CD3ζ couples Ag recognition with intracellular 

signaling pathways (299). Also the 3’ UTR of CD3ζ has an intron that is preferentially 

removed in resting T cells and retained upon T cells activation (299). When this intron is 

removed by AS, two important AU-rich elements (ARE1 and ARE2) are lost at the 3’UTR, 

reducing the stability and translation of CD3ζ chain pre-mRNA (300). Skipping of this 

intron has been associated with the autoimmune disease systemic lupus erythematous 

(SLE). Patients with SLE express more CD3ζ isoform that lacks this 3’UTR intron and 

consequently have decreased expression of the CD3ζ chain, which compromises T cell 

signaling and the expression of proliferation cytokine interleukin-2 (IL-2) (301, 302). 

Nambiar and collaborators have cloned CD3ζ chain gene in a eukaryotic expressing 

vector and transfected this DNA plasmid into T cells isolated from patients with SLE. They 

have shown that restoring CD3ζ expression levels by overexpressing CD3ζ, rescue the IL-

2 production and decreases the severity of SLE disease (303). 

Another example is the already referred CD44 molecule, a cell surface glycoprotein 

important in cell-cell adhesion, T cell activation, cell migration and metastasis progression 

(304, 305). CD44 has several alternative isoforms depending on the AS of 10 different 

variable (v) exons (v1-v10) that code for the extracellular region (306, 307). 

It has been shown that T cell stimulation with α-CD3 and α-CD28 antibodies lead to 

the increased expression of several CD44 alternative spliced isoforms and that the 

inclusion of the variable exon 5, is regulated by the Mek-Erk signaling pathway (287). 

Recently, the CD44 variant isoforms CD44v4 and CD44v6 were shown to be augmented 
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in CD4+ and CD8+ T cells from patients with SLE. Moreover, the expression of these 

isoforms was correlated with the extent of disease activity and the presence of nephritis 

(308). 

The T cell transmembrane tyrosine phosphatase CD45 is also another well-

characterized example of an immune molecule modulated by AS. Exons 4 and 6, that 

encode part of the extracellular region of CD45, are alternatively spliced in resting T cells: 

upon T cell activation the majority of the transcripts lack exons 4, 5 and 6, giving rise to 

the shortest isoform of CD45 (CD45R0) (284, 309). The CD45 extracellular region 

encoded by these alternative exons is highly glycosylated preventing CD45 

homodimerization in a resting state. However, upon T cell activation, the skipping of these 

alternative exons results in the homodimerization of this phosphatase, which affects T cell 

signaling through the TCR (310, 311). Lynch and collaborators have identified an 

important regulatory element, an exonic splicing silencer (ESS) named ESS1, present in 

CD45 exon 4, which is responsible for exon 4 skipping (312). Interestingly, when a 

multiple sclerosis-associated polymorphism (C77G) is present in this element, it disrupts 

the ESS1 leading to a higher level of exon 4 inclusion (284, 312). hnRNP LL and PSF 

were shown to bind to this ESS1 in activated T cells, thus increasing exon 4 skipping 

(313-315).  

The IL-7 receptor α chain (IL-7Rα) pre-mRNA also undergoes alternative splicing 

giving rise to different protein isoforms and has been implicated in a number of diseases. 

When a SNP (rs6897932; C/T, Thr244Ile), which is associated with multiple sclerosis, is 

present in exon 6, this exon is skipped and the receptor loses the transmembrane domain. 

This results in a decrease of the membrane bound IL-7Rα in PBMCs of multiple sclerosis 

patients, and consequently an increase in the soluble isoform (316). IL-7Rα is important 

for the survival of peripheral CD4 and CD8 positive T cells as well as in the generation of a 

memory phenotype (317, 318). The expression of IL-7Rα has also been related to human 

immunodeficiency virus (HIV), as CD4 and CD8 positive T cells of HIV-infected individuals 

expressed low levels of IL-7Rα and presented increased immune activity and cell 

apoptosis (319). Additionally, Crawley and collaborators have shown that HIV-1- positive 

individuals have higher levels of soluble IL-7Rα in their plasma correlating with increasing 

circulating IL-7 levels in this patients, indicating that the soluble receptor could bind IL-7, 

decreasing the levels of free IL-7 to bind to the transmembrane IL-7 receptor, thus 

affecting T cell surveillance (320). A higher expression of soluble isoforms of IL-7Rα has 

also been detected in patients with acute lymphoblastic leukemia (321). 

The Fas receptor, also known as CD95, that mediates cell apoptosis when bound to 

Fas ligand (CD95L) and is expressed in T cells and macrophages (322, 323). Fas 
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receptor produce two different protein isoforms by alternative splicing: a receptor with a 

pro-apoptotic function is produced when exon 6, which encodes a transmembrane 

domain, is included. When exon 6 is skipped, a secreted receptor with an anti-apoptotic 

function is expressed (324, 325). Izquierdo and collaborators showed that exon 6 

alternative splicing is regulated by the splicing factors TIA-1/TIAR (T cell intracellular 

antigen 1/TIA-1 related) and by PTB (Polypyrimidine Tract Binding protein) (181). After 

Fas receptor triggering, FAST K (Fas Activated Serine/Threonine Kinase) was shown to 

play an important role in exon 6 inclusion, through TIA-1/TIAR phosphorylation (326). 

Upon T cell activation, CTL4 competes with CD28 and binds to CD80/CD83 

presented at the APC surface, counteracting the costimulatory signals resulting from the 

binding of CD28 to CD80/CD83, and thus blocking a prolonged T cell activation (327). In 

resting T cells, CTL4 exon 3, that codes for the transmembrane domain, is skipped by 

alternative splicing from the majority of the transcripts, resulting in the expression of a 

soluble protein isoform (328). However, upon activation of human blood mononuclear 

cells with PHA or α-CD3 α-CD28 antibodies, the splicing pattern of CTL4 pre-mRNA is 

changed, leading to the inclusion of the alternative exon and producing the 

transmembrane isoform of CTL4 (329). Importantly, expression of CTL4 transmembrane 

domain on activated T cells resulting from the inclusion of the alternative spliced exon 3, 

ensures that CTL4 is retained at the T cell membrane, being able to bind to its ligand 

CD80/CD83 and preventing a hyperstimulated T cell state (329). Accordingly, the soluble 

CTL4 isoform is expressed in high levels in patients with autoimmune thyroid disease 

(330) and also in patients with other autoimmune diseases such as acute infectious 

thyroiditis (AIT), celiac disease, Crohn’s disease and biliary cirrhosis (331). 

The complete knowledge of the splicing regulation processes in the immune system 

is therefore fundamental to understanding the normal immune function and also useful to 

determine the mechanisms behind several immune diseases. 
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Aims of the thesis 

 

 

Given the importance of the differential expression of the 3rd extracellular domain of 

CD6 for the localization of this molecule at the immunological synapse and as CD6 is 

involved in several autoimmune diseases it became very important to study CD6 exon 5 

alternative splicing. Therefore a better understanding of the regulatory intervenients as 

well as the T cell signaling pathways involved in this process contribute to dissect the 

mechanisms that regulates this alternative splicing event. Therefore the main objective of 

this thesis is to extend the knowledge and understanding of the regulatory mechanisms 

that dictate the inclusion or exclusion of the alternative exon 5 upon T cell activation with a 

special focus on: 

 

 

 

 The role of RNA cis-regulatory elements involved in CD6 exon 5 AS. 

 The role of chromatin state in the regulation of CD6 exon 5 AS event. 

 To identify the splicing factors necessary for CD6 exon 5 AS. 

 To unveil the T cell activation-triggered signaling pathway that regulates CD6 

exon 5 AS. 
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MATERIAL AND METHODS 

 

Cell isolation and drugs treatment 

Buffy coats from healthy donors were provided by Hospital São João, Serviço de 

Imunohemoterapia, Porto, and peripheral blood mononuclear cells (PBMC) were isolated 

by density gradient separation using Lympholyte-H (Cedarlane). T cells were isolated from 

PBMCs using Easysep Human T cell enrichment Kit (Stemcell). Cells were maintained in 

RPMI 1640 Glutamax with 10% FBS, 1% sodium pyruvate and 1% Penicillin-Streptomycin 

(Life Technologies). T cells were stimulated for an overnight period using, 

phytohaemagglutinin-P (PHA-P) at 10 μg/mL, or with a combination of α-CD3 (OK73) at 2 

μg/mL and α-CD6 (MEM-98) at 10 μg/mL. In chromatin modulation experiments, 6 × 106 T 

cells were treated with 0.5 μM Trichostatin A (TSA) or with 10 μM Camptothecin for 1 h at 

37 ºC. 

 

Plasmids 

To construct the CD6 minigene, the genomic DNA region from exon 4 to exon 6 was 

amplified by PCR and cloned into the pCMVdi vector (kindly given by Juan Valcarcel, 

Centre de Regulació Genòmica, Barcelona). Intron 4 mutants were made by PCR site-

directed mutagenesis using Phusion DNA polymerase (Fynnzymes). T7 epitope tagged 

vectors pCGT7SF2, pCGT7SRp20 and pCGT7A1 used for overexpression of the splicing 

factors SRSF1, SRSF3 and hnRNPA1 respectively, were a kind gift from Javier Cáceres, 

MRC, Edinburgh.  

 

Directed Mutagenesis 

The PCR amplification of CD6 minigene was carried out in a 100 µl reaction, using 

Phusion DNA polymerase from Finnzymes and the respective primer for each mutant 

(Table 2). PCR conditions were: 1 min at 98oC for initial denaturation, followed by 29 

cycles: [10 sec at 98oC; 30 sec at the respective annealing temperature; 3 min at 72oC] 

and 10 min at 72oC for final extension. In each PCR reaction, one of the primers was 

phosphorylated to create a phosphate group in the 5’ end allowing the DNA fragment to 

ligate. After PCR amplification, 1 µl of Dpn I enzyme was added to the PCR reaction 
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products to digest the methylated plasmid template, incubating 1h at 37oC.  All the 

enzymes and buffers were removed by Phenol-Chloroform extraction and DNA was 

Ethanol precipitated. Pellet was resuspended in 8 µl distillated water. DNA ligation was 

performed adding 1 µl of T4 DNA ligase from Invitrogen to 4 µl of precipitated DNA in 10 

µl reaction with 1x ligase buffer. The mixture was incubated overnight at 14oC. DH5α 

competent Bacteria from Invitrogen were transformed with 2 µl of ligation product and 

then plated on LB rich medium. Plates were incubated overnight at 37oC and clones were 

sent for sequencing. 

 

Transfections 

Cells were transfected by nucleofection using the Amaxa human T cell nucleofactor kit 

(Lonza). 2 μg of each CD6 minigene mutant or T7 tagged expression vectors were used 

for cell transfections (Figure II.14b). For the knocking-down experiments, PBMCs were 

transfected with siRNAs (Sigma) (Table 1) at a final concentration of 50 nM for SRSF1 

and SRSF3, and 300 nM for hnRNPA1 (Figure II.15b and c). Total RNA and protein 

extracts were isolated after 48 h of incubation at 37 ºC, 5 % CO2. 

 

Cell fractionation and RNA extraction 

Cells were washed twice with ice-cold PBS and centrifuged for 5 min at 290 × g at 4 ºC. 

The cell pellet was resuspended in 1 mL of RSB buffer (10 mM Tris-Cl pH 7.4, 10 mM 

NaCl, 3 mM MgCl2) and incubated 3 min on ice. Cells were pellet at 1500 × g for 3 min at 

4 ºC, the supernatant was discarded and the cells were lysed by gentle resuspension in 

150 μL of RSBG40 buffer (10 mM Tris-Cl pH 7.4, 10 mM NaCl, 3 mM MgCl2, 10 % 

glycerol, 0.5 % NP-40). Samples were centrifuged at 4500 × g for 3 min at 4 ºC. The 

supernatant (cytoplasmic fraction) was collected in a new eppendorf and 1 mL of Trizol 

was added to extract cytoplasmic RNA according to manufacturer’s protocol. The nuclei 

pellet was also resuspended in 1 mL of Trizol to extract the nuclear RNA. 

 

RT-PCR  

Total RNA from human primary T cells was isolated using Trizol (Invitrogen) and 500 ng of 

RNA per each condition were treated with DNAse I (Roche). cDNA was synthetized using 
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Superscript III reverse transcriptase (Invitrogen) according to manufacturer’s protocol. 25 

% of the RT reaction volume was used to analyze endogenous CD6 exon 5 alternative 

splicing pattern by PCR amplification with Go Taq DNA polymerase (Promega). In the 

case of CD6 minigene mutants, cDNA was synthesized with a plasmid -RT primer and 

radiolabeled primers were used in a low cycle (20 cycles) PCR reaction. qPCR reactions 

were performed with a 1:10 cDNA dilution using IQ SYBR Green Supermix (Biorad) and 

following the manufacturer’s instructions. Primer sequences are in Table 2. Due to donor 

variability, the resting CD6 exon 5 splicing pattern was confirmed prior to analysis. 

 

Western Blotting 

Whole-cell lysates were prepared, resolved and transferred with the iBlot gel transfer 

device (Life Technologies). Incubations with primary antibodies diluted in Tris-Buffered 

Saline, 0.1% Tween 20 (TBS-T) containing 3 % non-fat dried milk were followed by 

washes with TBS-T, incubation with the appropriate secondary antibodies in TBS-T/dried 

milk and by detection using enhanced luminescence, ECL Prime (Amersham/GE 

Healthcare). Antibodies used: anti-SRSF1 (AK96, a kind gift from Adrian Krainer, Cold 

Spring Harbor Laboratory), anti-hnRNP A1 (9H10, kind gift from Gideon Dreyfuss, Howard 

Hughes Medical Institute), and anti-SRp20 (7B4 – sc13510, Santa Cruz Biotechnology). 

 

Chromatin Immunoprecipitation (ChIP) and RNA Immunoprecipitation (RIP) 

Chromatin immunoprecipitation was performed using human T cells as previously 

described (332). The relative occupancy of the immunoprecipitated protein at each DNA 

site was estimated as follow: 2Ct (input)–Ct (IP) where Ct (input) and Ct (IP) are mean threshold 

cycles of qRT-PCR done in duplicate on DNA samples from input and specific 

immunoprecipitations, respectively. Gene-specific and intergenic-region primer pairs are 

presented in Table 2, supplementary data. Antibodies used: rabbit polyclonal anti–Pol II 

(N20, Santa Cruz Biotechnology); anti–histone H3 (ab1791, Abcam); anti-H3K36me3 

(ab9050, Abcam); anti-H3K9me3 (ab8898, Abcam), and anti-H3K9Ac (ab10812, Abcam). 

RNA immunoprecipitation was performed using the EZ-Magna RIP RNA-Binding Protein 

Immunoprecipitation Kit (Merck Millipore). A rabbit monoclonal antibody anti-SRSF1 

(ab133689, Abcam) was used. The relative occupancy of the immunoprecipitated protein 

at each RNA site was estimated as described above for the ChIP assay. 
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Micrococcal Nuclease assays (MNase) 

The assay was performed as described (333) using resting or PHA-stimulated primary 

human T cells. DNA was digested with 10 U of micrococcal nuclease (MNase, Fermentas) 

for 5, 10 and 15 min before the addition of a stop buffer. Mononucleosome-sized DNA 

was obtained after 15 min of digestion, by gel purification of the band with approximately 

200 bp, and non-digested (t0) were used for RT-qPCR (32). The amount of MNase-

resistant DNA at each gene region analyzed was estimated as follows: 2(Ct t0 - Ct t20), where 

Ct t0 and Ct t20 are mean threshold cycles of RT-qPCR done in duplicate on DNA 

samples from non-digested (t0) and 20 min MNase-digested (t20) samples, respectively. 

Results were further normalized to the amount of MNase-resistant DNA measured with 

primers for an intergenic region (estimated using the same 2(Ct t0 - Ct t20) formula). The 

sequences of gene-specific and intergenic primers are shown in Table 2. 

 

UV-crosslinking Immunoprecipitation assays 

 

5000 cpm of intron 4 pre-mRNA probes were incubated in 50 µl reactions mixtures 

containing 100 μg of Peripheral Blood Leucocytes nuclear extracts, 32 mM HEPES (pH 

7.9), 1.56 mM MgCl2, 0.5 mM ATP, 20 mM Creatine Phosphate and 2.6 % polyvinyl 

alcohol. Samples were incubated at 30⁰ C for 20 min, UV-cross-linked in Hoefer UVC 500 

UV Crosslinker (254 nm, for 9 min, 4 cm from light source) and treated with 5 µg RNase A 

(1 µg/µl) at 37⁰ C for 30 min. A 10% aliquot of the cross-linked samples was loaded on a 

12% SDS-PAGE. For immunoprecipitation, 100 µl of tissue culture supernatant of 

monoclonal α-SRSF1 antibody (AK96) and 35 µl Protein A sepharose beads 50% slurry 

(Sigma # CL-4B-200) was added to 80% cross-linked material, 0,1 M KCl Buffer D was 

added to a final volume of 200 µl. For hnRNP A1 and SRSF3 Immunoprecipitation it was 

used 10 µl of α-hnRNPA1 antibody (ab5832) and 25 µl of α-SRSF3 antibody (SC-13510). 

The mixture was incubated overnight at 4⁰ C in a rotative wheel. Beads were washed two 

times with ice cold Binding Buffer I (20 mM HEPES pH 7.9, 150 mM NaCl, 0,05% Triton 

X-100) and two times with ice cold Binding Buffer II (20 mM HEPES pH 7.9, 150 mM 

NaCl, 1% Triton X-100). After the last wash, the supernatant was completely removed and 

beads were resuspended in 35 µl 2x SDS-loading dye and boiled for 5 min at 95oC. After 

centrifugation the supernatant was loaded on a 12% SDS-PAGE. Gels were fixed for 35 

min at room temperature in a fixing solution before drying. Gels were exposed to a 

radiographic film [128].  
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Flow cytometry 

106 per condition were washed with PBS and incubated for 20 min on ice and protected 

from light with FITC conjugated antibody α-CD69 at 1:50 dilution in FACS Buffer (PBS, 

0,1% BSA and 0,1% Azide). Cells were washed twice with FACS buffer and resuspended 

in 500 μl of the same buffer for posterior flow cytometry analysis. Fluorescence for 10,000 

live cells was collected on a FACSCanto (BD Bioscience California, USA) and the data 

were analyzed using FlowJo software (Treestar, Ashland, OR). 

 

Immunofluorescence 

Cell were washed with PBS and resuspended in RPMI 1640 without FBS, and 3 x 105 

cells per condition were let to adhere to poly-lysin coated glass coverslips for 30 min at 

37ºC, and then fixed with 4% paraformaldehyde in PBS for 10 min at room temperature. 

Cells were washed 3 times with PBS and permeabilized with PBS containing 1% Triton-

X100. After 30 min blocking at room temperature with PBS containing 10% FBS and 0,1% 

Triton-X100, cells were incubated for 1h with primary antibody, anti-SRSF1 (AK96) 

monoclonal antibody at 1:50 dilution. Cells were washed 3 times with PBS and incubated 

for 1h with secondary antibody anti-mouse, Alexa Flour 568 conjugate (Molecular Probles) 

at 1:500 dilution. Cells were mounted in Vectashield medium containing DAPI (Vector 

Laboratories). Stained preparations were observed with an AxioImager Z1 microscope 

(Carl Zeiss), and images acquired with Axiocam MR v.3.0 camera (Carl Zeiss). Images 

were processed with Image J program (334). 

 

 

 

 

Table 1 – Sequences of the siRNAs oligonucleotides used in the knockdown experiments. 
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Table 2 – Sequences of the primers used in mutagenesis, semi-quantitative and quantitative 

PCR. 
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RESULTS 

 

Modulation of chromatin structure affects CD6 exon 5 AS in human 

primary T lymphocytes  

It has been shown that skipping of exon 5 of CD6 is induced by T cell activation, 

resulting in an increase of the CD6Δd3 mRNA isoform, which is translated into a CD6 

polypeptide that lacks the domain of interaction with its ligand, CD166 (schematically 

represented in Figure II.1) (65).  

 

Figure II.1 – CD6Δd3 is upregulated upon T cell activation. (A) Schematic 

representation of CD6 exon 5 alternative splicing pattern in resting and activated T cells 

(left panel). Representation of the proteins encoded by CD6 full-length (CD6 FL) and 

CD6d3 alternative splicing isoform, CD6Δd3, protein representation (right panel). (B) 

Semi-quantitative RT-PCR analysis of CD6 exon 5 alternative splicing pattern in resting 

and PHA-stimulated PBMCs. The ratio between both mRNA isoforms (CD6FL/CD6d3) 

was calculated and then normalized to resting condition (C) Graphic representation 
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showing the ratio between exon 5 containing isoform (FL) and the isoform that lacks exon 

5 (∆d3) in resting and activated state. Error bars represent s.e.m and asterisk is statistical 

significant (p<0,05 student’s t-test), n=3.  

 

To investigate the molecular mechanisms regulating T cell activation-dependent 

alternative splicing of CD6, we first confirmed the pattern of exon 5 skipping in human 

peripheral blood mononuclear cells (PBMCs) activated with the mitogenic lectin 

phytohemagglutinin-P (PHA-P) at 10 μg/ml. As expected, PHA induced a switch in the 

exon 5 alternative splicing pattern, resulting in a 2-fold decrease of the ratio between the 

CD6 full-length mRNA isoform (CD6FL) and the isoform omitting exon 5 (CD6Δd3) (Figure 

II.1B and C). This switch is also observed in CD4+/CD8+ T cells when stimulated with PHA 

or with α-CD3 and α-CD6 antibodies (Figure II.2A). Different concentrations of PHA 

(5,10,15 and 20 μg/ml) were tested and the expression of the activation marker CD69 was 

analyzed by flow cytometry (Figure II.2B). The shift observed in the expression of CD69 

indicates that T cells are activated with all the PHA concentrations tested and 10 μg/mL 

were then used in all activation conditions.  

 

 

Figure II.2 - T cell activation and CD6 exon 5 alternative splicing pattern. (A) Semi-

quantitative RT-PCR analysis of CD6 exon 5 alternative splicing pattern in resting, PHA 

stimulated and αCD3/αCD6 stimulated primary CD4+/CD8+ T cells. The ratio between both 

mRNA isoforms (CD6FL/CD6d3) was calculated and then normalized to resting 

condition (B) Histogram representing CD69 expression in resting and T cells activated 

with different concentrations of PHA. 
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It was also apparent that activation with PHA induced an increment in the levels of the 

full-length mRNA isoform, suggesting a general transcriptional induction (Figure II.1B). To 

understand how transcription of CD6 was regulated upon T cell activation, we purified T 

lymphocytes from peripheral blood and analyzed changes in RNA Pol II occupancy in the 

CD6 gene, using chromatin immunoprecipitation (ChIP), occurring in resting and activated 

T cells and we also analyzed CD6 expression levels by RT-qPCR in the same conditions 

(Figure II.3).  

 

Figure II.3 – Characterization of RNA pol II occupancy in the CD6 gene and its 

expression levels in resting and activated T cells. (A) Schematic representation of 

human CD6 locus, exons are represented by boxes and introns are shown as a thin line. 

The region for specific qPCR primers pairs is underlined and primers sequences are in 

table 2 of the Materials and Methods section. (B) Graphic representation of RNA 

polymerase II occupancy levels in CD6 gene in resting and activated T cells evaluated by 

Chromatin Immunoprecipitation assays showing an increase of RNA polymerase II 

occupancy upon T cell activation (n=5). IG-intergenic region (C) CD6 expression levels in 

resting and activated PBMCs were analysed by qPCR revealing an increase in expression 

upon cell activation with PHA (n=3). Error bars represent s.e.m and asterisk is statistical 

significant (p<0,05, student’s t-test). 

 

Upon T cell activation an overall increase of RNA Pol II occupancy throughout the 

CD6 gene was observed (Figure II.3B), concurring with an increase in CD6 expression 

(Figure II.3C). As exon-definition is in part determined by increased nucleosome 
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positioning in exons (262), we assessed nucleosome occupancy of the CD6 gene using 

micrococcal nuclease assay (MNase) that consists in the enzymatic digestion of 

chromatin at the mononucleosome level. Using specific primers for the different exons we 

performed qPCR analysis (Figure II.4B). Although the overall nucleosome occupancy did 

not change between resting and activated T cells, it is clear that exon 5 possesses higher 

levels of nucleosomes than exon 4, 6 and 7 (Figure II.4B). This could suggest a poor 

definition of exon 5, which may be due to weak splice sites as described by Tilgner et al. 

(263), causing alternative splicing of this exon. 

 

 

Figure II.4 – Characterization of CD6 nucleosome occupancy in resting and 

activated T cells. (A) T cells chromatin digested in different time periods (5,10 and 15 

min) was loaded and run in an agarose gel. It is visible that after 15 min of digestion the 

majority of the DNA fragments have 100-200 bp (mononucleosome) (B) qPCR analysis to 

determine the nucleosome occupancy levels on different exons of the CD6 gene revealed 

by micrococcal nuclease (MNase) digestion assay. Primer sequences are in table 2 of the 

Material and Methods section. Error bars represent s.e.m and asterisk is statistical 

significant (p<0,05, Student’s t-test).  

 

 

Accumulating evidence indicates that alternative splicing is influenced by 

chromatin histone modifications (266), in particular H3K36me3 and H3K9me3 (207, 271). 

To investigate whether these regulatory mechanisms could also govern CD6 exon 5 

alternative splicing, we analyzed by ChIP the pattern of H3K36me3 and H3K9me3 in the 

CD6 gene, in resting and activated T cells. H3K36me3 levels were increased in the body 
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of the gene comparing with the first exon and the intergenic region (Figure II.5A), as it 

occurs in actively transcribed genes (335) indicating that CD6 is being actively 

transcribed. The H3K9me3 levels that were described to be enriched in a subset of 

alternative exons (271) were decreased in the body of the CD6 gene in comparison with 

the intergenic region (Figure II.5B). However, there were no differences in H3K36me3 and 

H3K9me3 levels either between resting and activated T cells, or comparing exon 5 with 

the neighbouring exons. This indicates that these epigenetic marks are not modulated in 

the CD6 gene by T cell activation and they do not have a function in CD6 exon 5 

alternative splicing.  

 

Figure II.5 – H3K36me3 and H3K9me3 marks in CD6 gene. Chromatin 

Immunoprecipitation (ChIP) with H3K36me3 (A) and H3K9me3 (B) antibodies, using 

primer pairs for the CD6 gene as in figure II.3A. IG-intergenic region. 

 

 

Changes in chromatin acetylation levels between resting and activated T cells have 

been already shown (336). We thus characterized H3K9ac levels in CD6 in resting and 

activated T cells (Figure II.6A). In contrast with the methylation marks analyzed in Figure 

II.5, we detected an overall increase in H3K9Ac in activated T cells. These differences are 

statistically significant at the 5’ end of the gene and also in exon 5. Treatment of HeLa 

cells with inhibitors of histone deacetylases (HDAC) have been shown to cause alterations 

in the splicing pattern of alternatively spliced exons (337). We thus hypothesized that 

upon T cell activation the CD6 gene could undergo alterations in the chromatin structure, 

in particular in H3K9ac, to facilitate the accessibility of the transcription machinery 

resulting in the increased CD6 mRNA levels and exon 5 skipping observed. To investigate 
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the role of acetylation in this mechanism we treated T cells with an inhibitor of HDACs 

(Trichostatin A). An increase in the levels of transcripts lacking exon 5 was observed 

(Figure II.6B), suggesting that acetylation and an open chromatin state promotes skipping 

of exon 5. To further understand the role of the chromatin structure and Pol II elongation 

rate on CD6 alternative splicing, we treated T cells with an inhibitor of topoisomerase I, 

Camptothecin, which hampers RNA Pol II elongation, the opposite effect in the alternative 

splicing pattern was observed: inclusion of exon 5 was promoted (Figure II.6B). We 

quantified both CD6 mRNA isoforms and confirmed that TSA as well as Camptothecin 

have significant but opposite effects in the splicing pattern of exon 5 (Figure II.6C), 

suggesting that the RNA pol II transcription rate plays a determinant role in the skipping or 

inclusion of exon 5 in CD6 pre-mRNA. 

 

Figure II.6 – CD6 H3K9ac levels in resting and activated T cells and CD6 chromatin 

structure modulation. (A) Graphic representation of H3K9ac levels in CD6 gene in 

resting and activated T cells evaluated by ChIP showing an increase of acetylation upon T 

cell activation. Primer pairs for the CD6 gene are depicted in figure II.3A. IG-intergenic 

region (B) Semi-quantitative RT-PCR showing the Trichostatin A and Camptothecin effect 

in CD6 exon 5 AS pattern. The ratio between both isoforms (CD6FL/CD6d3) was 

calculated and then normalized to untreated condition (C) CD6 mRNA isoforms 

expression levels were analysed by qPCR. Primers were designed to span the 4-5 and 4-
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6 exon junction regions. Error bars represent s.e.m and asterisk is statistical significant 

(p<0,05, student’s t-test), n=3. 

 

 

 

CD6 intron 4 contains a complex set of splicing regulatory elements 

Using the UCSC Genome Browser we found several peaks of conservation in intron 

4, distant from the splice sites. These are conserved in 46 species of vertebrates, 

suggesting the presence of important regulatory elements (Figure II.7).  

 

 

Figure II.7 – In silico analysis of CD6 exon 5 genomic region conservation (a) 

Conservation analysis (comparative genomics tool, UCSC genome browser), of CD6 exon 

5 genomic region revealed several peaks of conservation in intron 4.  

 

 

We therefore generated a functional minigene, containing the genomic fragment 

spanning exons 4 to 6, to characterize the cis elements involved in CD6 alternative 

splicing (Figure II.8A). Importantly, when transfected into PBMCs, this minigene 

recapitulates the alternative splicing pattern of the endogenous CD6 gene, with the 

majority of transcripts containing exon 5 (Figure II.8B, left panel). Moreover, upon PHA-

induced T cell activation there is the same enrichment of CD6Δd3 over CD6FL as 
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observed in endogenous CD6 (Figure II.8B, right panel). This indicates that the minigene 

contains all the necessary sequences to promote CD6 exon 5 alternative splicing and can 

be used to characterize the cis regulatory elements involved. 

 

Figure II.8 – Analysis of CD6 exon 5 alternative splicing using a minigene system 

(A) The genomic region from exon 4 to exon 6 was cloned into a mammalian expression 

vector carrying a CMV promoter and a SV40 polyadenylation signal. (B) Peripheral blood 

mononuclear cells of healthy donors were transiently transfected with the CD6 minigene 

and the exon 5 alternative splicing pattern of minigene and endogenous transcripts was 

analysed by RT-PCR. PHA-stimulation of minigene transfected cells reproduced CD6 

exon 5 activation-induced alternative splicing. To distinguish the minigene transcripts from 

CD6 endogenous transcripts a plasmid-specific primer was used in the RT reaction. The 

ratio between both mRNA isoforms (CD6FL/CD6d3) was calculated and then normalized 

to resting condition. Primers sequences are in table 2 of the Materials and Methods 

section. 

 

To characterize the conserved region in intron 4, we engineered the minigene to 

introduce specific deletions originating the constructs depicted in figure II.9a. Minigene 

mutant i4Δ1, containing a 436 nt deletion in the central region of intron 4 (nt 193 to 629) 

(Figure II.9A), was transfected into resting T cells and the splicing pattern was analysed 

by RT-PCR. A complete switch in exon 5 alternative splicing was observed (Figure II.9B), 

with over a 3-fold reduction in the mRNA isoforms ratio (relative increase of CD6Δd3 over 

CD6FL) mean of 3 independent experiments (Figure II.9D). 
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Figure II.9 – CD6 intron 4 contains an intronic splicing enhancer (ISE). (A) Different 

mutants, each one having different deletions in intron 4 were created by PCR-directed 

mutagenesis and used for transient transfection in human T cells. (B) and (C) RT-PCR 

analysis of CD6 exon 5 AS pattern. The ratio between both isoforms (CD6FL/CD6d3) 

was calculated and then normalized to CD6 wild type (WT) (D) Graphic representation of 

the CD6FL/CD6Δd3 ratios in intron 4 mutants and WT minigene determined by semi-

quantitative RT-PCR. Error bars represent s.e.m and asterisks are statistical significant (* 

p<0,05, ** p<0,01 student’s t-test), n=3. 

 

 A mutant having a smaller deletion (i4Δ6) induced a statistically significant similar 

reduction, indicating that an intronic splicing enhancer (ISE) for exon 5 inclusion is 

contained within the region between nt 297 and 629 of intron 4 (Figure II.9C and D). This 

is a sequence-specific effect, as confirmed by replacement of the i4 297-629 sequence by 

an unrelated sequence, derived from part of the intron of RG6 minigene (338) (i4Δ6 crtl) 

(Figure II.9C and D).  

To fine map the ISE identified, three mutants containing deletions of approximately 

100 nt were generated, each one lacking one third of the i4Δ6 deleted region (A, Δ297-

383; B, Δ384-481; C, Δ482-629), and transfected into T cells (Figure II.10A). Deletion of 

any of the three regions (A, B and C) induced only a partial 2-fold reduction in the 

CD6FL/CD6Δd3 ratio when compared with wild-type intron 4 (Figure II.10B and C), which 

suggests that several regulatory elements may be present.  



 

Chapter II – Research Work 

 
 
 

  62  

 

Figure II.10 – Characterization of the ISE in CD6 intron 4. (A) Different mutants, each 

one having different deletions in intron 4 were created by PCR-directed mutagenesis and 

used for transient transfection in human T cells. (B) RT-PCR analysis of CD6 exon 5 AS 

pattern. The ratio between both isoforms (CD6FL/CD6d3) was calculated and then 

normalized to WT condition (C) Graphic representation of the CD6FL/CD6Δd3 ratios in 

intron 4 mutants and WT minigene determined by semi-quantitative RT-PCR. Error bars 

represent s.e.m and asterisks are statistical significant (* p<0,05, ** p<0,01; student’s t-

test), n=3. 

 

To further dissect this regulatory region, mutant minigenes having combined or 

overlapping deletions in the nt 297-629 region were generated (Figure II.11A), transfected 

in T cells and their splicing pattern analyzed (Figure II.11B and C). Deletion of nt 297 to 

481 (AB) induced a reduction of nearly 3-fold in the CD6FL/CD6Δd3 isoforms ratio, 

comparing with wild-type i4. In addition, deleting regions A and C together introduced a 2-

fold reduction in the CD6FL/CD6Δd3 ratio (Figure II.11C). By contrast, deletion of regions 

B and C together in mutant BC (Δ383-629) did not induce any significant differences in the 

ratio comparing to the WT (Figure II.11C) suggesting that both a silencer and an enhancer 

elements coexist in region BC as contrasting with the effect (increased exon 5 skipping) of 

deleting regions B or C independently (Figure II.10C). We therefore constructed an 



 

Chapter II – Research Work 

 
 
 

  63  

additional mutant (D, Δ451-544) whose deleted sequences comprise part of region B and 

part of region C. Interestingly, this deletion causes a significant increase in exon 5 

inclusion (2-fold increase in the CD6FL/CD6Δd3 ratio), suggesting that it contained an 

inhibitory sequence for exon 5 inclusion (Figure II.11C).  

   

Figure II.11 – Mapping of regulatory regions in intron 4. (A) Different mutants, each 

one having different deletions in intron 4 were created by PCR-directed mutagenesis and 

used for transient transfection in human T cells. (B) RT-PCR analysis of CD6 exon 5 AS 

pattern in WT and intron 4 mutants. The ratio between both mRNA isoforms 

(CD6FL/CD6d3) was calculated and then normalized to WT (C) Graphic representation 

of the CD6FL/CD6Δd3 mRNA ratios in intron 4 mutants and CD6 WT minigene 

determined by semi-quantitative RT-PCR. Error bars represent s.e.m (n=2). (D) 

Schematic representation of  intron 4 regulatory elements. E – enhancer; S- silencer. 

 



 

Chapter II – Research Work 

 
 
 

  64  

CD6 exon 5 alternative splicing is regulated by SRSF1, SRSF3 and hnRNPA1 

As the alternative splicing of CD6 exon 5 is regulated by T cell activation, we 

investigated variations in the expression of relevant splicing factors in resting and 

activated T cells, by RT-qPCR and immunoblotting. In order to identify possible splicing 

factors that could bind to the ISE present in CD6 intron 4 we performed and in silico 

analysis using SFmap tool (http://sfmap.technion.ac.il/index.html). We found that within 

the nt 297-629 regulatory sequence in intron 4 there are several putative binding sites for 

splicing factors such as SRSF1, SRSF2, SRSF3, SRSF5, SRSF6, hnRNPA1, hnRNPAB, 

hnRNPH/F and PTB as determined by bioinformatics analyses (Figure II.12). We focused 

on those presenting the highest SFmap algorithm scores, ie SRSF1 (average score: 0,8), 

SRSF3 (average score: 0,7) and hnRNPA1 (average score: 0,9) with a cutoff value of 0,6.  

 

Figure II.12 – Putative binding sites for RNA binding proteins in the region deleted 

in i4Δ6. In silico analysis using the SFmap bioinformatics tool 

(http://sfmap.technion.ac.il/index.html) revealed putative binding sites for several splicing 

factors, represented in different colours.  

 

Upon PHA-induced T cell activation, SRSF1 mRNA and protein levels were 

decreased by ~50 %, however there were no significant alterations in mRNA or protein 

expression levels of either hnRNP A1 or SRSF3 (Figure II.13A and B).  

http://sfmap.technion.ac.il/index.html
http://sfmap.technion.ac.il/index.html


 

Chapter II – Research Work 

 
 
 

  65  

 

Figure II.13 – SRSF1 expression decreases upon T cell activation. (A) Quantitative 

PCR analysis of SRSF1, hnRNP A1 and SRSF3 expression levels in resting and activated 

T cells. (B) SRSF1, hnRNP A1 and SRSF3 protein levels in resting and activated T cells. 

Error bars represent s.e.m and asterisks are statistical significant (* p<0,05, student t-

test), n=3. 

 

 

To investigate the role of the differential SRSF1 levels observed upon T cell activation 

in CD6 alternative splicing, we used overexpression and siRNA depletion assays in 

PBMCs (Figure II.14 and II.15). Remarkably, overexpression of SRSF1 resulted in 75% 

reduction in the expression of the CD6Δd3 isoform (Figure II.14A). Overexpression of 

hnRNPA1 and SRSF3 also induced significant changes in CD6Δd3 expression (1.5-fold 

increase and 2-fold decrease, respectively), suggesting that changes in their protein 

expression, when existent, may also affect CD6 alternative splicing (Figure II.14A).  

 

Figure II.14 – Effect of SRSF1, SRSF3 and hnRNP A1 overexpression on CD6d3 

mRNA levels. (A) Graphic representation of the quantification of CD6Δd3 mRNA isoform 
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expression levels upon SRSF1, hnRNP A1 or SRSF3 overexpression in PBMCs. (B) 48 

hours after transfection with T7-epitope-tagged plasmids containing the respective cDNA 

sequence to overexpress SRSF1 (pCGT7SF2,), hnRNP A1 (pCGT7A1) and SRSF3 

(pCGT7SRp20), cell lysates were prepared for immunoblotting with an anti-T7 epitope 

antibody. Error bars represent s.e.m and asterisks are statistical significant (* p<0,05, ** 

p<0,01, student’s t-test), n=3. 

 

 

To confirm these results, the same splicing factors were siRNA knocked-down 

individually (Figure II.15A and B). To knockdown SRSF1 we used only one siRNA 

oligonucleotide sequence, the same that has been used by Das and collaborators (339), 

however to knockdown hnRNP A1 two different siRNA oligonucleotides were used as it 

has been described by Huelga and collaborators (340).  

 

Figure II.15 – Effect of SRSF1, hnRNP A1 and SRSF3 knockdown on CD6d3 mRNA 

levels. (A) SRSF1, hnRNP A1 and SRSF3 mRNA levels upon transfection of siRNAs at 

three different concentrations (50, 150 and 300 nM). (B) SRSF1, SRSF3 and hnRNP A1 

protein levels upon siRNAs transfection and respective knockdown efficiency. Ctrl 

(control) – cells transfected with scramble siRNA (C) Graphic representation of the 

quantification of CD6Δd3 mRNA isoform expression levels upon SRSF1, hnRNP A1 or 
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SRSF3 knockdown. Error bars represent s.e.m and asterisks are statistical significant (* 

p<0,05, student’s t-test), n=3. 

 

 

In order to decrease SRSF3 expression levels we also used two different siRNA 

oligonucleotides that have been designed by Sigma Aldrich. Cells were transfected with 

three different concentrations of siRNAs (50, 150 and 300 nM) and the mRNA expression 

levels of SRSF1, hnRNP A1 and SRSF3 were analyzed by qPCR (Figure II.15A). 

The chosen conditions were 50 nM of siRNA to target SRSF1, 50 nM of the 

combination of both sequences that target SRSF3 and 300 nM of the combination of both 

sequences that target hnRNP A1 and then knockdown efficiencies were analyzed by 

western blot (Figure II.15B).  In relation to the SRSF1, hnRNP A1 and SRSF3 knockdown 

results, we observed a conversed effect in CD6d3 isoform expression (Figure II.15C). 

Taken together these results indicate that these 3 splicing factors, SRSF1, hnRNP A1 and 

SRSF3 play an important role in the regulation of CD6 exon alternative splicing more 

concretely SRSF1 and SRSF3 are important for exon 5 inclusion whereas hnRNP A1 is 

important for exon 5 skipping. 

 

 

SRSF1 and hnRNP A1 bind to CD6 intron 4 ISE 

It was important to understand if the three splicing factors described above, having an 

effect in CD6 exon 5 alternative splicing regulation, could bind to the intronic splicing 

enhancer (ISE) identified in CD6 intron 4. Therefore, UV crosslinking and 

immunoprecipitation assays were performed using the sequence deleted from i4Δ6 as a 

pre-mRNA template, nuclear protein extracts prepared from PBMCs and antibodies 

against SRSF1, hnRNP A1 and SRSF3 (Figure II.16A). As it can be seen, the splicing 

factor SRSF1 binds to this element in intron 4 (Figure II.16B).  We also detected the 

binding of hnRNP A1 to the intron 4 ISE however we could not detect the binding of 

SRSF3 to this region (Figure II.16B). 
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Figure II.16 – SRSF1 and hnRNP A1 bind to the ISE in intron 4. (A) Schematic 

representation of UV-crosslinking and immunoprecipitation assay. PBMCs nuclear 

extracts were incubated with 32P-radiolabeled RNA template and cross-linked by UV light. 

RNase A digested all the RNA sequence that was not bound to protein. Using a specific 

antibody it was possible to immunoprecipitate the protein of interest.  (B) UV-crosslinking 

and immunoprecipitation with specific antibodies showing SRSF1 and hnRNP A1 binding 

to the i4Δ6 sequence. Asterisks point out the band of the immunoprecipitated protein. 

 

 

SRSF1 recruitment to CD6 primary transcript is affected my chromatin 

hyperacetylation 

Given the observed decrease in SRSF1 expression upon T cell activation and the 

effect of this factor on CD6 exon 5 AS, we hypothesized that the recruitment of SRSF1 to 

the regulatory element of intron 4 was the limiting factor for exon 5 inclusion. To 

investigate this we performed RNA immunoprecipitation (RIP) with a specific antibody for 

SRSF1 and CD6 primers targeting the ISE of intron 4 (Figure II.17A). Indeed, upon cell 

stimulation with PHA, a marked decrease of the recruitment of SRSF1 to the intron 4 was 

evident when compared with untreated cells (Figure II.17B), which could be due to the 

decreased expression of SRSF1 in activated T cells.  

As it has been previously shown (Figure II.6A) T cell activation induces an increase of 

CD6 acetylation levels and TSA treatment per se induces exon 5 skipping (Figure II.6B). 

Thus, we asked if chromatin acetylation could have an impact in SRSF1 recruitment. We 

therefore treated PBMCs with TSA and performed RIP as previously. Importantly, the 

recruitment of SRSF1 to CD6 pre-mRNA was also prevented by TSA treatment (Figure 

II.17B).  
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Figure II.17 – SRSF1 is less recruited to CD6 pre-mRNA upon T cell activation and 

this effect is acetylation dependent. (A) Schematic representation of RNA 

Immunoprecipitation assay (RIP). A RNA binding protein (RBP) is immunoprecipitated 

together with it the target RNA. After RNA isolation and cDNA synthesis a qPCR analysis 

is done using specific primers  (B) RIP showing a decrease in SRSF1 recruitment levels 

to the CD6 primary transcript in PHA or TSA treated PBMCs (* p<0,05, student’s t-test), 

n=3. (C) SRSF1 protein expression levels determined by western blot do not change in 

untreated (-) and TSA treated (+) T cells.  

 

 

As TSA induces chromatin hyperacetylation this result indicates that an increased 

chromatin acetylation level also impairs SRSF1 recruitment to CD6 pre-mRNA or that TSA 

could have a direct effect in SRSF1 expression leading to a decrease of SRSF1 levels in 

treated cells. To investigate this possibility we analyzed SRSF1 protein levels in untreated 

and TSA treated T cells isolated from healthy donors. We observed no significant changes 

in the expression of this splicing factor upon TSA treatment (Figure II.17C). This confirms 

that the diminished recruitment of SRSF1 to CD6 pre-mRNA observed by RIP assays 
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(Figure II.17 B) is not due to alterations in SRSF1 protein levels upon T cell activation, but 

that the increased chromatin acetylation levels drastically decrease this recruitment. 

Some splicing factors have been shown to lose their nucleoplasm localization and 

localize at nuclear speckles upon induction of chromatin acetylation (259), therefore we 

performed immunofluorescence microscopy to investigate if there was any differential 

nuclear localization of SRSF1 upon T cell activation. After T cells activation with PHA, it is 

visible that SRSF1 is more agglomerated in bright dots in the nucleus and less scattered 

at the nucleoplasm in comparison to resting T cells (Figure II.18).  

 

 

Figure II.18 – SRSF1 nucleoplasmic localization decreases upon T cell activation. 

Immunostaining for endogenous SRSF1 (in red) in human primary T cells. DNA was 

stained with DAPI (blue). 

 

 

This effect on SRSF1 intranuclear localization is probably due to the increased chromatin 

acetylation induced by T cell activation and it is possible that this delocalization of SRSF1 

modulates CD6 exon 5 alternative splicing. 
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Overall, our results indicate that not only SRSF1 is less expressed upon T cell 

activation, but also that it is less recruited to an ISE present in intron 4 of the CD6 primary 

transcript, by a mechanism that is dependent on chromatin acetylation levels, all resulting 

in a significant increase in exon 5 skipping. 

 

 

The ERK pathway is involved in the regulation of CD6 exon 5 alternative 

splicing 

Alternative splicing is extensively regulated in the immune system, but the T cell 

signaling pathways directly involved are still poorly understood. To identify the signaling 

cascades that regulate splicing and culminate in CD6 exon 5 skipping upon T cell 

activation, we stimulated T cells in the presence of inhibitors of key effectors of different 

signaling pathways (Figure II.19A), then isolated total RNA and analysed the splicing 

pattern of CD6 exon 5 in each condition. First, we used the Src family kinase (SFK) 

specific inhibitor PP2 (4-Amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine) 

(341). The conditions were optimized using three different concentrations (0,5; 2 and 20 

μM) (Figure II.19B). As previously shown, activation with PHA induced a marked decrease 

in the CD6FL/CD6Δd3 mRNA ratio that is visualized by the increment of the CD6Δd3 

mRNA isoform (Figure II.19B). However, using PP2 this effect was partially and 

completely cancelled at 2 and 20 μM PP2, respectively. This indicates that Lck or Fyn, or 

eventually both, are critical mediators of the signals that induce exon 5 skipping.  

In order to deepen the identification of the signaling intervenients in the regulation of 

CD6 exon 5 AS, we used other inhibitors: cyclosporin A (CsA) that inhibits calcineurin 

(342), U0126 that inhibits MEK1/2 (343), wortmannin (WMN) that inhibits PI3K (344) and 

farnesylthiosalicylic acid (FTS) that inhibits Ras signaling (345). Downstream and 

radiating from the SFK-mediated effects, it seems that no single pathway is fully 

accountable for the regulation of CD6 alternative splicing, although it appears that 

calcineurin, PI3-kinase and Ras are not involved (Figure II.19C and D). Using a MEK1/2 

inhibitor (U0126), exon 5 skipping was partially cancelled with a reduction in mRNA 

isoforms ratio of up to 2-fold (Figure II.19C and D). These results indicate that the ERK 

pathway is involved in the delivery of T cell activation signals to the splicing machinery 

involved in CD6 exon 5 alternative splicing.  



 

Chapter II – Research Work 

 
 
 

  72  

          

 

Figure II.19 - CD6 exon 5 activation-induced alternative splicing is mediated by src-

kinases and the ERK pathway. (A) T cell signaling pathways indicating the inhibited 

signal intervenients and respective inhibitors (image adapted from Bosque and Planelles 

2009 (346)  (B) and (C) Semi-quantitative RT-PCR analysis of CD6 exon 5 AS pattern in 

resting, PHA activated and signaling inhibited PBMCs. The ratio between both mRNA 

isoforms (CD6FL/CD6d3) was calculated and normalized to the resting cells condition. 

(C) Graphic representation of CD6FL/CD6Δd3 ratio quantification in PBMCs treated with 2 

μM PP2, 10 μg/ml cyclosporin A, 10 μM U0126, 50 nM wortmannin, 75 μM 
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farnesylthiosalicylic acid (FTA). Error bars represent s.e.m and asterisk is statistical 

significant (* p<0,05 student’s t-test), n=3. 
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DISCUSSION 

Upon antigen recognition, the balance between activatory and inhibitory signals 

determines the activation state of a T cell. The first type of signals include the affinity of a 

given T cell receptor to a specific antigenic peptide presented in the context of MHC 

complexes displayed at the surface of antigen presenting cells, and also all the signaling 

machinery that relays the information received at the cell surface down to the nucleus. 

This consists on a well-structured pathway that sequentially activates effector enzymes 

and adapters, such as the Src-family kinases Lck and Fyn that phosphorylate the ITAMs 

of the CD3 complex, the kinase ZAP-70 that upon binding to phosphorylated ITAMs 

becomes activated and phosphorylates the membrane adapter LAT, which in turn serves 

as a docking platform for many downstream effectors such as PLC-γ, PI3-kinase, GADS, 

Grb2/Sos1 connecting to the Ras-MAPK pathway, Itk and SLP-76 among others (347).  

On the other hand, there are a few receptors such as CD5 and CD6 that limit TCR-

mediated responses at the onset of activation. In the case of CD5, this is achieved 

through the phosphorylation-dependent recruitment of signaling inhibitory enzymes such 

as the phosphatase SHP-1, the ubiquitin ligase Cbl, and the Ras GTPase-activating 

protein (348, 349). The kinases that promote these associations by phosphorylating 

tyrosine residues in the cytoplasmic tail of CD5 are the same Lck and Fyn that induce 

positive signaling via the TCR/CD3 complex (350, 351). Regarding CD6, it is still not clear 

how signaling attenuation is achieved, as none of the CD5-associated inhibitors have 

been reported to associate with CD6. On the contrary, upon activation and 

phosphorylation, CD6 becomes packed with effector enzymes and adapters such as Lck, 

Fyn, ZAP-70, Itk and SLP-76, all connoted with productive signaling and full T cell 

activation (33, 36).  

One hypothesis to explain the inhibitory properties of CD6 is that the receptor may 

function as a decoy adapter, having high affinity for the signaling mediators and thus 

removing much of the activation potential away from the sites of TCR-mediated signaling 

initiation. On this line, it is attractive to ponder that upon T cell activation, to promote the 

skipping of the exon that encodes the ligand-binding domain is a very enticing way of 

removing this inhibitory receptor away from the immunological synapse and thus favor a 

stronger stimulus. The present thesis focused on the identification of CD6 exon 5 

alternative splicing regulatory elements and factors that are induced following T cell 

activation and have a striking impact on the subcellular localization of CD6, or more 

appropriately, on the alternative isoform CD6∆d3.  
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Although this strategy to remove inhibition from the sites of activation may appear 

complex and intricate, the molecular mechanisms utilized to induce exon 5 skipping 

revealed to be surprisingly and paradoxically simple.  

 

The role of chromatin structure modulation upon T cell activation in CD6 

exon 5 alternative splicing  

 

The importance of chromatin structure in alternative splicing regulation has been 

extensively documented, in particular the impact that these structural changes have in 

RNA polymerase II elongation rate. Compact chromatin structures can difficult RNA Pol II 

transcription whereas a relaxed chromatin structure is in principle more permissive to 

transcription, representing an open path for RNA Pol II along the gene. 

In other to find out if CD6 gene could undergo transcriptional changes we performed 

gene expression analysis that revealed an increase of CD6 expression due to T cell 

activation. This result that was also corroborated by Chromatin Immunoprecipitation 

analysis that showed an augmented RNA Pol II occupancy upon T cell activation (Figure 

II.3).  

This increased RNA Pol II occupancy on the CD6 gene led us to hypothesize, that a T 

cell activation-dependent chromatin structural change could occur. Performing chromatin 

immunoprecipitation assay using an antibody against H3K9ac we observed a boost in 

histone acetylation levels on the CD6 gene after T cell activation (Figure II.6A), which 

would lead to a more accessible chromatin state and thus facilitate CD6 transcription and 

exon 5 skipping.  

Chromatin structure and histone modifications can affect alternative splicing outcome 

and the opposite is also true. Indeed, De Almeida and colleagues showed that intron-

containing genes have higher levels of H3K36me3 in comparison to intron less genes and 

that inhibition of splicing causes a decrease in the H3K36me3 levels together with a 

decrease in the HYPB/Setd2 methyltransferase recruitment (332). Despite the already 

described association of H3K36me3 and H3K9me3 with the regulation of alternative 

splicing events (207, 268, 271, 274), the results of chromatin immunoprecipitation 

experiments presented in this thesis do not show a correlation between CD6 exon 5 

alternative splicing and those histone marks.  

Tilgner and collaborators have shown in a high-throughput study that there is a 

relationship between nucleosome positioning and exon definition. They found higher 
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nucleosome occupancy in human and Caenorhabditis elegans exons with weak splice 

sites. Conversely, they have found that pseudoexons - intronic sequences that are not 

included in mRNAs but are flanked by strong splice sites show nucleosome depletion 

(263). The current view is therefore that nucleosomes act as an extra signal for 

spliceosome to recognize the exons that have weak splice sites and are thus more 

vulnerable to skipping (263, 266, 352, 353). In our studies, by micrococcal nuclease 

digestion, we observed an increase of nucleosome occupancy in CD6 exon 5 region, 

confirming a possible poor definition of exon 5 that makes it more susceptible to be 

skipped (Figure II.4). 

RNA Pol II transcription elongation rate has been demonstrated to affect alternative 

splicing (87) and an effect on alternative polyadenylation has been previously shown 

(354). According to the RNA Pol II kinetic coupling model that integrates alternative 

splicing with transcription kinetics, the RNA Pol II elongation rate affects alternative exon 

inclusion, depending on the strength of the splice sites. Considering the scenario of an 

intron with weak 3’ splice site followed by a strong 3’ splice site in the downstream intron, 

a high RNA Pol II elongation rate, allows the presentation of both splice sites to the 

spliceosome machinery at the same time, promoting the competition between them and 

resulting in the recognition of the strongest splice site by the spliceosome, leading to exon 

skipping. A lower RNA Pol II elongation rate allows more time for the spliceosome 

machinery to recognize the weak 3’ splice site before transcribing the downstream 3’ ss 

and thus leading to the inclusion of the first exon (252, 253, 355). 

Kadener et al. showed that a compact chromatin structure of a replicated reporter 

plasmid acted as a barrier to RNA polymerase II elongation, leading to a higher exon 

inclusion. This effect was reverted by inhibition of histone deacetylases (HDAC), using 

Trichostatin A, which promotes histone acetylation and a subsequent chromatin “opening” 

(221, 222). Schor and collaborators characterized a change in chromatin structure upon 

neuronal cell depolarization that induces the skipping of the alternative exon 18 of NCAM 

mRNA (268). These results and in particular the relationship between an extracellular 

stimuli, in this case from another neuron, with the regulation of alternative splicing through 

the modulation of the chromatin structure led us to hypothesize that these mechanisms 

could also apply to exon 5 alternative splicing and prompted us to investigate the role of 

acetylation and chromatin structure changes in CD6 gene. The results of the present work 

showed that T cell treatment with the HDAC inhibitor, TSA, results in increased skipping of 

exon 5, mimicking the effect of T cell activation on CD6 alternative splicing (Figure II.6B 

and C). Conversely, the decreased in RNA Pol II elongation rate induced by Camptothecin 

treatment promotes the inclusion of exon 5 (Figure II.6B and C).  
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Taken together, our results indicate that alterations in the chromatin structure that 

occur upon T cell activation and an increase in the transcription rate of CD6 may favor 

exon 5 skipping from primary transcripts. The fact that the most mature rat SP (Single 

Positive) thymocytes, which have higher CD6 expression than DP (Double Positive) 

thymocytes, present increased levels of exon 5 skipping (32, 65) seems to corroborate our 

interpretation that the levels and rate of transcription of the CD6 gene are co-responsible 

for the generation of an alternative transcript. 

 

RNA cis-elements and trans-acting factors regulate CD6 exon 5 splice 

site choice 

 

The selection of 5’ and 3’ splice sites in pre-mRNA is governed in part by RNA 

sequences – the “splicing code” - and RNA binding proteins (106, 356, 357). SR and 

hnRNP proteins, through the binding to regulatory elements present in the primary 

transcript play an important role, regulating the recognition of the splice sites by the 

spliceosome machinery. To indentify the RNA motifs and the trans-acting factors in the 

regulation of CD6 exon 5 alternative splicing, we used a minigene that mimics the 

endogenous CD6 exon 5 splicing event (Figure II.8). We identified a highly conserved 

regulatory element localized in intron 4, containing a complex set of splicing enhancers 

and silencers that strongly regulates exon 5 inclusion (Figure II.9, II.10 and II.11). An in 

silico analysis revealed the presence of several putative binding sites for different RNA 

binding proteins from SR and hnRNP families (Figure II.12). This indication led us to 

quantify the expression of some of these splicing factors in resting and activated T cells 

(Figure II.13). We observed that the expression of SRSF1 was decreased upon T cell 

activation while that of hnRNP A1 and SRSF3 remained approximately constant (Figure 

II.13).  It was important then to evaluate if changing the concentration levels of these 

splicing factors in T cells could affect the CD6 exon 5 alternative splicing pattern. By 

overexpression (Figure II.14) and knockdown (Figure II.15) experiments, we showed that 

all three factors modulate CD6 exon 5 alternative splicing (SRSF1 and SRSF3 promote 

exon 5 inclusion whereas hnRNP A1 increases exon 5 skipping), but only SRSF1 had its 

expression effectively decreased in activated T cells. Performing UV-crosslinking and 

immunoprecipitation assays we identified SRSF1 and hnRNPA1 binding to the ISE 

located in the CD6 intron 4 pre-mRNA sequence. However we could not detect the 
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binding of SRSF3 to this element, probably because it is binding to another element 

(Figure II.16).  

SRSF1 is a prototype member of the SR protein family of splicing factors with a role 

in alternative splicing (139, 358-360). SRSF1 has been extensively studied and several 

target transcripts have been identified (148-150, 156, 186-188). 

It has been described that SRSF1 and hnRNP A1 can compete and regulate the 

binding of U1 snRNP to a 5’ splice site, thus regulating the inclusion or skipping of an 

alternative exon, respectively (123, 153).  

 In a T cells resting state, with a basal transcription rate of CD6 gene, the alternative 

isoform CD6d3 is also expressed, although in low levels. In this way, we could envision a 

scenario in which hnRNP A1 could competes with SRSF1 for the binding to the ISE 

regulating CD6 exon 5 alternative splicing in resting T cells. 

Our results indicate that, upon T cell activation, a deficit of SRSF1 dictate exon 5 

exclusion. Taking into account the higher levels of CD6 transcription in activated T cells 

SRSF1 is most likely the limiting factor, leading to an increase in CD6Δd3 mRNA 

production.  

 

T cell activation impairs SRSF1 recruitment to CD6 primary transcript 

 

We detected a decrease in SRSF1 recruitment to the CD6 primary transcript in 

activated T cells (Figure II.17B) that could be explained not only by a decrease in SRSF1 

expression, but also by increased chromatin acetylation levels, as shown by others (259). 

Our ChIP experiments for H3K9ac revealed an increase of CD6 acetylation level upon T 

cell activation. Accordingly, when we treated cells with an HDAC inhibitor (TSA), we 

observed less SRSF1 recruitment to CD6 primary transcript (Figure II.17B). By inducing 

chromatin hyperacetylation we were recreating the effect that T cell activation has at the 

chromatin level, and thus we observed less SRSF1 recruitment to the CD6 primary 

transcript (Figure II.17B).  

There was the possibility that TSA could have an effect on SRSF1 expression 

decreasing the levels of this splicing factor and thus leading to exon 5 skipping. However 

by western blotting analysis we also clarified that TSA treatments do not affect SRSF1 

protein expression levels (Figure II.17C) supporting that chromatin acetylation decreases 

SRSF1 availability at the CD6 primary transcript level. A similar effect was observed in 

neuroblastoma cells by Schor and collaborators, showing that upon cell membrane 
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potential depolarization, chromatin acetylation lead to an accumulation of SRSF1 in the 

nuclear speckles, being less recruited to the primary transcripts and compromising the 

splicing of nascent RNAs (259).  To investigate if this phenomenon could also happen in T 

cells we performed immunofluorescence microscopy using resting and activated T cells. 

In resting T cells, although some aggregates of this protein can be seen, SRSF1 is 

scattered in the nucleus. In activated T cells it is visible that SRSF1 is less present at the 

nucleoplasm and the speckle dots are brighter and more pronounced (Figure II.18). 

It has been shown that the long noncoding RNA (lncRNA) MALAT-1, one of the 

components of nuclear speckles, could bind to SRSF1 and other SR proteins and act as a 

“molecular sponge” regulating the levels of nucleoplasmic SRSF1 (276). However, Schor 

and collaborators shown that the total levels of MALAT-1 in HeLa cells remain similar after 

TSA treatment, suggesting that the accumulation of splicing factors in the nuclear 

speckles is not due to increased presence of MALAT-1 in the granular compartment 

rulling out the hypothesis that increased levels of chromatin acetylation could increase 

MALAT-1 expression to act as a “sponge” of free SRSF1 (259). It is possible that upon T 

cell activation and increased chromatin acetylation levels, MALAT-1 may sequester 

SRSF1 at the nuclear speckles controlling its nuclear distribution and thus affecting CD6 

exon 5 alternative splicing. However, this needs to be fully investigated, and in particular it 

is not known if the levels of MALAT-1 may vary upon activation of primary human T cells. 

 

ERK pathway signals for CD6 exon 5 alternative splicing 

 

The weight of a particular signal transduction pathway in the regulation of alternative 

splicing is still poorly understood. Nevertheless, some concepts have begun to emerge on 

how extracellular stimuli can be communicated to specific RNA-binding proteins that 

control splice site selection by the spliceosome (283, 293). To identify the signaling 

pathways involved in CD6 exon 5 alternative splicing upon T cell activation we made use 

of inhibitors for key signaling effectors of different signaling cascades. We found that the 

Src-family kinases Lck and/or Fyn are key transducers of the information leading to 

alternative CD6 splicing. Further downstream, the MAPK-ERK pathway also seems to be 

utilized to induce alternative splicing of CD6 (Figure II.19). Interestingly, we showed 

(Figure II.2) that stimulation of CD6 receptor conjugated with stimulation of CD3 receptor 

in primary T cells increases CD6 exon 5 skipping as it happens when T cells are activated 

with PHA. It has been shown that CD6 stimulation (with the direct binding of specific 



Chapter III – Discussion 

 
 
 

  83  

mAbs) induced Erk1/2 activation (63). In this way it is possible that CD6 signals the 

stimulus that will regulates the expression of its third extracellular domain through the 

activation of MAPK-ERK pathway. 

Curiously, previous studies have shown that acetylation of histone H3 is regulated by 

the Erk pathway (361, 362) and we found an increase in H3 acetylation at the body of the 

CD6 gene in activated T cells. We could hypothesize that Erk signaling promotes the 

increase in CD6 acetylation levels upon T cell activation. 

The working model we propose for the regulation of CD6 exon 5 alternative splicing 

upon T cell activation is depicted in figure II.20.  

 

 

 

Figure II.20 - Proposed model of CD6 exon 5 alternative splicing regulation upon T 

cell activation. Resting T cells present basal CD6 H3K9 acetylation levels and SRSF1 is 

efficiently recruited to an intron 4 enhancer (green rectangle) leading to preferential 

inclusion of exon 5 in the CD6 pre-mRNA. In activated T cells, there is an increase in CD6 

expression levels together with an increase of CD6 H3K9 acetylation levels and a 

decrease in the recruitment of SRSF1 to the ISE causing an increase in exon 5 skipping 

and CD6d3 mRNA production. 
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In resting conditions, T cells have a basal CD6 transcription level, with sufficient SRSF1 

levels to bind to the intron 4 regulatory element. In these conditions, SRSF1 promotes the 

inclusion of exon 5 in the majority of mature mRNAs. Upon T cell activation, the Erk signal 

transduction pathway is activated (363, 364) leading to an increase of CD6 acetylation 

and consequently to a chromatin structure modification that facilitates CD6 transcription. 

Under these activation conditions, there is a deficit of SRSF1 and a decrease in its 

recruitment to CD6 pre-mRNA necessary for exon 5 inclusion, and this exon is thus 

skipped producing CD6Δd3. Taken together, we showed that the human T cell activation-

induced alternative splicing of the CD6 is regulated at multiple levels, with chromatin 

acetylation, transcription rate and SRSF1 having fundamental roles. As CD6 has been 

associated with several autoimmune diseases, the molecular mechanisms regulating CD6 

alternative splicing upon activation of human T cells provide new insight in a 

physiologically relevant molecule. 
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CONCLUDING REMARKS & FUTURE PERSPECTIVES 

Given the potential of alternative splicing to broadly shape cellular function the 

knowledge of the mechanisms that are involved in its regulation in the immune system is 

of extreme importance, and may help to elucidate some disease scenarios in the future. 

Alternative splicing of exon 5 in the CD6 transcript is physiologically and functionally 

relevant, as the differential expression of the membrane-proximal SRCR domain coded by 

that exon determines CD6 and CD166 localization or exclusion from the immunological 

synapse. 

CD6 is an important molecule that modulates T cell activation. In one hand, CD6 

works as an adhesion molecule, stabilizing the T cell-APC contact and can trigger co-

stimulatory signals in association with signaling molecules such as Lck, Fyn, Itk and ZAP-

70, important for T cell activation (34, 36). In the other hand, cells expressing CD6 have 

been shown to present reduced Ca2+ responses, less IL-2 production and less T cell 

proliferation (34). T cells that are incubated with cells expressing CD6 ligand, CD166, 

proliferate less than those incubated with cells lacking CD166, showing the importance of 

the CD6-CD166 interaction in the reduction of T cell proliferation (34). In this way it is 

plausible that the increased skipping of the exon that codes for the ligand-binding domain, 

that occurs after T cell activation may be a mode to escape this inhibitory stimuli and 

increase the potential of the T cell for proliferation. Taking this into consideration it would 

be interesting to assess if, when incubated with cells expressing CD166, T cells 

expressing only the CD6d3 isoform, that lacks the ligand-binding domain, proliferate 

more than cells expressing the CD6 full length isoform only. 

Moreover, it would be very important to investigate at the protein level the effect on 

CD6 exon 5 AS that we have shown in this work at the mRNA level, by simply modulating 

the expression levels of SRSF1, SRSF3 and hnRNP A1, in resting T cells and under basal 

CD6 transcription levels. It would be expectable that resting T cells overexpressing 

SRSF1, for example, would produce higher levels of CD6 full length isoform and 

proliferate less, upon interaction with CD166, than T cells overexpressing with hnRNP A1 

that would produce more CD6d3 isoform, and should present an increased proliferation. 

Although increased chromatin acetylation induced by TSA treatments is not sufficient 

to increase MALAT-1 expression in HeLa cells (259), it is not known if MALAT-1 

expression increases upon T cell activation, which should cause an increased SRSF1 

localization at the speckles. If this were the case, then chromatin acetylation would 

regulate CD6 exon 5 AS, by simply modulating chromatin structure and facilitating RNA 

Pol II transcription, increasing CD6 transcripts levels, whereas MALAT-1 could be the 
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responsible for sequestering SRSF1. Therefore, it would be important to evaluate MALAT-

1 expression and a possible interaction with SRSF1 in resting and activated T cells as well 

as expression changes of MALAT-1 in both conditions.   

Concerning the differential expression of CD6 during thymic maturation, an increased 

CD6 expression together with an increase of exon 5 skipping in SP thymocytes in 

comparison to DP thymocytes that express lower levels of CD6, it is easily questionable if 

there is any difference in the CD6 acetylation levels between these two thymocytes 

populations and also if there is any differential recruitment of SRSF1 to the CD6 primary 

transcript or differential SRSF1 nuclear localization in SP and DP thymocytes. Chromatin 

and RNA immunoprecipitations as well as Immunofluorescence assays using SP and DP 

thymocytes could reveal new interesting results. 

A previous study have shown that cross-linking of a CD6 mAb induced the activation 

of the Erk1/2, JNK and p38 kinases, showing the involvement of CD6 in MAPK signaling 

(63). In this thesis, the T cell stimulation with α-CD6 and α-CD3, led to an increased in the 

skipping of CD6 exon 5 similarly to what happens upon T cell stimulation with PHA (Figure 

II.2). Considering the involvement of CD6 in the activation of Erk pathway (63) and that 

inhibition of this pathway can restore the resting pattern of CD6 exon 5 alternative 

splicing, increasing exon 5 inclusion (Figure II.19) we may suggest that CD6 can exhibits 

a self-regulation, being responsible for signaling the stimuli that leads to the loss of its 

third extracellular domain. Having this in mind, it would be interesting to determine firstly if 

CD6 stimulation induces increased CD6 acetylation and increased CD6 expression levels 

and secondly if inhibition of Erk pathway with U0126 counteracts those effects. 

The recent findings relating CD6 exon 5 alternative splicing with multiple sclerosis has 

magnified the importance of the present work.  

The multiple sclerosis patients homozygous for a risk allele characterized by a SNP 

rs7824933GG in intron 1 of CD6, showed less expression of CD6 full length isoform and 

increased expression of the alternative isoform lacking exon 5, CD6d3. This group of 

patients with increased expression of CD6d3 also presented less proliferative CD4+ T 

cells (66). Expression of CD166 has been shown to be upregulated in the endothelial cells 

in the blood-brain barrier (BBB) of patients with multiple sclerosis, who also presented 

increased leukocyte migration across the BBB into the central nervous system (CNS) (52). 

The trafficking into the CNS of a subset of CD4+ T cells known to suppress immune 

response, Tregs, has been suggested to occur through the interaction of CD6 with CD166 

(66). The increased expression of CD6d3 avoiding CD6-CD166 interaction due to the 

loss of the third extracellular domain, could prevent Tregs from entering the CNS. This 
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therefore explains how the SNP rs7824933GG could contribute to the loss of suppressor 

immune function and promote brain inflammation, typical in multiple sclerosis (66). 

Considering the regulatory mechanisms involved in CD6d3 expression unveiled in the 

present work, it would be very interesting to evaluate, in patients with multiple sclerosis 

the acetylation levels of CD6 gene as well as the CD6 mRNA levels, in comparison to 

healthy individuals. The expression levels and nuclear localization of the splicing factor 

SRSF1, that has been shown to be important for CD6 exon 5 inclusion, should also be 

addressed. It would be also interesting to see if the inhibition of the Erk pathway in CD4+ T 

cells of multiple sclerosis patients, could diminish the expression of the CD6d3 isoform, 

resulting in a consequent increase in the expression of CD6FL.  

The work in this thesis is an example of how an extracellular stimulus affects 

alternative splicing in the immune system, having a striking physiological consequence in 

CD6 membrane localization. Our results show that activation-induced CD6 exon 5 

skipping in T cells involves a deficit of the SRSF1 splicing factor on the primary transcript 

that together with changes in chromatin conformation and an increase in the RNA Pol II 

transcription rate of the CD6 gene, cooperate to the production of a CD6 mRNA isoform 

devoid of the ligand-binding domain being a contribution to the understanding of CD6 

expression regulation in health and disease.  

 

 

 



 
 
 

  90  

 

 
 

 

  



 
 
 

  91  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter V 

References 

 

 

 

  



 
 
 

  92  

 



Chapter V – References 

 
 
 

  93  

1. Flajnik, M. F., and L. Du Pasquier. 2004. Evolution of innate and adaptive 
immunity: can we draw a line? Trends in immunology 25: 640-644. 

2. Janeway, C. A., Jr., and R. Medzhitov. 2002. Innate immune recognition. Annual 
review of immunology 20: 197-216. 

3. Akira, S., S. Uematsu, and O. Takeuchi. 2006. Pathogen recognition and innate 
immunity. Cell 124: 783-801. 

4. Bianchi, M. E. 2007. DAMPs, PAMPs and alarmins: all we need to know about 
danger. Journal of leukocyte biology 81: 1-5. 

5. Pancer, Z., and M. D. Cooper. 2006. The evolution of adaptive immunity. Annual 
review of immunology 24: 497-518. 

6. Cooper, M. D., and M. N. Alder. 2006. The evolution of adaptive immune 
systems. Cell 124: 815-822. 

7. Boehm, T. 2011. Design principles of adaptive immune systems. Nature 
reviews. Immunology 11: 307-317. 

8. Chaplin, D. D. 2006. 1. Overview of the human immune response. The Journal 
of allergy and clinical immunology 117: S430-435. 

9. Shaw, A. S., and M. L. Dustin. 1997. Making the T cell receptor go the distance: a 
topological view of T cell activation. Immunity 6: 361-369. 

10. Smith-Garvin, J. E., G. A. Koretzky, and M. S. Jordan. 2009. T cell activation. 
Annual review of immunology 27: 591-619. 

11. Bromley, S. K., W. R. Burack, K. G. Johnson, K. Somersalo, T. N. Sims, C. Sumen, 
M. M. Davis, A. S. Shaw, P. M. Allen, and M. L. Dustin. 2001. The immunological 
synapse. Annual review of immunology 19: 375-396. 

12. Dustin, M. L., and J. A. Cooper. 2000. The immunological synapse and the actin 
cytoskeleton: molecular hardware for T cell signaling. Nature immunology 1: 
23-29. 

13. Grakoui, A., S. K. Bromley, C. Sumen, M. M. Davis, A. S. Shaw, P. M. Allen, and M. 
L. Dustin. 1999. The immunological synapse: a molecular machine controlling 
T cell activation. Science 285: 221-227. 

14. Monks, C. R., B. A. Freiberg, H. Kupfer, N. Sciaky, and A. Kupfer. 1998. Three-
dimensional segregation of supramolecular activation clusters in T cells. 
Nature 395: 82-86. 

15. Allenspach, E. J., P. Cullinan, J. Tong, Q. Tang, A. G. Tesciuba, J. L. Cannon, S. M. 
Takahashi, R. Morgan, J. K. Burkhardt, and A. I. Sperling. 2001. ERM-dependent 
movement of CD43 defines a novel protein complex distal to the 
immunological synapse. Immunity 15: 739-750. 



Chapter V – References 

 
 
 

  94  

16. Evans, E. J., L. Hene, L. M. Sparks, T. Dong, C. Retiere, J. A. Fennelly, R. Manso-
Sancho, J. Powell, V. M. Braud, S. L. Rowland-Jones, A. J. McMichael, and S. J. 
Davis. 2003. The T cell surface--how well do we know it? Immunity 19: 213-
223. 

17. Gonzalez, P. A., L. J. Carreno, C. A. Figueroa, and A. M. Kalergis. 2007. 
Modulation of immunological synapse by membrane-bound and soluble 
ligands. Cytokine & growth factor reviews 18: 19-31. 

18. Oliveira, M. I. A. 2007. Molecular Interactions at the T cell Surface. In Intituto 
de Ciências Bionédicas Abel Salazar. Universidade do Porto, Porto. 

19. Janssen, E. M., E. E. Lemmens, T. Wolfe, U. Christen, M. G. von Herrath, and S. P. 
Schoenberger. 2003. CD4+ T cells are required for secondary expansion and 
memory in CD8+ T lymphocytes. Nature 421: 852-856. 

20. Barry, M., and R. C. Bleackley. 2002. Cytotoxic T lymphocytes: all roads lead to 
death. Nature reviews. Immunology 2: 401-409. 

21. Deindl, S., T. A. Kadlecek, X. Cao, J. Kuriyan, and A. Weiss. 2009. Stability of an 
autoinhibitory interface in the structure of the tyrosine kinase ZAP-70 impacts 
T cell receptor response. Proceedings of the National Academy of Sciences of the 
United States of America 106: 20699-20704. 

22. Balagopalan, L., N. P. Coussens, E. Sherman, L. E. Samelson, and C. L. Sommers. 
2010. The LAT story: a tale of cooperativity, coordination, and choreography. 
Cold Spring Harbor perspectives in biology 2: a005512. 

23. Jordan, M. S., and G. A. Koretzky. 2010. Coordination of receptor signaling in 
multiple hematopoietic cell lineages by the adaptor protein SLP-76. Cold 
Spring Harbor perspectives in biology 2: a002501. 

24. Mittelstadt, P. R., J. M. Salvador, A. J. Fornace, Jr., and J. D. Ashwell. 2005. 
Activating p38 MAPK: new tricks for an old kinase. Cell Cycle 4: 1189-1192. 

25. Fiering, S., J. P. Northrop, G. P. Nolan, P. S. Mattila, G. R. Crabtree, and L. A. 
Herzenberg. 1990. Single cell assay of a transcription factor reveals a 
threshold in transcription activated by signals emanating from the T-cell 
antigen receptor. Genes & development 4: 1823-1834. 

26. Kamoun, M., M. E. Kadin, P. J. Martin, J. Nettleton, and J. A. Hansen. 1981. A 
novel human T cell antigen preferentially expressed on mature T cells and 
shared by both well and poorly differentiated B cell leukemias and 
lymphomas. J Immunol 127: 987-991. 

27. Mayer, B., I. Funke, B. Seed, G. Riethmuller, and E. Weiss. 1990. Expression of 
the CD6 T lymphocyte differentiation antigen in normal human brain. Journal 
of neuroimmunology 29: 193-202. 



Chapter V – References 

 
 
 

  95  

28. Sarrias, M. R., J. Gronlund, O. Padilla, J. Madsen, U. Holmskov, and F. Lozano. 
2004. The Scavenger Receptor Cysteine-Rich (SRCR) domain: an ancient and 
highly conserved protein module of the innate immune system. Critical reviews 
in immunology 24: 1-37. 

29. Jones, N. H., M. L. Clabby, D. P. Dialynas, H. J. Huang, L. A. Herzenberg, and J. L. 
Strominger. 1986. Isolation of complementary DNA clones encoding the 
human lymphocyte glycoprotein T1/Leu-1. Nature 323: 346-349. 

30. Goncalves, C. M., M. A. Castro, T. Henriques, M. I. Oliveira, H. C. Pinheiro, C. 
Oliveira, V. B. Sreenu, E. J. Evans, S. J. Davis, A. Moreira, and A. M. Carmo. 2009. 
Molecular cloning and analysis of SSc5D, a new member of the scavenger 
receptor cysteine-rich superfamily. Molecular immunology 46: 2585-2596. 

31. Law, S. K., K. J. Micklem, J. M. Shaw, X. P. Zhang, Y. Dong, A. C. Willis, and D. Y. 
Mason. 1993. A new macrophage differentiation antigen which is a member of 
the scavenger receptor superfamily. European journal of immunology 23: 
2320-2325. 

32. Singer, N. G., D. A. Fox, T. M. Haqqi, L. Beretta, J. S. Endres, S. Prohaska, J. R. 
Parnes, J. Bromberg, and R. M. Sramkoski. 2002. CD6: expression during 
development, apoptosis and selection of human and mouse thymocytes. 
International immunology 14: 585-597. 

33. Hassan, N. J., S. J. Simmonds, N. G. Clarkson, S. Hanrahan, M. J. Puklavec, M. 
Bomb, A. N. Barclay, and M. H. Brown. 2006. CD6 regulates T-cell responses 
through activation-dependent recruitment of the positive regulator SLP-76. 
Molecular and cellular biology 26: 6727-6738. 

34. Oliveira, M. I., C. M. Goncalves, M. Pinto, S. Fabre, A. M. Santos, S. F. Lee, M. A. 
Castro, R. J. Nunes, R. R. Barbosa, J. R. Parnes, C. Yu, S. J. Davis, A. Moreira, G. 
Bismuth, and A. M. Carmo. 2012. CD6 attenuates early and late signaling 
events, setting thresholds for T-cell activation. European journal of 
immunology 42: 195-205. 

35. Bott, C. M., J. B. Doshi, C. Morimoto, P. L. Romain, and D. A. Fox. 1993. 
Activation of human T cells through CD6: functional effects of a novel anti-CD6 
monoclonal antibody and definition of four epitopes of the CD6 glycoprotein. 
International immunology 5: 783-792. 

36. Castro, M. A., R. J. Nunes, M. I. Oliveira, P. A. Tavares, C. Simoes, J. R. Parnes, A. 
Moreira, and A. M. Carmo. 2003. OX52 is the rat homologue of CD6: evidence 
for an effector function in the regulation of CD5 phosphorylation. Journal of 
leukocyte biology 73: 183-190. 

37. De Jager, P. L., X. Jia, J. Wang, P. I. de Bakker, L. Ottoboni, N. T. Aggarwal, L. 
Piccio, S. Raychaudhuri, D. Tran, C. Aubin, R. Briskin, S. Romano, S. E. Baranzini, 
J. L. McCauley, M. A. Pericak-Vance, J. L. Haines, R. A. Gibson, Y. Naeglin, B. 
Uitdehaag, P. M. Matthews, L. Kappos, C. Polman, W. L. McArdle, D. P. Strachan, 



Chapter V – References 

 
 
 

  96  

D. Evans, A. H. Cross, M. J. Daly, A. Compston, S. J. Sawcer, H. L. Weiner, S. L. 
Hauser, D. A. Hafler, and J. R. Oksenberg. 2009. Meta-analysis of genome scans 
and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis 
susceptibility loci. Nature genetics 41: 776-782. 

38. Swaminathan, B., F. Matesanz, M. L. Cavanillas, I. Alloza, D. Otaegui, J. 
Olascoaga, M. C. Cenit, V. de las Heras, M. G. Barcina, R. Arroyo, A. Alcina, O. 
Fernandez, A. Antiguedad, E. Urcelay, and K. Vandenbroeck. 2010. Validation 
of the CD6 and TNFRSF1A loci as risk factors for multiple sclerosis in Spain. 
Journal of neuroimmunology 223: 100-103. 

39. Pedro C. Rodriguez, R. T.-M., Gil Reyes, Claudino Molinero, Dinorah Prada, Ana 
M. Lopez, Isabel M. Hernandez, Maria V. Hernandez, Jose P. Martinez, Xochel 
Hernandez, Angel Casaco, Mayra Ramos, Yisel Avila, Yinet Barrese, Enrique 
Montero, Patricia Hernandez. 2012. A clinical exploratory study with 
itolizumab, an anti-CD6 monoclonal antibody, in patients with rheumatoid 
arthritis. Results in Immunology 2: 204-211. 

40. E Montero, L. F., Y Morera, J Delgado, JF Amador, R Perez. 1999. CD6 molecule 
may be important in the pathological mechanisms of lymphocytes adhesion to 
human skin in psoriasis and ior T1 MAb a possible new approach to treat this 
disease. Autoimmunity 29: 155-156. 

41. R Alonso, C. B., C Le Dantec, S Hillion, JO Pers, A Saraux et al. 2010. Aberrant 
expression of CD6 on B-cell subsets from patients with Sjögren's syndrome. 
Journal of Autoimmunity 35: 336-341. 

42. Pinto, M., and A. M. Carmo. 2013. CD6 as a therapeutic target in autoimmune 
diseases: successes and challenges. BioDrugs : clinical immunotherapeutics, 
biopharmaceuticals and gene therapy 27: 191-202. 

43. Sarrias, M. R., M. Farnos, R. Mota, F. Sanchez-Barbero, A. Ibanez, I. Gimferrer, J. 
Vera, R. Fenutria, C. Casals, J. Yelamos, and F. Lozano. 2007. CD6 binds to 
pathogen-associated molecular patterns and protects from LPS-induced septic 
shock. Proceedings of the National Academy of Sciences of the United States of 
America 104: 11724-11729. 

44. Bowen, M. A., G. S. Whitney, M. Neubauer, G. C. Starling, D. Palmer, J. Zhang, N. J. 
Nowak, T. B. Shows, and A. Aruffo. 1997. Structure and chromosomal location 
of the human CD6 gene: detection of five human CD6 isoforms. J Immunol 158: 
1149-1156. 

45. Arman, M., J. Calvo, M. E. Trojanowska, P. N. Cockerill, M. Santana, M. Lopez-
Cabrera, J. Vives, and F. Lozano. 2004. Transcriptional regulation of human 
CD5: important role of Ets transcription factors in CD5 expression in T cells. J 
Immunol 172: 7519-7529. 

46. Tung, J. W., S. S. Kunnavatana, L. A. Herzenberg, and L. A. Herzenberg. 2001. 
The regulation of CD5 expression in murine T cells. BMC molecular biology 2: 5. 



Chapter V – References 

 
 
 

  97  

47. Arman, M., N. Aguilera-Montilla, V. Mas, A. Puig-Kroger, M. Pignatelli, R. Guigo, 
A. L. Corbi, and F. Lozano. 2009. The human CD6 gene is transcriptionally 
regulated by RUNX and Ets transcription factors in T cells. Molecular 
immunology 46: 2226-2235. 

48. Bowen, M. A., D. D. Patel, X. Li, B. Modrell, A. R. Malacko, W. C. Wang, H. 
Marquardt, M. Neubauer, J. M. Pesando, U. Francke, and et al. 1995. Cloning, 
mapping, and characterization of activated leukocyte-cell adhesion molecule 
(ALCAM), a CD6 ligand. The Journal of experimental medicine 181: 2213-2220. 

49. Bowen, M. A., J. Bajorath, A. W. Siadak, B. Modrell, A. R. Malacko, H. Marquardt, 
S. G. Nadler, and A. Aruffo. 1996. The amino-terminal immunoglobulin-like 
domain of activated leukocyte cell adhesion molecule binds specifically to the 
membrane-proximal scavenger receptor cysteine-rich domain of CD6 with a 
1:1 stoichiometry. The Journal of biological chemistry 271: 17390-17396. 

50. Patel, D. D., S. F. Wee, L. P. Whichard, M. A. Bowen, J. M. Pesando, A. Aruffo, and 
B. F. Haynes. 1995. Identification and characterization of a 100-kD ligand for 
CD6 on human thymic epithelial cells. The Journal of experimental medicine 
181: 1563-1568. 

51. Hassan, N. J., A. N. Barclay, and M. H. Brown. 2004. Frontline: Optimal T cell 
activation requires the engagement of CD6 and CD166. European journal of 
immunology 34: 930-940. 

52. Cayrol, R., K. Wosik, J. L. Berard, A. Dodelet-Devillers, I. Ifergan, H. Kebir, A. S. 
Haqqani, K. Kreymborg, S. Krug, R. Moumdjian, A. Bouthillier, B. Becher, N. 
Arbour, S. David, D. Stanimirovic, and A. Prat. 2008. Activated leukocyte cell 
adhesion molecule promotes leukocyte trafficking into the central nervous 
system. Nature immunology 9: 137-145. 

53. Wee, S., W. C. Wang, A. G. Farr, A. J. Nelson, D. D. Patel, B. F. Haynes, P. S. 
Linsley, and A. Aruffo. 1994. Characterization of a CD6 ligand(s) expressed on 
human- and murine-derived cell lines and murine lymphoid tissues. Cellular 
immunology 158: 353-364. 

54. Joo, Y. S., N. G. Singer, J. L. Endres, S. Sarkar, R. W. Kinne, R. M. Marks, and D. A. 
Fox. 2000. Evidence for the expression of a second CD6 ligand by synovial 
fibroblasts. Arthritis and rheumatism 43: 329-335. 

55. Saifullah, M. K., D. A. Fox, S. Sarkar, S. M. Abidi, J. Endres, J. Piktel, T. M. Haqqi, 
and N. G. Singer. 2004. Expression and characterization of a novel CD6 ligand 
in cells derived from joint and epithelial tissues. J Immunol 173: 6125-6133. 

56. Gimferrer, I., M. Farnos, M. Calvo, M. Mittelbrunn, C. Enrich, F. Sanchez-Madrid, 
J. Vives, and F. Lozano. 2003. The accessory molecules CD5 and CD6 associate 
on the membrane of lymphoid T cells. The Journal of biological chemistry 278: 
8564-8571. 



Chapter V – References 

 
 
 

  98  

57. Gimferrer, I., M. Calvo, M. Mittelbrunn, M. Farnos, M. R. Sarrias, C. Enrich, J. 
Vives, F. Sanchez-Madrid, and F. Lozano. 2004. Relevance of CD6-mediated 
interactions in T cell activation and proliferation. J Immunol 173: 2262-2270. 

58. Wee, S., G. L. Schieven, J. M. Kirihara, T. T. Tsu, J. A. Ledbetter, and A. Aruffo. 
1993. Tyrosine phosphorylation of CD6 by stimulation of CD3: augmentation 
by the CD4 and CD2 coreceptors. The Journal of experimental medicine 177: 
219-223. 

59. Carmo, A. M., M. A. Castro, and F. A. Arosa. 1999. CD2 and CD3 associate 
independently with CD5 and differentially regulate signaling through CD5 in 
Jurkat T cells. J Immunol 163: 4238-4245. 

60. Castro, M. A., P. A. Tavares, M. S. Almeida, R. J. Nunes, M. D. Wright, D. Mason, A. 
Moreira, and A. M. Carmo. 2002. CD2 physically associates with CD5 in rat T 
lymphocytes with the involvement of both extracellular and intracellular 
domains. European journal of immunology 32: 1509-1518. 

61. Zimmerman, A. W., B. Joosten, R. Torensma, J. R. Parnes, F. N. van Leeuwen, 
and C. G. Figdor. 2006. Long-term engagement of CD6 and ALCAM is essential 
for T-cell proliferation induced by dendritic cells. Blood 107: 3212-3220. 

62. Robinson, W. H., H. E. Neuman de Vegvar, S. S. Prohaska, J. W. Rhee, and J. R. 
Parnes. 1995. Human CD6 possesses a large, alternatively spliced cytoplasmic 
domain. European journal of immunology 25: 2765-2769. 

63. Ibanez, A., M. R. Sarrias, M. Farnos, I. Gimferrer, C. Serra-Pages, J. Vives, and F. 
Lozano. 2006. Mitogen-activated protein kinase pathway activation by the CD6 
lymphocyte surface receptor. J Immunol 177: 1152-1159. 

64. Gimferrer, I., A. Ibanez, M. Farnos, M. R. Sarrias, R. Fenutria, S. Rosello, P. 
Zimmermann, G. David, J. Vives, C. Serra-Pages, and F. Lozano. 2005. The 
lymphocyte receptor CD6 interacts with syntenin-1, a scaffolding protein 
containing PDZ domains. J Immunol 175: 1406-1414. 

65. Castro, M. A., M. I. Oliveira, R. J. Nunes, S. Fabre, R. Barbosa, A. Peixoto, M. H. 
Brown, J. R. Parnes, G. Bismuth, A. Moreira, B. Rocha, and A. M. Carmo. 2007. 
Extracellular isoforms of CD6 generated by alternative splicing regulate 
targeting of CD6 to the immunological synapse. J Immunol 178: 4351-4361. 

66. Kofler, D. M., C. A. Severson, N. Mousissian, P. L. De Jager, and D. A. Hafler. 
2011. The CD6 multiple sclerosis susceptibility allele is associated with 
alterations in CD4+ T cell proliferation. J Immunol 187: 3286-3291. 

67. Jurica, M. S., and M. J. Moore. 2003. Pre-mRNA splicing: awash in a sea of 
proteins. Molecular cell 12: 5-14. 



Chapter V – References 

 
 
 

  99  

68. Chen, M., and J. L. Manley. 2009. Mechanisms of alternative splicing regulation: 
insights from molecular and genomics approaches. Nature reviews. Molecular 
cell biology 10: 741-754. 

69. Cartegni, L., S. L. Chew, and A. R. Krainer. 2002. Listening to silence and 
understanding nonsense: exonic mutations that affect splicing. Nature reviews. 
Genetics 3: 285-298. 

70. Matlin, A. J. M., M. J.  Chapter 2, 14-35 (2007). Spliceosome Assembly and 
Composition. Alternative Splicing in the Postgenomic Era, Chapter 2, 14-35 
(2007). Alternative Splicing in the Postgenomic Era. 

71. Wahl, M. C., C. L. Will, and R. Luhrmann. 2009. The spliceosome: design 
principles of a dynamic RNP machine. Cell 136: 701-718. 

72. Pikielny, C. W., B. C. Rymond, and M. Rosbash. 1986. Electrophoresis of 
ribonucleoproteins reveals an ordered assembly pathway of yeast splicing 
complexes. Nature 324: 341-345. 

73. Jamison, S. F., A. Crow, and M. A. Garcia-Blanco. 1992. The spliceosome 
assembly pathway in mammalian extracts. Molecular and cellular biology 12: 
4279-4287. 

74. Michaud, S., and R. Reed. 1991. An ATP-independent complex commits pre-
mRNA to the mammalian spliceosome assembly pathway. Genes & 
development 5: 2534-2546. 

75. Seraphin, B., and M. Rosbash. 1989. Identification of functional U1 snRNA-pre-
mRNA complexes committed to spliceosome assembly and splicing. Cell 59: 
349-358. 

76. Berglund, J. A., N. Abovich, and M. Rosbash. 1998. A cooperative interaction 
between U2AF65 and mBBP/SF1 facilitates branchpoint region recognition. 
Genes & development 12: 858-867. 

77. MacMillan, A. M., C. C. Query, C. R. Allerson, S. Chen, G. L. Verdine, and P. A. 
Sharp. 1994. Dynamic association of proteins with the pre-mRNA branch 
region. Genes & development 8: 3008-3020. 

78. Query, C. C., M. J. Moore, and P. A. Sharp. 1994. Branch nucleophile selection in 
pre-mRNA splicing: evidence for the bulged duplex model. Genes & 
development 8: 587-597. 

79. Liu, Z., I. Luyten, M. J. Bottomley, A. C. Messias, S. Houngninou-Molango, R. 
Sprangers, K. Zanier, A. Kramer, and M. Sattler. 2001. Structural basis for 
recognition of the intron branch site RNA by splicing factor 1. Science 294: 
1098-1102. 



Chapter V – References 

 
 
 

  100  

80. Valcarcel, J., R. K. Gaur, R. Singh, and M. R. Green. 1996. Interaction of U2AF65 
RS region with pre-mRNA branch point and promotion of base pairing with U2 
snRNA [corrected]. Science 273: 1706-1709. 

81. Turner, I. A., C. M. Norman, M. J. Churcher, and A. J. Newman. 2004. Roles of the 
U5 snRNP in spliceosome dynamics and catalysis. Biochemical Society 
transactions 32: 928-931. 

82. Brow, D. A. 2002. Allosteric cascade of spliceosome activation. Annual review 
of genetics 36: 333-360. 

83. Bartels, C., C. Klatt, R. Luhrmann, and P. Fabrizio. 2002. The ribosomal 
translocase homologue Snu114p is involved in unwinding U4/U6 RNA during 
activation of the spliceosome. EMBO reports 3: 875-880. 

84. Jurica, M. S., and M. J. Moore. 2002. Capturing splicing complexes to study 
structure and mechanism. Methods 28: 336-345. 

85. Umen, J. G., and C. Guthrie. 1995. The second catalytic step of pre-mRNA 
splicing. RNA 1: 869-885. 

86. Newman, A. J., and C. Norman. 1992. U5 snRNA interacts with exon sequences 
at 5' and 3' splice sites. Cell 68: 743-754. 

87. Kornblihtt, A. R., I. E. Schor, M. Allo, G. Dujardin, E. Petrillo, and M. J. Munoz. 
2013. Alternative splicing: a pivotal step between eukaryotic transcription and 
translation. Nature reviews. Molecular cell biology 14: 153-165. 

88. Chow, L. T., R. E. Gelinas, T. R. Broker, and R. J. Roberts. 1977. An amazing 
sequence arrangement at the 5' ends of adenovirus 2 messenger RNA. Cell 12: 
1-8. 

89. Berget, S. M., C. Moore, and P. A. Sharp. 1977. Spliced segments at the 5' 
terminus of adenovirus 2 late mRNA. Proceedings of the National Academy of 
Sciences of the United States of America 74: 3171-3175. 

90. Pan, Q., O. Shai, L. J. Lee, B. J. Frey, and B. J. Blencowe. 2008. Deep surveying of 
alternative splicing complexity in the human transcriptome by high-
throughput sequencing. Nature genetics 40: 1413-1415. 

91. Barash, Y., J. A. Calarco, W. Gao, Q. Pan, X. Wang, O. Shai, B. J. Blencowe, and B. J. 
Frey. 2010. Deciphering the splicing code. Nature 465: 53-59. 

92. Proudfoot, N. J., A. Furger, and M. J. Dye. 2002. Integrating mRNA processing 
with transcription. Cell 108: 501-512. 

93. Zipursky, S. L., W. M. Wojtowicz, and D. Hattori. 2006. Got diversity? Wiring the 
fly brain with Dscam. Trends in biochemical sciences 31: 581-588. 



Chapter V – References 

 
 
 

  101  

94. Graveley, B. R., A. Kaur, D. Gunning, S. L. Zipursky, L. Rowen, and J. C. Clemens. 
2004. The organization and evolution of the dipteran and hymenopteran 
Down syndrome cell adhesion molecule (Dscam) genes. RNA 10: 1499-1506. 

95. Chen, B. E., M. Kondo, A. Garnier, F. L. Watson, R. Puettmann-Holgado, D. R. 
Lamar, and D. Schmucker. 2006. The molecular diversity of Dscam is 
functionally required for neuronal wiring specificity in Drosophila. Cell 125: 
607-620. 

96. Watson, F. L., R. Puttmann-Holgado, F. Thomas, D. L. Lamar, M. Hughes, M. 
Kondo, V. I. Rebel, and D. Schmucker. 2005. Extensive diversity of Ig-
superfamily proteins in the immune system of insects. Science 309: 1874-
1878. 

97. Das, D., T. A. Clark, A. Schweitzer, M. Yamamoto, H. Marr, J. Arribere, S. 
Minovitsky, A. Poliakov, I. Dubchak, J. E. Blume, and J. G. Conboy. 2007. A 
correlation with exon expression approach to identify cis-regulatory elements 
for tissue-specific alternative splicing. Nucleic acids research 35: 4845-4857. 

98. Fagnani, M., Y. Barash, J. Y. Ip, C. Misquitta, Q. Pan, A. L. Saltzman, O. Shai, L. 
Lee, A. Rozenhek, N. Mohammad, S. Willaime-Morawek, T. Babak, W. Zhang, T. 
R. Hughes, D. van der Kooy, B. J. Frey, and B. J. Blencowe. 2007. Functional 
coordination of alternative splicing in the mammalian central nervous system. 
Genome biology 8: R108. 

99. Ip, J. Y., A. Tong, Q. Pan, J. D. Topp, B. J. Blencowe, and K. W. Lynch. 2007. Global 
analysis of alternative splicing during T-cell activation. RNA 13: 563-572. 

100. McKee, A. E., N. Neretti, L. E. Carvalho, C. A. Meyer, E. A. Fox, A. S. Brodsky, and 
P. A. Silver. 2007. Exon expression profiling reveals stimulus-mediated exon 
use in neural cells. Genome biology 8: R159. 

101. Sugnet, C. W., K. Srinivasan, T. A. Clark, G. O'Brien, M. S. Cline, H. Wang, A. 
Williams, D. Kulp, J. E. Blume, D. Haussler, and M. Ares, Jr. 2006. Unusual intron 
conservation near tissue-regulated exons found by splicing microarrays. PLoS 
computational biology 2: e4. 

102. Nagoshi, R. N., and B. S. Baker. 1990. Regulation of sex-specific RNA splicing at 
the Drosophila doublesex gene: cis-acting mutations in exon sequences alter 
sex-specific RNA splicing patterns. Genes & development 4: 89-97. 

103. Black, D. L. 2003. Mechanisms of alternative pre-messenger RNA splicing. 
Annual review of biochemistry 72: 291-336. 

104. Ladd, A. N., and T. A. Cooper. 2002. Finding signals that regulate alternative 
splicing in the post-genomic era. Genome biology 3: reviews0008. 

105. Buratti, E., and F. E. Baralle. 2004. Influence of RNA secondary structure on the 
pre-mRNA splicing process. Molecular and cellular biology 24: 10505-10514. 



Chapter V – References 

 
 
 

  102  

106. Wang, Z., and C. B. Burge. 2008. Splicing regulation: from a parts list of 
regulatory elements to an integrated splicing code. RNA 14: 802-813. 

107. Robberson, B. L., G. J. Cote, and S. M. Berget. 1990. Exon definition may 
facilitate splice site selection in RNAs with multiple exons. Molecular and 
cellular biology 10: 84-94. 

108. Berget, S. M. 1995. Exon recognition in vertebrate splicing. The Journal of 
biological chemistry 270: 2411-2414. 

109. Talerico, M., and S. M. Berget. 1994. Intron definition in splicing of small 
Drosophila introns. Molecular and cellular biology 14: 3434-3445. 

110. Chasin, L. A. 2007. Searching for splicing motifs. Advances in experimental 
medicine and biology 623: 85-106. 

111. Beyer, A. L., and Y. N. Osheim. 1988. Splice site selection, rate of splicing, and 
alternative splicing on nascent transcripts. Genes & development 2: 754-765. 

112. Rodriguez, J., J. S. Menet, and M. Rosbash. 2012. Nascent-seq indicates 
widespread cotranscriptional RNA editing in Drosophila. Molecular cell 47: 27-
37. 

113. Listerman, I., A. K. Sapra, and K. M. Neugebauer. 2006. Cotranscriptional 
coupling of splicing factor recruitment and precursor messenger RNA splicing 
in mammalian cells. Nature structural & molecular biology 13: 815-822. 

114. Blanchette, M., and B. Chabot. 1997. A highly stable duplex structure 
sequesters the 5' splice site region of hnRNP A1 alternative exon 7B. RNA 3: 
405-419. 

115. Ule, J., G. Stefani, A. Mele, M. Ruggiu, X. Wang, B. Taneri, T. Gaasterland, B. J. 
Blencowe, and R. B. Darnell. 2006. An RNA map predicting Nova-dependent 
splicing regulation. Nature 444: 580-586. 

116. Motta-Mena, L. B., F. Heyd, and K. W. Lynch. 2010. Context-dependent 
regulatory mechanism of the splicing factor hnRNP L. Molecular cell 37: 223-
234. 

117. Zhang, C., Z. Zhang, J. Castle, S. Sun, J. Johnson, A. R. Krainer, and M. Q. Zhang. 
2008. Defining the regulatory network of the tissue-specific splicing factors 
Fox-1 and Fox-2. Genes & development 22: 2550-2563. 

118. Matlin, A. J., F. Clark, and C. W. Smith. 2005. Understanding alternative splicing: 
towards a cellular code. Nature reviews. Molecular cell biology 6: 386-398. 

119. Graveley, B. R. 2000. Sorting out the complexity of SR protein functions. RNA 6: 
1197-1211. 



Chapter V – References 

 
 
 

  103  

120. Kohtz, J. D., S. F. Jamison, C. L. Will, P. Zuo, R. Luhrmann, M. A. Garcia-Blanco, 
and J. L. Manley. 1994. Protein-protein interactions and 5'-splice-site 
recognition in mammalian mRNA precursors. Nature 368: 119-124. 

121. Shen, H., and M. R. Green. 2006. RS domains contact splicing signals and 
promote splicing by a common mechanism in yeast through humans. Genes & 
development 20: 1755-1765. 

122. Shen, H., J. L. Kan, and M. R. Green. 2004. Arginine-serine-rich domains bound 
at splicing enhancers contact the branchpoint to promote prespliceosome 
assembly. Molecular cell 13: 367-376. 

123. Jamison, S. F., Z. Pasman, J. Wang, C. Will, R. Luhrmann, J. L. Manley, and M. A. 
Garcia-Blanco. 1995. U1 snRNP-ASF/SF2 interaction and 5' splice site 
recognition: characterization of required elements. Nucleic acids research 23: 
3260-3267. 

124. Graveley, B. R., K. J. Hertel, and T. Maniatis. 2001. The role of U2AF35 and 
U2AF65 in enhancer-dependent splicing. RNA 7: 806-818. 

125. Sapra, A. K., M. L. Anko, I. Grishina, M. Lorenz, M. Pabis, I. Poser, J. Rollins, E. M. 
Weiland, and K. M. Neugebauer. 2009. SR protein family members display 
diverse activities in the formation of nascent and mature mRNPs in vivo. 
Molecular cell 34: 179-190. 

126. Huang, Y., R. Gattoni, J. Stevenin, and J. A. Steitz. 2003. SR splicing factors serve 
as adapter proteins for TAP-dependent mRNA export. Molecular cell 11: 837-
843. 

127. Zhang, Z., and A. R. Krainer. 2004. Involvement of SR proteins in mRNA 
surveillance. Molecular cell 16: 597-607. 

128. Sanford, J. R., N. K. Gray, K. Beckmann, and J. F. Caceres. 2004. A novel role for 
shuttling SR proteins in mRNA translation. Genes & development 18: 755-768. 

129. Li, X., and J. L. Manley. 2005. Inactivation of the SR protein splicing factor 
ASF/SF2 results in genomic instability. Cell 122: 365-378. 

130. Xiao, R., Y. Sun, J. H. Ding, S. Lin, D. W. Rose, M. G. Rosenfeld, X. D. Fu, and X. Li. 
2007. Splicing regulator SC35 is essential for genomic stability and cell 
proliferation during mammalian organogenesis. Molecular and cellular biology 
27: 5393-5402. 

131. Li, X., J. Wang, and J. L. Manley. 2005. Loss of splicing factor ASF/SF2 induces 
G2 cell cycle arrest and apoptosis, but inhibits internucleosomal DNA 
fragmentation. Genes & development 19: 2705-2714. 



Chapter V – References 

 
 
 

  104  

132. Caceres, J. F., T. Misteli, G. R. Screaton, D. L. Spector, and A. R. Krainer. 1997. 
Role of the modular domains of SR proteins in subnuclear localization and 
alternative splicing specificity. The Journal of cell biology 138: 225-238. 

133. Caceres, J. F., and A. R. Krainer. 1993. Functional analysis of pre-mRNA splicing 
factor SF2/ASF structural domains. The EMBO journal 12: 4715-4726. 

134. Zuo, P., and J. L. Manley. 1993. Functional domains of the human splicing factor 
ASF/SF2. The EMBO journal 12: 4727-4737. 

135. Ge, H., and J. L. Manley. 1990. A protein factor, ASF, controls cell-specific 
alternative splicing of SV40 early pre-mRNA in vitro. Cell 62: 25-34. 

136. Krainer, A. R., G. C. Conway, and D. Kozak. 1990. Purification and 
characterization of pre-mRNA splicing factor SF2 from HeLa cells. Genes & 
development 4: 1158-1171. 

137. Krainer, A. R., G. C. Conway, and D. Kozak. 1990. The essential pre-mRNA 
splicing factor SF2 influences 5' splice site selection by activating proximal 
sites. Cell 62: 35-42. 

138. Mayeda, A., and A. R. Krainer. 1992. Regulation of alternative pre-mRNA 
splicing by hnRNP A1 and splicing factor SF2. Cell 68: 365-375. 

139. Sun, Q., A. Mayeda, R. K. Hampson, A. R. Krainer, and F. M. Rottman. 1993. 
General splicing factor SF2/ASF promotes alternative splicing by binding to an 
exonic splicing enhancer. Genes & development 7: 2598-2608. 

140. Lemaire, R., J. Prasad, T. Kashima, J. Gustafson, J. L. Manley, and R. Lafyatis. 
2002. Stability of a PKCI-1-related mRNA is controlled by the splicing factor 
ASF/SF2: a novel function for SR proteins. Genes & development 16: 594-607. 

141. Wu, H., S. Sun, K. Tu, Y. Gao, B. Xie, A. R. Krainer, and J. Zhu. 2010. A splicing-
independent function of SF2/ASF in microRNA processing. Molecular cell 38: 
67-77. 

142. Pandit, S., Y. Zhou, L. Shiue, G. Coutinho-Mansfield, H. Li, J. Qiu, J. Huang, G. W. 
Yeo, M. Ares, Jr., and X. D. Fu. 2013. Genome-wide analysis reveals SR protein 
cooperation and competition in regulated splicing. Molecular cell 50: 223-235. 

143. Sanford, J. R., X. Wang, M. Mort, N. Vanduyn, D. N. Cooper, S. D. Mooney, H. J. 
Edenberg, and Y. Liu. 2009. Splicing factor SFRS1 recognizes a functionally 
diverse landscape of RNA transcripts. Genome research 19: 381-394. 

144. Liu, H. X., M. Zhang, and A. R. Krainer. 1998. Identification of functional exonic 
splicing enhancer motifs recognized by individual SR proteins. Genes & 
development 12: 1998-2012. 

145. Ray, D., H. Kazan, E. T. Chan, L. Pena Castillo, S. Chaudhry, S. Talukder, B. J. 
Blencowe, Q. Morris, and T. R. Hughes. 2009. Rapid and systematic analysis of 



Chapter V – References 

 
 
 

  105  

the RNA recognition specificities of RNA-binding proteins. Nature 
biotechnology 27: 667-670. 

146. Cho, S., A. Hoang, R. Sinha, X. Y. Zhong, X. D. Fu, A. R. Krainer, and G. Ghosh. 
2011. Interaction between the RNA binding domains of Ser-Arg splicing factor 
1 and U1-70K snRNP protein determines early spliceosome assembly. 
Proceedings of the National Academy of Sciences of the United States of America 
108: 8233-8238. 

147. Lorson, C. L., E. Hahnen, E. J. Androphy, and B. Wirth. 1999. A single nucleotide 
in the SMN gene regulates splicing and is responsible for spinal muscular 
atrophy. Proceedings of the National Academy of Sciences of the United States of 
America 96: 6307-6311. 

148. Cartegni, L., and A. R. Krainer. 2002. Disruption of an SF2/ASF-dependent 
exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the 
absence of SMN1. Nature genetics 30: 377-384. 

149. Martins de Araujo, M., S. Bonnal, M. L. Hastings, A. R. Krainer, and J. Valcarcel. 
2009. Differential 3' splice site recognition of SMN1 and SMN2 transcripts by 
U2AF and U2 snRNP. RNA 15: 515-523. 

150. Caceres, J. F., S. Stamm, D. M. Helfman, and A. R. Krainer. 1994. Regulation of 
alternative splicing in vivo by overexpression of antagonistic splicing factors. 
Science 265: 1706-1709. 

151. Mayeda, A., D. M. Helfman, and A. R. Krainer. 1993. Modulation of exon 
skipping and inclusion by heterogeneous nuclear ribonucleoprotein A1 and 
pre-mRNA splicing factor SF2/ASF. Molecular and cellular biology 13: 2993-
3001. 

152. Pollard, A. J., C. Sparey, S. C. Robson, A. R. Krainer, and G. N. Europe-Finner. 
2000. Spatio-temporal expression of the trans-acting splicing factors SF2/ASF 
and heterogeneous ribonuclear proteins A1/A1B in the myometrium of the 
pregnant human uterus: a molecular mechanism for regulating regional 
protein isoform expression in vivo. The Journal of clinical endocrinology and 
metabolism 85: 1928-1936. 

153. Eperon, I. C., O. V. Makarova, A. Mayeda, S. H. Munroe, J. F. Caceres, D. G. 
Hayward, and A. R. Krainer. 2000. Selection of alternative 5' splice sites: role of 
U1 snRNP and models for the antagonistic effects of SF2/ASF and hnRNP A1. 
Molecular and cellular biology 20: 8303-8318. 

154. Trusolino, L., and P. M. Comoglio. 2002. Scatter-factor and semaphorin 
receptors: cell signalling for invasive growth. Nature reviews. Cancer 2: 289-
300. 



Chapter V – References 

 
 
 

  106  

155. Collesi, C., M. M. Santoro, G. Gaudino, and P. M. Comoglio. 1996. A splicing 
variant of the RON transcript induces constitutive tyrosine kinase activity and 
an invasive phenotype. Molecular and cellular biology 16: 5518-5526. 

156. Ghigna, C., S. Giordano, H. Shen, F. Benvenuto, F. Castiglioni, P. M. Comoglio, M. 
R. Green, S. Riva, and G. Biamonti. 2005. Cell motility is controlled by SF2/ASF 
through alternative splicing of the Ron protooncogene. Molecular cell 20: 881-
890. 

157. Pozzoli, U., and M. Sironi. 2005. Silencers regulate both constitutive and 
alternative splicing events in mammals. Cellular and molecular life sciences : 
CMLS 62: 1579-1604. 

158. Burd, C. G., and G. Dreyfuss. 1994. Conserved structures and diversity of 
functions of RNA-binding proteins. Science 265: 615-621. 

159. Abdul-Manan, N., and K. R. Williams. 1996. hnRNP A1 binds promiscuously to 
oligoribonucleotides: utilization of random and homo-oligonucleotides to 
discriminate sequence from base-specific binding. Nucleic acids research 24: 
4063-4070. 

160. Martinez-Contreras, R., P. Cloutier, L. Shkreta, J. F. Fisette, T. Revil, and B. 
Chabot. 2007. hnRNP proteins and splicing control. Advances in experimental 
medicine and biology 623: 123-147. 

161. Wagner, E. J., and M. A. Garcia-Blanco. 2001. Polypyrimidine tract binding 
protein antagonizes exon definition. Molecular and cellular biology 21: 3281-
3288. 

162. Garcia-Blanco, M. A., S. F. Jamison, and P. A. Sharp. 1989. Identification and 
purification of a 62,000-dalton protein that binds specifically to the 
polypyrimidine tract of introns. Genes & development 3: 1874-1886. 

163. Patton, J. G., S. A. Mayer, P. Tempst, and B. Nadal-Ginard. 1991. 
Characterization and molecular cloning of polypyrimidine tract-binding 
protein: a component of a complex necessary for pre-mRNA splicing. Genes & 
development 5: 1237-1251. 

164. Clery, A., M. Blatter, and F. H. Allain. 2008. RNA recognition motifs: boring? Not 
quite. Current opinion in structural biology 18: 290-298. 

165. Mulligan, G. J., W. Guo, S. Wormsley, and D. M. Helfman. 1992. Polypyrimidine 
tract binding protein interacts with sequences involved in alternative splicing 
of beta-tropomyosin pre-mRNA. The Journal of biological chemistry 267: 
25480-25487. 

166. Perez, I., C. H. Lin, J. G. McAfee, and J. G. Patton. 1997. Mutation of PTB binding 
sites causes misregulation of alternative 3' splice site selection in vivo. RNA 3: 
764-778. 



Chapter V – References 

 
 
 

  107  

167. Singh, R., J. Valcarcel, and M. R. Green. 1995. Distinct binding specificities and 
functions of higher eukaryotic polypyrimidine tract-binding proteins. Science 
268: 1173-1176. 

168. Castelo-Branco, P., A. Furger, M. Wollerton, C. Smith, A. Moreira, and N. 
Proudfoot. 2004. Polypyrimidine tract binding protein modulates efficiency of 
polyadenylation. Molecular and cellular biology 24: 4174-4183. 

169. Moreira, A., Y. Takagaki, S. Brackenridge, M. Wollerton, J. L. Manley, and N. J. 
Proudfoot. 1998. The upstream sequence element of the C2 complement 
poly(A) signal activates mRNA 3' end formation by two distinct mechanisms. 
Genes & development 12: 2522-2534. 

170. Lou, H., R. F. Gagel, and S. M. Berget. 1996. An intron enhancer recognized by 
splicing factors activates polyadenylation. Genes & development 10: 208-219. 

171. Wollerton, M. C., C. Gooding, E. J. Wagner, M. A. Garcia-Blanco, and C. W. Smith. 
2004. Autoregulation of polypyrimidine tract binding protein by alternative 
splicing leading to nonsense-mediated decay. Molecular cell 13: 91-100. 

172. Kaminski, A., S. L. Hunt, J. G. Patton, and R. J. Jackson. 1995. Direct evidence 
that polypyrimidine tract binding protein (PTB) is essential for internal 
initiation of translation of encephalomyocarditis virus RNA. RNA 1: 924-938. 

173. Cote, C. A., D. Gautreau, J. M. Denegre, T. L. Kress, N. A. Terry, and K. L. Mowry. 
1999. A Xenopus protein related to hnRNP I has a role in cytoplasmic RNA 
localization. Molecular cell 4: 431-437. 

174. Amir-Ahmady, B., P. L. Boutz, V. Markovtsov, M. L. Phillips, and D. L. Black. 
2005. Exon repression by polypyrimidine tract binding protein. RNA 11: 699-
716. 

175. Chou, M. Y., J. G. Underwood, J. Nikolic, M. H. Luu, and D. L. Black. 2000. 
Multisite RNA binding and release of polypyrimidine tract binding protein 
during the regulation of c-src neural-specific splicing. Molecular cell 5: 949-
957. 

176. Xue, Y., Y. Zhou, T. Wu, T. Zhu, X. Ji, Y. S. Kwon, C. Zhang, G. Yeo, D. L. Black, H. 
Sun, X. D. Fu, and Y. Zhang. 2009. Genome-wide analysis of PTB-RNA 
interactions reveals a strategy used by the general splicing repressor to 
modulate exon inclusion or skipping. Molecular cell 36: 996-1006. 

177. Chan, R. C., and D. L. Black. 1997. The polypyrimidine tract binding protein 
binds upstream of neural cell-specific c-src exon N1 to repress the splicing of 
the intron downstream. Molecular and cellular biology 17: 4667-4676. 

178. Chan, R. C., and D. L. Black. 1995. Conserved intron elements repress splicing 
of a neuron-specific c-src exon in vitro. Molecular and cellular biology 15: 
6377-6385. 



Chapter V – References 

 
 
 

  108  

179. Sharma, S., A. M. Falick, and D. L. Black. 2005. Polypyrimidine tract binding 
protein blocks the 5' splice site-dependent assembly of U2AF and the 
prespliceosomal E complex. Molecular cell 19: 485-496. 

180. Sharma, S., C. Maris, F. H. Allain, and D. L. Black. 2011. U1 snRNA directly 
interacts with polypyrimidine tract-binding protein during splicing 
repression. Molecular cell 41: 579-588. 

181. Izquierdo, J. M., N. Majos, S. Bonnal, C. Martinez, R. Castelo, R. Guigo, D. Bilbao, 
and J. Valcarcel. 2005. Regulation of Fas alternative splicing by antagonistic 
effects of TIA-1 and PTB on exon definition. Molecular cell 19: 475-484. 

182. Matlin, A. J., J. Southby, C. Gooding, and C. W. Smith. 2007. Repression of alpha-
actinin SM exon splicing by assisted binding of PTB to the polypyrimidine 
tract. RNA 13: 1214-1223. 

183. Waites, G. T., I. R. Graham, P. Jackson, D. B. Millake, B. Patel, A. D. Blanchard, P. 
A. Weller, I. C. Eperon, and D. R. Critchley. 1992. Mutually exclusive splicing of 
calcium-binding domain exons in chick alpha-actinin. The Journal of biological 
chemistry 267: 6263-6271. 

184. Southby, J., C. Gooding, and C. W. Smith. 1999. Polypyrimidine tract binding 
protein functions as a repressor to regulate alternative splicing of alpha-
actinin mutally exclusive exons. Molecular and cellular biology 19: 2699-2711. 

185. Gromak, N., A. J. Matlin, T. A. Cooper, and C. W. Smith. 2003. Antagonistic 
regulation of alpha-actinin alternative splicing by CELF proteins and 
polypyrimidine tract binding protein. RNA 9: 443-456. 

186. Cramer, P., J. F. Caceres, D. Cazalla, S. Kadener, A. F. Muro, F. E. Baralle, and A. 
R. Kornblihtt. 1999. Coupling of transcription with alternative splicing: RNA 
pol II promoters modulate SF2/ASF and 9G8 effects on an exonic splicing 
enhancer. Molecular cell 4: 251-258. 

187. Gautrey, H. L., and A. J. Tyson-Capper. 2012. Regulation of Mcl-1 by SRSF1 and 
SRSF5 in cancer cells. PloS one 7: e51497. 

188. Shultz, J. C., R. W. Goehe, C. S. Murudkar, D. S. Wijesinghe, E. K. Mayton, A. 
Massiello, A. J. Hawkins, P. Mukerjee, R. L. Pinkerman, M. A. Park, and C. E. 
Chalfant. 2011. SRSF1 regulates the alternative splicing of caspase 9 via a 
novel intronic splicing enhancer affecting the chemotherapeutic sensitivity of 
non-small cell lung cancer cells. Molecular cancer research : MCR 9: 889-900. 

189. Chen, C., N. Jin, W. Qian, W. Liu, X. Tan, F. Ding, X. Gu, K. Iqbal, C. X. Gong, J. Zuo, 
and F. Liu. 2014. Cyclic AMP-dependent protein kinase enhances SC35-
promoted Tau exon 10 inclusion. Molecular neurobiology 49: 615-624. 

190. Expert-Bezancon, A., A. Sureau, P. Durosay, R. Salesse, H. Groeneveld, J. P. 
Lecaer, and J. Marie. 2004. hnRNP A1 and the SR proteins ASF/SF2 and SC35 



Chapter V – References 

 
 
 

  109  

have antagonistic functions in splicing of beta-tropomyosin exon 6B. The 
Journal of biological chemistry 279: 38249-38259. 

191. Loh, T. J., H. Moon, S. Cho, D. W. Jung, S. E. Hong, H. Kim do, M. R. Green, X. 
Zheng, J. Zhou, and H. Shen. 2014. SC35 promotes splicing of the C5-V6-C6 
isoform of CD44 pre-mRNA. Oncology reports 31: 273-279. 

192. Galiana-Arnoux, D., F. Lejeune, M. C. Gesnel, J. Stevenin, R. Breathnach, and F. 
Del Gatto-Konczak. 2003. The CD44 alternative v9 exon contains a splicing 
enhancer responsive to the SR proteins 9G8, ASF/SF2, and SRp20. The Journal 
of biological chemistry 278: 32943-32953. 

193. Jang, H. N., M. Lee, T. J. Loh, S. W. Choi, H. K. Oh, H. Moon, S. Cho, S. E. Hong, H. 
Kim do, Z. Sheng, M. R. Green, D. Park, X. Zheng, and H. Shen. 2014. Exon 9 
skipping of apoptotic caspase-2 pre-mRNA is promoted by SRSF3 through 
interaction with exon 8. Biochimica et biophysica acta 1839: 25-32. 

194. Jumaa, H., and P. J. Nielsen. 1997. The splicing factor SRp20 modifies splicing 
of its own mRNA and ASF/SF2 antagonizes this regulation. The EMBO journal 
16: 5077-5085. 

195. Sen, S., I. Talukdar, and N. J. Webster. 2009. SRp20 and CUG-BP1 modulate 
insulin receptor exon 11 alternative splicing. Molecular and cellular biology 29: 
871-880. 

196. Buratti, E., C. Stuani, G. De Prato, and F. E. Baralle. 2007. SR protein-mediated 
inhibition of CFTR exon 9 inclusion: molecular characterization of the intronic 
splicing silencer. Nucleic acids research 35: 4359-4368. 

197. Patel, N. A., C. E. Chalfant, J. E. Watson, J. R. Wyatt, N. M. Dean, D. C. Eichler, and 
D. R. Cooper. 2001. Insulin regulates alternative splicing of protein kinase C 
beta II through a phosphatidylinositol 3-kinase-dependent pathway involving 
the nuclear serine/arginine-rich splicing factor, SRp40, in skeletal muscle cells. 
The Journal of biological chemistry 276: 22648-22654. 

198. Yan, X. B., C. H. Tang, Y. Huang, H. Fang, Z. Q. Yu, L. M. Wu, and R. Y. Liu. 2010. 
Alternative splicing in exon 9 of glucocorticoid receptor pre-mRNA is 
regulated by SRp40. Molecular biology reports 37: 1427-1433. 

199. Jin, W., and G. J. Cote. 2004. Enhancer-dependent splicing of FGFR1 alpha-exon 
is repressed by RNA interference-mediated down-regulation of SRp55. Cancer 
research 64: 8901-8905. 

200. Gu, J., J. Shi, S. Wu, N. Jin, W. Qian, J. Zhou, I. G. Iqbal, K. Iqbal, C. X. Gong, and F. 
Liu. 2012. Cyclic AMP-dependent protein kinase regulates 9G8-mediated 
alternative splicing of tau exon 10. FEBS letters 586: 2239-2244. 

201. Doktor, T. K., L. D. Schroeder, A. Vested, J. Palmfeldt, H. S. Andersen, N. 
Gregersen, and B. S. Andresen. 2011. SMN2 exon 7 splicing is inhibited by 



Chapter V – References 

 
 
 

  110  

binding of hnRNP A1 to a common ESS motif that spans the 3' splice site. 
Human mutation 32: 220-230. 

202. Kashima, T., N. Rao, C. J. David, and J. L. Manley. 2007. hnRNP A1 functions 
with specificity in repression of SMN2 exon 7 splicing. Human molecular 
genetics 16: 3149-3159. 

203. Pelisch, F., D. Khauv, G. Risso, M. Stallings-Mann, M. Blaustein, L. Quadrana, D. 
C. Radisky, and A. Srebrow. 2012. Involvement of hnRNP A1 in the matrix 
metalloprotease-3-dependent regulation of Rac1 pre-mRNA splicing. Journal of 
cellular biochemistry 113: 2319-2329. 

204. Talukdar, I., S. Sen, R. Urbano, J. Thompson, J. R. Yates, 3rd, and N. J. Webster. 
2011. hnRNP A1 and hnRNP F modulate the alternative splicing of exon 11 of 
the insulin receptor gene. PloS one 6: e27869. 

205. Zearfoss, N. R., E. S. Johnson, and S. P. Ryder. 2013. hnRNP A1 and secondary 
structure coordinate alternative splicing of Mag. RNA 19: 948-957. 

206. Gooding, C., G. C. Roberts, and C. W. Smith. 1998. Role of an inhibitory 
pyrimidine element and polypyrimidine tract binding protein in repression of 
a regulated alpha-tropomyosin exon. RNA 4: 85-100. 

207. Luco, R. F., Q. Pan, K. Tominaga, B. J. Blencowe, O. M. Pereira-Smith, and T. 
Misteli. 2010. Regulation of alternative splicing by histone modifications. 
Science 327: 996-1000. 

208. Chen, C. D., R. Kobayashi, and D. M. Helfman. 1999. Binding of hnRNP H to an 
exonic splicing silencer is involved in the regulation of alternative splicing of 
the rat beta-tropomyosin gene. Genes & development 13: 593-606. 

209. Chou, M. Y., N. Rooke, C. W. Turck, and D. L. Black. 1999. hnRNP H is a 
component of a splicing enhancer complex that activates a c-src alternative 
exon in neuronal cells. Molecular and cellular biology 19: 69-77. 

210. Masuda, A., X. M. Shen, M. Ito, T. Matsuura, A. G. Engel, and K. Ohno. 2008. 
hnRNP H enhances skipping of a nonfunctional exon P3A in CHRNA1 and a 
mutation disrupting its binding causes congenital myasthenic syndrome. 
Human molecular genetics 17: 4022-4035. 

211. Mauger, D. M., C. Lin, and M. A. Garcia-Blanco. 2008. hnRNP H and hnRNP F 
complex with Fox2 to silence fibroblast growth factor receptor 2 exon IIIc. 
Molecular and cellular biology 28: 5403-5419. 

212. Min, H., R. C. Chan, and D. L. Black. 1995. The generally expressed hnRNP F is 
involved in a neural-specific pre-mRNA splicing event. Genes & development 9: 
2659-2671. 



Chapter V – References 

 
 
 

  111  

213. Preussner, M., S. Schreiner, L. H. Hung, M. Porstner, H. M. Jack, V. Benes, G. 
Ratsch, and A. Bindereif. 2012. HnRNP L and L-like cooperate in multiple-exon 
regulation of CD45 alternative splicing. Nucleic acids research 40: 5666-5678. 

214. Rothrock, C. R., A. E. House, and K. W. Lynch. 2005. HnRNP L represses exon 
splicing via a regulated exonic splicing silencer. The EMBO journal 24: 2792-
2802. 

215. Gornemann, J., K. M. Kotovic, K. Hujer, and K. M. Neugebauer. 2005. 
Cotranscriptional spliceosome assembly occurs in a stepwise fashion and 
requires the cap binding complex. Molecular cell 19: 53-63. 

216. Kotovic, K. M., D. Lockshon, L. Boric, and K. M. Neugebauer. 2003. 
Cotranscriptional recruitment of the U1 snRNP to intron-containing genes in 
yeast. Molecular and cellular biology 23: 5768-5779. 

217. Lacadie, S. A., and M. Rosbash. 2005. Cotranscriptional spliceosome assembly 
dynamics and the role of U1 snRNA:5'ss base pairing in yeast. Molecular cell 
19: 65-75. 

218. Tardiff, D. F., S. A. Lacadie, and M. Rosbash. 2006. A genome-wide analysis 
indicates that yeast pre-mRNA splicing is predominantly posttranscriptional. 
Molecular cell 24: 917-929. 

219. Cramer, P., C. G. Pesce, F. E. Baralle, and A. R. Kornblihtt. 1997. Functional 
association between promoter structure and transcript alternative splicing. 
Proceedings of the National Academy of Sciences of the United States of America 
94: 11456-11460. 

220. Pagani, F., C. Stuani, E. Zuccato, A. R. Kornblihtt, and F. E. Baralle. 2003. 
Promoter architecture modulates CFTR exon 9 skipping. The Journal of 
biological chemistry 278: 1511-1517. 

221. Kadener, S., P. Cramer, G. Nogues, D. Cazalla, M. de la Mata, J. P. Fededa, S. E. 
Werbajh, A. Srebrow, and A. R. Kornblihtt. 2001. Antagonistic effects of T-Ag 
and VP16 reveal a role for RNA pol II elongation on alternative splicing. The 
EMBO journal 20: 5759-5768. 

222. Nogues, G., S. Kadener, P. Cramer, D. Bentley, and A. R. Kornblihtt. 2002. 
Transcriptional activators differ in their abilities to control alternative 
splicing. The Journal of biological chemistry 277: 43110-43114. 

223. Auboeuf, D., A. Honig, S. M. Berget, and B. W. O'Malley. 2002. Coordinate 
regulation of transcription and splicing by steroid receptor coregulators. 
Science 298: 416-419. 

224. Auboeuf, D., D. H. Dowhan, Y. K. Kang, K. Larkin, J. W. Lee, S. M. Berget, and B. 
W. O'Malley. 2004. Differential recruitment of nuclear receptor coactivators 
may determine alternative RNA splice site choice in target genes. Proceedings 



Chapter V – References 

 
 
 

  112  

of the National Academy of Sciences of the United States of America 101: 2270-
2274. 

225. Kadener, S., J. P. Fededa, M. Rosbash, and A. R. Kornblihtt. 2002. Regulation of 
alternative splicing by a transcriptional enhancer through RNA pol II 
elongation. Proceedings of the National Academy of Sciences of the United States 
of America 99: 8185-8190. 

226. Batsche, E., M. Yaniv, and C. Muchardt. 2006. The human SWI/SNF subunit 
Brm is a regulator of alternative splicing. Nature structural & molecular biology 
13: 22-29. 

227. de la Mata, M., and A. R. Kornblihtt. 2006. RNA polymerase II C-terminal 
domain mediates regulation of alternative splicing by SRp20. Nature structural 
& molecular biology 13: 973-980. 

228. Das, R., J. Yu, Z. Zhang, M. P. Gygi, A. R. Krainer, S. P. Gygi, and R. Reed. 2007. SR 
proteins function in coupling RNAP II transcription to pre-mRNA splicing. 
Molecular cell 26: 867-881. 

229. Misteli, T., and D. L. Spector. 1999. RNA polymerase II targets pre-mRNA 
splicing factors to transcription sites in vivo. Molecular cell 3: 697-705. 

230. Huang, Y., W. Li, X. Yao, Q. J. Lin, J. W. Yin, Y. Liang, M. Heiner, B. Tian, J. Hui, and 
G. Wang. 2012. Mediator complex regulates alternative mRNA processing via 
the MED23 subunit. Molecular cell 45: 459-469. 

231. Munoz, M. J., M. S. Perez Santangelo, M. P. Paronetto, M. de la Mata, F. Pelisch, S. 
Boireau, K. Glover-Cutter, C. Ben-Dov, M. Blaustein, J. J. Lozano, G. Bird, D. 
Bentley, E. Bertrand, and A. R. Kornblihtt. 2009. DNA damage regulates 
alternative splicing through inhibition of RNA polymerase II elongation. Cell 
137: 708-720. 

232. Shukla, S., E. Kavak, M. Gregory, M. Imashimizu, B. Shutinoski, M. Kashlev, P. 
Oberdoerffer, R. Sandberg, and S. Oberdoerffer. 2011. CTCF-promoted RNA 
polymerase II pausing links DNA methylation to splicing. Nature 479: 74-79. 

233. Close, P., P. East, A. B. Dirac-Svejstrup, H. Hartmann, M. Heron, S. Maslen, A. 
Chariot, J. Soding, M. Skehel, and J. Q. Svejstrup. 2012. DBIRD complex 
integrates alternative mRNA splicing with RNA polymerase II transcript 
elongation. Nature 484: 386-389. 

234. Bushnell, D. A., and R. D. Kornberg. 2003. Complete, 12-subunit RNA 
polymerase II at 4.1-A resolution: implications for the initiation of 
transcription. Proceedings of the National Academy of Sciences of the United 
States of America 100: 6969-6973. 

235. Chapman, R. D., M. Heidemann, C. Hintermair, and D. Eick. 2008. Molecular 
evolution of the RNA polymerase II CTD. Trends in genetics : TIG 24: 289-296. 



Chapter V – References 

 
 
 

  113  

236. Heidemann, M., C. Hintermair, K. Voss, and D. Eick. 2013. Dynamic 
phosphorylation patterns of RNA polymerase II CTD during transcription. 
Biochimica et biophysica acta 1829: 55-62. 

237. Egloff, S., and S. Murphy. 2008. Cracking the RNA polymerase II CTD code. 
Trends in genetics : TIG 24: 280-288. 

238. Buratowski, S. 2003. The CTD code. Nature structural biology 10: 679-680. 

239. Jiang, Y., M. Yan, and J. D. Gralla. 1996. A three-step pathway of transcription 
initiation leading to promoter clearance at an activation RNA polymerase II 
promoter. Molecular and cellular biology 16: 1614-1621. 

240. McCracken, S., N. Fong, E. Rosonina, K. Yankulov, G. Brothers, D. Siderovski, A. 
Hessel, S. Foster, S. Shuman, and D. L. Bentley. 1997. 5'-Capping enzymes are 
targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal 
domain of RNA polymerase II. Genes & development 11: 3306-3318. 

241. Viladevall, L., C. V. St Amour, A. Rosebrock, S. Schneider, C. Zhang, J. J. Allen, K. 
M. Shokat, B. Schwer, J. K. Leatherwood, and R. P. Fisher. 2009. TFIIH and P-
TEFb coordinate transcription with capping enzyme recruitment at specific 
genes in fission yeast. Molecular cell 33: 738-751. 

242. Bartkowiak, B., and A. L. Greenleaf. 2011. Phosphorylation of RNAPII: To P-
TEFb or not to P-TEFb? Transcription 2: 115-119. 

243. Yoh, S. M., H. Cho, L. Pickle, R. M. Evans, and K. A. Jones. 2007. The Spt6 SH2 
domain binds Ser2-P RNAPII to direct Iws1-dependent mRNA splicing and 
export. Genes & development 21: 160-174. 

244. Vojnic, E., B. Simon, B. D. Strahl, M. Sattler, and P. Cramer. 2006. Structure and 
carboxyl-terminal domain (CTD) binding of the Set2 SRI domain that couples 
histone H3 Lys36 methylation to transcription. The Journal of biological 
chemistry 281: 13-15. 

245. Meinhart, A., and P. Cramer. 2004. Recognition of RNA polymerase II carboxy-
terminal domain by 3'-RNA-processing factors. Nature 430: 223-226. 

246. Lunde, B. M., S. L. Reichow, M. Kim, H. Suh, T. C. Leeper, F. Yang, H. Mutschler, S. 
Buratowski, A. Meinhart, and G. Varani. 2010. Cooperative interaction of 
transcription termination factors with the RNA polymerase II C-terminal 
domain. Nature structural & molecular biology 17: 1195-1201. 

247. Mischo, H. E., and N. J. Proudfoot. 2013. Disengaging polymerase: terminating 
RNA polymerase II transcription in budding yeast. Biochimica et biophysica 
acta 1829: 174-185. 



Chapter V – References 

 
 
 

  114  

248. Komarnitsky, P., E. J. Cho, and S. Buratowski. 2000. Different phosphorylated 
forms of RNA polymerase II and associated mRNA processing factors during 
transcription. Genes & development 14: 2452-2460. 

249. David, C. J., A. R. Boyne, S. R. Millhouse, and J. L. Manley. 2011. The RNA 
polymerase II C-terminal domain promotes splicing activation through 
recruitment of a U2AF65-Prp19 complex. Genes & development 25: 972-983. 

250. Wang, W., X. Yao, Y. Huang, X. Hu, R. Liu, D. Hou, R. Chen, and G. Wang. 2013. 
Mediator MED23 regulates basal transcription in vivo via an interaction with 
P-TEFb. Transcription 4: 39-51. 

251. de la Mata, M., C. R. Alonso, S. Kadener, J. P. Fededa, M. Blaustein, F. Pelisch, P. 
Cramer, D. Bentley, and A. R. Kornblihtt. 2003. A slow RNA polymerase II 
affects alternative splicing in vivo. Molecular cell 12: 525-532. 

252. Nogues, G., M. J. Munoz, and A. R. Kornblihtt. 2003. Influence of polymerase II 
processivity on alternative splicing depends on splice site strength. The 
Journal of biological chemistry 278: 52166-52171. 

253. Dujardin, G., C. Lafaille, E. Petrillo, V. Buggiano, L. I. Gomez Acuna, A. Fiszbein, 
M. A. Godoy Herz, N. Nieto Moreno, M. J. Munoz, M. Allo, I. E. Schor, and A. R. 
Kornblihtt. 2013. Transcriptional elongation and alternative splicing. 
Biochimica et biophysica acta 1829: 134-140. 

254. de la Mata, M., C. Lafaille, and A. R. Kornblihtt. 2010. First come, first served 
revisited: factors affecting the same alternative splicing event have different 
effects on the relative rates of intron removal. RNA 16: 904-912. 

255. Ip, J. Y., D. Schmidt, Q. Pan, A. K. Ramani, A. G. Fraser, D. T. Odom, and B. J. 
Blencowe. 2011. Global impact of RNA polymerase II elongation inhibition on 
alternative splicing regulation. Genome research 21: 390-401. 

256. Roberts, G. C., C. Gooding, H. Y. Mak, N. J. Proudfoot, and C. W. Smith. 1998. Co-
transcriptional commitment to alternative splice site selection. Nucleic acids 
research 26: 5568-5572. 

257. Darzacq, X., Y. Shav-Tal, V. de Turris, Y. Brody, S. M. Shenoy, R. D. Phair, and R. 
H. Singer. 2007. In vivo dynamics of RNA polymerase II transcription. Nature 
structural & molecular biology 14: 796-806. 

258. Kornblihtt, A. R., M. de la Mata, J. P. Fededa, M. J. Munoz, and G. Nogues. 2004. 
Multiple links between transcription and splicing. RNA 10: 1489-1498. 

259. Schor, I. E., D. Lleres, G. J. Risso, A. Pawellek, J. Ule, A. I. Lamond, and A. R. 
Kornblihtt. 2012. Perturbation of chromatin structure globally affects 
localization and recruitment of splicing factors. PloS one 7: e48084. 



Chapter V – References 

 
 
 

  115  

260. Montes, M., A. Cloutier, N. Sanchez-Hernandez, L. Michelle, B. Lemieux, M. 
Blanchette, C. Hernandez-Munain, B. Chabot, and C. Sune. 2012. TCERG1 
regulates alternative splicing of the Bcl-x gene by modulating the rate of RNA 
polymerase II transcription. Molecular and cellular biology 32: 751-762. 

261. Fox-Walsh, K. L., and K. J. Hertel. 2009. Splice-site pairing is an intrinsically 
high fidelity process. Proceedings of the National Academy of Sciences of the 
United States of America 106: 1766-1771. 

262. Schwartz, S., E. Meshorer, and G. Ast. 2009. Chromatin organization marks 
exon-intron structure. Nature structural & molecular biology 16: 990-995. 

263. Tilgner, H., C. Nikolaou, S. Althammer, M. Sammeth, M. Beato, J. Valcarcel, and 
R. Guigo. 2009. Nucleosome positioning as a determinant of exon recognition. 
Nature structural & molecular biology 16: 996-1001. 

264. Zhou, H. L., M. N. Hinman, V. A. Barron, C. Geng, G. Zhou, G. Luo, R. E. Siegel, and 
H. Lou. 2011. Hu proteins regulate alternative splicing by inducing localized 
histone hyperacetylation in an RNA-dependent manner. Proceedings of the 
National Academy of Sciences of the United States of America 108: E627-635. 

265. Kouzarides, T. 2007. Chromatin modifications and their function. Cell 128: 
693-705. 

266. Luco, R. F., M. Allo, I. E. Schor, A. R. Kornblihtt, and T. Misteli. 2011. Epigenetics 
in alternative pre-mRNA splicing. Cell 144: 16-26. 

267. Andersson, R., S. Enroth, A. Rada-Iglesias, C. Wadelius, and J. Komorowski. 
2009. Nucleosomes are well positioned in exons and carry characteristic 
histone modifications. Genome research 19: 1732-1741. 

268. Schor, I. E., N. Rascovan, F. Pelisch, M. Allo, and A. R. Kornblihtt. 2009. 
Neuronal cell depolarization induces intragenic chromatin modifications 
affecting NCAM alternative splicing. Proceedings of the National Academy of 
Sciences of the United States of America 106: 4325-4330. 

269. Allo, M., V. Buggiano, J. P. Fededa, E. Petrillo, I. Schor, M. de la Mata, E. Agirre, 
M. Plass, E. Eyras, S. A. Elela, R. Klinck, B. Chabot, and A. R. Kornblihtt. 2009. 
Control of alternative splicing through siRNA-mediated transcriptional gene 
silencing. Nature structural & molecular biology 16: 717-724. 

270. Carstens, R. P., W. L. McKeehan, and M. A. Garcia-Blanco. 1998. An intronic 
sequence element mediates both activation and repression of rat fibroblast 
growth factor receptor 2 pre-mRNA splicing. Molecular and cellular biology 18: 
2205-2217. 

271. Saint-Andre, V., E. Batsche, C. Rachez, and C. Muchardt. 2011. Histone H3 lysine 
9 trimethylation and HP1gamma favor inclusion of alternative exons. Nature 
structural & molecular biology 18: 337-344. 



Chapter V – References 

 
 
 

  116  

272. Carstens, R. P., E. J. Wagner, and M. A. Garcia-Blanco. 2000. An intronic splicing 
silencer causes skipping of the IIIb exon of fibroblast growth factor receptor 2 
through involvement of polypyrimidine tract binding protein. Molecular and 
cellular biology 20: 7388-7400. 

273. Sims, R. J., 3rd, S. Millhouse, C. F. Chen, B. A. Lewis, H. Erdjument-Bromage, P. 
Tempst, J. L. Manley, and D. Reinberg. 2007. Recognition of trimethylated 
histone H3 lysine 4 facilitates the recruitment of transcription postinitiation 
factors and pre-mRNA splicing. Molecular cell 28: 665-676. 

274. Loomis, R. J., Y. Naoe, J. B. Parker, V. Savic, M. R. Bozovsky, T. Macfarlan, J. L. 
Manley, and D. Chakravarti. 2009. Chromatin binding of SRp20 and ASF/SF2 
and dissociation from mitotic chromosomes is modulated by histone H3 serine 
10 phosphorylation. Molecular cell 33: 450-461. 

275. Makeyev, E. V., J. Zhang, M. A. Carrasco, and T. Maniatis. 2007. The MicroRNA 
miR-124 promotes neuronal differentiation by triggering brain-specific 
alternative pre-mRNA splicing. Molecular cell 27: 435-448. 

276. Tripathi, V., J. D. Ellis, Z. Shen, D. Y. Song, Q. Pan, A. T. Watt, S. M. Freier, C. F. 
Bennett, A. Sharma, P. A. Bubulya, B. J. Blencowe, S. G. Prasanth, and K. V. 
Prasanth. 2010. The nuclear-retained noncoding RNA MALAT1 regulates 
alternative splicing by modulating SR splicing factor phosphorylation. 
Molecular cell 39: 925-938. 

277. Kishore, S., A. Khanna, Z. Zhang, J. Hui, P. J. Balwierz, M. Stefan, C. Beach, R. D. 
Nicholls, M. Zavolan, and S. Stamm. 2010. The snoRNA MBII-52 (SNORD 115) 
is processed into smaller RNAs and regulates alternative splicing. Human 
molecular genetics 19: 1153-1164. 

278. Kishore, S., and S. Stamm. 2006. The snoRNA HBII-52 regulates alternative 
splicing of the serotonin receptor 2C. Science 311: 230-232. 

279. Stamm, S. 2002. Signals and their transduction pathways regulating 
alternative splicing: a new dimension of the human genome. Human molecular 
genetics 11: 2409-2416. 

280. An, P., and P. J. Grabowski. 2007. Exon silencing by UAGG motifs in response to 
neuronal excitation. PLoS biology 5: e36. 

281. Chalfant, C. E., H. Mischak, J. E. Watson, B. C. Winkler, J. Goodnight, R. V. Farese, 
and D. R. Cooper. 1995. Regulation of alternative splicing of protein kinase C 
beta by insulin. The Journal of biological chemistry 270: 13326-13332. 

282. Lee, J. A., Y. Xing, D. Nguyen, J. Xie, C. J. Lee, and D. L. Black. 2007. 
Depolarization and CaM kinase IV modulate NMDA receptor splicing through 
two essential RNA elements. PLoS biology 5: e40. 



Chapter V – References 

 
 
 

  117  

283. Lynch, K. W. 2007. Regulation of alternative splicing by signal transduction 
pathways. Advances in experimental medicine and biology 623: 161-174. 

284. Lynch, K. W., and A. Weiss. 2000. A model system for activation-induced 
alternative splicing of CD45 pre-mRNA in T cells implicates protein kinase C 
and Ras. Molecular and cellular biology 20: 70-80. 

285. Heyd, F., and K. W. Lynch. 2010. Phosphorylation-dependent regulation of PSF 
by GSK3 controls CD45 alternative splicing. Molecular cell 40: 126-137. 

286. Blaustein, M., F. Pelisch, and A. Srebrow. 2007. Signals, pathways and splicing 
regulation. The international journal of biochemistry & cell biology 39: 2031-
2048. 

287. Weg-Remers, S., H. Ponta, P. Herrlich, and H. Konig. 2001. Regulation of 
alternative pre-mRNA splicing by the ERK MAP-kinase pathway. The EMBO 
journal 20: 4194-4203. 

288. Matter, N., P. Herrlich, and H. Konig. 2002. Signal-dependent regulation of 
splicing via phosphorylation of Sam68. Nature 420: 691-695. 

289. Zhou, Z., J. Qiu, W. Liu, Y. Zhou, R. M. Plocinik, H. Li, Q. Hu, G. Ghosh, J. A. Adams, 
M. G. Rosenfeld, and X. D. Fu. 2012. The Akt-SRPK-SR axis constitutes a major 
pathway in transducing EGF signaling to regulate alternative splicing in the 
nucleus. Molecular cell 47: 422-433. 

290. Hayakawa, M., H. Endo, T. Hamamoto, and Y. Kagawa. 1998. Acidic stimulation 
induces a negative regulatory factor that affects alternative exon selection in 
vitro in human ATP synthase gamma-subunit pre-mRNA. Biochemical and 
biophysical research communications 251: 603-608. 

291. van der Houven van Oordt, W., M. T. Diaz-Meco, J. Lozano, A. R. Krainer, J. 
Moscat, and J. F. Caceres. 2000. The MKK(3/6)-p38-signaling cascade alters 
the subcellular distribution of hnRNP A1 and modulates alternative splicing 
regulation. The Journal of cell biology 149: 307-316. 

292. Denegri, M., I. Chiodi, M. Corioni, F. Cobianchi, S. Riva, and G. Biamonti. 2001. 
Stress-induced nuclear bodies are sites of accumulation of pre-mRNA 
processing factors. Molecular biology of the cell 12: 3502-3514. 

293. Martinez, N. M., and K. W. Lynch. 2013. Control of alternative splicing in 
immune responses: many regulators, many predictions, much still to learn. 
Immunological reviews 253: 216-236. 

294. Baralle, D., A. Lucassen, and E. Buratti. 2009. Missed threads. The impact of 
pre-mRNA splicing defects on clinical practice. EMBO reports 10: 810-816. 

295. Tazi, J., N. Bakkour, and S. Stamm. 2009. Alternative splicing and disease. 
Biochimica et biophysica acta 1792: 14-26. 



Chapter V – References 

 
 
 

  118  

296. Seipelt, R. L., and M. L. Peterson. 1995. Alternative processing of IgA pre-mRNA 
responds like IgM to alterations in the efficiency of the competing splice and 
cleavage-polyadenylation reactions. Molecular immunology 32: 277-285. 

297. Early, P., J. Rogers, M. Davis, K. Calame, M. Bond, R. Wall, and L. Hood. 1980. 
Two mRNAs can be produced from a single immunoglobulin mu gene by 
alternative RNA processing pathways. Cell 20: 313-319. 

298. Martinez, N. M., Q. Pan, B. S. Cole, C. A. Yarosh, G. A. Babcock, F. Heyd, W. Zhu, S. 
Ajith, B. J. Blencowe, and K. W. Lynch. 2012. Alternative splicing networks 
regulated by signaling in human T cells. RNA 18: 1029-1040. 

299. Moulton, V. R., and G. C. Tsokos. 2010. Alternative splicing factor/splicing 
factor 2 regulates the expression of the zeta subunit of the human T cell 
receptor-associated CD3 complex. The Journal of biological chemistry 285: 
12490-12496. 

300. Chowdhury, B., S. Krishnan, C. G. Tsokos, J. W. Robertson, C. U. Fisher, M. P. 
Nambiar, and G. C. Tsokos. 2006. Stability and translation of TCR zeta mRNA 
are regulated by the adenosine-uridine-rich elements in splice-deleted 3' 
untranslated region of zeta-chain. J Immunol 177: 8248-8257. 

301. Tsuzaka, K., I. Fukuhara, Y. Setoyama, K. Yoshimoto, K. Suzuki, T. Abe, and T. 
Takeuchi. 2003. TCR zeta mRNA with an alternatively spliced 3'-untranslated 
region detected in systemic lupus erythematosus patients leads to the down-
regulation of TCR zeta and TCR/CD3 complex. J Immunol 171: 2496-2503. 

302. Nambiar, M. P., E. J. Enyedy, V. G. Warke, S. Krishnan, G. Dennis, G. M. Kammer, 
and G. C. Tsokos. 2001. Polymorphisms/mutations of TCR-zeta-chain 
promoter and 3' untranslated region and selective expression of TCR zeta-
chain with an alternatively spliced 3' untranslated region in patients with 
systemic lupus erythematosus. J Autoimmun 16: 133-142. 

303. Nambiar, M. P., C. U. Fisher, V. G. Warke, S. Krishnan, J. P. Mitchell, N. Delaney, 
and G. C. Tsokos. 2003. Reconstitution of deficient T cell receptor zeta chain 
restores T cell signaling and augments T cell receptor/CD3-induced 
interleukin-2 production in patients with systemic lupus erythematosus. 
Arthritis and rheumatism 48: 1948-1955. 

304. Ponta, H., L. Sherman, and P. A. Herrlich. 2003. CD44: from adhesion molecules 
to signalling regulators. Nature reviews. Molecular cell biology 4: 33-45. 

305. Huet, S., H. Groux, B. Caillou, H. Valentin, A. M. Prieur, and A. Bernard. 1989. 
CD44 contributes to T cell activation. J Immunol 143: 798-801. 

306. Bajorath, J. 2000. Molecular organization, structural features, and ligand 
binding characteristics of CD44, a highly variable cell surface glycoprotein 
with multiple functions. Proteins 39: 103-111. 



Chapter V – References 

 
 
 

  119  

307. Vela, E., X. Roca, and M. Isamat. 2006. Identification of novel splice variants of 
the human CD44 gene. Biochemical and biophysical research communications 
343: 167-170. 

308. Crispin, J. C., B. T. Keenan, M. D. Finnell, B. L. Bermas, P. Schur, E. Massarotti, E. 
W. Karlson, L. M. Fitzgerald, S. Ergin, V. C. Kyttaris, G. C. Tsokos, and K. H. 
Costenbader. 2010. Expression of CD44 variant isoforms CD44v3 and CD44v6 
is increased on T cells from patients with systemic lupus erythematosus and is 
correlated with disease activity. Arthritis and rheumatism 62: 1431-1437. 

309. Trowbridge, I. S., and M. L. Thomas. 1994. CD45: an emerging role as a protein 
tyrosine phosphatase required for lymphocyte activation and development. 
Annual review of immunology 12: 85-116. 

310. Dornan, S., Z. Sebestyen, J. Gamble, P. Nagy, A. Bodnar, L. Alldridge, S. Doe, N. 
Holmes, L. K. Goff, P. Beverley, J. Szollosi, and D. R. Alexander. 2002. 
Differential association of CD45 isoforms with CD4 and CD8 regulates the 
actions of specific pools of p56lck tyrosine kinase in T cell antigen receptor 
signal transduction. The Journal of biological chemistry 277: 1912-1918. 

311. Xu, Z., and A. Weiss. 2002. Negative regulation of CD45 by differential 
homodimerization of the alternatively spliced isoforms. Nature immunology 3: 
764-771. 

312. Lynch, K. W., and A. Weiss. 2001. A CD45 polymorphism associated with 
multiple sclerosis disrupts an exonic splicing silencer. The Journal of biological 
chemistry 276: 24341-24347. 

313. Melton, A. A., J. Jackson, J. Wang, and K. W. Lynch. 2007. Combinatorial control 
of signal-induced exon repression by hnRNP L and PSF. Molecular and cellular 
biology 27: 6972-6984. 

314. Topp, J. D., J. Jackson, A. A. Melton, and K. W. Lynch. 2008. A cell-based screen 
for splicing regulators identifies hnRNP LL as a distinct signal-induced 
repressor of CD45 variable exon 4. RNA 14: 2038-2049. 

315. Oberdoerffer, S., L. F. Moita, D. Neems, R. P. Freitas, N. Hacohen, and A. Rao. 
2008. Regulation of CD45 alternative splicing by heterogeneous 
ribonucleoprotein, hnRNPLL. Science 321: 686-691. 

316. Gregory, S. G., S. Schmidt, P. Seth, J. R. Oksenberg, J. Hart, A. Prokop, S. J. Caillier, 
M. Ban, A. Goris, L. F. Barcellos, R. Lincoln, J. L. McCauley, S. J. Sawcer, D. A. 
Compston, B. Dubois, S. L. Hauser, M. A. Garcia-Blanco, M. A. Pericak-Vance, 
and J. L. Haines. 2007. Interleukin 7 receptor alpha chain (IL7R) shows allelic 
and functional association with multiple sclerosis. Nature genetics 39: 1083-
1091. 



Chapter V – References 

 
 
 

  120  

317. Schluns, K. S., W. C. Kieper, S. C. Jameson, and L. Lefrancois. 2000. Interleukin-7 
mediates the homeostasis of naive and memory CD8 T cells in vivo. Nature 
immunology 1: 426-432. 

318. Kondrack, R. M., J. Harbertson, J. T. Tan, M. E. McBreen, C. D. Surh, and L. M. 
Bradley. 2003. Interleukin 7 regulates the survival and generation of memory 
CD4 cells. The Journal of experimental medicine 198: 1797-1806. 

319. Koesters, S. A., J. B. Alimonti, C. Wachihi, L. Matu, O. Anzala, J. Kimani, J. E. 
Embree, F. A. Plummer, and K. R. Fowke. 2006. IL-7Ralpha expression on CD4+ 
T lymphocytes decreases with HIV disease progression and inversely 
correlates with immune activation. European journal of immunology 36: 336-
344. 

320. Crawley, A. M., S. Faucher, and J. B. Angel. 2010. Soluble IL-7R alpha (sCD127) 
inhibits IL-7 activity and is increased in HIV infection. J Immunol 184: 4679-
4687. 

321. Korte, A., J. Kochling, L. Badiali, C. Eckert, J. Andreae, W. Geilen, C. Kebelmann-
Betzing, T. Taube, S. Wu, G. Henze, and K. Seeger. 2000. Expression analysis 
and characterization of alternatively spliced transcripts of human IL-7Ralpha 
chain encoding two truncated receptor proteins in relapsed childhood all. 
Cytokine 12: 1597-1608. 

322. Li-Weber, M., and P. H. Krammer. 2002. The death of a T-cell: expression of the 
CD95 ligand. Cell death and differentiation 9: 101-103. 

323. Krammer, P. H. 2000. CD95's deadly mission in the immune system. Nature 
407: 789-795. 

324. Cascino, I., G. Fiucci, G. Papoff, and G. Ruberti. 1995. Three functional soluble 
forms of the human apoptosis-inducing Fas molecule are produced by 
alternative splicing. J Immunol 154: 2706-2713. 

325. Cheng, J., T. Zhou, C. Liu, J. P. Shapiro, M. J. Brauer, M. C. Kiefer, P. J. Barr, and J. 
D. Mountz. 1994. Protection from Fas-mediated apoptosis by a soluble form of 
the Fas molecule. Science 263: 1759-1762. 

326. Izquierdo, J. M., and J. Valcarcel. 2007. Fas-activated serine/threonine kinase 
(FAST K) synergizes with TIA-1/TIAR proteins to regulate Fas alternative 
splicing. The Journal of biological chemistry 282: 1539-1543. 

327. Krummel, M. F., and J. P. Allison. 1995. CD28 and CTLA-4 have opposing effects 
on the response of T cells to stimulation. The Journal of experimental medicine 
182: 459-465. 

328. Magistrelli, G., P. Jeannin, N. Herbault, A. Benoit De Coignac, J. F. Gauchat, J. Y. 
Bonnefoy, and Y. Delneste. 1999. A soluble form of CTLA-4 generated by 



Chapter V – References 

 
 
 

  121  

alternative splicing is expressed by nonstimulated human T cells. European 
journal of immunology 29: 3596-3602. 

329. Oaks, M. K., K. M. Hallett, R. T. Penwell, E. C. Stauber, S. J. Warren, and A. J. 
Tector. 2000. A native soluble form of CTLA-4. Cellular immunology 201: 144-
153. 

330. Oaks, M. K., and K. M. Hallett. 2000. Cutting edge: a soluble form of CTLA-4 in 
patients with autoimmune thyroid disease. J Immunol 164: 5015-5018. 

331. Simone, R., G. Pesce, P. Antola, M. Rumbullaku, M. Bagnasco, N. Bizzaro, and D. 
Saverino. 2014. The soluble form of CTLA-4 from serum of patients with 
autoimmune diseases regulates T-cell responses. BioMed research 
international 2014: 215763. 

332. de Almeida, S. F., A. R. Grosso, F. Koch, R. Fenouil, S. Carvalho, J. Andrade, H. 
Levezinho, M. Gut, D. Eick, I. Gut, J. C. Andrau, P. Ferrier, and M. Carmo-
Fonseca. 2011. Splicing enhances recruitment of methyltransferase 
HYPB/Setd2 and methylation of histone H3 Lys36. Nature structural & 
molecular biology 18: 977-983. 

333. Carvalho, S., A. C. Raposo, F. B. Martins, A. R. Grosso, S. C. Sridhara, J. Rino, M. 
Carmo-Fonseca, and S. F. de Almeida. 2013. Histone methyltransferase SETD2 
coordinates FACT recruitment with nucleosome dynamics during 
transcription. Nucleic acids research 41: 2881-2893. 

334. Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. 2012. NIH Image to ImageJ: 
25 years of image analysis. Nature methods 9: 671-675. 

335. Bannister, A. J., R. Schneider, F. A. Myers, A. W. Thorne, C. Crane-Robinson, and 
T. Kouzarides. 2005. Spatial distribution of di- and tri-methyl lysine 36 of 
histone H3 at active genes. The Journal of biological chemistry 280: 17732-
17736. 

336. Roh, T. Y., S. Cuddapah, and K. Zhao. 2005. Active chromatin domains are 
defined by acetylation islands revealed by genome-wide mapping. Genes & 
development 19: 542-552. 

337. Hnilicova, J., S. Hozeifi, E. Duskova, J. Icha, T. Tomankova, and D. Stanek. 2011. 
Histone deacetylase activity modulates alternative splicing. PloS one 6: 
e16727. 

338. Orengo, J. P., D. Bundman, and T. A. Cooper. 2006. A bichromatic fluorescent 
reporter for cell-based screens of alternative splicing. Nucleic acids research 
34: e148. 

339. Das, S., O. Anczukow, M. Akerman, and A. R. Krainer. 2012. Oncogenic splicing 
factor SRSF1 is a critical transcriptional target of MYC. Cell reports 1: 110-117. 



Chapter V – References 

 
 
 

  122  

340. Huelga, S. C., A. Q. Vu, J. D. Arnold, T. Y. Liang, P. P. Liu, B. Y. Yan, J. P. Donohue, 
L. Shiue, S. Hoon, S. Brenner, M. Ares, Jr., and G. W. Yeo. 2012. Integrative 
genome-wide analysis reveals cooperative regulation of alternative splicing by 
hnRNP proteins. Cell reports 1: 167-178. 

341. Hanke, J. H., J. P. Gardner, R. L. Dow, P. S. Changelian, W. H. Brissette, E. J. 
Weringer, B. A. Pollok, and P. A. Connelly. 1996. Discovery of a novel, potent, 
and Src family-selective tyrosine kinase inhibitor. Study of Lck- and FynT-
dependent T cell activation. The Journal of biological chemistry 271: 695-701. 

342. Liu, J., J. D. Farmer, Jr., W. S. Lane, J. Friedman, I. Weissman, and S. L. Schreiber. 
1991. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-
FK506 complexes. Cell 66: 807-815. 

343. Favata, M. F., K. Y. Horiuchi, E. J. Manos, A. J. Daulerio, D. A. Stradley, W. S. 
Feeser, D. E. Van Dyk, W. J. Pitts, R. A. Earl, F. Hobbs, R. A. Copeland, R. L. 
Magolda, P. A. Scherle, and J. M. Trzaskos. 1998. Identification of a novel 
inhibitor of mitogen-activated protein kinase kinase. The Journal of biological 
chemistry 273: 18623-18632. 

344. Powis, G., R. Bonjouklian, M. M. Berggren, A. Gallegos, R. Abraham, C. Ashendel, 
L. Zalkow, W. F. Matter, J. Dodge, G. Grindey, and et al. 1994. Wortmannin, a 
potent and selective inhibitor of phosphatidylinositol-3-kinase. Cancer 
research 54: 2419-2423. 

345. Gana-Weisz, M., R. Haklai, D. Marciano, Y. Egozi, G. Ben-Baruch, and Y. Kloog. 
1997. The Ras antagonist S-farnesylthiosalicylic acid induces inhibition of 
MAPK activation. Biochemical and biophysical research communications 239: 
900-904. 

346. Bosque, A., and V. Planelles. 2009. Induction of HIV-1 latency and reactivation 
in primary memory CD4+ T cells. Blood 113: 58-65. 

347. Salmond, R. J., A. Filby, I. Qureshi, S. Caserta, and R. Zamoyska. 2009. T-cell 
receptor proximal signaling via the Src-family kinases, Lck and Fyn, influences 
T-cell activation, differentiation, and tolerance. Immunological reviews 228: 9-
22. 

348. Perez-Villar, J. J., G. S. Whitney, M. A. Bowen, D. H. Hewgill, A. A. Aruffo, and S. B. 
Kanner. 1999. CD5 negatively regulates the T-cell antigen receptor signal 
transduction pathway: involvement of SH2-containing phosphotyrosine 
phosphatase SHP-1. Molecular and cellular biology 19: 2903-2912. 

349. Dennehy, K. M., R. Broszeit, W. F. Ferris, and A. D. Beyers. 1998. Thymocyte 
activation induces the association of the proto-oncoprotein c-cbl and ras 
GTPase-activating protein with CD5. European journal of immunology 28: 
1617-1625. 



Chapter V – References 

 
 
 

  123  

350. Burgess, K. E., M. Yamamoto, K. V. Prasad, and C. E. Rudd. 1992. CD5 acts as a 
tyrosine kinase substrate within a receptor complex comprising T-cell 
receptor zeta chain/CD3 and protein-tyrosine kinases p56lck and p59fyn. 
Proceedings of the National Academy of Sciences of the United States of America 
89: 9311-9315. 

351. Bamberger, M., A. M. Santos, C. M. Goncalves, M. I. Oliveira, J. R. James, A. 
Moreira, F. Lozano, S. J. Davis, and A. M. Carmo. 2011. A new pathway of CD5 
glycoprotein-mediated T cell inhibition dependent on inhibitory 
phosphorylation of Fyn kinase. The Journal of biological chemistry 286: 30324-
30336. 

352. Spies, N., C. B. Nielsen, R. A. Padgett, and C. B. Burge. 2009. Biased chromatin 
signatures around polyadenylation sites and exons. Molecular cell 36: 245-254. 

353. Schwartz, S., and G. Ast. 2010. Chromatin density and splicing destiny: on the 
cross-talk between chromatin structure and splicing. The EMBO journal 29: 
1629-1636. 

354. Pinto, P. A., T. Henriques, M. O. Freitas, T. Martins, R. G. Domingues, P. S. 
Wyrzykowska, P. A. Coelho, A. M. Carmo, C. E. Sunkel, N. J. Proudfoot, and A. 
Moreira. 2011. RNA polymerase II kinetics in polo polyadenylation signal 
selection. The EMBO journal 30: 2431-2444. 

355. de la Mata, M., M. J. Munoz, M. Allo, J. P. Fededa, I. E. Schor, and A. R. Kornblihtt. 
2011. RNA Polymerase II Elongation at the Crossroads of Transcription and 
Alternative Splicing. Genetics research international 2011: 309865. 

356. Hartmann, B., and J. Valcarcel. 2009. Decrypting the genome's alternative 
messages. Current opinion in cell biology 21: 377-386. 

357. Witten, J. T., and J. Ule. 2011. Understanding splicing regulation through RNA 
splicing maps. Trends in genetics : TIG 27: 89-97. 

358. Shaw, S. D., S. Chakrabarti, G. Ghosh, and A. R. Krainer. 2007. Deletion of the N-
terminus of SF2/ASF permits RS-domain-independent pre-mRNA splicing. 
PloS one 2: e854. 

359. Xiao, S. H., and J. L. Manley. 1998. Phosphorylation-dephosphorylation 
differentially affects activities of splicing factor ASF/SF2. The EMBO journal 17: 
6359-6367. 

360. Wang, J., S. H. Xiao, and J. L. Manley. 1998. Genetic analysis of the SR protein 
ASF/SF2: interchangeability of RS domains and negative control of splicing. 
Genes & development 12: 2222-2233. 

361. Levenson, J. M., K. J. O'Riordan, K. D. Brown, M. A. Trinh, D. L. Molfese, and J. D. 
Sweatt. 2004. Regulation of histone acetylation during memory formation in 
the hippocampus. The Journal of biological chemistry 279: 40545-40559. 



Chapter V – References 

 
 
 

  124  

362. Chwang, W. B., K. J. O'Riordan, J. M. Levenson, and J. D. Sweatt. 2006. 
ERK/MAPK regulates hippocampal histone phosphorylation following 
contextual fear conditioning. Learn Mem 13: 322-328. 

363. Dong, C., R. J. Davis, and R. A. Flavell. 2002. MAP kinases in the immune 
response. Annual review of immunology 20: 55-72. 

364. D'Souza, W. N., C. F. Chang, A. M. Fischer, M. Li, and S. M. Hedrick. 2008. The 
Erk2 MAPK regulates CD8 T cell proliferation and survival. J Immunol 181: 
7617-7629. 

 



 
 
 

  

 


