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Escalonamento de Instalações Multitarefa de 

Produção em Lotes  

Desenvolvimento de uma Ferramenta de Suporte à Decisão para a 

Indústria Químico-Farmacêutica 

 

Samuel Moniz 

Resumo 

Esta tese incide sobre o desenvolvimento de modelos de escalonamento para instalações 

multitarefa de produção em lotes que operam para a indústria farmacêutica. O problema 

de escalonamento da produção é geralmente reconhecido como um problema difícil de 

resolver uma vez que lida com vários objetivos potencialmente concorrentes.  

A principal finalidade do escalonamento é produzir as quantidades adequadas, no 

tempo certo, com o menor custo e dentro dos critérios de qualidade. Para resolver este 

problema, modelos de otimização podem ser aplicados para obter soluções ótimas (ou 

quase ótimas). Os vários desafios que surgem a este nível estão relacionados com a 

implementação, modelação e eficiência computacional na resolução de problemas de 

grande dimensão. Contudo, a aplicação destes modelos em problemas reais cria 

claramente oportunidades de melhoria para as atividades de produção e logística. 

Nesta tese é apresentada uma metodologia inovadora para a representação e 

resolução do problema de escalonamento, suportada por um modelo de otimização 

discreto. As características da indústria químico-farmacêutica levaram a uma definição 

mais alargada do problema de escalonamento, que tem em conta decisões relacionadas 

com a modificação dos equipamentos. Métodos de decomposição e estratégias de 

reformulação são propostas para abordar a complexidade computacional. A eficiência 

destes métodos é ilustrada através da resolução de instâncias reais. São também 

discutidos aspetos relacionados com a implementação da metodologia de escalonamento 

de forma a demostrar a sua aplicabilidade prática. 
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Scheduling of Multipurpose Batch Plants 

Towards the Development of a Decision-Making Tool for the 

Chemical-Pharmaceutical Industry 

 

Samuel Moniz 

Abstract 

The main objective of this thesis was to development scheduling models for multipurpose 

batch plants operating in the context of the pharmaceutical industry. The production 

scheduling problem is commonly recognized as being very difficult since it must deal 

with several potential conflicting objectives. 

The primary goal of production scheduling is to produce the right amounts of 

product at the right time, cost, and quality. For that purpose, model-based approaches can 

be applied so as to obtain optimal (or close to optimal) scheduling solutions. Several 

challenges that arise at this level are related to implementation, modeling issues, and 

computational efficiency when solving large-scale problems. Nevertheless, the 

application of such models in real world scheduling problems clearly creates 

improvement opportunities for logistics and manufacturing activities.  

In this thesis, an innovative methodology is introduced for efficiently representing 

and solving the integrated scheduling problem, based on a new general discrete-time 

model. The characteristics of the chemical-pharmaceutical industry led to the definition 

of an extended view of the scheduling problem that accounts for units redesign decisions. 

Decomposition methods and reformulation strategies are also introduced to address the 

computational complexity of the models. The effectiveness of the proposed methods is 

illustrated by solving several real world instances. Practical implementation issues of the 

scheduling methodology are also discussed so as to demonstrate its application potential. 
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1   Introduction 

Industrial companies are continuously assessing their Operations with the objective of 

increasing the overall effectiveness of the manufacturing system. Markets where these 

organizations operate tend to become more complex over time, forcing companies to 

increase their responsiveness, both in terms of time and cost. The case of the 

pharmaceutical industry is a good example of how market is driving the change on 

product development cycles and manufacturing activities. Some of the most relevant 

driving factors are related to: a) the drought in new drug approval applications by the 

regulatory agencies such as the US Food and Drug Administration (FDA); b) the 

uncertainty associated to the Research and Development (R&D) and trials I-III phases; 

and c) the pressure on the drug prices and demand variability, caused by patent drops.  

The cost for developing a new drug was on average $138 million in the 1970s and 

skyrocketed to $802 million by 1990, which represents an increase of 481% in capitalized 

costs (DiMasi et al., 2003; Hynes III, 2009). Recent data reveals that although the drug 

development cycle remained fairly stable (it can take as long as 15 years), the total cost of 

bringing a new drug to market is, in average, estimated to exceed $1 billion (Kessel, 

2011). Nevertheless, the current worldwide paradigm imposes a reduction to less than 10 

years from pre-clinical development to commercialization (Federsel, 2009).  

This context is putting enormous pressure in the industry to reduce the time and the 

cost required to launch new drugs to market and, when drugs are in commercialization, 

reduce the manufacturing and inventory costs and the typically long production lead 

times. At the primary manufacturing (production of Active Pharmaceutical Ingredients 

(APIs)) and at the secondary manufacturing (formulation and packaging) it is not unusual 

for the overall supply chain cycle time to be 300 days. Moreover, the production of the 

APIs is considered the rate-limiting step of the supply chain (Shah, 2004). 
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Consequently, new technologies and production methodologies focused on the 

manufacturing system are being developed and evaluated, and some of them are being 

progressively adopted. For example, according to Roberge et al. (2005), 50% of the 

reaction tasks in the chemical-pharmaceutical industry could benefit from the adoption of 

continuous processes that have lower plant and production costs and can be highly 

automated. Concerning the manufacturing methodologies the focus is being on Good 

Manufacturing Practice (GMP), Process Analytical Technology (PAT) and also on 

advanced optimization tools, as stated by Grossmann (2005), with the concept of 

Enterprise-Wide Optimization (EWO). 

The relevance of using optimization tools is being recognized by the industry (Klatt 

& Marquardt, 2009). Thus, not surprisingly, the efforts made in the past years by both 

academia and industry resulted into several successful integrations of optimization tools 

in complex decision-making processes related to process design, supply chain, planning 

and scheduling (Grossmann, 2005). Some relevant reviews on these topics have been 

published (Kallrath, 2005; Mendez et al., 2006; Barbosa-Povoa, 2007; Li & Ierapetritou, 

2008; Maravelias & Sung, 2009; Verderame et al., 2010), showing the remarkable 

progress done in the Process System Engineering (PSE) area.  

Production planning and scheduling are systematically considered very difficult 

functions to perform, since they are intended to produce operational plans dealing with 

several potential conflicting objectives, namely minimizing costs, completion times, and 

delays or maximizing profit. Additionally, these functions are closely related to other 

areas such as sales, procurement, production execution, and control, hence they may 

interface with decisions at the strategic and operational levels.  

In short, we can say that the scheduling decision-making process must be 

simultaneously faster, integrated, validated, and provide various alternatives instead of a 

single solution to the problem. The assessment of the manufacturing system in new 

scenarios is done on a regular basis, and may be triggered by the arrival of new orders or 

rescheduling needs. Moreover, scheduling solutions must be obtained in reasonable time, 

considering the time window available for the decision-making process, and may need to 

consider decisions made in other areas. The validation of the solutions must then be 

performed to ensure operational feasibility, and since a variety of solutions having 

different objectives can be obtained, it is highly desirable to have alternative schedules. 
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The use of optimization methods in the scheduling decision making-process should 

ensure that all these requirements are met, thus providing a systematic way to obtain 

optimal (or close to optimal) scheduling solutions. 

1.1   Research Gaps and Research Questions 

The major issues raised by optimization approaches, when applied to industrial problems, 

are related to computational performance, uncertainty, multiscale optimization, or the 

modeling task itself (Grossmann, 2005; Grossmann, 2012). In particular, scheduling 

optimization is quite difficult to perform since it involves solving combinatorial problems 

in highly collaborative and dynamic production environments. The relevance of these 

issues and the practical need to address them, in an effective and efficient way, are the 

main motivation for this work. Our research is in fact pursued with the aim of designing 

new optimization based decision-support tools, for solving planning and scheduling 

problems in process batch plants. Thus, in spite of the significant progress done in the 

development of scheduling models, these issues are restricting the adoption of 

mathematical approaches by the process industry. Modeling is surely a very critical issue, 

since it deals with the design of models targeting their integration with the company’s 

decision-making processes. Thus, the first research question can be posed as follows:  

 

Q1: What should be the structure and components of models for scheduling multipurpose 

batch plants? 

 

Question Q1 reflects the importance of understanding the structure of the 

scheduling problem, as seen by the practitioners, and leads to the definition of the main 

components that will constitute the decision-making tool. Moreover, the factors that are 

determinant to integrate optimization models in industrial practices should also be 

considered here. In other words, it is quite relevant to understand the structure of the 

scheduling problem in order to integrate models in existing decision-making processes, in 

such a way that models can be rapidly understood by the industrial practitioners. Along 

the same lines, another motivating research question arises: 
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Q2: What is the optimal strategy for scheduling of multipurpose batch plants taking into 

account the different production modes? 

 

Question Q2 provides guidance to this research on the development of scheduling 

models and solution methods, capable to solve large-scale scheduling problems and to 

adapt to different production scenarios. The critical factors concern with the 

computational performance and quality of the solutions when solving difficult scheduling 

problems. The challenge here is to develop solution methods such that the balance 

between computational time and quality of the solutions is acceptable in the context of 

the day to day scheduling decisions. 

1.2   Thesis Objectives 

The main objective of this thesis is to develop a general methodology for solving 

scheduling problems of multipurpose batch plants. In a more detailed way, this work aims 

at:  

1) identifying the requirements for the scheduling models; 

2) developing generic scheduling models for multipurpose batch plants; 

3) designing solution methods; 

4) developing the basis for a decision support tool for the chemical-pharmaceutical 

industry.  

First we try to develop a clear view of the scheduling problem as seen by the 

industry, and to identify the requirements necessary to design scheduling models. Then 

we design, test, and validate scheduling models under real-world conditions, which can 

be supported by the case study addressed in this work. We then propose solution methods 

to solve large-scale scheduling problems. Finally, we develop the prototype of a decision-

support tool that integrates the developed mathematical approaches with decision-making 

processes. The characteristics of the models, the structure of the problems and also the 

decision-making processes of the case-study are taken into consideration, so as to define a 

scheduling methodology that can be truly implemented in real manufacturing systems.  
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1.3   Scope of the Thesis  

The work presented throughout this thesis is centered on the scheduling problem of 

multipurpose batch plants and is motivated by the resolution of a case study from the 

chemical-pharmaceutical industry. The level of analysis of this research is the 

multipurpose batch plant, and the unit of analysis is the scheduling model. 

The case-study of this work was designed based on a company that is responsible 

for the development and manufacturing of complex chemicals called Active 

Pharmaceutical Ingredients (API). The batch processes are typically long and are 

executed under close supervision of the regulatory authorities. To manufacture a single 

product, several days of effective production time may be required, with tasks processing 

times varying between one hour and two days. The production resources are shared 

between products that are under development and products that are already in 

commercialization. Changeovers are required to avoid cross contamination of the 

products and are quite critical since often they impose significant downtime periods. In 

this context, the scheduling problem consists in efficiently allocating production 

resources to tasks so as to fulfill given demand targets. In the cases when the scheduling 

problem is deeply dependent on other types of problems, such as batch plant design or 

planning, those problems have also been considered.  

Two important advantages of this study should be emphasized. First, the resolution 

of real world scheduling problems helped to focus the research in the development of 

optimization models that can effectively be implemented. Thus, practical scheduling 

requirements have been discussed with the company and considered in the models 

whenever possible. Second, although the scheduling models and solution approaches 

developed were motivated by a case-study, they can be applied to other types of 

industries, as long as the scheduling problem has a similar structure.  

1.4   Key Concepts and Definitions 

The main key concepts and definitions used throughout this thesis are: 

a) Production planning – “Production planning is viewed here as the planning of 

the acquisition of the resources and raw materials, as well as the planning of the 

production activities, required to transform raw materials into finished products 
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meeting customer demand in the most efficient or economical way possible.”, by 

Pochet and Wolsey (2006). 

b) Production scheduling – “Scheduling is a decision-making process that is used on 

a regular basis in many manufacturing and services industries. It deals with the 

allocation of resources to tasks over given time periods and its goal is to optimize 

one or more objectives”, by Pinedo (2002). 

c) Multipurpose batch plants – “multipurpose batch plants or jobshops are general 

purpose facilities where a variety of products can be produced by sharing the 

available equipment, raw materials and intermediates, utilities and production 

time resources”, by Barbosa-Povoa (2007). 

Planning is associated to long-term decisions and scheduling is related to short-

time decisions. The interaction between these two types of decisions has been extensively 

addressed in the literature. A recent review on this topic is provided by Maravelias and 

Sung (2009). 

1.5   Research Design and Methods 

The models developed in this thesis apply well known mathematical approaches, such as 

Linear Programming (LP) and Mixed Integer Linear Programming (MILP). To address 

the computational complexity of some scheduling instances, decomposition methods have 

also been used. 

Modeling scheduling problems invariably requires integer variables, which results 

into models having both continuous and integer variables. Due to the combinatorial 

nature of the problems, a complete enumeration of all possible values of the decision 

variables is impractical. To solve this type of problems the branch-and-bound (B&B) 

technique is generally applied. B&B is an enumeration algorithm that applies a 

partitioning process to cut a lot of the enumeration whenever possible. Current 

implementations of B&B take advantage of extraordinary theoretical progresses and are 

in practice quite efficient.  

In a nutshell, B&B computes the Linear Relaxation of the MILP problem at each 

node of the enumeration tree and keeps record of the best integer solution found and of 

the linear relaxation solution and value to find bounds on the optimal values for the 

integer programs (Johnson et al., 2000). Nowadays, B&B is part of advanced solvers such 
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as CPLEX that include a preprocessing stage and heuristics to speed up the resolution 

time.  

However, many scheduling problems can hardly be solved by exact methods (as 

B&B) in an acceptable amount of time. These problems usually deal with a large number 

of resources, tasks, and mainly with a large number of time intervals. Moreover, if we 

consider some complicating constraints as sequence-dependent changeovers and 

temporary storage in the processing units, the resolution time tends to be prohibitive and 

the quality of the solutions tends to deteriorate very rapidly. Alternatively, decomposition 

techniques can be applied to obtain satisfactory solutions quickly. In this work, we have 

applied aggregated model formulations, task-unit aggregation, and time-based 

decompositions. 

In this research, the case study naturally played a very important role. Data 

collection for analysis and interpretation was performed in the company and used later to 

build the scheduling instances. Due to the lack of coherent information structures, data 

was firstly arranged to be used then by the scheduling models. In order to test and 

validate the proposed methodology, we have, during one year, performed meetings in a 

regular basis with process engineers and planners. Insights from industrial practitioners 

revealed to be very useful in redefining the components of the methodology and the 

integration requirements between those components. 

1.6   Thesis Outline 

The research questions have been tackled throughout four papers that essentially 

constitute the body of the thesis, thus some unavoidable repetitions are present in this 

document. The original content of each published or submitted paper was transcribed to 

single chapters, excluding the work presented in Chapter 2 that was not submitted to a 

journal. Thus, the relevant literature review is discussed in each of these chapters. 

Chapter 2 presents a discussion on the complexity of planning and scheduling 

functions. The role and scope of planning and scheduling are addressed in detail, in an 

attempt to better understand the critical factors that drive these functions in the context of 

the pharmaceutical industry. We show that there is an improvement path that must be 

followed in order to respond to the new challenges of this industry.  
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Chapter 3 introduces a new type of problem that is closely related to the scheduling 

problem. The equipment redesign problem is defined by the implementation of 

modifications in the processing units so as to change their suitability to perform tasks. 

This problem takes more relevance in industries that perform process development, since 

the production recipes evolve with it and for that reason it may be necessary to modify 

the processing units. Modeling both problems simultaneously increases the solution 

space, since additional task-unit assignments can be explored by modifying the 

processing units. The developed model delivers a schedule and an equipment 

modification plan. 

Chapter 4 proposes a new general discrete-time scheduling model for multipurpose 

batch plants. The developed formulation deals efficiently with two complicated 

requirements of the discrete-time scheduling models as: the sequence-dependent 

changeovers and the temporary storage in the processing units. Other operational 

requirements such lots blending and material flows traceability that have been somehow 

neglected by the literature, are also taken into account. 

Chapter 5 presents a novel solution methodology for the production scheduling of 

batch plants that distinctively integrates the representation of the scheduling problem, the 

optimization model, and the decision-making process. The main objective is to ensure the 

development of a methodology that can effectively be integrated in the decision-processes 

of the company, in which the case-study of this research project is based. 

Chapter 6 addresses the scheduling of regular and non-regular production. The 

objective of this chapter is two-fold. First, solving a scheduling problem that requires two 

distinct operating strategies: campaign and short-term production. Second, tackling the 

computational complexity of the scheduling problems by using decomposition methods 

and reformulation strategies. Real world scheduling instances are solved to demonstrate 

the efficiency and quality of the solutions.  

Finally, chapter 7 summarizes the work presented in this thesis and identifies some 

future research topics in the area. 

The papers that support the structure of the thesis, described above, are presented 

in Table 1.1 and have been published/or are under review in international peer reviewed 

journals or have been published in conference proceedings. 
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Table 1.1 – Publications. 

Chapter Publications 

Chapter 3 Moniz, S., Barbosa-Póvoa, A. P., & Pinho de Sousa, J. (2012). 

Scheduling with equipment redesign in multipurpose batch 

plants. Foundations of Computer-Aided Process Operations - 

FOCAPO 2012. 

Chapter 4 Moniz, S., Barbosa Póvoa, A. P., & Pinho de Sousa, J. (2013). A new 

general discrete-time scheduling model for multipurpose batch 

plants. Industrial & engineering chemistry research. doi: 

10.1021/ie4021073. 

Chapter 5 Moniz, S., Barbosa-Póvoa, A. P., & Pinho de Sousa, J. (2013). A 

solution methodology for scheduling problems in batch plants. 

Under review in Industrial & engineering chemistry research. 

Chapter 6 Moniz, S., Barbosa-Póvoa, A. P., & Pinho de Sousa, J. (2013). 

Simultaneous regular and non-regular production scheduling of 

multipurpose batch plants: a real chemical-pharmaceutical case 

study. Under review in Computers & Chemical Engineering. 

Papers in Conference Proceedings 

Moniz, S., Barbosa-Póvoa, A. P., & Pinho de Sousa, J. (2012). Regular and non-regular 

production scheduling of multipurpose batch plants. Proceedings of the 22nd 

European Symposium on Computer Aided Process Engineering. doi: 

10.1016/B978-0-444-59520-1.50012-9.  

Moniz, S., Barbosa-Póvoa, A. P., & Pinho de Sousa, J. (2013). Extending the Resource-

Task Network (RTN) for Industrial Scheduling Problems. IO 2013, XVI 

Congresso da Associação Portuguesa de Investigação Operacional. 
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2   On the Complexity of Production Planning and 

Scheduling in the Pharmaceutical Industry 

Abstract 

This chapter discusses on the role of the planning and the scheduling 

functions in the drug development process and production environment 

of the pharmaceutical industry, and aims at identifying the critical factors 

of decision-making and global optimization to the operations. We 

redefine the scope of planning and scheduling problems, and we propose 

an extended view of these problems to account for higher levels of 

integration between process design and operations. Finally, we introduce 

a conceptual representation, the Delivery Tradeoffs Matrix to provide 

guidance on the tradeoffs occurring in the drug development process and 

to expose the factors that affect the performance of these manufacturing 

systems. 

Keywords: process design; planning and scheduling optimization; batch 

plants; pharmaceutical industry 
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2.1   Introduction 

The pharmaceutical industry can be view as a complex system of processes, operations 

and organizations involved in the discovery, development and manufacturing of drugs 

(Shah, 2004). Companies operating in this industry are responsible for: research and 

development (R&D) activities; development and manufacturing of active pharmaceutical 

ingredients (APIs); and drugs manufacturing. From the supply chain perspective, 

different companies collaborate in the development and manufacturing activities as a way 

to reduce the risks involved in the long product development cycle. This collaboration is 

characterized by technological information sharing and operations synchronization so as 

to ensure time-to-market of new drugs. 

The product development cycle includes pre-clinical research, clinical studies on 

humans (trials I-III) and commercialization phases, and involves several fields such as 

process chemistry, analytical chemistry, process engineering, process safety, regulatory 

compliance and plant operation that must be effectively applied (Federsel, 2009). The 

same author states that although the pharmaceutical industry has historically tolerated 

total time investments of more than 10 years from idea to market, the current worldwide 

paradigm imposes a reduction of this time. The launch of new drugs in the market 

involves the development of new substances for specific treatments, and their 

manufacturing in substantial quantities to satisfy the demand trough costs effective 

operations. Here, the pharmaceutical industry is confronted with several challenges that 

are related to increasing R&D costs, long cycle times and low probabilities of success 

(Hynes III, 2009). 

In general, manufacturers and regulators create a specific context to the operations 

management, thus conditioning planning and scheduling functions. The planning problem 

involves the determination of strategic production plans, in which decisions are typically 

made assuming a certain degree of aggregation of resources and time, hence defining 

bounds to the scheduling problem. The scheduling problem involves the determination of 

operational plans at the level of the most elementary production resources and at a fine 

time grid. Both problems present potentially several conflicting objectives such as, for 

example, minimizing costs and delivery times. The characteristics of the market, of the 

production processes and the chemical plants make planning and scheduling tasks 

particular difficult to perform. We have looked into the literature addressing planning and 



2   On the Complexity of Production Planning and Scheduling in the Pharmaceutical 

Industry 
27 

 

 

scheduling problems in the pharmaceutical industry and tried to derive conclusions 

concerning their scope and challenges. 

The rest of the paper is structured as follows. Section 2.2 introduces a broad 

problem description for discussing the scope of planning and scheduling decision-

making. Section 2.3 presents critical factors that determine how planning and scheduling 

is done in the pharmaceutical industry. In section 2.4, the Delivery Tradeoffs Matrix is 

introduced. Finally, in section 2.5, some concluding remarks are presented.  

2.2   The Scope of Planning and Scheduling 

Planning and scheduling refer to procedures of allocating resources to execute chemical 

and physical processing tasks (Reklaitis, 1992). Planning is typically associated to long-

term horizons, while scheduling is related to short-time horizons. The time horizon and 

level of detail of planning and scheduling decisions are usually not fixed a priori since 

they depend on the specific problem being addressed. Moreover, planning and scheduling 

integration is also case specific, depending mainly on the types of decisions performed 

and desirable aggregation/detail at each decision-making level. 

Planning and scheduling are deeply dependent on other corporate functions such as 

sales, procurement and production execution and control. See for example the process 

operations hierarchy of Bassett et al. (1996), in which planning and scheduling are part of 

a hierarchical and bi-directional process involving several functions, at tactical and 

strategic decision-making levels. 

In the context of the process development and manufacturing of drugs, R&D and 

Operations Management (OM) departments perform critical activities that determine how 

planning and scheduling are effectively done. A visualization of these activities is 

presented in Figure 2.1. The first step, Process Synthesis, refers to the quantitative 

specification of physicochemical materials manipulations that take place, having as 

output a recipe that is independent of particular processing units. In other words, the 

recipe describes the chemistry steps required to manufacture the product. After the 

chemical process has been validated in laboratory it follows the Process Scale-up. This 

step complies with the development of the chemical process so as to pass from a 

laboratory scale to an industrial production dimension, resulting in the determination of 

the final product quantities (lot sizes) and an initial assessment of the processing times. 
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Note that several process scale-ups are typically performed to respond to the demands at 

the early stages of the development, at the clinical trials I-III and also after the drug 

approval for commercialization. 

 

Figure 2.1 – Scope of the planning and scheduling problems. 

The next step, Process Design, consists in using the information available to 

develop an industrial process. Here, the characteristics of the products and processing 

units are considered to seek the development of an efficient production process 

concerning resources utilization, given a set of market and operating constraints. In 

particular, the network of processing tasks is analyzed and the suitable processing units 

are determined. The complexity increases with the following two steps. Planning and 

Scheduling need to deal with the utilization of the production resources in the most 

efficient manner, and must account for the uncertainty associated to parameters such as 

tasks processing time or demand. The final step, Production Execution and Control 

involve the following activities production dispatching, control actions and quality 

assessment, among others. 

Typically, the overall decision process is assigned to the R&D and the OM 

departments. The first steps are mainly associated to the R&D functions, while the OM 

deals essentially with planning and manufacturing. Nevertheless, decisions should be 

performed collaboratively in order to ensure that decisions made at each department are 

properly considered. Although Figure 2.1 suggests a sequential and directional decision 

flow, the different steps are often overlapped and revisited whenever necessary. 

We argue that planning and scheduling functions are extended in order to integrate 

some decisions made in the process scale-up and design steps. The planning problem, 

either of long-term or short-term, benefit from considering decisions taken at the scale-up 
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and process design levels, since these decisions have a direct impact on the determination 

of the processing units suitable for the process, resulting into different production routes 

(alternative processes). On the contrary, after schedule release to the shop-floor, changes 

on planning and scheduling decisions are very limited, although rescheduling is a 

common practice. The same happens with changes in process design decisions that may 

not be possible or are not desirable to perform. On the same lime, Barbosa-Povoa and 

Macchietto (1994) state that design and scheduling aspects must be considered 

simultaneously. The design of batch plants has also been object of an extensive review by 

Barbosa-Povoa (2007). 

In summary, we argue that the scope of the planning and scheduling functions must 

be extended to account for design decisions, especially for manufacturing chemical 

processes that are under development. This will increase the solution space of planning 

and scheduling decisions, targeting the global optimization of the operations. Moreover, 

in the case of the pharmaceutical industry, planning and scheduling are determined by 

specific drivers that we group in three categories: i) market; ii) processes; and iii) plants, 

all of them having impact on the decision-making process depicted in Figure 2.1. These 

drivers are briefly discussed in the following section. 

2.3   Critical Factors 

Planning and scheduling are functions that aim primarily at reducing costs and improving 

responsiveness of the manufacturing systems. The critical factors that drive planning and 

scheduling functions, in the particular context of the pharmaceutical industry, can be 

grouped in three categories: Market, Processes and Plants. Market factors are related to 

the contextual factors specific of this industry. Process factors have to do with the 

structure of the chemical processes. Plant factors concern to the operating strategies and 

resources characteristics of the manufacturing systems. It is important to note that some 

of the process and plant characteristics discussed in the following subsections are not 

specific of the pharmaceutical industry. 
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2.3.1   Market 

The market context has a direct influence on planning and scheduling functions. First of 

all, the pharmaceutical market is highly fragmented (Basu et al., 2008). There is a large 

variability on the demand, also as a result of the pressure created by generic drugs, which 

leads to a larger production mix in the manufacturing sites. Operations flexibility is 

therefore required to fit the system to this demand, and for that, efficient planning and 

scheduling methods are required.  

Regulatory agencies such as the US Food and Drug Administration (FDA) or the 

European Medicines Agency (EMA) impose strict regulations that go from the 

development to the manufacturing of drugs. Manufacturing in a high regulated market has 

to deal with additional complexities that do not exist in less regulated markets. Chemical 

processes are executed under a close supervision of the regulatory agencies that define 

procedures to monitor process changes. For example, in the manufacturing of APIs, a 

validated and certified production process can have its lot size only vary up to a 

maximum of 10%. To change more than that, the process has to undergo a new 

certification process, which will increase costs and require more non-production time.  

Moreover, scheduling and planning must account for constraints imposed by long 

product development cycles. The development process intrinsically defines the set of 

production resources (processing units) that can be used in each phase, thus conditioning 

planning and scheduling decisions.  

Globally, the time-to-market issue and pressure to reduce costs are imposing 

operations to run more efficiently and therefore advanced planning and scheduling 

methods are necessary (Moniz et al., 2013 submitted). 

2.3.2   Processes 

The process topology determines the scheduling models that can be applied. Processes 

can be classified as Sequential and Network process. In short, sequential processes do not 

allow batch mixing and splitting, thus the batch entity is preserved. Network processes 

have arbitrary networks of processing tasks and batch mixing and splitting is allowed. 

Comprehensive reviews on the classification of the batch scheduling problems are 

available in Pinto and Grossmann (1998) and in Mendez et al. (2006). One relevant 

aspect concerning modeling of scheduling problems is that the process topology 
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(sequential or network) is determined by material handling constraints and not by the 

plant structure (e.g., processing units, connectivity) (Sundaramoorthy & Maravelias, 

2011; Maravelias, 2012).  

Sequential processes may have similar tasks sequences, thus may be executed in a 

Multistage facility, or on the other hand, may have product specific tasks sequences and 

require a Multipurpose facility. Additionally, there are network processes that have 

arbitrary structures and also require a multipurpose facility. In practical terms, modeling 

planning and scheduling decisions may be quite different if the plant is a multistage or 

multipurpose. For example, planning and scheduling of multistage batch plants can be 

focused on the bottleneck stage, since this stage can often be identified. On the contrary, 

in multipurpose plants the bottleneck units tend to change with the production mix, which 

requires the adoption of different decomposition approaches. 

Processes can have batch, semi-continuous and continuous tasks and produce 

materials subject to different storage policies, such as Unlimited Intermediate Storage 

(UIS), Finite Intermediate Storage (FIS), Zero-Wait (ZW) and Non Intermediate Storage 

(NIS).  

In the manufacturing of APIs, for example, processes require numerous production 

steps with tasks having short and long processing times, which may span across several 

working shifts. Regulatory and quality procedures define the lot size and changeover 

requirements that must be rigorously followed in the manufacturing sites, thus 

introducing additional time to the effective production time. Stable intermediaries and 

final products are produced in lots, and therefore lots traceability must be ensured. Thus, 

proportions/quantities of each lot used in subsequent lots must be recorded. Changeovers 

are needed to avoid cross-contamination of the products and have the immediate 

consequence of increasing the idle time of the processing units. Moreover, the cleaning 

times of units are typically shorter when changing the production to lots of the same 

product, and are usually larger when changing to a different product.  

The first batches after a scale-up are usually more difficult to execute, since it may 

involve using different processing units or even perform changes in the process. 

Additionally, if the process is under development, it is more difficult to perform 

scheduling, since at this point the knowledge about the process is very limited. For that 

reasons, processes impose frequently the revision of the schedule.  
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2.3.3   Plants 

The plant structure has also implications on how planning and scheduling is performed. 

Note that, although the modeling approach strongly depends on the process topology (as 

discussed above), the characteristics of the plants (such as resources, plant structure, 

operating mode, and batch/continuous manufacturing) lead as well to specific planning 

and scheduling problems. 

Batch plants have different types of production resources (e.g., processing units, 

storage units, units’ connections, materials, utilities and people) that may need to be 

considered when solving these problems. Facilities having multipurpose units are 

inherently more flexible, since these units are suitable to produce a variety of products 

(Barbosa Povoa & Macchietto, 1994). Resources of the type material may be available for 

manufacturing several processes according to the recipe instructions, and they can have 

the following states: raw materials, intermediaries, stable intermediaries and final 

products. Material storage policies are defined by the process itself and by the storage 

alternatives available for scheduling. Dedicated storage units may exist, even if 

multipurpose units such as reactors can often be used temporarily as vessels.  

The plant is typically composed by reactors, filters and dryers that are connected 

through a complex system of pipelines or through mobile vessels. This connectivity 

allows fixed or flexible links between units, having significant implications on the 

effective utilization of processing units. In general, resources sharing and connectivity 

alternatives are advantageous in scenarios were product demands or formulations 

demands change rapidly (Barbosa Povoa & Macchietto, 1994). Design and scheduling 

problems have been addressed simultaneously as a way to account for units connectivity 

and layout characteristics, resulting into integrated operating strategies (Barbosa-Povoa, 

2007). Barbosa Povoa and Macchietto (1994) addressed for the first time the design and 

scheduling of multipurpose batch plants taking into account the plant structure and, more 

recently, the units redesign problem was introduced by Moniz et al. (2012). Here, we 

have considered that the units’ suitability to perform tasks can change during the 

scheduling horizon. The set of resources available in the plant and the degree of 

flexibility to adapt the resources to the products demand will provide more or less 

scheduling alternatives. 
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Concerning the operating mode, batch plants that have to manufacture products 

with dissimilar recipes and low production volume require different operating strategies 

than those having similar recipes and high volume (Reklaitis, 1992). In this way, for low 

volume production (short-term mode) a reduced number of batches are produced and for 

high volume production (campaign mode) the number and size of batches tends to be 

higher. These strategies have impact on the way how resources are allocated and on the 

required system responsiveness. The short-term mode under a multipurpose environment 

requires a higher responsiveness from the manufacturing system, since resources are 

shared between several products in a very dynamic production environment, whereas in 

the campaign mode, resources are allocated to single products during long time periods. 

Campaign schedules can be computed using the periodic scheduling approach proposed 

by Shah et al. (1993) where it is assumed that tasks are executed with a cyclic pattern. In 

practice, these schedules are seen as operationally easier to manage and execute. Finally, 

we may have a mixed strategy, in which some resources are allocated to short-term 

demand, while the other resources are dedicated to the campaign demand (Moniz et al., 

2013).  

Continuous manufacturing of pharmaceuticals is an emergent process mode that 

relies on flow reactors and is being evaluated to the production of drugs. An immediate 

consequence of using flow reactors, instead of using batch reactors, is that the production 

process moves from a batch process to continuous operating conditions (Buchholz, 2010). 

Benefits of continuous manufacturing when compared to batch manufacturing include 

lower plant and production costs, lower carbon footprint; better quality, higher safety; 

less costs to scale-up, and higher levels of automation (Roberge et al., 2008; Calabrese & 

Pissavini, 2011). Nevertheless, existing technological challenges of flow reactors and 

adaptation of batch processes to continuous processes have made their evaluation and 

deployment difficult.  

I what concerns the supply chain of continuous processes, materials can be planned 

in a regular basis so leading to a reduction of inventory costs. Moreover, since labor costs 

in the pharmaceutical industry are very significant (Roberge et al., 2008), the possibility 

of introducing automated continuous processes has at least two advantages: it reduces 

labor costs and improves the reliability of the production process, thus reduces the 

uncertainty in planning and scheduling problems. 



34 Moniz, S. 

 

 

2.4   Delivery Tradeoffs Matrix 

The ultimate goal of planning and scheduling is to deliver the right amounts of product at 

the right time, cost and quality. Thus, in order to provide guidance on the issues that 

determine the effectiveness of launching a new drug to the market, we propose a 

conceptual representation, named the Delivery Tradeoffs Matrix (DTM) depicted in 

Figure 2.2. The relative importance of costs and uncertainty on the manufacturing 

activities that support the development and delivery of APIs or final products can be 

assessed in the DTM. 

Drug Development Cycle 

The matrix depicts three phases (R&D, trials I-III and commercialization) of the drug 

development cycle. The R&D phase accounts for discovery, safety and toxicology 

research activities, and clinical supplies. Trials I-III are related to the clinical studies 

performed on humans. The commercialization phase includes the manufacturing activities 

required to deliver the right amounts of product to the market, after approval by the 

regulatory agencies. Uncertainty and costs are represented in a scale of high-low and the 

lot size proportion at each phase is indicated by the size of the associated bubble. The 

DTM of Figure 2.2 a) attempts to show the current tradeoffs of the industry, while b) tries 

to depict a future scenario, as a possible response to the challenges the pharmaceutical 

industry is facing and needs to overcome. 

The DTMs were built taking into account a set of estimated values available in the 

literature. To the best of our knowledge, there are no reliable figures regarding the cost 

structure and uncertainty associated to the R&D, trials I-III and commercialization phases 

(Suresh & Basu, 2008). Though, the dimension of development and manufacturing costs 

justify a discussion on the path to the manufacturing efficiency of the pharmaceutical 

industry. 

Uncertainty and Costs 

At the start of a research program, products and processes are not developed, and 

therefore there is a high uncertainty associated to the drug structure and to the process 

design. Uncertainty makes planning decisions more complex, since it is more difficult to 

estimate the required time and resources. For example, in the development and 

manufacturing of APIs it is common to allocate production resources 6 to 12 months in 
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advance. Thus, any changes in the planning will surely have impact in manufacturing 

costs and delivery time.  

With drug development the uncertainty tends to decrease since product and process 

characteristics are better understood. At the laboratory scale just small amounts are 

produced (around few hundred grams). The delivery of the first scaled up batch (usually 

between 1 to 5 kg), used to support toxicological and formulations studies and phase I 

trials, is on the critical path of the development process This scale-up is particular 

difficult to perform since the knowledge from the laboratory scale is typically not 

sufficient to guarantee a successful process at a plant scale (Federsel, 2009). Moreover, 

the drug development process requires a series of scale-ups so as to develop an efficient 

production process. At the commercialization stage, there is an increasing need for API or 

drug product at the order of hundreds of kilograms. The processes are well defined, thus 

the uncertainty is mainly associated to market parameters such as demand and to the 

processing time of complex production tasks. 

The current practice demonstrates that there are large costs and high uncertainty at 

the R&D and trials I-III phases (see Figure 2.2). The total cost of bringing a new drug to 

market is estimated to exceed 1 billion dollars (Kessel, 2011). In terms of the total cost 

structure, pharmaceutical R&D costs are around 30% to 35% and clinical trials (typically 

representing the most significant cost) can be between 35% to 40% of the total (Suresh & 

Basu, 2008). 

Time-to-Market and Amount Delivered 

It should be noted that from the planning and scheduling perspective, the delivery of 

products to Trials I-III phases is of extreme importance. Shah (2004) and Buchholz 

(2010) pointed out that time-to-market is a critical driver of the pharmaceutical industry. 

Additionally, Buchholz (2010) highlighted another relevant driver for this industry, which 

is fast and robust scalability of the production processes. These drivers are even more 

relevant since frequently more than one company are developing drugs targeting the same 

market, thus the importance to respect due dates is crucial.  

On the other hand, at the commercialization phase there is more flexibility 

concerning delivery dates, if there is inventory on the supply chain. According to Shah 

(2004), the whole pharmaceutical chain stock can represent 30% to 90% of the annual 

demand in quantity. Therefore, at this phase, we can say that delivering the right product 
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amounts is relatively more important than respecting delivery dates. Note that the lot 

sizes at the Trials I-III phases are in the order of few kilograms, while after several scale-

up and validation steps, the lot sizes are around hundreds of kilograms. After drug 

development, the manufacturing costs are lower and tend to decrease with the reduction 

of the root causes of variability in the process. 

Concerning the operating mode, manufacturing sites run in short-term mode to 

fulfill a small product demand, or run preferably in campaign mode to respond to a 

regular demand. The short-term mode is also used for manufacturing products that are in 

commercialization, this naturally resulting in the production of a smaller number of lots. 

However, in all cases the process must run with the same lot size as approved by the 

regulatory agencies. 

  

a) b) 

Figure 2.2 – Delivery Tradeoffs Matrix (DTM) of the pharmaceutical industry: a) current state, b) 

future scenario. 

The Path to Efficient R&D and Manufacturing Activities 

All these issues led the pharmaceutical industry to recognize the need for reducing 

time-to-market, the costs of new drug development, and manufacturing costs. The path to 

efficient R&D and manufacturing activities has to find ways to address uncertainty and 

reduce costs, see Figure 2.2 b). This will involve the introduction of new production 

technologies (Suresh & Basu, 2008), as well as, the adoption of innovative process design 

and planning and scheduling decision-making tools (Shah, 2004). For example, according 

to Roberge et al. (2005), 50% of the reaction tasks in the chemical-pharmaceutical 

industry could benefit from the adoption of continuous processes based on the 
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microreactor technology. In what concerns decision-making, the relevance of applying 

optimization methods and deploying more integrated decision-making processes is being 

recognized by the industry, despite the challenges that still exist (Grossmann, 2012).  

Figure 2.2 b) provides a view on a possible path for efficient R&D and operations. 

The uncertainty and costs can be reduced by the adoption of new technologies (e.g., 

continuous flow manufacturing, process analytical technology (PAT)) and, on the other 

hand, be addressed by optimization tools. 

2.5   Final Remarks 

This piece of research is intended to analyze the main aspects that influence planning and 

scheduling decisions in the context of the pharmaceutically industry. Extending the 

traditional scope of planning and scheduling functions is particularly interesting, if drug 

development and manufacturing activities are simultaneously considered.  

The critical factors that determine planning and scheduling were identified and 

grouped in three categories: market, processes and plants. In our view, comprehensive 

optimization methods for the pharmaceutical industry must somehow take into account 

these factors. 

Finally, we propose a conceptual representation, the Delivery Tradeoffs Matrix that 

attempts at providing guidance on uncertainty and costs issues involved in the drug 

development and manufacturing activities. 
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Abstract 

The objective of this paper is to present a new formulation for the 

optimal scheduling of multipurpose batch plants where equipment 

redesign is considered simultaneously with the scheduling decisions. The 

equipment redesign is characterized by the implementation of 

modifications in the existent processing units so as to change their 

suitability to perform certain tasks, while regarding tasks’ characteristics 

inside a given scheduling horizon. This approach may be advantageous in 

cases where no schedule solutions are found with the existent equipments 

and where, with minor technology modifications on the processing units, 

feasible schedules can be obtained. Each of these changes has a cost and 

requires a certain time to be implemented. In order to model such 

problem a simple Mixed Integer Linear Programing formulation (MILP) 

is proposed having as basis the unified Resource-Task Network (RTN) 

representation presented by Pantelides (1994). An example motivated by 

a chemical-pharmaceutical industry is used to demonstrate the 

applicability of the proposed formulation. 

Keywords: Multipurpose batch plants, simultaneous scheduling and 

design, equipment redesign  
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3.1   Introduction 

The chemical-pharmaceutical industry has been facing an increasing demand for the 

production of a high variety of low volume products at a minimum cost. Such pressure 

leads to the need of production systems that run efficiently both in terms of cost and time. 

Consequently, production flexibility is required so as to accommodate the customers’ 

orders within acceptable response times and costs – usually imposed by the market.  

To compete in such environment, the chemical industry has been using 

multipurpose batch plants that are characterized by having a set of resources (processing 

units, raw materials, utilities, manpower, etc.) that can be shared, so as to produce several 

products. These plants are especially attractive in situations where product demands and 

formulations change rapidly, since they can be easily adapted to the production 

specificities of each product. Moreover, changes in a plant such as the addition of new 

processing units or connections and the removal of old inefficient units are decisions that 

can also be considered. In this context, planning and scheduling become important 

functions of the production system enabling a flexibility increase of the multipurpose 

batch plants while minimizing costs.  

This problem has been addressed in the literature as the design and retrofit of 

multipurpose batch plants. For the most recent review on these issues see Barbosa-Póvoa 

(2007). The design of batch plants from scratch is referred as a grassroot problem while 

the redesign of an existing plant is denoted as a retrofit problem. Two additional concepts 

have been used to categorize these research problems: “basic design” and “extended 

design”. As stated by Barbosa-Póvoa (2007) the former refers to the simple choice of 

equipments and associated scheduling, while the latter goes further and addresses 

scheduling and detailed design where not only the choice of the equipment is considered 

but also topology and operational aspects are explored. A number of papers have been 

published on these topics and the proposed models cover a large number of problem 

features such as: the selection of the processing units and their sizes; addition of storage 

vessels; storage policies; design of equipment units’ connections; operating mode – cyclic 

and non-cyclic; campaign structure; and 2D and 3D layout design.  

Furthermore, when looking into the batch scheduling problem as a standalone 

problem, the aim is to operate a set of resources so as to produce a set of products within 

a defined scheduling period. For a detailed review on this topic the work of Mendez et al. 
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(2006) should be analyzed. Batch scheduling problems need to deal with a great variety 

of aspects that are intrinsically linked to the processes and plant structures. Some of the 

most important of these aspects are: multiproduct and multipurpose batch topologies; 

equipment connectivity; inventory storage policies; material transfer; batch size and batch 

processing time; and changeovers. When modeling such problems one of the most 

important issues is the time representation, which can be discrete or continuous. Discrete 

formulations have been shown to be a good approach for those scheduling problems that 

can be represented with a reasonable, not too large, number of time intervals (Castro et 

al., 2003). Continuous formulations explicitly represent the timing decisions as a set of 

continuous variables, as a way to define the exact time at which the events occur. 

Typically, this results in the reduction of the number of variables of the model. Despite 

the added flexibility, continuous formulations tend to increase the models complexity by 

means of the use of big-M constraints.  

As mentioned before most of the work performed on the scheduling problem of 

multipurpose batch plants mainly addresses the optimal utilization of a set of existent 

resources so as to produce what the customers need. On the other hand, the design and 

retrofit of multipurpose batch plants looks into the need of designing a plant from scratch 

or redesigning the existing plant, by adding new units or connections. Nevertheless, an 

intermediate problem, somewhere between the design and the scheduling problem, is 

often faced by multipurpose process companies when trying to produce a new set of 

products, see Figure 3.1. This problem is related to the need of performing changes in the 

existing processing units – equipment redesign – so as to improve the existent equipment 

suitability, thus providing more flexibility to the plant. The timing of the equipment 

redesign decisions is similar to the scheduling decisions since their scope is also of short-

term. Furthermore, the retrofit and grassroots design take time to be implemented in the 

shop-floor and may require large investments, hence these decisions must be considered 

in the long-term planning. The equipment redesign assumes more relevance in industries 

that perform process development, since the production recipes evolve with it and for that 

reason it may be necessary to modify the processing units.  
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Figure 3.1 - Impact of scheduling, planning and design decisions over the time horizon. 

As an example, we have the addition or removal of cleaning-in-place (CIP) 

systems as well as the addition or removal of temperature or sampling systems. Such 

operations allow for changes in the equipment’s suitability so as to perform new process 

recipe tasks. Doing this, new design and scheduling alternatives are then generated at 

lower cost and with smaller time consumption. 

This problem is addressed in the current paper and has emerged from a real 

problem that is been addressed by the authors in a chemical-pharmaceutical industry. 

Unlike the previous research on this topic, that has been addressing the plant design as 

grassroot or retrofit problems at the global plant level, we consider that performing 

specific changes in the processing units can be an alternative to tackle scheduling and 

design problems simultaneously. A Mixed Integer Linear Programming (MILP) model is 

proposed based on the Resource-Task Network (RTN) representation presented by 

Pantelides (1994).  

The remaining of the paper is structured as follows. We first present the problem 

definition as well as the modeling framework that is being used. Two ways of modeling 

the equipment redesign problem are then characterized. One uses the original RTN 

formulation and the other is an extended RTN formulation. We present the computational 

results of a scheduling problem motivated by the chemical-pharmaceutical industry under 

study, where equipment “redesign” is a regular approach when performing the production 

schedule. We finish the paper with the conclusions and some future work is also 

suggested. 

3.2   Problem Definition 

As referred above the generic scheduling problem assumes that, when performing 

scheduling, there must be a perfect match between the tasks requirements and the existent 
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processing units’ characteristics. Clearly, this is not easy to do due to the large number of 

processing units existing in the plant and due to the various recipes requirements. Finding 

a schedule solution without relaxing any of these inputs is often difficult to accomplish, 

mainly when the plant operates close to the maximum capacity and when new products 

are frequently being introduced. In these cases, to get feasible schedules usually requires 

re-negotiating new order due dates with the customers. Nevertheless, new alternatives for 

the schedules can also be generated with some equipment modifications involving little 

costs and time.  

The use of multipurpose reactors is indeed advantageous in these situations since 

such units are very flexible and can often perform several tasks. Additionally, their 

operating range can be increased by doing small equipment modifications. The same 

reasoning can be applied to all processing units whose suitability to execute tasks can be 

changed quickly. The redesign problem takes into account the setup-time to perform the 

equipment modifications and, at the same time, the resources that are needed to do the 

modification. This approach transforms the processing units into more generic units 

capable of executing more tasks. From the point of view of the operations this adds 

flexibility, since more scheduling alternatives can be explored. Such scheduling with 

equipment redesign is modeled in the present work and can be described as follows: 

Given: 

 the RTN representation of the process (tasks and resources); 

 the number of processing units available, and their maximum and 

minimum capacity; 

 the scheduling granularity and time horizon; 

 the production requirements during the time horizon; 

 the auxiliary equipments that can change the suitability of the processing 

units; 

 the cost and setup-time to add and remove auxiliary equipments; 

Determine: 

 a process schedule such that the processing units suitability change during 

the time horizon; 
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 an equipment modification plan to respond to the above schedule, taking 

into account the setup times for adding and removing the auxiliary 

equipments and their limited availability; 

Minimize: 

 the processing units modification costs plus the operational costs, while 

respecting the delivery due dates. 

3.3   Problem Modeling 

The problem considered here is modeled with a discrete time formulation based on the 

Resource-Task Network representation proposed by Pantelides (1994). The scheduling of 

a set of products is performed in a set of existing equipments allowing for modifications 

in some resources. The modifications are obtained simultaneously with the definition of 

the production schedule, within a pre-defined time horizon. 

3.3.1   Resource Task Network Discrete Formulation 

The Resource-Task Network representation proposed by Pantelides (1994) involves two 

types of entities, tasks and resources. A task is an abstract operation that consumes and/or 

produces a specific set of resources (material, equipment items, utilities, etc.). For the 

purposes of the discrete time formulation presented in this paper, the time discretization is 

made fine enough so that all tasks can be considered to start and end at a time interval 

boundary. Each task has a fixed duration k and the execution of task k starting at time t is 

characterised by its “extent” - a pair of variables (Nkt,kt). Nkt is the number of instances 

(either 0 or 1) of task k starting at time t while, kt is the total amount of material that is 

processed by all these instances. Resources are produced and consumed at discrete times, 

during the execution of the task. The amount of resource r produced or consumed by a 

task k at different times over its duration k can be obtained from the values of the 

“extent” variables. Changes to the resource utilisation can occur only at interval 

boundaries. The amount of unused (“excess”) resource r, held over time interval t, is 

denoted by Rrt. 

As presented by Pantelides (1994) the RTN discrete scheduling problem can be 

described by the following three types of constraints: 
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Constraints (3.1) express resource balancing through the variables Rrt, that state the 

availability of resource r at time t. The amount of resource r consumed and produced at 

each time is expressed by the integer and continuous part of constraints (µkrϴNk,t-ϴ+νkrϴξk,t-

ϴ). Nk,t-ϴ is a binary variable that takes the value 1 if task k starts at time t, and ξk,t-ϴ 

indicates the amount of material being produced at each time period, i.e., the batch size. 

The parameters µkrϴ and νkrϴ represent the fixed and variable resource 

consumption/production, respectively. Constraints (3.2) limit the availability the 

resources to the maximum value max
rtR during the time horizon. And constraints (3.3) set 

the batch sizes within the limits of the resource capacity min
krV and max

krV , where E is the 

subset of R for the processing units, and Kr is the set of tasks that use resource r.  

3.3.2   Equipment Redesign Problem Using the RTN 

Applying the existing formulation to the equipment redesign problem requires the explicit 

representation of all possible modification alternatives. Hence, we need to create new 

tasks to explicitly take into account all steps required to modify the processing units, i.e. 

to model the addition and removal of auxiliary equipments. This approach will make the 

network of processing tasks very complex and more difficult to tackle. 

Figure 3.2 shows how the RTN formulation can deal with the equipment redesign 

problem. To consider the setup time for adding and removing the auxiliary equipment 

CIP on Reactor1, we need to create two additional tasks (Add_CIP and Remove_CIP), 

and one extra resource (Reactor1_CIP). This allows us to model the availability of 

Reactor1 after the modification, i.e., having Reactor1 with a CIP system installed.  
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Figure 3.2 - RTN of the equipment redesign problem (reversible modification). 

If the modification is irreversible there is no removing task; if the modification is 

reversible it is necessary to create two tasks: one to add the auxiliary equipment to the 

processing unit, representing the equipment modification, and another task to remove the 

previously installed auxiliary equipment, providing the processing unit with its initial 

suitability. The network of processing tasks requires the explicit representation of all 

possible combinations of auxiliary equipments (e.g. CIP, sampling devices and 

temperature systems) and processing units (e.g. reactors, filters, dryers). In the case of the 

reversible modifications, two additional tasks and one extra resource will be added to the 

model for each equipment modification needed. For these reasons, the model complexity 

for representing the problem using the RTN formulation rises. 

3.3.3   Equipment Redesign Problem Using an Extended RTN Formulation 

An alternative approach to tackle this problem is to create two additional sets of binary 

variables to control when the processing unit needs to be modified in order to be suitable 

for the task execution, see constraints (3.4). 
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(3.4) 

To express the redesign of the processing units, we will use the binary variables 

ktM  and ktM that will be equal to 1 if a modification (addition or removal respectively) 

occurs by means of the task k at the time interval t. The parameter λkru denotes the 

resources r that will be consumed (e.g., CIP and Reactor1) by an equipment modification 

required by a task k during the interval u, once the modification has started. The 
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parameter γkru denotes the reverse operation. It consumes the modified resource (e.g., 

Reactor1) and releases back the resources (e.g., CIP and Reactor1). The setup-time 

required for each modification is given by the parameter sk. Constraints (3.1) are modified 

and a third term is added to reflect this behavior. The  utkkruM , expression enforces the 

modifications to be done by each task k, while the  utkkru M ,

 

part denotes the removal 

of the auxiliary equipment from the processing units.  

The entire formulation also guarantees that the auxiliary equipment cannot be 

removed during the task execution and that the setup-times sk for modifying the 

processing units are respected. K’r is a subset of Kr that denotes the tasks that require 

redesign through the auxiliary resources r. More specifically, for the example given in 

Figure 3.2, we get the λReaction,Reactor1,0= λReaction,CIP,0=-1 and λReaction,Reactor1,1=1 and 

γReaction,Reactor1,0= -1 and γReaction,Reactor1,1= γReaction,CIP,1=1, see Figure 3.3. 

 

 

Figure 3.3 - Equipment redesign modeling with the alternative formulation. 

An additional constraint type is also needed for the correct assignment of the ktM

and ktM  binary variables. Since the equipment modification needs to be done before the 

task starts, constraints (3.5) guarantee that the auxiliary equipment has been previously 

installed. A is the subset of R which has auxiliary equipments needed to modify the 

processing units, and Kkr is the set of tasks that share the auxiliary equipment r. 
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When the binary variables Nkt are equal to 1, the right hand side of the constraints 

needs also to be 1, therefore having at that time instant a sum (involving the ktM  and 

ktM  variables) equal to 1. In practice, this means that the auxiliary equipment needs to be 
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previously consumed by that task, or by other task that was executed in the past and that 

required the same auxiliary equipment in the same processing unit.  

With this formulation, there is no need to explicitly write the modification tasks. 

Instead two sets of additional binary variables are added to the model to express the 

addition and removal of auxiliary equipments to the processing units. The resources are 

still treated uniformly as they are in the original RTN formulation. 

Finally, for both formulations the objective function considered in this work is the 

minimization of the processing units modification costs kC and, kC  as well as the 

operational costs kO , see equation (3.6). 
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3.4   Case Study 

A real world problem from a chemical-pharmaceutical industry is solved using both 

presented formulations. The company performs the development and production of 

complex and fine chemicals to the pharmaceutical industry and biotechs. Its core business 

is the development and manufacture of new active pharmaceutical ingredients (APIs). In 

this business, the chemical industry is continuously challenged to respond within short 

time windows. On the one hand, the company needs to manage small batches of under 

development products and, on the other hand, needs to produce large batches of products 

in commercialization. Thus, operations flexibility is required to respond to this 

heterogeneous demand. This adds extra complexity to operations management especially 

to the planning and scheduling functions. 

The product object of our analysis goes through a sequence of tasks such as 

reaction, precipitation, crystallization, filtration, suspension, drying, quality control and 

packaging, which can be performed by the following resources: four reactors, one vessel, 

one filter, one dryer and a packaging room. The typical production time is around ten 

days. For illustration purposes, we will focus here on the multipurpose reactors since 

these are the most difficult resources to schedule, thus imposing the schedule of the 

remaining resources. Devices such as CIP and temperature systems (TS) are considered 

auxiliary equipments that can be used for the reactors redesign. The reaction, 
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precipitation, crystallization and suspension tasks can either be executed in reactors that 

do not require modifications but have small capacity, or can be executed in reactors with 

higher capacity but need to be modified at a certain cost. The product must be delivered at 

a date and quantity agreed with the customer. The objective is to get the optimal schedule 

for this product, minimizing the global operation and modification costs, while respecting 

the product delivery date. 

3.4.1   Case Study Results 

The scheduling problem was solved for a time horizon of ten days. The time was 

discretized to one shift of eight hours, which resulted in a scheduling horizon of 30 time 

intervals (three shifts per day). We have considered an operational cost for each task 

depending on the processing unit that is used. Tasks that take place in low capacity 

reactors (capacity of 4,000 liters) have an operational cost of 70 m.u. (monetary units) 

and tasks that are performed in high capacity reactors (capacity of 10,000 liters) have a 

cost of 100 m.u..  

In the course of the recipe production the tasks’ characteristics may change 

requiring the processing units redesign. For instance, precise temperature control is 

needed on Mixing and Precipitation tasks at Reactor1 and Reactor2, and a CIP system 

must be available in Reactor2 and Reactor3 when performing Reaction and Stirring tasks, 

respectively. The costs to modify a reactor with a CIP and TS are, respectively, 3 m.u. 

and 5 m.u.. The setup-time to modify the reactors with a CIP is 8 hours, while for a TS is 

16 hours. The time required to remove those systems from the reactors in order to restore 

their original suitability is equal to 8 hours for both auxiliary equipments. One final 

product delivery of 2 tons is scheduled for the entire schedule horizon. The optimal 

schedule obtained for our example is depicted in Figure 3.4. This optimal solution has a 

value of 2074 m.u. Although this test instance is relatively simple, it allows us to 

understand the tradeoffs existing in the equipment redesign problem, between 

equipment’s suitability and the setup-time and costs to perform the equipments 

modifications. As can be seen in Figure 3.4, to respect the delivery date, equipment 

redesign tasks must take place. To perform the Reaction task in Reactor2 it is necessary 

to add a CIP, and to do the Precipitation task in this same reactor it is necessary to add a 

TS. These tasks can be seen at the time interval 0 and 5 of the schedule, respectively. The 
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same reasoning applies to the Mixing task at Reactor1 and to the Stirring task at 

Reactor3. But note that no auxiliary equipments were defined for the Crystallization task 

at Reactor2 and for the Cooling task at Reactor3, that nevertheless were modified 

previously. In the end of this schedule Reactor2 had a TS installed, while Reactor3 had a 

CIP mounted. The MILP model using Pantelides formulation resulted in 1178 binary 

variables, 2202 continuous variables and 5085 constraints. Optimality could be proved in 

3.15 seconds. The extended formulation has 775 binary variables, 1396 continuous 

variables, 2853 constraints and reached the optimal solution in 1.78 seconds. 

 

 

Figure 3.4 - Optimal production schedule with the equipment redesign plan. 

The model was implemented using ILOG/CPLEX version 12.2 on an Intel Core i7 

at 2.67GHz with 4 GB of RAM. The extended formulation has less binary and continuous 

variables and a smaller number of constraints.  

When analyzing these results some disadvantages can be pointed to the original 

RTN formulation when using it in the redesign problem. It requires the representation of 

all modification tasks, which results in a complex network of processing tasks. One needs 

to create additional resources to manage the modified equipments, such as for instance: 

Reactor2_CIP and Reactor2_TS; these are two additional resources that define Reactor2 

modified with a CIP and a TS, respectively. At the same time, since we are assuming the 

redesign process increases the processing units’ suitability such that more tasks can be 

performed, we must represent all new production alternatives. For instance, the 

Crystallization task does not require any change on Reactor2, nevertheless if this reactor 

is modified with a CIP or TS, becoming Reactor2_CIP, Reactor2_TS or 

Reactor2_CIPTS, we need to create several additional tasks to allow for the possibility of 

the task being executed in one of these resources. This kind of tasks needs to be created 

for all resources that can be modified, thus increasing the model size. These drawbacks 

REACTOR1 Mix RTS

REACTOR2 ACIP RCIP

REACTOR3 ACIP Stir. Coo Coo

REACTOR4

VESSEL1 Hold

FILTER1

DRYER1 Dry. Dry

QUALITY C.

PACK.ROOM Pck Pck

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 time

Quality contr. Quality contr.

Suspen. Suspen. Suspen.

FiltrationFiltration Filtration Filtration

ATS

ATSReaction Precip. Crystallization

Precip. Crystallization

Legend:
ATS - add temperature system

RTS - remove temperature system
ACIP - add CIP

RCIP - remove CIP

Reactor2_CIP

Reactor2_TS

Reactor3_CIP



3   Paper 1: Scheduling With Equipment Redesign In Multipurpose Batch Plants 53 

 

 

are overcome in the proposed formulation by replacing the redesign tasks by ktM  and 

ktM  binary variables. The resulting model is smaller and it is easier to write since it does 

not require the representation of additional tasks. The redesign tasks are simply modeled 

by the ktM  and ktM variables. For that reason, the resulting MILP has less binary and 

continuous variables. Nevertheless, the use of the ktM  and ktM  variables limits the 

equipment modification to one auxiliary equipment per task. The possibility of doing 

more than one modification per task would clearly be an interesting extension of our 

model. 

3.5   Conclusions 

This paper has addressed a new type of problem that is being faced by the chemical-

pharmaceutical industry using multipurpose batch plants, and performing simultaneous 

design and scheduling within a short period of time.  

The equipment redesign problem concerns the need to perform changes in the 

processing units such that their suitability is increased and therefore the units are capable 

to perform additional tasks. The redesign tasks can be seen as an additional way to 

increase flexibility of these plants. The redesign problem was formulated using the RTN 

formulation introduced by Pantelides and an extension to this formulation was also 

proposed in this work. While the RTN formulation requires the explicit representation of 

all production alternatives, taking into account the different states of the modified 

resources, the extension here developed deals with the equipment redesign decisions 

through two extra groups of binary variables. Preliminary computational results show that 

the proposed formulation has better performance. The formulation applicability was 

tested in an industrial example and the achieved results are promising but improvements 

should be further explored. Namely, it would be interesting to extend the formulation to 

deal with multiple modifications per task. Also more comprehensive tests need to be 

performed to further compare the two analyzed formulations. 
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Abstract 

This work deals with the optimal short-term scheduling of general 

multipurpose batch plants, considering multiple operational 

characteristics such as sequence-dependent changeovers, temporary 

storage in the processing units, lots blending, and material flows 

traceability. A novel Mixed Integer Linear Programming (MILP) 

discrete-time formulation based on the State-Task Network (STN) is 

proposed, with new types of constraints for modeling changeovers and 

storage. We also propose some model extensions for addressing 

changeovers start; non-preemptive lots; lots start and sizes; alternative 

task-unit and task-unit-layout assignments. Computational tests have 

shown that the proposed model is more effective than a similar model 

based on the Resource-Task Network (RTN). 

Keywords: Multipurpose batch plants, scheduling, MILP models, lots 

modeling, materials traceability, Resource-Task Network.  
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4.1   Introduction 

In the past decades many optimization approaches have been developed to address supply 

chain, planning, and scheduling problems. These developments are being motivated by 

the need that industries have to reduce costs, increase revenues, and in general, to operate 

more efficiently. Consequently, the existing gap between theoretical optimization models 

and real world scheduling problems is gradually decreasing. This can be somehow 

justified by the increasing number of works published in the recent years that address 

practical optimization problems. According to Grossmann (2012), process industries are 

actively looking for optimization approaches that can be integrated in key decision-

making processes so as to minimize costs and maximize income, while increasing the 

system responsiveness. In the particular case of the pharmaceutical industry, Varma et al. 

(2007) argue on the importance of developing models that integrate decision-making 

processes related to R&D, manufacturing, supply chain, and marketing. An extensive 

review on the modeling approaches for scheduling problems that tackle these issues is 

available in the paper written by Mendez et al. (2006), where the characteristics, 

advantages, and disadvantages of the models are deeply addressed.  

Although a significant progress has been observed in this field, new planning and 

scheduling models are still needed to tackle existing complexities that remain unsolved 

and to address new challenges that are becoming more relevant. In this paper, we propose 

a short-term scheduling model for multipurpose batch plants that addresses two critical 

modeling features of the discrete-time models: the sequence-dependent changeovers and 

the temporary storage in the processing units. We also discuss lots blending and 

traceability requirements in the production schedules. Particular emphasis is given to the 

performance of the proposed model. The consideration of such aspects was motivated by 

the resolution of a real case study within the chemical-pharmaceutical industry that led to 

the design of an illustrative problem instance, used to assess the developed models. 

The rest of the paper is structured as follows. In section 4.2, we describe an 

example to illustrate the impact of the definition of lots in the production schedule, and in 

section 4.3, a literature review is presented. The problem statement is introduced in 

section 4.4, and it is followed by the mathematical formulations in section 4.5. Then in 

section 4.6, we propose several models extensions, and in section 4.7, we compare the 

models performance. Finally, section 4.8 provides some concluding remarks. 
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4.2   Illustrative Example 

This example is motivated by a case study occurring in a real chemical-pharmaceutical 

industry where it is critical to consider some production features such as sequence-

dependent changeovers, temporary storage in the processing units, lots blending, and 

materials traceability.  

Consider the determination of a production schedule for three products: PA, PB, 

and PC. Task sequences and respective alternative units are depicted in Figure 4.1. 

Products PA and PB are produced from raw materials, while product PC is produced from 

PA and PB. The objective is to maximize the overall profit by determining a schedule that 

keeps record of the production lots and involves sequence-dependent changeovers 

between products and lots.  

A distinction is made between lots and task - batches. The former have to do with 

the amount of stable intermediary or final product produced through a known set of tasks, 

processing units and materials. The latter are related to the amount of material produced 

by each task that is limited by the capacity of the processing unit and is part of the 

production of a lot.  

In this way, lots traceability must be ensured for all products considered in the 

production schedule. We must be able to trace the proportions/quantities of the lots of PA 

and PB used to produce each lot of PC. This means that lots blending may occur and that 

the scheduling model must consider the amount of each lot used to produce subsequent 

lots. Raw materials and intermediaries must be also associated to lots. Generally, the 

scheduling model must do the record (i.e., allow for traceability) of the task-batching 

(materials splitting and mixing) and of the lots blending process. 
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a) 
 

b) 

 

c) 

 

Figure 4.1 – Illustrative example. 

In order to illustrate the impact of production lots on scheduling, we consider a 

small instance with product PB for a scheduling horizon of 10 hours. We want to 

determine a production schedule in which the task-unit assignment accounts for a given 

lot size and that the lots traceability is ensured. For that, we define a fixed demand equal 

to 3,000 kg that is produced assuming two scenarios. The first is a base scenario where no 

lots are defined, while in the second scenario we assume two lots of 1,500 kg.  

In Figure 4.2 a), we show a schedule for the base scenario, and as it can be seen, 

the tasks batch size is as large as possible, so as to minimize the number of tasks and 

therefore the production costs. The amount of material produced by two tasks TASK1 is 

split by three tasks TASK2 and three tasks TASK3. Since lots were not explicitly 

modeled, it is not possible to make a task-lot assignment; thus, the schedule of Figure 4.2 

a) does not account for lot traceability.  

On the contrary, the schedule depicted in Figure 4.2 b) results in the same amount 

of final product, but considers lots traceability. The difference is in the number and 

respective batch sizes of the tasks. To consider lots traceability the schedule must have 
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unique associations between tasks and lots. In our example, it can be seen that the first 

task TASK1 and the two first tasks TASK2 and TASK 3 are associated to lot L1, while 

the other tasks are associated to lot L2. In this way, raw materials, intermediaries and 

final products are distinctively associated to each lot. The impact of lots in scheduling 

would be higher if sequence-dependent changeovers were considered. 

In dynamic production environments lots are bound by minimum and maximum 

sizes, and the exact size of each lot is just determined when performing scheduling. This 

is done to ensure that the processing units are used as efficiently as possible. 

 

a) 

 

b) 

Figure 4.2 – a) Schedule assuming a demand of 3,000 kg with no defined lots; b) Schedule with 

two lots of 1,500 kg. 

4.3   Background 

Scheduling of process plants has received considerable attention in the literature, with 

some relevant reviews on the topic (Grossmann, 2002; Mendez et al., 2006; Barbosa-

Povoa, 2007; Li & Ierapetritou, 2008; Maravelias & Sung, 2009; Verderame et al., 2010). 

Scheduling problems can be classified in terms of the network of processing tasks 

(Mendez et al., 2006). The allowed material flow and unit specific constraints strongly 

determine the modeling approach and, consequently, the model performance and its 

complexity. In general, we may have sequential or network processes.  

In sequential processes the batch entity is preserved by ensuring that the output of a 

batch is consumed by a single task and the input of a batch is produced by a single batch. 

Within the sequential processes, single and multiple stage topologies can be defined. The 
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former consists in production systems with just one stage and may have parallel units, and 

the latter involves production systems with more than one stage that may also have 

parallel units. Sequential processes can either use precedence-based or time-grid 

formulations. Precedence-based models have been proposed by several authors (Méndez 

et al., 2001; Méndez & Cerdá, 2003; Castro, Erdirik‐Dogan, et al., 2008; Sundaramoorthy 

& Maravelias, 2008) and time-grid models for sequential processes rely on time-slots 

(Pinto & Grossmann, 1995; Liu & Karimi, 2007, 2008). 

On the contrary, network processes have an arbitrary topology and are usually 

more complex than sequential processes, since they deal with batch mixing and splitting 

and cyclic material flows. For these reasons, models for network topologies require 

resource balance constraints and are time-grid based, either discrete-time or continuous-

time. By definition models used for network processes can also be applied to sequential 

processes, since they can model all types of process configurations. Continuous-time 

formulations may rely on unit specific events (Ierapetritou & Floudas, 1998; Janak et al., 

2004; Shaik & Floudas, 2007; Vooradi & Shaik, 2012) or on global events (Schilling & 

Pantelides, 1996; Maravelias & Grossmann, 2003; Castro et al., 2004; Sundaramoorthy & 

Karimi, 2005; Castro et al., 2009). The major advantage of the continuous-time 

formulations is that tasks may occur anywhere in the scheduling horizon and thus these 

models are considered more accurate. However, in terms of mathematical programming, 

continuous-time models generally result in large integrality gaps that tend to deteriorate 

computational times.  

Discrete-time formulations assume that the scheduling horizon has been divided 

into a finite number of time intervals of fixed and equal duration. Tasks are allowed to 

take place just in the boundaries of the time intervals, which makes it easier to model 

inventory and units availability constraints. These models deal easily with material 

balances and inventory costs, and multiple delivery dates and result into compact 

formulations. On the other hand, they present some difficulties when modeling variable 

processing times and sequence-dependent changeovers. Moreover, we need to be aware 

of the tradeoffs between accuracy of the scheduling solutions, the time discretization, and 

the scheduling horizon, since computational performance strongly depends on the number 

of time intervals considered. Both the State-Task Network (STN) representation 

suggested by Kondili et al. (1993) and Shah et al. (1993), and the RTN representation 
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introduced by Pantelides (1994) have been widely used for modeling schedule problems. 

For example, Barbosa-Povoa and Macchietto (1994) developed the Maximal State-Task 

Network (m-STN) representation that simultaneously considers operational and design 

characteristics. Pinto et al. (2005) modified RTN to address design and retrofit of batch 

plants with periodic mode operation. Castro, Novais, et al. (2008) solved an industrial 

scheduling problem from the chemical-pharmaceutical industry by proposing a periodic 

RTN formulation. Wassick and Ferrio (2011) proposed some extensions for RTN. 

Sundaramoorthy and Maravelias (2011b) developed a scheduling framework that 

addresses the recipes structure in network and sequential subsystems. And more recently, 

Moniz et al. (2012) proposed a sequential approach for the simultaneous scheduling of 

regular and non-regular products in multipurpose-batch plants. The integrated approach is 

based on RTN and is applied to a real scheduling problem from the chemical-

pharmaceutical industry. For a comparison of discrete-time and continuous-time models 

see (Floudas & Lin, 2004; Sundaramoorthy & Maravelias, 2011a). 

4.4   Problem Statement 

In this paper, we address the short-term scheduling of multipurpose batch plants dealing 

with products having arbitrary network processes. All product recipes are given in terms 

of their respective RTNs and may involve sequence-dependent changeovers, materials 

storage, mixing and splitting operations, and material recycles flows. Product/lots 

demands are defined for multiple delivery periods and have an earliest and latest delivery 

date. The characteristics of the processing units, maximum and minimum capacity, 

operational costs, and the task-unit suitability are assumed to be known. We also assume 

that the value of the products and the storage costs for all materials (intermediaries and 

products) are given. The raw materials are the exception, since we consider that they are 

available as needed. All data is assumed to be deterministic. 

The objective is to maximize the economical result of the global operation by 

determining the task-unit-layout assignment, the tasks sequencing and corresponding 

batch size, the sequence-dependent changeovers, the temporary storage in the processing 

units and eventual lots blending needs. 
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4.5   Mathematical Formulations 

4.5.1   Concepts and Notation 

In order to compare the effectiveness of the proposed formulation (denoted later in this 

work by model M2), we present an additional mathematical formulation (model M1) 

based on the RTN formulation of Pantelides (1994), where scheduling aspects studied by 

other authors are incorporated in an integrated form. Variations of M1 formulation, in 

their discrete-time form, have been extensively used by other authors such as Castro et al. 

(2003), Castro, Novais, et al. (2008), and Wassick and Ferrio (2011). 

The key differences between the models are that M1 explicitly models the 

changeover and storage tasks and does not account for lots blending, while M2 implicitly 

considers changeovers and storage and accounts for lots blending and traceability 

features. Additionally, model M1 allows the definition of resource types; thus, processing 

units with the same characteristics (e.g., minimum and maximum capacity) can be 

grouped, which leads to a reduction of the number of binary variables, when compared 

with model M2. Nevertheless, task-unit assignment variables in M1 imply that tasks are 

performed by single units at each time interval, therefore for handling alternative units 

they must be considered individually. 

Products can be delivered within a given time window, in amounts modeled as 

“soft constraints” to ensure that feasible schedules are always obtained. 

The formulations use the indices, sets, parameters and variables presented below. 

The exact meaning of each element will be explained later with the formulations. 

 

Indices 

   delivery period 

   lot 

   task 

p  product 

   resource (processing unit, intermediary or final product) 

   time interval 
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Sets 

    alternative tasks for task k 

   resource r (intermediary or final product) in which the lots that can be 

blended 

    lots from resource r (intermediary or final product) that can be blended  

    delivery periods of resource r (final product) 

      delivery window of lot l and resource r (final product) at delivery 

period d 

   processing units 

 
 
   tasks associated to processing unit r and lot l 

   scheduling horizon 

   intermediaries 

      intermediaries subject to a non-intermediate storage policy 

  
     intermediaries produced by task k and subject to a non-intermediate 

storage policy 

   lots 

    lots associated with resource r 

    lots associated with task k 

    tasks that require resource r (processing unit, intermediary or final 

product) 

  
   tasks that consume resource r (intermediary or final product) 

  
 

  tasks that produce resource r (intermediary or final product) 

  
   

  storage tasks associated with intermediary r 

   products 

   production resources 

   task k that follows task k’ at adjacent processing units 

 

Parameters 

           allocation/release changeover coefficient of resource r (processing 

unit) from lot l’ to l’’ being at lot l and at time   relative to the start of 

the changeover task 

      allocation/release coefficient of resource r (processing unit) in task k at 
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time   relative to the start of the task 

    processing time of task k 

      

     
 

     
   

production/consumption proportion of resource (intermediary or final 

product) r in task k at time   relative to the start of task 

  
     cost of storage of products and intermediaries r 

  
  

  operational costs of task k  

    
       missing deliveries cost for material r of lot l and delivery d  

       changeover time in processing unit r from lot l to lot l’ 

    
       

     minimum and maximum amount of lot l and product r at delivery d 

   
     maximum resource availability of resource r (intermediary or final 

product) at time interval t 

   
       

  resource r (intermediary or final product) availability of lot l in the 

beginning of the planning horizon 

    
       

  resource r (intermediary or final product) availability of lot l at task k 

in the beginning of the planning horizon 

   length of the scheduling horizon 

   
    earliest time interval of lot l at delivery d 

   
    latest time interval of lot l at delivery d 

    value of product r 

    
        

     minimum and maximum capacity of resource r (processing unit) for 

task k of lot l 

 

Variables 

      batch size of task k and lot l at time interval t (continuous)(models M1 

and M2) 

      
delivery of resource (final products) r of lot l at time interval t 

(continuous) (model M1) 

       
delivery of resource (final products) r of lot l at time interval t available 

from task k (continuous) (model M2) 

    
       missing delivery d of lot l of product r (continuous) (models M1 and 

M2) 

        binary variables that are equal to 1 if a changeover task occur on 

resource (processing units) r between lots l and l’(model M1) 
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      binary variables that are equal to 1 if task k starts lot l at time interval t 

(models M1 and M2) 

   
      allocation of resource r (processing unit) at the beginning of the 

scheduling horizon (continuous) (model M1) 

      
resource availability r at lot l and at time interval t (continuous) (model 

M1) 

     
resource availability (processing units) r at time interval t (continuous) 

(model M1) 

       
resource r (intermediaries or final products) availability, produced by 

task k of lot l at time interval t (continuous) (model M2) 

     
   amount of resource r (intermediaries or final products) consumed from 

task k of lot l at time interval t (continuous) (model M2) 

     
 

  amount of resource r ( intermediaries or final products) produced by 

task k of lot l at time interval t (continuous) (model M2) 

     binary variables that are equal to 1 if task k is assigned to lot l (models 

M1 and M2) 

4.5.2   RTN Model (M1) 

We use a RTN discrete-time formulation as basis for comparison with the model 

proposed in this paper. Model M1 extends the RTN model of Pantelides (1994) by 

considering the temporary storage in the processing units constraints defined by Kondili 

et al. (1993), the changeover variables proposed by Castro, Novais, et al. (2008) and the 

multiproduct delivery extensions developed by Wassick and Ferrio (2011). Moreover, in 

section 4.6, we also propose some extensions to address the start of changeovers tasks, 

non-preemptive lots, lots start and sizes, task-unit-layout assignment, and alternative task-

unit assignment. 

We assume a scheduling horizon having a length equal to T and divided into time 

intervals of fixed length. The model considers the following decision variables that are 

defined for each time interval    .  

a) The assignment of tasks to processing units decisions is done by the      binary 

variables that are equal to 1 if task k starts lot l at time interval t.  

b) The task batch size decisions are done through the      continuous variables that 

define the batch size of task k and lot l at time interval t.  
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c) Changeover tasks are defined by the binary variables        that are equal to 1 if a 

changeover task occurs on resource (processing unit) r between lots l and l’ at 

time interval t.  

d) Resources availability is given by the      continuous variables that define the 

resource availability r at lot l and at time interval t.  

e) Deliveries are modeled by the      continuous variables that define the delivery 

of resource (final products) r of lot l at time interval t. If the minimum demand is 

not fulfilled, then the     
      continuous variables will have a value equal to the 

amount that was not delivered. 

 

   
     variables are used to model the initial allocation of processing units to lots. In 

the cases where changeovers are not required, we use the     continuous variables that 

define the resource availability (processing units) r at time interval t.  

Model M1 considers the processing units with changeovers constraints (4.A1) and 

the initial assignment of processing units to lots constraints (4.A2), or alternatively, the 

processing units balance without changeovers constraints (4.A3); materials balance 

constraints (4.A4); minimum and maximum materials availability constraints (4.A5); 

minimum and maximum task batch size constraints (4.A6); temporary storage in the 

processing units constraints (4.A7); demand constraints (4.A8); delivery constraints 

(4.A9) and (4.A10); tasks started must end within the time horizon constraints (4.A11), 

and variables domain constraints (4.A12). Model M1 formulation is given in the 

appendix. 

4.5.3   Proposed Model (M2) 

Discrete-time models efficiently deal with resources balances, multiple delivery dates, 

and inventory costs. However, the model size significantly increases and the 

computational performance is seriously affected when modeling variable processing 

times, temporary storage in the processing units, and sequence-dependent changeovers. 

The storage in the processing units is commonly used in many industrial processes 

due to the multipurpose characteristics of the units. In these situations, intermediaries can 

be stored temporarily inside the processing units that have produced them. In practice, 
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this type of storage may be required for a variety of reasons. Some of the possible cases 

are: a) the capacity of the processing units that follow in the process may be low when 

compared with the amount of material being stored; b) the lot may need to wait for 

quality approval; c) scheduling delays may occur, forcing intermediaries to wait 

temporally in the processing units; or d) maintenance tasks may be required, also 

imposing scheduling delays.  

Changeovers cannot be neglected since they often occupy processing units during 

long time periods. We may have unit and sequence-dependent changeovers, the latter 

being usually more significant in terms of time. Sequence-dependent changeovers can be 

modeled in the original RTN formulation through the creation of changeover tasks, as 

done in model M1, or if it is not relevant to determine the exact time of the changeover, 

we can use changeover constraints. 

In order to avoid increasing the number of binary variables of the model, as a result 

of modeling temporary storage and changeovers, we have developed a new discrete-time 

formulation. The developed model also addresses lots blending and traceability features. 

This model explicitly considers the inventory carried out by each production task. 

Following this approach, we can model the temporary storage through a set of constraints 

instead of using additional binary variables as done in model M1. Regarding sequence-

dependent changeovers, we have followed a similar strategy. Changeover variables are 

replaced by a set of constraints that inhibit the start of the production tasks for a time 

period imposed by the changeover time of the tasks sequence.  

Figure 4.3 shows the conceptual differences between models M1 and M2 for the 

resource availability variables. While in M1 all resources are treated uniformly through 

the continuous variables     , in M2 the continuous variables       define the amount of 

resource r (intermediaries or final products) available at time interval t and produced by 

task k of lot l. 
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Figure 4.3 – Resource availability variables for models M1 and M2. 

The relations between products, lots, tasks, and units sets are illustrated in Figure 

4.4. We assume that we have a set of products P; in the example we have             , 

associated with recipes that describe the tasks sequence, the task-unit suitability, the 

materials needs, and the storage policies. A recipe may involve the production of one or 

more products. In the example shown in Figure 4.4, products PA1 and PA2 are sub-

products of a unique recipe. Each product has at least one lot belonging to set L. 

Production tasks are associated to processing units and belong to set K and may execute 

any lot of the corresponding product. Finally, processing units belong to set E and are 

associated to different tasks, since they operate in a multipurpose way. 

 

Figure 4.4 – Relation between products, lots, tasks, and units sets. 

Model M2 is defined by task-unit assignment/sequencing constraints (4.1); 

materials produced and consumed, constraints (4.2) and (4.3) respectively; products 

blending constraints (4.4), materials balance constraints (4.5), minimum and maximum 

materials availability constraints (4.6); minimum and maximum task batch size 

constraints (4.7); demand constraints (4.8); delivery constraints (4.9) and (4.10); 

temporary storage in the processing units without or with changeovers, constraints (4.11) 
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and (4.12) respectively; tasks started must end in the time horizon constraints (4.13); and 

variables domain constraints (4.14). 

Constraints 
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Constraints (4.1) express the assignment of tasks to processing units and state that 

at most one task k of lot l can start during the time period corresponding to the task 

processing time. This is implemented through a backward time aggregation for      

     over the binary variables     . Since constraints (4.1) are similar to the STN 

constraints for handling task-unit allocation, M2 can be classified as a STN model. 

Materials production      
 

 and consumption      
  are defined separately to address 

lots blending. Constraints (4.2) define the amount of resource r (intermediaries or final 

products) produced by task k of lot l at time interval t. Parameters     
 

 give the 

production proportion of the batch size of task k for resource r. Constraints (4.3) give the 

amount of resource r consumed by task k of lot l at time interval t at the proportion     
  

of the batch size     . Since resource r of lot l can be available from any tasks      
 

 

that have produced r, the summation over      
  in the left-hand side of constraints (4.3) is 

required.  

Constraints (4.4) define the special case of lots blending. In many situations, it is 

common to produce several lots of stable intermediaries that are used to produce other 

lots of final products. In these cases, blending of lots is allowed but it is necessary to 

ensure traceability, which is done by constraints (4.4). These constraints are defined for 

the set of intermediaries/products   whose lots can be blended. 

Constraints (4.5) express the material r balance for each task k and lot l by 

considering the material in the previous time interval, the amount produced and 

consumed, and the material deliveries. Constraints (4.6) define the minimum and 

maximum materials/lots availability allowed for each time interval. Constraints (4.7) 

impose the task-batch size limits. 
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Constraints (4.8) define multiple product/lot deliveries       for a given delivery 

time window      . The amount of resource r of lot l at delivery d is limited by the 

minimum     
    and maximum     

    quantities. Production requirements are modeled as 

“soft-constraints” so as to avoid infeasible solutions. Thus, missing deliveries are 

expressed by the continuous variables     
      and are penalized in the objective function 

through coefficient     
     . Constraints (4.9) and (4.10) express the fact that delivery 

variables       cannot take values for the time intervals out of the delivery time window 

and for other resources than final products. 

Constraints (4.11) define the temporary storage in the processing units and state 

that if the binary variable      is equal to 1, then       must be equal to 0. In other words, 

no task k of any lot l can start in the processing unit r if unit r is temporarily storing 

material from any other task. Note that the second term of the left-hand side only occurs 

for tasks that produce intermediaries subject to the Non-Intermediate Storage (NIS) 

policy, defined by the set   
   . Constraints (4.12) extend constraints (4.11) to account for 

sequence-dependent changeovers. In this way, tasks must respect the sequence-dependent 

changeover time defined for each unit and lot by the parameter       and for possible 

storage time in the processing units. Therefore, if task k of lot l occurs at time t, then the 

first term of the constraint is equal to one, and the second and third terms are forced to be 

zero for all tasks    and     belonging to lots    and for the time intervals corresponding to 

         for the production tasks and to     for the temporary storage.  

Constraints (4.13) define that tasks must finish in the time horizon of interest and 

constraints (4.14) state the non-negativity of the continuous variables resource 

availability, production and consumption, batch size, and missing delivery; the non-

positivity of the delivery variables; and the integrality of the assignment/sequencing 

variables. 

4.5.4   Objective Function 

The objective is to maximize the economical result of the global operation (see 

expression (4.15)) by taking into account the value of the products (VP), the storage costs 

(SC), the operational costs (OC), and the missing deliveries costs (MC). Note that model 

M2 cannot take into account changeover costs since there are no changeover variables, 
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and in order to make a fair comparison between models M1 and M2, changeover costs 

were not considered in the objective function. 

Objective Function 

                                                 

                       

                              

(4.15) 
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The first term of the objective function defines the value of the delivered products, 

see expression (4.15a). The second term determines the storage costs, which are 

calculated differently for models M1 and M2. So, for model M1 storage costs are 

associated to materials stored under FIS and UIS policies that can be expressed by the 

continuous      variables and by materials temporarily held by the processing units, see 

expression (4.15b). For model M2, storage costs are determined simply by the continuous 

variables      , since the availability of the materials is only modeled through these 

variables, see expression (4.15c). The fourth term of the objective function determines the 

operational costs, see expression (4.15d) and the fifth term is a penalty cost associated 

with the missing deliveries, see expression (4.15e). 
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4.6   Models Extensions 

We have also investigated some extensions of these models to address the start of 

changeovers tasks, non-preemptive lots, lots start and sizes, task-unit-layout assignment, 

and alternative task-unit assignment. 

Changeovers Start (M1) 

In model M1, as stated by constraints (4.A1), changeover tasks may occur in any time 

interval between the start of the tasks associated to lots   and   . However, a common 

industrial practice is to perform the changeover as soon as the task finishes. We illustrate 

this situation in Figure 4.5, with a) showing the time range where the changeover tasks 

may occur if constraints (4.A1) are used. However, the desirable scheduling solution is 

the one presented in b), since the changeover occurs immediately after the storage tasks. 

 

a) 

 

b) 

Figure 4.5 – Start of production, storage, and changeover tasks (Model M1). 

Constraints (4.16) force changeovers to occur immediately after a production or 

storage task. Another relevant point is that constraints (4.16) help in reducing the model 

degeneracy. 

∑         

    

 ∑       

     

                      
(4.16) 

Non - Preemptive lots (M1) 

It is also a common practice in many chemical batch plants that lots once started in one 

unit cannot be interrupted to allow the production of a different lot. Constraints (4.17) 

define that if a changeover from lot    to lot   occurs in unit  , then no changeover can 

occur in that unit from   to   . 
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∑ ∑      

        

 ∑ ∑      

        

              
(4.17) 

Lots Start (M1 and M2) 

Constraints (4.18) state that lot l is only executed if the previous     is also executed. 

Thus, if task   of lot   is performed at time  , then the same task   of lot     should 

have started previously or any alternative tasks    to   should have started at the time 

intervals between      and  . This allows different lots to be produced in parallel.  

     ∑          

    

    

 ∑ ∑           

 

         

                       (4.18) 

Lots Sizes (M1 and M2) 

If we want to define lots with exactly the same amount of material, constrains (4.19) and 

(4.20) may be applied. Constrains (4.19) impose that the total amount produced by tasks 

of different lots must be the same and constrains (4.20) state that the number of tasks 

must be the same among the lots. 

∑    

   

 ∑     

   

                            
(4.19) 

∑    

   

 ∑     

   

                            
(4.20) 

Task-Unit-Layout Assignment (M1 and M2) 

For processes with many alternative units it may be preferable to do the task-unit 

assignment taking into consideration the physical layout of the units. Figure 4.6 depicts 

the plant layout and the allowed connections between units for the processes of Figure 

4.1. For example, unit U1 can only transfer/receive materials to/from U2, U5, F1, and 

also D1.  

This approach helps in the definition of physical aligned processes, leading in 

practice to several operational advantages. 
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a) b) 

Figure 4.6 – Location of processing units: a) plant layout; b) allowable connection between units.  

To model this requirement, we have created new binary variables     that are equal 

to 1 if task k is assigned to lot l, see expression (4.21). 

    {
                                   

              

               (4.21) 

 

If task   and    use processing units that are connected, then         . 

Constraints (4.22) define that if task   is assigned to lot  , then task    cannot be assigned 

to the same lot, since k is not connected to k’. Constraints (4.23) ensure that if 

∑           then       and constraints (4.24) guarantee that if ∑          , then 

     .  

                             (4.22) 

∑    

   

                    
(4.23) 

∑    

   

                   
(4.24) 

Alternative Task-Unit Assignment (M1 and M2) 

Moreover, we may want to ensure that from the alternative units available for each task 

only one is assigned. Constraints (4.25) guarantee that from the alternative tasks    to k 

only one is selected. 

    ∑     

     

                
(4.25) 
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4.7   Numerical Results 

In order to show how general model M2 is and to compare its effectiveness, we consider 

four different chemical processes. Process 1 was firstly addressed by Kondili et al. 

(1993), Process 2 was published by Kallrath (2002), Process 3 was proposed in the paper 

of Papageorgiou and Pantelides (1993) and finally Process 4, depicted in Figure 4.1, is 

proposed by us. The first three processes are benchmark problems from the literature and 

fairly represent the existing scheduling complexities of the multipurpose batch plants. 

The last process is intended to allow an analysis of lots blending and traceability features 

and the model extensions. 

We present the solution statistics (integer and continuous variables, nodes, 

iterations, linear relaxation at the root node, integrality gap, objective function value, and 

CPU time) of models M1 and M2 for four scheduling horizons (24, 48, 120 and 240 

hours) and for different time grids, whenever this is applicable. 

Model M1 is defined by constraints (4.A3) to (4.A12) if changeovers are not 

present, and by constraints (4.A1), (4.A2), and (4.A4) to (4.A12) if changeovers are 

modeled. Model M2 is defined by constraints (4.1) to (4.11), (4.13), and (4.14) if 

changeovers are not required; and by constraints (4.1) to (4.10), and (4.12) to (4.14) if 

changeovers are needed. The objective function is to maximize the economical result of 

the global operation and is the same for both models, despite the modeling differences in 

the storage costs discussed in section 4.5.4. 

The models were implemented using ILOG/CPLEX version 12.5, running on an 

Intel Xeon X5680 at 3.33GHz with 24 GB of RAM. We have considered the time limit of 

3,600 seconds and the integrality gap of 5% as stopping criteria, so as to evaluate the 

models performance respecting the time to obtain solutions and their quality. The 

networks of processes P1, P2, and P3 and respective data tables are given in the 

supporting information. 

4.7.1   Process 1 

Process 1 is the network published by Kondili et al. (1993). This process involves a 

cyclic material flow, alternative processing units, and different storage policies. 

Additionally, we have performed a slight modification of the network by considering the 

NIS policy for the intermediaries HOTA, INTBC, and IMPE. Because Process 1 has a 
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unique network, no changeovers were defined. Moreover, we assume a single lot, thus 

lots blending are not considered and materials traceability is implicitly ensured. 

Numerical results for Process 1 are depicted in Table 4.1 for the case where the 

stopping criterion is the time limit equal to 3,600 seconds and in Table 4.2 where the 

stopping criterion is the integrality gap of 5%. As expected, model M2 always has less 

binary variables and more continuous variables and constraints when compared with 

model M1. This is because M1 makes use of binary variables to model storage tasks, 

while M2 implements storage through the set of constraints (4.11). 

For the 24 hours scheduling horizon both models proved optimality relatively fast. 

However, in the 48 hours instance, the solution time of M2 is lower than the time 

required by M1 to prove optimality. The same happens when trying to obtain a solution 

within the margin of 5% of the integrality gap.  

In the 120 and 240 hours instances none of the models succeeded to prove 

optimality. In the horizon of 120 hours, M1 is slightly better than M2, and in the 240 

hours instance, the solution of M2 is better than M1. Assuming a margin of 5% for the 

integrality gap, the 120 hours instance of M1 reached a solution in 201 seconds, while M2 

took 381 seconds. However in the 240 hours instance, M2 reached a better solution in just 

460 seconds, while M1 required 2,053 seconds.  

Globally, model M2 ran very well and outperformed model M1 in most of the 

instances. 

Table 4.1 – Process 1 solution statistics (stopping criterion is the time limit of 3,600 seconds). 

Model/process/ 

horizon/grid 

Int. variables/ 

Cont. variables/ 

Constraints 

Nodes Iterations 
LP 

relaxation 

Gap 

(%) 
Objective 

CPU 

time 

(sec) 

M1/P1/24/1 325/732/1334 5,331 314,722 30,673.1 0.00 28,709.6 3 

M2/P1/24/1 200/1303/1635 6,278 310,912 31,389.1 0.00 28,709.6 2 

M1/P1/48/1 637/1430/2607 149,480 17,765,652 62,828.7 0.00 60,380.9 287 

M2/P1/48/1 392/2553/3196 118,801 9,257,543 63,033.6 0.00 60,380.9 189 

M1/P1/120/1 1,573/3520/6472 354,705 37,582,562 152,026.4 1.05 148,434.4 3,600 

M2/P1/120/1 968/6299/7925 639,012 69,419,840 152,115.5 1.20 148,295.2 3,600 

M1/P1/240/1 3133/7002/12929 111,232 19,898,360 290,651.7 2.06 283,334.0 3,600 

M2/P1/240/1 1928/12541/15822 203,522 37,267,461 290,570.4 1.46 285,068.8 3,600 
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Table 4.2 – Process 1 solution statistics (stopping criterion is the integrality gap of 5%).  

Model/process/ 

horizon/grid 
Nodes Iterations 

Gap 

(%) 
Objective 

CPU 

time 

(sec) 

M1/P1/48/1 12,084 1,706,400 5.00 59,090.5 32 

M2/P1/48/1 9,562 953,946 4.81 59,427.9 17 

M1/P1/120/1 19,637 2,160,873 4.33 144,776.6 201 

M2/P1/120/1 55,064 8,342,967 4.28 144,811.8 381 

M1/P1/240/1 53,307 9,155,148 4.15 277,682.5 2,053 

M2/P1/240/1 45,036 5,870,111 3.24 280,300.0 460 

4.7.2   Process 2 

Process 2 was published by Kallrath (2002) and is being extensively used as a benchmark 

problem because of its complexity. The process suggested by the author accounts for 

flexible output proportions for intermediaries, several storage policies, a cyclic material 

flow, and a considerable number of states, units, and tasks. In this paper, we do not 

consider flexible output proportions; therefore, the proportion of material going to State3 

was fixed to 0.3 and the proportion of material going to State4 was fixed to 0.7. Again, 

we assume a single lot and that there are no sequence-dependent changeovers. 

The solution statistics presented in Table 4.3 show that model M2 performed better 

than model M1 in all instances. In the 48 hours horizon, M1 proved optimality in 233 

seconds, while M2 just took 101 seconds. With the increase of the model size, both 

models had difficulties in reaching an optimal solution; however, M2 obtained always the 

best solution within the specified time limit. In the 120 hours horizon, the solution 

obtained by M1 was within a gap of 12.86%, while the solution retrieved by M2 ensured 

a gap of 3.11%. 

In this process, we have opted not to test the stopping criterion of the 5% of 

integrality gap, because the larger instances showed to be very hard to solve with both 

models. 
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Table 4.3 – Process 2 solution statistics (stopping criterion is the time limit of 3,600 seconds). 

Model/process/ 

horizon/grid 

Int. variables/ 

Cont. variables/ 

Constraints 

Nodes Iterations 
LP 

relaxation 

Gap 

(%) 
Objective 

CPU 

time 

(sec) 

M1/P2/48/1 1421/3632/6759 29,345 93,866,983 5,269.3 0.00 4,802.8 233 

M2/P2/48/1 1176/6278/8577 20,788 3,992,399 5,247.9 0.00 4,802.8 101 

M1/P2/120/1 3509/8965/16696 15,464 26,488,007 16,725.8 12.86 14,495.0 3,600 

M2/P2/120/1 2904/15499/21178 55,076 21,512,065 16,611.9 3.11 15,440.1 3,600 

M1/P2/240/1 6989/17850/33305 1,088 8,328,162 33,261.4 17.37 27,734.6 3,600 

M2/P2/240/1 5784/30864/42227 14,876 12,549,594 32,925.6 11.59 28,519.4 3,600 

4.7.3   Process 3 

Process 3 is from Papageorgiou and Pantelides (1993) and is defined by three parallel 

production lines that share almost all processing units. The processes have several storage 

policies, including ZW and NIS, and have tasks with small and large processing times. 

Here, we consider sequence-dependent changeovers between products that have a single 

lot, and we test these processes with time grids of one and five hours. 

In Table 4.4, we show the results with a time grid of 5 hours and for scheduling 

horizons of 120 and 240 hours. It is not possible to run Process 3 for smaller time 

horizons, because tasks have large processing times. Model M2 outperformed model M1 

in both instances. In the 120 hours horizon, M1 proved optimality in 5 seconds, which 

required 18 seconds. And in the 240 hours horizon, M2 proved optimality in just 476 

seconds, while M1 needed 677 seconds. The number of nodes and iterations of the 

branch-and-bound for model M2 are also significantly smaller when compared with those 

of model M1. Considering the stopping criterion of 5% in the integrality gap, see Table 

4.5, model M1 obtained a solution in just 10 seconds, while M2 required 58 seconds. 

By assuming a time grid of 1 hour, the model size naturally increased in a 

significant way and none of the models proved optimality, see Table 4.6 and Table 4.7. 

M2 performed better than M1 in all instances, always reaching an integrality gap within 

5%, with the exception of one instance  

In this process, model M2 had better performance in all indicators, suggesting that 

model M2 works well in instances having multiple processes, with sequence-dependent 

changeovers and different storage policies. 
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Table 4.4 – Process 3 solution statistics (time grid is 5 hours). 

Model/process/ 

horizon/grid 

Int. variables/ 

Cont. variables/ 

Constraints 

Nodes Iterations 
LP 

relaxation 

Gap 

(%) 
Objective 

CPU 

time 

(sec) 

M1/P3/120/5 1550/1720/2841 17,969 1,413,603 5,387.3 0.00 5,066.0 18 

M2/P3/120/5 575/2879/5086 5,893 297,682 5,392.2 0.00 5,066.0 5 

M1/P3/240/5 3038/3355/5541 330,548 40,797,510 10,774.7 0.00 10,184.8 677 

M2/P3/240/5 1127/5642/9946 199,201 21,796,427 10,784.5 0.00 10,184.8 476 

Table 4.5 – Process 3 solution statistics (time grid is 5 hours and stopping criterion is the 

integrality gap of 5%). 

Model/process/ 

horizon/grid 
Nodes Iterations 

Gap 

(%) 
Objective 

CPU 

time 

(sec) 

M1/P3/240/5 18,539 2,565,141 4.30 10,000.6 58 

M2/P3/240/5 4,771 446,278 5.00 9,966.8 10 

Table 4.6 – Process 3 solution statistics (time grid is 1 hour and stopping criterion is the time limit 

of 3,600 seconds). 

Model/process/ 

horizon/grid 

Int. variables/ 

Cont. variables/ 

Constraints 

Nodes Iterations 
LP 

relaxation 

Gap 

(%) 
Objective 

CPU 

time 

(sec) 

M1/P3/120/1 7502/8248/13653 178,586 72,707,311 5,317.2 13.34 4,587.7 3,600 

M2/P3/120/1 2783/13919/30346 168,092 25,231,890 5,321.2 9.09 4,768.5 3,600 

M1/P3/240/1 14942/16411/27165 56,025 26,545,793 10,634.3 11.18 9,457.9 3,600 

M2/P3/240/1 5543/27722/60418 59,941 17,039,145 10,642.4 5.80 9,920.5 3,600 

Table 4.7 – Process 3 solution statistics (time grid is 1 hour and stopping criterion is the integrality 

gap of 5%). 

Model/process/ 

horizon/grid 
Nodes Iterations 

Gap 

(%) 
Objective 

CPU 

time 

(sec) 

M1/P3/120/1 578,271 296,170,781 7.84 4,795.6
1)

 14,400 

M2/P3/120/1 566,936 131,212,184 4.78 4,912.4 14,400 

M1/P3/240/1 341,515 136,133,027 10.24 9,496.7
1)

 14,400 

M2/P3/240/1 129,924 44,592,826 4.98 9,978.7 7,125 
1)

 Stopping criterion is the time limit of 14,400 seconds. 

4.7.4   Process 4 

We now consider the network defined by the three processes depicted in Figure 4.1. 

Products PA and PB are produced from raw materials, while Product PC is produced 
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from PA and PB. Moreover, we are given the unit’s physical layout shown in Figure 4.6. 

This process is used to test the performance of both models and also to address new 

modeling features only possible to be treated with model M2 with the extensions 

proposed in section 4.6. 

First, we test Process 4 assuming sequence-dependent changeovers and single lots 

without blending. Since model M1 cannot address lots blending and traceability features, 

we slightly change the recipe of product PC by imposing that the materials required to 

produce PC are raw materials and not the products PA and PB as defined in Figure 4.1. 

The numerical results for this scenario are presented in Table 4.8 and Table 4.9. Second, 

we define multiple lots and assume that lots blending may happen. Thus, here only model 

M2 is tested. We analyze lots traceability, sequence-dependent changeovers, temporary 

storage in the processing units, task-unit-layout, and alternative task-unit assignments. 

The numerical results for this case are shown in Table 4.12. 

Single Lots Without Blending 

As it can be seen in Table 4.8 and Table 4.9, the results obtained by model M2 are 

superior to the results retrieved by model M1. For example, in the 48 hours horizon 

instance, the solution time of M2 is 651 seconds, while M1 required 1,996 seconds. 

In the 120 and 240 hours horizons, none of models could prove optimality for the 

CPU time limit of 3,600 seconds. Nevertheless, the solutions obtained by M2 are always 

better, achieving integrality gaps that are less than 5% and that are less than half of the 

gaps obtained by M1. 

Table 4.8 – Process 4 solution statistics (stopping criterion is the time limit of 3,600 seconds). 

Model/proce

ss/horizon/gr

id 

Int. variables/cont. 

variables/ 

constraints 

Nodes Iterations 
LP 

relaxation 

Gap 

(%) 
Objective 

CPU 

time 

(sec) 

M1/P4/24/1 1750/1771/3103 9,259 607,242 515,216.8 0.01 511,167.8 9 

M2/P4/24/1 500/2704/6331 1,945 84,077 515,295.8 0.01 511,167.8 6 

M1/P4/48/1 3430/3454/6064 315,067 91,541,309 1,030,433.6 0.01 1,022,336.5 1,996 

M2/P4/48/1 980/5299/12388 72,764 5,372,800 1,030,591.7 0.01 1,022,336.5 651 

M1/P4/120/1 8470/8497/15025 53,326 18,026,661 2,545,650.8 4.25 2,430,807.0 3,600 

M2/P4/120/1 2420/13078/30637 89,081 13,183,238 2,548,144.6 1.27 2,499,456.8 3,600 

M1/P4/240/1 16870/16900/29986 20,785 17,080,636 5,008,652.8 8.96 4,572,396.1 3,600 

M2/P4/240/1 4820/26041/61078 46,029 12,090,984 5,015,842.1 3.52 4,809,863.8 3,600 
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With an integrality gap of 5% as stopping criterion, model M2 also performed 

better than M1, as it can be seen in Table 4.9. The solution times of M2 are considerably 

smaller than the solution times required by M1 (except for the 24 hours instance). In the 

120 hours horizon, M1 required 2,554 seconds and M2 required 51 seconds, and in the 

240 hours instance M1 needed 10,370 seconds, while M2 just needed 267 seconds. 

Table 4.9 – Process 4 solution statistics (stopping criterion is the integrality gap of 5%). 

Model/process

/horizon/grid 
Nodes Iterations 

Gap 

(%) 
Objective 

CPU 

time 

(sec) 

M1/P4/24/1 76 26,378 0.52 511,067.8 3 

M2/P4/24/1 287 24,182 0.59 511,075.8 6 

M1/P4/48/1 12,359 3,340,246 4.14 985,409.0 91 

M2/P4/48/1 2,055 150,354 3.71 991,374.5 14 

M1/P4/120/1 53,308 18,026,661 4.39 2,427,689.0 2,554 

M2/P4/120/1 1,762 269,770 3.99 2,441,242.8 51 

M1/P4/240/1 55,073 43,710,694 4.27 4,775,346.8 10,370 

M2/P4/240/1 6,889 931,290 3.90 4,806,198.8 267 

 

The performance of the extensions, on changeovers start and non-preemptive lots, 

expressed by constraints (4.16) and (4.17), respectively, is assessed by the numerical 

results of Table 4.10. Constraints (4.17) impose that lots cannot be interrupted to produce 

other lots, thus limiting the profit of the schedule when compared with the profit values 

shown in Table 4.8. The computational performance of the model M1.1 tends to decrease 

with the increase of the time horizon, as can be seen by the large integrality gaps of the 

120 and 240 hours instances.  

Table 4.10 – Process 4 solution statistics, assuming changeovers start and non-preemptive lots 

constraints.  

Model/process/ 

horizon/grid 
Constraints 

Gap 

(%) 
Objective 

CPU 

time 

(sec) 

M1.1/P4/24/1 3,545 0.00 501,290.0 10 

M1.1/P4/48/1 6,914 0.57
1)

 998,965.5 3,600 

M1.1/P4/120/1 17,099 23.02
1)

 2,060,248.0 3,600 

M1.1/P4/240/1 34,100 34.94
1)

 3,692,146.0 3,600 
1)

 Stopping criterion is the time limit of 3,600 seconds.  
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On the Changeover Costs 

In order to reflect the changeover costs on the schedule solutions, we have added 

expression (4.26) in the objective function of model M1. The cost structures of the 

resultant model M1.2 and of model M2 are illustrated in Figure 4.7.  

   ∑ ∑ ∑ ∑             

               

 
(4.26) 

It can be seen that in the 24 hours instance both models had storage costs equal to 

3,032 m.u. In the 48 hours storage costs increased to 6,463 in model M2, while model 

M1.2 storage costs (SC) increased to 6,807. Regarding the operational costs (OP), M2 

had always inferior costs than M1.2. It is important to note that, when changeover costs 

(GC) are considered in the objective function the tradeoffs between task-unit allocation, 

storage and changeover costs pass to exist. 

 

Figure 4.7 – Cost structure for models M1.2 and M2 (SC – storage costs, OC – operational costs, 

GC – changeover costs). 

The computational results of model M1.2 are shown in Table 4.11. As expected, 

the profit obtained by M1.2 is always inferior to the profit obtained by models M1 and 

M2 (see Table 4.8) due to the changeover costs. Model M1.2 demonstrated worse 

performance than M1, particularly in the larger instances. For example, in the 240 hours 

instance, M1.2 had 28.23% of integrality gap, in contrast to M1 that had 8.96%. 
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Table 4.11 – Process 4 solution statistics, assuming changeovers costs. 

Model/process/ 

horizon/grid 
Nodes Iterations 

LP 

relaxation 

Gap 

(%) 
Objective 

CPU 

time 

(sec) 

M1.2/P4/24/1 4,291 476,489 515,200.6 0.01 510,167.8 8 

M1.2/P4/48/1 300,486 130,181,404 1,030,401.2 0.11 1,019,193.5 3,600 

M1.2/P4/120/1 52,633 35,118,731 2,545,454.9 5.14 2,408,360.0 3,600 

M1.2/P4/240/1 12,733 12,292,104 5,007,848.3 28.23 3,884,643.0 3,600 

 

Looking into the scheduling solutions (see Figure 4.8), we can analyze how 

changeover costs affect the task-unit assignment. The schedule solution of M1.2 has a 

total of 3 changeovers, resulting into a cost of 800 m.u. and an idle time of 11 hours. 

Although M2 does not model changeover tasks, costs and time of the changeovers can be 

derived by analyzing the schedule solution. In this way, the schedule solution of M2 has a 

total of 7 changeovers that result into a cost of 1800 m.u. and an idle time of 25 hours. 

Processing units are used less efficiently in M2, which concerns to the total changeover 

time and costs. Nevertheless, the profit of M2 is 99.8% of M1.2, discounting the 

changeover cost of 1800 m.u. to the profit obtained by M2. Thus, although M1.2 and M2 

schedules are slightly different, they deliver the same amount of products and have a 

similar profit. In practice, since changeover constraints lead to a more efficient model, 

they can be used instead of changeover tasks if: a) the exact time of the changeover is not 

relevant; b) utilities/materials consumption during changeovers can be disregarded; and c) 

changeover costs are not significant. 
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a) 

 

b) 

Figure 4.8 – Scheduling for 24 hours instance: a) model M1.2; b) model M2. (CO = changeover) 

Multiple Lots with Blending 

Now, we use the processes as shown in Figure 4.1 to obtain schedules with multiple lots 

per product and with blending operations. We considered the production of two lots of 

PA, two lots of PB, and a single lot of PC, in a time horizon of 48 hours. The aim is to 

define production schedules in which the traceability of lots is kept during the entire 

horizon and the tasks-units assignment is done by assuming the physical layout 

limitations shown in Figure 4.6. For that we consider the extended model M2.1 by adding 

constraints (4.22) to (4.25) to model M2. Moreover, we also include the lot sizes 

extensions in model M2.2 that is defined by constraints (4.19) to (4.25). 

Figure 4.9 shows the schedule for a 48 hours horizon, having an objective value of 

340,442.2 m.u., relative to a delivery of 7,000 kg of product PC. Lot L1 of product PA 

starts first in units U2 and F1, while lot L2 of the same product is processed in units U4 

and F2. We can see that the physical layout limitations expressed in Figure 4.6 were 

followed by both lots. Regarding the production of PB, lots L1 and L2 were produced in 

units U3, U3, and F2.  

Although model M2.1 does not explicitly give the start of the temporary storage 

tasks in the processing units and the sequence-dependent changeovers, those can be 

directly deduced from       and      variables. Thus, it can be seen that intermediary 

PA_S3 is temporary stored in unit U3 in all occurrences of TASK3 of product PA. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

U1 NIS NIS NIS

U2 PC(T1,2500) PA(T3,862)NIS PA(T3,1200)NIS

U3 PC(T1,1666)

U4 PC(T2,2500) PC(T2,1666)

U5 PB(T2,2000) PB(T2,2000) PB(T2,2000) PB(T2,2000) PB(T2,2000)

F1

F2

D1

CO

PA(T2,2875) PA(T2,4000)

PA(T1,4000)

CO CO

PC(T3,5000) PC(T3,3333)

PC(T4,3000) PC(T4,1500) PC(T4,3000)

PB(T1,2000) PB(T1,2000) PB(T1,2000)

PB(T3,2000) PB(T3,2000) PB(T3,2000)

PB(T1,2000) PB(T1,2000)

PB(T3,2000) PB(T3,2000)

PA(T1,2875)

Time intervals

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

U1 NIS NIS NIS

U2 PC(T1,2500)

U3 PC(T1,1666)

U4 PC(T2,2500) PB(T2,2000) PA(T3,1200)NIS PA(T3,862)NIS

U5 PB(T2,2000) PB(T2,2000) PC(T2,1666) PB(T2,2000) PB(T2,2000)

F1

F2

D1

PB(T3,2000) PB(T3,2000) PB(T3,2000)

PC(T4,3000) PC(T4,1500)

PA(T2,4000) PA(T2,2875)

PC(T4,3000)

PB(T3,2000) PB(T3,2000)

PC(T3,5000) PC(T3,3333)

PA(T1,4000) PA(T1,2875)

PB(T1,2000) PB(T1,2000) PB(T1,2000) PB(T1,2000) PB(T1,2000)

CO

CO CO

CO CO

CO CO

Time intervals
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Concerning the sequence-dependent changeovers, we can see changeovers between lots 

of different products and changeovers between lots of the same product. This latter case 

happens in unit U3 at the time interval 9. 

Finally, lots traceability is ensured for all products. The amounts produced of PA 

and PB of each lot are consumed by product PC and are directly traceable. For example, 

at the time interval 27, the amount of lot L1 of product PB is 2,500 kg and of L2 is 833.3 

kg, and because the amount of L1 of PB is not sufficient to feed the batch of TASK2 of 

PC, it is necessary to blend lots. This situation can be seen in Figure 4.10, at time 28, 

where lots L1 and L2 of PB are consumed simultaneously by TASK2 of product PC.  

 

Figure 4.9 – Scheduling for instance M2.1/P4/48/1
1)

. 

 

Figure 4.10 – Inventory for lots of products PB and PC. 

Table 4.12 shows the computational results for models M2.1 and M2.2. M2.1 

obtained a profit equal to 340,442.2 after 3,600 seconds. But assuming an integrality gap 

of 5%, a solution was retrieved in just 31 seconds. Model M2.2 takes into account the lot 

sizes constraints (4.19) and (4.20), and it can be seen that M2.2 and M2.1 performances 

are comparable for the tested instance. 

  

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

U1

U2 PA(T3,L1)NIS PC(T1,L1)

U3

U4 PB(T2,L1) PB(T2,L1) PB(T2,L2) PB(T2,L2)

U5 PC(T2,L1)

F1

F2

D1

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

U1

U2 PC(T1,L1) PC(T1,L1)

U3 PA(T1,L2)PA(T3,L2)NIS PA(T3,L2)NIS

U4

U5 PC(T2,L1) PC(T2,L1)

F1

F2

D1 PC(T4,L1) PC(T4,L1) PC(T4,L1)

PC(T3,L1)

PC_L1 PC(T3,L1) PC(T3,L1)

PA(T1,L1)

PA(T2,L1)

PA(T1,L2)

PA(T2,L2)

PA(T1,L2)

PA(T2,L2)

PB(T1,L1) PB(T1,L1)

PB(T3,L1) PB(T3,L1)

PB(T1,L2) PB(T1,L2)

PB(T3,L2) PB(T3,L2)CO CO

CO

CO

CO CO

CO

Time intervals

Time intervals
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Table 4.12 – Process 4 solution statistics. 

Model/process/

horizon/grid 

Int. variables/cont. 

variables/ 

constraints 

Nodes Iterations 
Gap 

(%) 
Objective 

CPU 

time 

(sec) 

M2.1/P4/48/1
1)

 1650/8875/30554 36,169 31,493,851 0.61 340,442.2 3,600 

M2.1/P4/48/1
2)

 1650/8875/30554 935 233,990 2.36 338,356.4 31 

M2.2/P4/48/1
1)

 1650/8875/30580 57,805 34,439,408 0.14 338,787.2 3,600 

M2.2/P4/48/1
2)

 1650/8875/30580 236 181,674 4.13 332,480.2 34 
1)

 Stopping criterion is the time limit of 3,600 seconds;  

2)
 Stopping criterion is the integrality gap of 5%. 

4.8   Conclusions 

In this work, we propose two general discrete-time scheduling models for multipurpose 

batch plants (models M1 and M2). We first use a RTN discrete-time formulation (M1) as 

basis for comparison with a more innovative model (M2). The first model (Model M1) 

extends the RTN model of Pantelides (1994) by considering explicitly and in an 

integrated way scheduling features already treated in the literature, such as temporary 

storage in the processing units (Kondili et al., 1993), sequence-dependent changeovers 

(Castro, Novais, et al., 2008), and multiproduct delivery extensions (Wassick & Ferrio, 

2011). This model is then generalized by considering the start of changeovers tasks, non-

preemptive lots, as well as alternative task-unit and task-unit-layout assignments. 

Model M2, based on STN, can be viewed as an innovative contribution in the area, 

explicitly modeling the inventory carried out in each task by adding a task index to the 

resource availability variables. This approach allows the development of new types of 

constraints for modeling sequence-dependent changeovers and temporary storage in the 

processing units. Moreover, we address lots blending, lots start, and alternative task-unit 

and task-unit-layout assignments. Lots blending and traceability are two requirements 

introduced in this work that are common in the chemical and biochemical-pharmaceutical 

industries, considered here with the purpose of keeping record of the blending processes 

during the production. 

We compare the effectiveness of both models using three benchmark problems 

from the literature and one scheduling problem proposed in this paper. Experimental 

results have shown that model M2 is computationally more effective for the instances 

tested. In the larger or more complicated instances, both models had difficulties in 
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proving optimality. However, model M2 always reached a solution within 5% of the 

integrality gap, except for the 240 hours scheduling horizon of Kallrath (2002) network. 

Model M1 had worse performance in most of the cases. 

Two critical modeling features of the discrete-time formulations (sequence-

dependent changeovers and temporary storage in the processing units) have been 

addressed, the proposed modeling alternative being computationally more efficient. An 

interesting and challenging issue for future research is the modeling of variable 

processing times with discrete-time formulations. 

Appendix - RTN Model (M1) 
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Constraints (4.A1) express the availability of the processing units for each lot and time 

interval. So the unit availability      is equal to the availability in the previous time 

interval         plus the availability resulting from the unit’s allocation/release to/from 

the production or changeover tasks at time interval t. For the production tasks, this is done 

through coefficient       that defines the unit r allocation/release done by task k at time   

relative to the start of the task. And for changeover tasks, we have introduced the 

changeover coefficient           that defines the allocation/release of unit r from lot l’ to 

l’’, at the current lot l and at time   relative to the start of the changeover task. The 

changeover time is given by parameter        . Constraints (4.A2) do the initial assignment 

of processing units to lots. A simplified version of constraints (4.A1) can be written if 

changeovers between lots are not required; see constraints (4.A3). In these cases, we just 

have the resource balance for the production tasks and the index l of the resource 

availability variables is removed. Because constraints (4.A1) or (4.A3) ensure that no 

processing units are eliminated or created, we do not need to define lower or upper 

bounds for this type of resources. Note that,      or     variables do not need to be 

integer variables, since the resource balance equation ensures that these variables take 

always integer values. 
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The materials balance constraints (4.A4) are similar to the units balance constrains 

(4.A1) or (4.A3). The difference is that constraints (4.A4) handle intermediaries and final 

products and not processing units. Materials are consumed and produced at the proportion 

     of the batch size     . The continuous variables      express the deliveries of 

product r of lot l at the time interval t and will always have non positive values; thus, no 

material receipts are expected to occur during the scheduling horizon. We opted not to 

model raw materials since it can be assumed, without loss of generality, that raw 

materials are available when needed. Constraints (4.A5) define the minimum and 

maximum materials availability allowed for each time interval. These constraints also 

permit the definition of different storage policies depending on the value of parameters 

   
   . Thus,    

    take the value 0 for Non-Intermediate Storage (NIS) or Zero-wait 

(ZW) and take a value greater than zero if there is Finite Intermediate Storage (FIS) or 

Unlimited Intermediate Storage (UIS). In the latter case the value should be sufficiently 

large to account for unlimited storage capacity. Constraints (4.A6) define that the batch 

size      must be within the minimum     
    and maximum     

    allowed capacities of 

resource r and task k of lot l.  

Constraints (4.A7) were first proposed by Kondili et al. (1993) to model temporary 

storage done by the processing units (NIS policy) and ensure that the intermediary is held 

by the unit in which it was produced. These constraints require the creation of additional 

storage tasks to model the NIS policy and impose that the batch size of a storage task is 

less than or equal to the previous amount stored plus the amount produced at each time 

interval. If the batch size of a storage task is greater than zero, then the assignment binary 

variable for the storage task must be one by constraints (4.A6). Parameters     
 

 give the 

production proportion of the batch size of task k for resource r, and      is a subset of I 

that has the intermediaries subject to the NIS policy. Note that storage tasks have duration 

equal to one since materials availability needs to be checked at every time interval. These 

constraints are only required in the cases that the alternative units suitable to perform a 

given task are dissimilar. In these situations, constraints (4.A7) guarantee that the unit 

allocated during the storage period is the same unit that has produced the material being 

held. 

Multiple product deliveries are defined by constraints (4.A8). The delivery time 

windows       are defined by fixed time intervals in which the product deliveries can 
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happen. Constraints (4.A9) and (4.A10) set the delivery variables to zero for the time 

intervals out of the delivery time window and for other resources rather than final 

products. 

Constraints (4.A11) define that tasks must finish in the time horizon of interest. 

Finally, constraints (4.A12) guarantee the non-negativity of the continuous variables 

resource availability, batch size, and missing deliveries; the non-positivity of the delivery 

variables; and the integrality of the assignment/sequencing variables and sequence-

dependent changeovers.  



92 Moniz, S. 

 

 

Supporting Information 

 

Networks 

 

Figure 4.S1 – Process 1, Kondili et al. (1993). 



4   Paper 2: New General Discrete-Time Scheduling Model for Multipurpose Batch 

Plants 
93 

 

 

 

Figure 4.S2 – Process 2, Kallrath (2002). 

 

Figure 4.S3 – Process 3, Papageorgiou and Pantelides (1993). 
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Data 

Table 4.S1 – Process 1: products demand, delivery dates, price and miss deliveries costs. 

Network Product 
Lot 

Product 

Earliest 

delivery 

Date 

Latest 

delivery 

Date 

Minimum 

lot size 

[kg] 

Maximum 

lot size 

[kg] 

Price 

[m.u./kg] 

Miss 

deliveries 

costs 

[m.u./kg] 

KD P1 KD_L1 16 24 270 350 30 60 

KD P2 KD_L1 16 24 380 500 45 90 

KD P1 KD_L1 40 48 270 350 30 60 

KD P2 KD_L1 40 48 380 500 45 90 

KD P1 KD_L1 112 120 810 1.050 30 60 

KD P2 KD_L1 112 120 1,140 1.500 45 90 

KD P1 KD_L1 232 240 1,350 1.750 30 60 

KD P2 KD_L1 232 240 1,900 2.500 45 90 

Table 4.S2 – Process 1: characteristics of the processing units. 

Unit 
Min. 

volume 

Max. 

volume 

Unit 

operating 

Costs 

[m.u.] 

H1 10 100 10 

R1 8 80 8 

R2 5 50 5 

F1 20 200 20 

Table 4.S3 – Process 1: materials initial, minimum and maximum availability, inventory costs and 

storage policy. 

Resources 

Init. 

availability 

[kg] 

Max. 

availability 

[kg] 

Inventory 

cost 

[m.u.] 

Storage 

policy  

FEEDA 10,000 10,000 0 UIS 

FEEDB 10,000 10,000 0 UIS 

FEEDC 10,000 10,000 0 UIS 

HOTA 0 0 0.2 NIS 

INTBC 0 0 0.3 NIS 

INTAB 0 200 0.01 FIS 

IMPE 0 0 0.04 NIS 

P1 10,000 10,000 0.1 UIS 

P2 10,000 10,000 0.06 UIS 
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Table 4.S4 – Process 2: products demand, delivery dates, price and missing delivery costs. 

Network Product 
Lot 

product 

Earliest 

delivery 

date 

Latest 

delivery 

date 

Minimum 

lot size 

[kg] 

Maximum 

lot size 

[kg] 

Price 

[m.u./kg] 

Miss 

deliveries 

costs 

[m.u./kg] 

KL P1 PA_L1 40 48 10 30 50 100 

KL P2 PA_L1 40 48 20 60 60 120 

KL P3 PA_L1 40 48 30 50 30 60 

KL P4 PA_L1 40 48 5 30 20 40 

KL P5 PA_L1 40 48 10 25 45 90 

KL P1 PA_L1 112 120 30 90 50 100 

KL P2 PA_L1 112 120 60 180 60 120 

KL P3 PA_L1 112 120 90 150 30 60 

KL P4 PA_L1 112 120 15 90 20 40 

KL P5 PA_L1 112 120 30 75 45 90 

KL P1 PA_L1 232 240 50 150 50 100 

KL P2 PA_L1 232 240 100 300 60 120 

KL P3 PA_L1 232 240 150 250 30 60 

KL P4 PA_L1 232 240 25 150 20 40 

KL P5 PA_L1 232 240 50 125 45 90 

Table 4.S5 – Process 2: characteristics of the processing units. 

Unit 
Min. 

volume 

Max. 

volume 

Unit 

operating 

costs 

[m.u.] 

R1 3 10 1 

R2 5 20 2 

R3 4 10 1 

R4 4 10 1 

R5 4 10 1 

R6 3 7 0.7 

R7 3 7 0.7 

R8 4 12 1.2 

R9 4 12 1.2 
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Table 4.S6 – Process 2: materials initial, minimum and maximum availability, inventory costs and 

storage policy. 

Resources 

Init. 

availability 

[kg] 

Max. 

availability 

[kg] 

Inventory 

cost 

[m.u.] 

Storage 

policy  

STATE1 1,000 1,000 0 UIS 

STATE2 10 30 0.1 FIS 

STATE3 10 30 0.02 FIS 

STATE4 0 15 0.02 FIS 

STATE5 10 30 0.01 FIS 

STATE6 0 0 0.2 NIS 

STATE7 0 10 0.05 FIS 

STATE8 0 10 0.05 FIS 

STATE9 0 10 0.05 FIS 

STATE10 0 0 0.2 NIS 

STATE11 0 0 0.2 NIS 

STATE12 0 10 0.01 FIS 

STATE13 0 0 0.2 NIS 

STATE14 0 10 0.01 FIS 

P1 0 1,000 0.09 UIS 

P2 0 1,000 0.09 UIS 

P3 0 1,000 0.25 UIS 

P4 0 1,000 0.25 UIS 

P5 0 1,000 0.25 UIS 

Table 4.S7 – Process 3: products demand, delivery dates, price and missing delivery costs. 

Network Product 
Lot 

product 

Earliest 

delivery 

date 

Latest 

delivery 

date 

Minimum 

lot size 

[kg] 

Maximum 

lot size 

[kg] 

Price 

[m.u./kg] 

Miss 

deliveries 

costs 

[m.u./kg] 

PA PA PA_L1 112 120 40 80 30 60 

PB PB PB_L1 112 120 60 90 10 20 

PC PC PC_L1 112 120 20 55 45 90 

PA PA PA_L1 232 240 40 80 30 60 

PB PB PB_L1 232 240 60 90 10 20 

PC PC PC_L1 232 240 20 55 45 90 
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Table 4.8 – Process 3: characteristics of processing units. 

Unit 
Min. 

volume 

Max. 

volume 

Unit 

operating 

costs 

[m.u.] 

R1 4 40 4 

R2A 2 10 1 

R2B 2 10 1 

R3 3 30 3 

R4 2 15 1.5 

R5 4 40 4 

R6 2 15 1.5 

R7 4 50 5 

Table 4.S9 – Process 3: materials initial, minimum and maximum availability, inventory costs and 

storage policy. 

Resources 

Init. 

availability 

[kg] 

Max. 

availability 

[kg] 

Inventory 

cost 

[m.u.] 

Storage 

policy  

PA_S1 1,000 1,000 0 UIS 

PA_S2 0 0 0.2 NIS 

PA_S3 0 1,000 0.01 UIS 

PA_S4 0 50 0.01 FIS 

PA_S5 0 0 0 ZW 

PA 0 1,000 0.3 UIS 

PB_S1 1,000 1,000 0 UIS 

PB_S2 0 0 0 ZW 

PB_S3 0 50 0.05 FIS 

PB 0 1,000 0.2 UIS 

PC_S1 1,000 1,000 0 UIS 

PC_S2 0 0 0 ZW 

PC_S3 0 100 0.04 FIS 

PC_S4 0 1,000 0.02 UIS 

PC_S5 0 0 0.3 NIS 

PC 0 1,000 0.25 UIS 
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Table 4.S10 – Process 4: products demand, delivery dates, price and missing delivery costs (single 

lot without blending) 

Network Product 
Lot 

product 

Earliest 

delivery 

date 

Latest 

delivery 

date 

Minimum 

lot size 

[kg] 

Maximum 

lot size 

[kg] 

Price 

[m.u./kg] 

Miss 

deliveries 

costs 

[m.u./kg] 

PA PA PA_L1 16 24 3,000 5,500 15 30 

PB PB PB_L1 16 24 2,500 7,000 20 40 

PC PC PC_L1 16 24 4,500 6,000 50 100 

PA PA PA_L1 40 48 3,000 5,500 15 30 

PB PB PB_L1 40 48 2,500 7,000 20 40 

PC PC PC_L1 40 48 4,500 6,000 50 100 

PA PA PA_L1 112 120 9,000 16,500 15 30 

PB PB PB_L1 112 120 7,500 21,000 20 40 

PC PC PC_L1 112 120 13,500 18,000 50 100 

PA PA PA_L1 232 240 15,000 27,500 15 30 

PB PB PB_L1 232 240 12,500 35,000 20 40 

PC PC PC_L1 232 240 22,500 30,000 50 100 

Table 4.S11 – Process 4: products demand, delivery dates, price and miss deliveries costs (multiple 

lots with blending) 

Network Product 
Lot 

product 

Earliest 

delivery 

date 

Latest 

delivery 

date 

Minimum 

lot size 

[kg] 

Maximum 

lot size 

[kg] 

Price 

[m.u./kg] 

Miss 

deliveries 

costs 

[m.u./kg] 

PA PA PA_L1 40 48 2,000 2,500 15 30 

PA PA PA_L2 40 48 2,000 2,500 15 30 

PB PB PB_L1 40 48 2,000 2,500 20 40 

PB PB PB_L2 40 48 2,000 2,500 20 40 

PC PC PC_L1 40 48 6,000 7,000 50 100 

 

Table 4.S12 – Process 4: characteristics of processing units. 

Unit 
Min. 

volume 
Max. volume 

Unit operating 

costs [m.u.] 

U1 50 5,000 500 

U2 40 4,000 400 

U3 20 2,000 200 

U4 30 3,000 300 

U5 20 2,000 200 

F1 40 4,000 400 

F2 20 2,000 200 

D1 30 3,000 300 
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Table 4.S13 – Process 4: materials initial, minimum and maximum availability, inventory costs 

and storage policy. 

Resources 

Initial 

availability 

[kg] 

Max. 

availability 

[kg] 

Inventory 

cost [m.u.] 

Storage 

policy  

PA_S1 0 0 0.2 NIS 

PA_S2 0 0 0.4 NIS 

PA_S3 0 0 0.1 NIS 

PA 0 10,000 0.05 FIS 

PB_S1 0 5,000 0.3 FIS 

PB_S2 0 0 0.1 NIS 

PB 0 10,000 0.03 FIS 

PC_S1 0 0 0 ZW 

PC_S2 0 0 0 ZW 

PC_S3 0 0 0.3 NIS 

PC 0 10,000 0.1 FIS 

Table 4.S14 – Process 4: changeovers time between products and units. 

Unit PA PB PC 

PA cr+1 cr+2 cr+2 

PB cr+2 cr+1 cr+2 

PC cr+2 cr+2 cr+1 

Table 4.S15 – Process 4: changeovers time per unit. 

Unit cr 

U1 3 

U2 3 

U3 1 

U4 2 

U5 1 

F1 3 

F2 1 

D1 3 
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Table 4.S16 – Process 4: costs structure. 

Model/process/ 

horizon/grid 

VP  

[m.u.] 

SC 

[m.u.] 

OC 

[m.u.] 

MC  

[m.u.] 

GC  

[m.u.] 

Profit 

[m.u.] 

M1.2/P4/24/1 522500 3,032 8,500 0.0 800.00 510,167.8 

M2/P4/24/1 522500 3,032 8,300 0.0 0.00 511,167.8 

M1.2/P4/48/1 1045000 6,807 16,800 0.0 2200.00 1,019,193.5 

M2/P4/48/1 1045000 6,463 16,200 0.0 0.00 1,022,336.5 

M1.2/P4/120/1 2536000 79,640 40,500 0.0 7500.00 2,408,360.0 

M2/P4/120/1 2612500 71,843 41,200 0.0 0.00 2,499,456.8 

M1.2/P4/240/1 4522000 352,857 73,000 200,000.0 11500.00 3,884,643.0 

M2/P4/240/1 5184500 289,736 84,900 0.0 0.00 4,809,863.8 
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Abstract 

This paper proposes a solution methodology for the production 

scheduling of batch plants. The methodology is defined by an integrated 

approach that simultaneously considers the representation of the 

scheduling problem, the optimization model and the decision-making 

process. A problem representation and a mixed integer linear programing 

(MILP) model are developed and applied to solve a real world scheduling 

problem from the chemical-pharmaceutical industry. The main advantage 

of this approach is that it includes a general process representation that 

can be used across several departments of the company. Moreover, we 

also discuss general development and implementation challenges of 

optimization methods for the process industry, and we provide some 

guidelines to mitigate existing problematic issues in this domain. 

Keywords: scheduling; optimization; decision-making; enterprise-wide 

optimization; mixed-integer linear programming 
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5.1   Introduction 

Decision-making in the process industry tends to be inherently complex, since it may 

involve strategic, tactical and operational decisions in very dynamic manufacturing 

systems. In particular, planning and scheduling decisions have a huge importance due to 

their interdependency with other functions, such as sales, procurement, production 

execution, and control. Hence, the integration of optimization methods to support these 

decisions caught the interest of many industrial companies. Model-based applications are 

seen as a way to improve competitiveness, to increase profitability, and also to reshape 

the product portfolio and to facilitate product and process innovations (Klatt & 

Marquardt, 2009). 

In the past years, many academic and industrial efforts have been done to develop 

and implement model-based applications in manufacturing systems (Mendez et al., 2006). 

The major achievements in the area include exact, non-exact and hybrid methods, and 

also conceptual frameworks, ontologies and problem representations. Exact methods 

include Mixed Integer Linear Programming (MILP), Mixed Integer Nonlinear 

Programming (MINLP) and Constraint Programing (CP) models. Non-exact methods are 

usually based on heuristics, meta-heuristics and artificial intelligence approaches. Hybrid 

methods combine the previous methods so as to build more efficient approaches. On the 

other hand, conceptual frameworks aim at defining the scope of the different problems 

addressed by the Process Systems Engineering (PSE) community, and aim at proposing 

general integration schemes. Ontologies attempt to clarify concepts and their relations. 

Finally, general problem representations attempt to provide unified and unambiguous 

views of planning and scheduling problems. 

Although these developments clearly represent a huge progress on the integration 

of optimization methods with the decision-making processes, there are some open issues 

that have recurrently been reported by the literature. The most common ones are related 

to the computational performance, modeling uncertainty, multiscale optimization, or the 

modeling task itself. The modeling challenge is surely a complex issue, since it deals with 

the design of models targeting their integration with the companies decision-making 

processes (Grossmann, 2005).  

In this paper, we propose a methodology for the integration of scheduling model-

based approaches with the decision-making processes. In particular, we address a 
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scheduling problem in the chemical-pharmaceutical industry from an integrated 

perspective. Issues related to the problem description, modeling and implementation of 

scheduling models in batch plants are discussed, and considered in the proposed 

methodology. This work was strongly motivated from the need of solving in an integrated 

way and in close collaboration with a company, their day to day scheduling problems. 

The rest of the paper is structured as follows. Section 5.2 presents several 

conceptual frameworks that have been proposed to define the decision-making levels of 

manufacturing systems. Section 5.3 reviews contributions from the literature addressing 

real world scheduling problems. Sections 5.4 and 5.5 describe the proposed methodology. 

We start by defining the concepts used and then we apply the solution methodology in a 

real world scheduling problem from the chemical-pharmaceutical industry. In section 5.6, 

we discuss the challenges related to the adoption of optimization methods by the industry 

and we present some implementation guidelines. Section 5.7 states research opportunities 

in the area and, finally, in section 5.8, concluding remarks are presented. 

5.2   Conceptual Frameworks 

Planning and scheduling are surely two critical activities performed by industrial 

companies. They involve the allocation of limited resources to operations that occur in 

given time windows. Pinedo (2002) defined scheduling as a decision-making process that 

deals with the allocation of resources to tasks over time, and considering one or more 

objectives. Stephanopoulos and Reklaitis (2011) defined planning and scheduling of 

process operations as a subarea of Process Systems Engineering (PSE) that deals with 

models, methods and tools for supporting technical decisions related to the safety, 

efficiency and reliability of the execution of the manufacturing functions of a process 

industry enterprise. These definitions are wide enough to incorporate relevant interactions 

with strategic areas such as sales and forecasting and with operational areas such as 

production execution, control and dispatching. Several authors have explored this area 

and have proposed conceptual frameworks (depicted in appendix) that we will briefly 

describe for a better understanding of the planning and scheduling functions. 

Considering a logistics perspective, Meyr et al. (2005) presented the supply chain 

planning matrix, where planning activities are categorized in terms of time horizon and 

process: a) the long-term planning, called strategic network planning deals with the 
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structure of the supply chain; b) the mid-term planning, is responsible for the 

determination of production targets, distribution of the production and capacity 

management; and c) the short-term planning accounts for production planning and 

scheduling, i.e., operational decisions such as lot-sizing and tasks sequencing. 

On the process operations, Bassett et al. (1996) presented a decision-making 

hierarchy that integrates planning, scheduling and control. The perspective supported by 

the authors is that model-based methodologies offer the most effective framework for 

integrating all these decisions. Nevertheless, due to the variety and scope of strategic and 

operational decisions, the authors claim that no single model would be sufficient to 

handle all aspects. Pinedo (2002) proposed a similar framework for generic 

manufacturing systems. Scheduling is positioned between production planning and shop-

floor control. The decision-making process is clearly hierarchical and allows bi-

directional information flows. The planning process starts with a master production 

planning for determining the production quantities and due dates, and to do the initial 

assessment of the production capacity. This data goes into the Materials Requirements 

Planning (MRP) that is responsible for launching orders and ensuring that the materials 

required for production are available. The scheduling function receives the orders from 

the MRP and performs the sequencing. Orders are then dispatched following the 

production execution. The closed-loop information flow reinforces the possibility to 

revise the scheduling, the MRP, or the master production planning whenever necessary, 

and therefore the system accuracy. 

On the production execution, Harjunkoski et al. (2009) and Engell and Harjunkoski 

(2012) presented the automation pyramid for discussing the integration of planning, 

scheduling and control layers. The bottom level of the pyramid is composed by the 

Control systems/sensors and is mainly related to hardware/software components. The 

middle level is the Manufacturing Execution System (MES) and deals with more 

advanced production control algorithms, scheduling, maintenance, inventory control, 

quality assurance, materials and energy control. The top of the pyramid is in general 

based on the Enterprise Resource Planning (ERP) system and is concerned with the long-

term strategic and tactical planning decisions, performing business-related functions such 

as Available-to-Promise (ATP) checks. According to the authors these levels are not fully 
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standardized and their integration heavily depends on the characteristics of each 

company. 

Standards are also being used for the definition of concepts and to perform the 

integration of the various subsystems of manufacturing environments. Two standards 

from ANSI/ISA (S88 and S95) are often referred in the literature. ANSI/ISA-88 (1995) 

provides models for integrating information related to the control of batch processes, and 

ANSI/ISA-95 (2000) has models for the integration of enterprise and control systems. 

The Purdue Reference Model, presented in the S95 standard, describes the main 

components of an enterprise system, their functionalities and interactions.  

From a functional point of view, decision-making processes require infrastructures 

capable to effectively support information gathering, data integration and models 

development, as mentioned by Venkatasubramanian et al. (2006). These authors propose 

an information centric infrastructure based on an ontology to support product and process 

development of active-pharmaceutical ingredients (API). This approach provides a 

coherent knowledge base that can be used by software tools and models to promote 

information sharing. On the same line, Muñoz et al. (2010) developed an ontology for 

batch processes, considering the scheduling and the control levels in a closed loop. 

Although the results presented by these authors are very interesting, substantial 

challenges will surely arise when implementing these frameworks in industrial facilities. 

Klatt and Marquardt (2009) presented an overview of methods and tools developed 

in the context of PSE. The authors argue that the development of user-friendly tools for 

industrial practitioners is still necessary. With a similar opinion as Bassett et al. (1996), 

Klatt and Marquardt (2009) state that emphasis should be put on model-based 

applications and in the development of methodologies in which the economic impact and 

advantages are obvious at first glance. 

Although the considerable achievements done by the academia in the development 

of new scheduling formulations and encouraging solution approaches, the adoption of 

optimization planning tools by the industry is still poor (Henning, 2009). Reasons for this 

are related with the way the information context is considered by these tools, and are 

associated to an inadequate definition of the business process workflows. Stephanopoulos 

and Reklaitis (2011) recognized that there are important research opportunities in the 

development of high level but flexible representations of the scheduling problems and 
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innovative graphical representations, which would promote the adoption of advanced 

planning systems. 

In this paper, we develop a model-based methodology for performing scheduling in 

the chemical-pharmaceutical industry. We take into account the company functions that 

contribute for building the production schedules, and we propose a methodology that 

integrates the definition of the scheduling problem, the optimization model, and the 

decision-making process. 

5.3   Scheduling in the Process Industry 

In this section, we review some case-specific contributions that address the scheduling 

problem in batch plants. We briefly describe the models available to tackle batch 

scheduling problems, giving emphasis to real world applications. 

5.3.1   Models for Scheduling 

Significant academic achievements have been done concerning modeling and solving 

batch planning and scheduling problems. Some relevant recent reviews on this topic 

provide a rather comprehensive survey on the domain (Kallrath, 2005; Mendez et al., 

2006; Barbosa-Povoa, 2007; Li & Ierapetritou, 2008; Maravelias & Sung, 2009; 

Verderame et al., 2010).  

Mendez et al. (2006) classified scheduling problems according to the network of 

processing tasks. Thus, we may have sequential and network processes. In sequential 

processes the task-batch entity is preserved, thus batch mixing and splitting are not 

allowed. On the contrary, network processes have arbitrary topologies and allow batch 

mixing and splitting. Looking just at models suitable for network processes, we may have 

continuous-time formulations based on unit specific events (Ierapetritou & Floudas, 1998; 

Janak et al., 2004; Shaik & Floudas, 2007; Vooradi & Shaik, 2012) or based on global 

events (Schilling & Pantelides, 1996; Castro et al., 2001; Maravelias & Grossmann, 2003; 

Sundaramoorthy & Karimi, 2005). Relevant contributions have also been made in what 

concerns discrete-time models (Kondili et al., 1993; Shah et al., 1993; Barbosa-Povoa & 

Macchietto, 1994; Pantelides, 1994; Pinto et al., 2005; Sundaramoorthy & Maravelias, 

2011b; Wassick & Ferrio, 2011), and on the comparison of discrete-time and continuous-
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time models see (Floudas & Lin, 2004; Castro & Grossmann, 2005; Sundaramoorthy & 

Maravelias, 2011a). 

5.3.2   Real-World Scheduling Problems 

Several works on real world scheduling problems and in different types of industries can 

be identified in the literature, where different models and solution approaches have been 

proposed. 

For example in the pharmaceutical industry, Amaro and Barbosa-Póvoa (2008a) 

proposed a sequential modeling approach for the planning and scheduling of supply 

chains. Two MILP discrete-time formulations, for planning and scheduling problems, are 

developed and then linked by setting common time domain bounds. The solution 

approach is applied to a real pharmaceutical supply chain producing several products 

such as injection drugs, tablets and oral suspensions. Multistage multiproduct scheduling 

problems have been tackled by Kopanos et al. (2010), Stefansson et al. (2011) and Castro 

et al. (2009). Kopanos et al. (2010) and Castro et al. (2009) have used similar 

decomposition strategies to obtain solutions in reasonable computational times. Both 

solution approaches attempt to reduce the computational complexity of the scheduling 

problem by scheduling orders sequentially and improve the schedule by applying 

reordering procedures. Kopanos et al. (2010) proposed general precedence and unit-

specific general precedence models, while Castro et al. (2009) proposed an unit-specific 

continuous-time formulation. Stefansson et al. (2011) compared a discrete-time 

formulation based on (Kondili et al., 1993; Shah et al., 1993), and a general precedence 

continuous-time formulation based on (Méndez et al., 2001), in a scheduling problem of a 

secondary pharmaceutical production system. To tackle the combinatorial complexity of 

the MILP models, the authors have applied a decomposition algorithm that prioritizes the 

scheduling of the bottleneck stage. In this way, the problem is decomposed into smaller 

problems that are solved separately. Results showed that the continuous-time formulation 

provides more accurate solutions and that it can be used to solve larger instances. Susarla 

and Karimi (2010) developed a unit slot continuous-time model to the campaign planning 

problem of the pharmaceutical industry, giving emphasis to the decision-making process. 

They studied several real scenarios considering different resources allocation profiles, 

safety stock limits, minimum campaign lengths, maintenance actions and sequence-
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dependent changeovers. They remark that although planning is usually performed by the 

planning department, it is a collaborative process that seeks data from several other 

departments (sales, procurement, laboratory, maintenance and higher management). 

Addressing the steel making process scheduling, Harjunkoski and Grossmann 

(2001) developed a decomposition algorithm that relies on splitting the original problem 

into smaller subproblems, by exploring its special structure. The algorithm involves three 

MILP models and one LP model solved in a sequential solution strategy. Later, 

addressing also a scheduling problem of a steel plant, Harjunkoski et al. (2011) discussed 

the implementation issues and benefits of planning and scheduling optimization. The 

authors state that reusability, flexibility and configurability are relevant aspects that must 

be considered when encapsulating mathematical models in software applications to be 

used in industrial environments. Pacciarelli and Pranzo (2004) proposed an alternative 

graph formulation and a heuristic search strategy (beam search), and Li et al. (2012) 

developed a unit-specific event continuous-time formulation and present an extension of a 

rolling horizon algorithm. 

For the production scheduling in the polymer industry, Schulz et al. (1998) 

formulated a discrete-time model and a continuous-time non-linear model (MINLP) for a 

real case of a chemical batch plant producing expandable polystyrene. Algorithms have 

been developed to produce solutions in reasonable time. Considering the same scheduling 

problem, Wang et al. (2000) have applied a genetic algorithm, and Till et al. (2007) 

addressed uncertainty by using a two-stage stochastic integer programming model and 

proposing a hybrid evolutionary algorithm to solve the stochastic problem. Castro et al. 

(2003) explored the optimal periodic schedule of a resource constrained industrial 

problem of the pulp industry, through the use of discrete-time and continuous-time 

Resource-Task Network (RTN) based mathematical formulations. Adequate solution 

strategies were proposed for both formulations. While the exact optimal solution to the 

problem was achieved using the discrete-time formulation, the same was not true for the 

continuous-time formulation. 

In the scheduling of chemical batch plants, Erdirik-Dogan et al. (2008) formulated 

a MILP model for the short-term scheduling of parallel batch reactors. They concluded 

that for addressing mid and long term scheduling horizons specialized solution algorithms 

must be developed. Erdirik-Dogan and Grossmann (2008) developed a time slot 



5   Paper 3: A Solution Methodology for Scheduling Problems in Batch Plants 113 

 

 

continuous-time model and a bi-level decomposition algorithm that involves solving 

iteratively an aggregated model and a detailed scheduling model. 

Considering Enterprise-Wide Optimization (EWO) in complex production systems, 

Wassick (2009) presented the case of Dow Chemical Company, and discussed 

opportunities for the integration of design, planning and scheduling optimization models 

in the industry. The problem of waste disposal scheduling is solved using the RTN 

discrete-time formulation. Moreover, the author presented some useful considerations on 

modeling and implementation. So, to the company, the choice of the discrete-time RTN 

relied on the simplicity and generality of the formulation, due to an uniform treatment of 

all resources. A creative definition of the production resources allows solving a variety of 

scheduling problems without changing the model (and the code). Simple linear 

representations of the processes are adequate for long time frames or more strategic 

decisions, but for short time frames or operational decisions, it becomes necessary to 

account for the non-linearities of the chemical processes. For this author, the greatest 

modeling challenge concerns capturing complex operating policies. In these cases, it is 

recommended to negotiate simplifications with the decision makers, instead of dealing 

with complicated constraints. Moreover, the process design, planning and scheduling 

integration, and the representation of uncertainty and risk, should be viewed as critical. 

An interesting case-specific aspect about the implementation is that during the first year 

of operation, the scheduling model was used together with the existing scheduling 

procedure, in order to compare both methods and to gain confidence in the model.  

In general, Applequist et al. (1997) pointed out four practical issues that make 

planning and scheduling problems particularly difficult to address, namely: a) social 

considerations –manufacturing is considered a cooperative activity in the company, and 

the “planning and scheduling” function is viewed as having the responsibility to 

orchestrate this cooperation; b) dynamic nature – the active environment of the 

manufacturing system requires flexible and scalable planning and scheduling tools that 

must be able to adapt to different production scenarios; c) information intensity – even 

relatively small planning and scheduling problems require a considerable amount of data, 

and this creates additional complications concerning data management; and d) intrinsic 

combinatorial character – leading to significant mathematical challenges to solve these 

problems.  
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The relevance of these issues, and the practical need to address them, are the main 

motivation for this work. Our research is in fact pursued with the aim of designing new 

optimization based decision-support tools, for solving planning and scheduling problems 

in process batch plants. 

5.3.3   Integration of Optimization Models in Industry 

As referred it is clear that there is still a lot of work to do concerning the integration of 

optimization models in the decision-making processes of the companies. The literature 

addressing models and solution approaches for planning and scheduling problems is 

mainly focused on time performance and comparison between models. When addressing 

the quality of the solutions, few confront the solutions obtained by the models with the 

solutions obtained by the planners, and just a small number of works address practical 

issues associated to modeling and implementation of optimization methods in industrial 

companies. Models are rarely evaluated in the context where the information is available, 

thus they simply do not consider the internal decision-making processes of the company. 

This interaction is missing and it would surely provide valuable information for 

improvement of the optimization methods. 

Although we also consider that, in practical terms, time to obtain solutions is the 

most critical issue of many models solving scheduling problems, research should also 

focus in other aspects that are determinant to integrate optimization methods in industrial 

practices. The development of systematic approaches for structuring the scheduling 

problems and the inclusion of the decision-making processes into models that can be 

rapidly understood by the industrial practitioners, are essential issues that have been 

somehow neglected. These issues are being addressed in this paper, where we aim at 

contributing to reduce the existing gap between the design and development of 

scheduling models and their applicability to real industry problems. 
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5.4   Methodology Conceptual Framework 

The conceptual framework, developed in this work, proposes a generic and systematic 

approach for tackling scheduling problems in real production systems. It attempts to 

identify the key issues for the definition of a scheduling problem and for the integration 

of optimization models in industrial companies. In this section, we discuss the 

components of the methodology and then, in section 5.5, we present the solution of a real 

world problem from the chemical-pharmaceutical industry to demonstrate its 

applicability. 

5.4.1   Key Components  

The methodology is defined by three main components, as shown in Figure 5.1. The 

Problem Representation component that is related to the interpretation of the scheduling 

problem, and it is used as an interface with the decision-makers and to capture data for 

the optimization model. The Optimization component that deals with case-specific 

models and solution approaches developed to solve the scheduling problem. The 

Decision-making component that has to do with the analysis of the solution pool provided 

by the optimization component, and involves the visualization and user-interface 

interactivity required to support the decision-making process. 

 

Figure 5.1 – Conceptual framework for the solution methodology. 
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In this context, we consider two main sets of tasks: Implementation and Modeling. 

Implementation includes all tasks required to place the application running in the 

company and it is typically assigned to IT consultants. Its scope must be wide enough to 

incorporate all components that in the end will constitute the decision-making tool. 

Modeling concerns the analysis and definition of the model and is usually a task 

performed by academics and researchers. The scope of modeling is in many situations 

limited to the development and test of models and disregards the context where the data is 

created and gathered, and mainly how decisions are made. In our view, when addressing 

real-world optimization problems, the scope of the modeling task must be broadened to 

include the data context and to encompass the information flow of the decision-making 

processes. In this paper, we explore the idea that the modeling task must be extended to 

define more complex interactions between the representation of the problem and the 

decision-making process (see Figure 5.1). This will surely ask for a deeper collaboration 

between academics, industrial practitioners and IT consultants. 

Note that although the focus of this methodology is on scheduling problems, we 

think that it can also be applied to other types of problems. 

The components and their interactions will be discussed in detail in the following 

subsections. 

5.4.2   Representation of the Scheduling Problem 

As Bassett et al. (1996), we also view scheduling as an integration activity. Accordingly, 

scheduling problems should be represented so that different types of knowledge can be 

captured in a coherent way. For that, different scheduling views may be necessary in 

order to ensure a comprehensive representation of the problem. Such representation can 

have then several layers (or views) and must be able to be integrated with any model or 

solution approach. Grossmann et al. (1999) argue that the application of mathematical 

programming approaches to process design and synthesis problems require the 

development of superstructures for the representation of the alternatives, regardless of the 

detail of the model. We can say that this reasoning is also valid to planning or scheduling 

problems, since these problems use similar superstructures. 

Although there is a general consensus that models / solution approaches must be 

adapted to the specific features of each case, we believe that it is possible to develop 
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general representations of the scheduling problems that could be used later by different 

models. A good example of this is the State-Task Network (STN) of Kondili et al. (1993) 

and the RTN of Pantelides (1994) representations that are being applied to represent a 

variety of scheduling problems and are used by many different formulations. For 

example, extensions of STN to account for design and operational decisions were 

developed by Barbosa-Povoa and Macchietto (1994) and Amaro and Barbosa-Póvoa 

(2008b) developed the chain-STN to solve supply chain problems. In this way, 

scheduling representations could evolve independently from the model formulations and 

provide a coherent representation of the problems. This research direction has been 

recently followed by Maravelias (2012). The author proposes a framework for the 

description of scheduling problems in chemical industries based on the characteristics of 

the processes. 

Furthermore, the representation of the scheduling problem is typically based on the 

process structure, in which the level of abstraction is a critical issue. High detail 

representations of the processes may allow the development of more detailed models and 

reach theoretically optimal solutions, but may result into models that are computationally 

intractable. In practice, this approach requires the involvement of industrial and academic 

specialists and the integration of different types of knowledge, which will easily turn into 

a very time consuming task. On the other hand, less detailed processes result into more 

simple models that are easier to solve and to manage, but may result into infeasible 

schedules. In summary, a careful exploitation of the problem structure is required in order 

to keep the balance between these tradeoffs, and here a close collaboration between 

academics and industrial planners must exist.  

In the PSE community, planning and scheduling problems appear closely 

connected to process development and design problems (Barbosa-Povoa, 2007). The 

process design focus is to define the characteristics of products, the production tasks and 

the specifications of processing units. The planning and scheduling problem take often 

the design into account and seek the effective use of the enterprise resources 

(Stephanopoulos & Reklaitis, 2011). In this work, we have developed a comprehensive 

representation of the scheduling problem that captures the characteristics of the processes 

and available equipment, defining superstructures with possible production alternatives. 
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The representation of the scheduling problem is then a key part of the scheduling 

methodology that integrates with the optimization and the decision-making components.  

5.4.3   Optimization 

A single model would hardly be sufficient to address all types of planning and scheduling 

decisions. Thus, if a model-based approach is followed, then the methodology must be 

able to include several models, in which the links between those models play a crucial 

role. Furthermore, since the decision-making processes vary from company to company, 

case-specific models may also be developed.  

Concerning the computational complexity, many scheduling models solving real 

world problems are considered too large to be solved to optimality in affordable time. 

This is due to the combinatorial nature of the problems, associated to binary decisions 

such as task-unit assignments, tasks sequencing, changeovers and storage tasks. Problems 

with a significant number of tasks and processing units and considering long scheduling 

horizons tend to be difficult to solve with exact methods. In these cases, alternative 

solution approaches can be applied to obtain satisfactory solutions in reasonable time. A 

discussion on scheduling models and solution approaches has been presented in section 

5.3. 

In summary, models and solution approaches should be built taking into account 

the characteristics of the problems and the decision-making processes of the companies, 

thus defining concise methodologies that integrate mathematical approaches with existing 

decision-making procedures and result in solvable models that represent adequately the 

reality. 

5.4.4   Decision-Making 

The planning information flow presented by Pinedo (2002) and the Purdue Reference 

Model are two comprehensive frameworks where the complexity of the planning and 

scheduling activities are evident. To address this complexity, the development and 

implementation of decision-support tools should start by addressing the core decision-

making processes of the company. The approach may vary from company to company, 

but should always involve academics and industrial practitioners. 
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The scheduling process must be supported by adequate information flows between 

those participating in the decision-making process. Assuming that scheduling is 

performed collaboratively, the scheduling methodology (Problem representation, 

Optimization, Decision-making) should ensure that the necessary data is available and up 

to date, before being used by the optimization model. In this way, the methodology must 

be integrated transversally in the company, since it is common that several functions in 

the company can use that information and benefit from it. 

The scheduling methodology presented in this paper proposes a development and 

implementation scheme for decision-support tools to tackle scheduling problems in the 

chemical-pharmaceutical industry. To clearly explain this methodology the application to 

a case-study is detailed below. 

5.5   Scheduling Methodology – Application 

The proposed conceptual framework is now applied to a real case-study from the 

chemical-pharmaceutical industry. The main goal of this exercise is to demonstrate how 

the components (Representation of the scheduling problem, Optimization, and Decision-

making) can be designed in order to implement a decision-support methodology for the 

scheduling problems of a batch plant. For that purpose, we briefly describe the context of 

scheduling problem in the chemical-pharmaceutical industry and a typical scheduling 

decision-making process. We then present the methodology that was implemented in our 

case study and discuss the main decisions involved in that process. The optimization 

model and results are also presented. 

5.5.1   The Scheduling Problem in Chemical-Pharmaceutical Industry  

The chemical-pharmaceutical industry is responsible for the development and 

manufacturing of fine chemicals called Active Pharmaceutical Ingredients (API). 

Manufacturing such products involves complex and long processes that are executed 

under a close supervision of the regulatory authorities, with responsiveness of the 

manufacturing system and cost reduction being two critical aspects. 

Production may simultaneously include products that are under development and 

products that are in commercialization, and the plant resources may be shared between 
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these products. Products are associated to recipes that describe in detail the production 

processes. Recipes are defined by a network of production tasks that must be executed to 

manufacture a product (Reklaitis, 1995), and include process data such as materials 

consumption and production proportions, tasks processing times and characteristics of the 

units required by each task. Recipes differ from product to product, i.e., tasks sequencing 

and material flows are product specific. To manufacture a single product several days of 

effective production time may be required, with tasks processing times varying between 

one hour and two days.  

Cleaning of processing units, pipelines and other resources is needed to avoid cross 

contamination of the products. Therefore changeovers between lots of the same product 

and between lots of different products are present and may impose significant downtime 

periods.  

Often the chemical-pharmaceutical industry relies on general purpose batch plants 

with multipurpose processing units between which connections are usually not fixed. 

Instead units are organized in such a way that almost all connectivity options are possible. 

Operations flexibility is achieved through multipurpose units, capable of executing a 

variety of chemical tasks, as well as, through the connections between units, that can be 

changed when there is a change from a product to another product. I.e., connections 

between units can change with the production demand.  

In such plants, the most common units are reactors, filters and dryers of different 

volumes, packaging rooms, and auxiliary equipment like condensers, temperature 

systems, cleaning in place (CIP), vacuum pumps, etc. that may be attached to the 

processing units, thus changing their configuration with additional characteristics 

important for the task-unit assignment. For instance, a reactor is defined by its maximum 

and minimum volume, type (glass lined or stainless steel) and also by the agitation 

system, the temperature system, CIP, etc. The material flows are established through a 

complex system of pipelines and mobile vessels. Furthermore, people are critical 

resources and are usually considered in the medium and short-term scheduling. This 

happens because tasks require specialized manpower to execute or control the production.  

The planning and scheduling functions are typically a responsibility of the 

planning department of the company. However other areas, such as sales, procurement 
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and R&D, are also involved. These areas contribute with data inputs relevant for planning 

and scheduling, and may as well do the analysis of the solutions.  

Planning is in general done for a time horizon of up to twelve months, and involves 

the determination of the production quantities and a preliminary allocation of the 

processing units to products. But because production capacity is defined at the level of the 

processing units, planning is referred here as medium-term scheduling. The medium-term 

scheduling tends to be stable, at least for the next months, and is revised every month or 

whenever an unexpected event that has impact on the plan appears.  

There is also the short-term scheduling that has a time horizon of up to two weeks 

and is revised on a daily basis. Data from the medium-term term scheduling is used as a 

reference for building the short-term scheduling, namely in what concerns: recipes, 

inventory and products demand. Decisions at this level refer to the assignment of tasks to 

units, and to the determination of the exact time when tasks are going to be executed. 

Industrial planners are therefore challenged to obtain the “best” set of processing units to 

manufacture each product and to obtain an effective tasks sequencing, taking into account 

objectives related to cost and total production time. Since recipes may have a large 

number of tasks and tasks may be processed through multiple units of different capacities, 

where sequence dependent changeovers must be respected, scheduling decisions become 

extremely complex.  

The status of the tasks execution is continuously checked and potential delays are 

evaluated. Products that are under development add more complexity to the scheduling 

function, since they regularly impose the revision of the schedule. Schedule deviations 

that do not have any further impact in the plan are promptly solved, while significant 

delays trigger the revision of the medium-term schedule.  

Although we assume here that medium and short-term scheduling are two distinct 

problems, they are linked because they constrain each other. Both scheduling problems 

should therefore use a unique problem representation, defined by the methodology 

proposed in this work (see section 5.5.3). This will ensure that with respect to data, both 

problems use the same structures, although the detail level of the models can be different. 

In this paper, our focus is on the short-term scheduling problem, as defined in detail in the 

next section. 
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5.5.2   Problem Statement 

The problem consists then in finding the optimal scheduling of multipurpose batch plants, 

in which products have arbitrary network structures.  

Given: 

a) the recipes of the products (materials flows and proportions, tasks 

processing times and characteristics); 

b) the processing units (including all characteristics that define the task-unit 

suitability); 

c) the resources availability (intermediaries, final products and processing 

units for every time interval); 

d) the demand (quantities and delivery due dates); 

e) the minimum and maximum allowed lot sizes; 

f) the scheduling time horizon; 

g) the costs (storage, changeover, missed deliveries); 

h) the economic value of the products. 

Our goal is to obtain optimal production schedules by determining: 

a) the task-unit suitability for a given process; 

b) the task-unit assignment of the production schedules; 

c) the lot sizes and product deliveries; 

d) the materials inventory levels; 

e) the optimal process schedule. 

In this context, we have used profit maximization and cost minimization 

objectives, defining a short-term scheduling problem that can be solved by a linear model, 

with deterministic data. 

5.5.3   Proposed Scheduling Methodology 

The conceptual framework depicted in Figure 5.1 gave origin to the scheduling 

methodology shown in Figure 5.2. The three components of the methodology (Problem 

representation, Optimization, and Decision-making) are now framed by the associated 

activities (recipe design and cost modeling, scheduling/rescheduling, and decision-

making) that interact and provide/receive data to/from the optimization model. These 

activities were identified in our case study as being core activities that have a huge 
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relevance in the scheduling process. Overall, this methodology presents a detailed 

framework for the integration of optimization models with the scheduling decision-

making processes. In the following subsections each component will be addressed in 

detail. 

 

Figure 5.2 – Proposed scheduling methodology. 

Note that this methodology views the scheduling activity as an interactive and 

collaborative process that may involve several departments of a company. Thus, the 

involved departments may provide data to the process, and revise and analyze scheduling 

solutions. 

In order to test and validate the proposed methodology, we have, during one year, 

performed meetings in a regular basis with process engineers and planners. Insights from 

industrial practitioners revealed to be very useful in redefining the components of the 

methodology and the integration requirements between those components. 

5.5.3.1   Representation of the Scheduling Problem 

This component aims at providing a standard representation of the processes in such a 

way that they can be readily understood by all the participants in the scheduling problem. 

Having this goal in mind, we propose a novel representation of the processes in which 
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emphasis is given to the definition of the task characteristics that will determine the task-

unit assignment.  

In a way similar to the STN, we design recipes through a network of tasks and 

states. As shown in Figure 5.3, tasks (represented as rectangles) are defined through an 

object that considers all the characteristics (e.g., volume, task duration, need for CIP, 

sampling, vacuum pump, etc.) that are relevant to the determination of the suitable 

processing units. For example in Figure 5.3, if the task has an acid material, only units 

U1, U3 and U4 can be used. But if CIP and sampling systems are also required, only U1 

can be used. The states define the materials and are represented by circles.  

 

Figure 5.3 – Mapping between tasks and processing units characteristics. 

Processes are represented by the definition of tasks, material states and material 

flows using directed arrows, in a prototype developed in Microsoft Visio. Predefined 

objects are available to support the process design. So, in a first step the description of the 

process is done taking into account just the characteristics of the tasks, and in a second 

step these characteristics are automatically mapped into the characteristics of the existent 

processing units for the determination of the suitable units. More advanced rules can be 

used to account for approximate (roughly defined) characteristics such as the need for 

very good, good and normal stirring. Additionally, the cost modeling of the processes can 

also be performed, taking into account the resources involved. This can, for example, be 

used for ranking the alternative processes based on their cost. 

Having defined the tasks and associated tasks to units, the global process 

representation is obtained (see Figure 5.4). The recipe design tool shown in Figure 5.4 is 

a prototype developed in Microsoft Visio that allows an immediate assessment of the 

process concerning the determination of the units capable to manufacture it. In the left 
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hand side of the screen, it is shown the library of standard objects, in the middle we can 

see the process (in this case, we have a process with 6 tasks) and in the right the 

characteristics of the selected task are presented. The processing units suitable for each 

task are depicted just below the rectangle and were automatically determined through the 

task-unit matching characteristics as explained above.  

All the data of this process is saved in a database that can be used later by any 

optimization system. Thus, the problem representation and optimization components are 

indeed independent. 

 

 

Figure 5.4 – Example of a process representation using the recipe design tool. 

The main challenges in this step are related to the data management, since many 

data inputs are typically required to describe a single process, and to produce a 

representation of processes that can be used by all participants. The tests performed with 

the company demonstrated that the developed interface (as shown in Figure 5.4) is user 

friendly and can be used by all involved departments, and that the design of the processes 

is quite fast. These characteristics are fundamental for the planners since they are 

determinant to an effective usage of the tool. 
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5.5.3.2   Optimization 

After having the processes represented in the recipe design tool, data structures are 

automatically generated and can be used by the scheduling model. With this approach, 

recipe design decisions can promptly be revised and integrated with the scheduling 

model. 

The optimization stage is related to the scheduling function, but in real 

manufacturing systems this function is mainly used for rescheduling. In fact, when this 

function is performed, either processing units are executing tasks or planned orders have 

already been allocated for the near future. Then when new orders arrive, planners may 

have to revise the current schedule, compare and analyze scheduling solutions, or even 

evaluate alternative processes. Scheduling responsiveness is ensured here by an 

immediate assessment of the alternative processes and by the integration with the 

optimization model. 

The solutions delivered by the model can be quantified not only by the value of the 

objective function, but also by the computation of several Key Performance Indicators 

(KPIs) done in the post-processing phase of CPLEX. For example, we may have KPIs for 

measuring the free capacity and volume usage of the reactors, or the missing deliveries of 

a scheduling solution.  

The scheduling model used in the developed framework is based on the 

formulation proposed by Moniz et al. (2013). This is a MILP model where time is 

uniformly discretized along the scheduling horizon of interest. One particular 

characteristic of this model is that the material balance constraints consider explicitly the 

inventory carried out by each task and production lots. Production lots refer to the amount 

of stable intermediary or final product manufactured through a known set of tasks, units 

and materials, so as to keep record of lots blending operations, thus ensuring lots 

traceability. By following this approach, new types of constraints for modeling temporary 

storage in the processing units and sequence-dependent changeovers can be derived. 

The indices, sets, parameters and decision variables used by the formulation are 

fully described in appendix.  

Model 

The scheduling problem considers a scheduling horizon with length  , divided into time 

intervals     of equal and fixed duration. Scheduling decisions are made through the 
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     task-unit assignment/sequencing binary variables that are equal to 1 if task k of lot l 

starts at time interval t;    lot production binary variables, equal to 1 if l lot is produced; 

     task batch size continuous variables that determine the batch size of task k of lot l at 

time interval t;    lot size continuous variables that state the amount of product 

manufactured in lot l; the      
 

 and      
  continuous variables that define the materials r 

production (p) and consumption (c) for each task k of lot l and time interval t;       

continuous variables that give the resultant materials r availability;       continuous 

variables for product r deliveries, given by task k, lot l and time interval t; and     

continuous variables of backlogged demand, determined for product r and time interval t. 

The model is defined by constraints (5.1) that express the fact that either processing 

units are allocated to production tasks or to storage operations. In other words, constrains 

(5.1) define the task-unit assignment and sequencing, and the temporary storage in the 

processing units. In the chemical industry, it is common to find processes in which 

material storage may occur in the processing unit where the material was produced. In 

these cases, units work temporarily as storage vessels until all material is consumed by 

subsequent tasks of the process. The first term of the constraints does the task-unit 

assignment and sequencing, while the second term indicates if the processing unit is 

performing storage (       ) for the intermediaries produced by task k and subject to 

Non-Intermediate Storage policy (NIS)   
   . 

Constraints (5.2) determine the amount of resource r (intermediaries and final 

products) produced, and constraints (5.3) give the amount of resource r consumed 

(intermediaries) by task k of lot l at each time interval t. Parameters     
 

 and     
  give 

the materials production and consumption proportions of the batch size of task k for 

resource r. Constraints (5.4) express the materials balance for each resource r 

(intermediary or final product), task k and lot l. The amount of resource r available       

in each task k of lot l is equal to the amount stored in the previous time interval, plus the 

amount produced      
 

, minus the amount consumed      
 , plus the amount that is 

delivered      . Note that       take negative values for product deliveries and that we 

assume no receipts of materials occur during the scheduling horizon. Constraints(5.5) 

bound the resource r availability to a maximum value given by parameter    
    and are 

only defined for intermediaries subject to Finite Intermediate Storage (FIS), Zero-Wait 
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(ZW) and Unlimited Intermediate Storage (UIS) policies. Concerning the materials 

temporarily held on the processing units (NIS), the amount of material that can be stored 

is bounded by the maximum capacity of the unit. Constraints (5.6) ensure that the tasks 

batch size      is within the minimum     
   and maximum     

    capacities of resource r 

(processing unit) for task k and lot l. Constraints (5.7) impose that the total amount of 

product manufactured must be equal to the lot size   , and constraints (5.8) bound the lot 

size    between the minimum   
    and maximum   

    allowed size for lot l. 

Constraints (5.9) define that lot   can only be produced if lot     has been produced.  

Backlogged demand     is defined by expressions (5.10), where     will take a 

value greater than zero whenever a product delivery     is not fulfilled, partially or 

totally.  

Sequence-dependent changeovers are required whenever cleaning and units setup 

operations need to be performed, when changing the production to a new product or lot. 

Thus, constraints (5.11) state that if task k of lot l occurs at time interval t, then the first 

term is equal to one, and the second is forced to be zero for all tasks   of lot    and time 

intervals corresponding to          

Constraints (5.12) define that tasks must finish in the time horizon of interest. 

Constraints (5.13) impose that delivery variables       cannot take values either for the 

time intervals outside the delivery time windows, or for resources other than final 

products. And expressions (5.14) define the variables domain. 

  



5   Paper 3: A Solution Methodology for Scheduling Problems in Batch Plants 129 

 

 

∑ ∑ ∑       

 

                 

 ∑ ∑ ∑(
      

     
    )

         
   

     
 

              
(5.1) 

     
 

 ∑(    
 

       )

  

   

               
 
          

(5.2) 

∑      
 

     
 

 ∑ ∑(    
        )

  

   

  

    
 

              
(5.3) 

      (    
                     )       

 
      

                    

   
 
          

(5.4) 

  ∑ ∑      

        
 

    
                       

(5.5) 

    
                 

                               
(5.6) 

∑ ∑     
 

       
 

                
(5.7) 

    
         

              
(5.8) 

                    
(5.9) 

    (          )      ∑ ∑      

    
     

              
(5.10) 

∑     

    
 

 ∑         
    

    
  
 

 

                                   

   

(5.11) 

∑       

 

        

               
(5.12) 

                              
 
          

                         
 
     

      {                     
        

  } 

(5.13) 

     
 

      
                         

 
          

                              (5.14) 



130 Moniz, S. 

 

 

                           
 
     

                  

                             

The objective functions considered in this work are: the minimization of cost (see 

expression (5.15)), that involves the storage, operational, backlog and lot costs; and the 

maximization of profit, (see expression (5.16)), reflecting the economic value of the 

products. 

Storage costs are associated to holding costs of intermediaries and products during 

the scheduling horizon (5.16a). Operational costs are related to the assignment of 

processing units to tasks are defined by expression (5.16b). Backlogged demand costs are 

given by expression (5.16c) and lot fix and variable costs are given by expression (5.16d). 

The economic value of the products is given by expression (5.16e). 
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5.5.3.3   Decision-Making 

The scheduling solutions obtained through this model are then evaluated by experienced 

planners and other participants involved in the scheduling process. In practice, it is 

desirable to produce more than one schedule, even for the same objective function, as the 

model may not represent the real problem due to simplifications considered. In some 

situations model constraints are linear approximations or aggregations designed to keep 

the problem computationally tractable. Thus, it could happen that solutions might not be 

preferred by planners or could be considered operationally infeasible. The assessment of 

the model will be then made by the quality of the solutions delivered and the 

computational time required to produce them. 

To avoid this problem, several scheduling solutions are generated and compared 

during the decision-making process. For example, multiple scheduling solutions can be 

obtained by using the CPLEX solution pool feature or simply by setting different values 

of CPLEX stopping criteria, such as the integrality gap or the time limit. Note that these 

solution strategies do not guarantee that the solutions are optimal. 

Although the most common constraints of the scheduling problem are known and 

well described in the literature, new types of constraints are often necessary when trying 

to solve real world scheduling problems. To address this issue, a knowledge base is kept 

with the purpose of describing new scheduling rules that are empirically followed by the 

planners. The scheduling rules are then evaluated and, if applicable, are converted into 

model constraints. Thus, the model is composed by a set of constraints that can be 

activated or deactivated in order to convey to the preferences of the planner. For example, 

case-specific extensions for dealing with layout, manpower and maintenance constraints 

may be considered in the model.  

Finally, the user interface for the scheduling solutions plays also an important role, 

since the dynamic nature of the scheduling process requires the visualization of a 

considerable amount of information, as well as advanced interactive options. In our case, 

a prototype of a Gantt chart was built in Microsoft Excel to allow the test and assessment 

of the scheduling solutions. The evaluation of the produced pool of schedules is then 

supported by Gantt charts and additional indicators (see below) allowing the planners to 

choose the most adequate schedule for real implementation.  
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5.5.4   Case-Study Description and Results 

As mentioned above, the case-study under analysis concerns the scheduling problem in a 

chemical-pharmaceutical industry where different products are to be produced. The 

decision-making tool is used to obtain optimized production plans and to perform an 

evaluation of alternative production processes. The scheduling decisions involve the 

determination of the processing units to be used by each process, the lot sizes, the total 

amount produced and the delivery dates. Here, recipe design decisions (as described in 

section 5.5.3.1) are integrated with scheduling decisions in order to predict the impact of 

the process in the shop-floor, guaranteeing that units are used in an efficient way. For 

example, the selection of the processing units to execute a given process can be done 

taking into account the scalability, completion time, number of processing units used, 

material flows, costs, etc. of the process.  

Since a discrete time model is being used, a critical modeling decision concerns the 

definition of the length for the time intervals. A thin discretization of time would 

theoretically result in better solutions, but may conduct to models that are very difficult to 

solve. In our case, we assume a time interval (grid) of 8 hours, since tasks processing 

times can be roughly approximated by multiples of 8. Moreover, schedules having time 

intervals of 8 hours (1 working shift) work well in practice. Computational tests and 

discussions with the planners have shown that the computational time required to solve 

the short-term scheduling model is quite reasonable and acceptable in practice. The model 

was implemented using ILOG/CPLEX version 12.5.1, running on an Intel Xeon X5680 at 

3.33GHz with 24 GB of RAM.  

In the following two subsections, we present some results that show the utilization 

of our scheduling model (defined in section 5.5.3.2). Initially, we perform an analysis of 

the processes involved and we discuss tradeoffs related to the determination of the lot 

size, which are important to the scale-up strategies followed by the chemical-

pharmaceutical industry. Then, we derive short-term production schedules for time 

horizons of 1 and 2 weeks.  

The network studied in this work considers four processes, responsible for the 

production of four products (P1 to P4) and that may share 9 processing units (7 reactors 

of different characteristics and 2 filters-dryers). The total number of tasks is 40, with 
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processing times varying between 6 and 64 hours. Processes data is available in the 

supporting information file 

5.5.4.1   Evaluation of Alternative Processes  

The impact of the lots definition on the cost is the first analysis to be performed. This is a 

relevant indicator concerning the scale-up of the lot size. Figure 5.5 depicts the minimum 

cost of manufacturing 30, 40, 60, 80 and 100 kg of product P1, considering different lot 

sizes (e.g. 3 lots of 10 kg = 3L10).  

Table 5.1 shows some numerical values used in this analysis of the process 

alternatives. These results were obtained by running the scheduling model with the cost 

minimization objective function (     ), and assuming the scheduling horizon of 1 

week, discretized into 21 time intervals of 8 hours.  

 

Figure 5.5 – Production lots cost in monetary units (m.u.) for product P1 (1L30 = 1 lot of 30 kg; 

2L15 = 2 lots of 15 kg; and 1L10+1L20 = 1 lot of 10kg plus 1 lot of 20 kg). 
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Table 5.1 – Costs, number of reactors and capacity used and completion time for product P1. 

Amount 

produced 

[kg] 

Process/lots 
Cost 

[m.u.] 

Reactors 

capacity 

used [l] 

Completion 

time 

[hours] 

30 

P1/1L30 1,108.6 15,600 112 

P1/2L15 1,134.6 15,600 128 

P1/3L10 1,922.5 27,100 152 

P1/1L10+1L20 1,341.5 19,300 88 

40 

P1/1L40 1,365.0 20,300 40 

P1/2L20 1,595.0 23,000 64 

P1/4L10 2,973.5 42,300 136 

P1/1L10+1L30 1,903.0 27,100 144 

60 

P1/1L60 1,375.0 20,300 40 

P1/2L30 2,511.8 35,900 144 

P1/3L20 2,446.0 34,500 88 

P1/4L15 3,021.6 42,300 136 

80 

P1/1L80 1,455.0 20,800 40 

P1/2L40 2,782.2 40,600 72 

P1/1L20+1L60 2,185.0 31,800 80 

P1/1L20+2L30 3,623.2 51,100 160 

100 

P1/1L100 2,030.0 28,600 88 

P1/2L50 2,823.7 40,600 72 

P1/4L25 5,131.2 71,400 168 

P1/2L25+1L50 3,631.2 51,100 152 

* 
1LOT30 = 1 lot of 30 kg; 2LOT15 = 2 lots of 15 kg; and1LOT10+1LOT20 = 1 lot of 10kg plus 1 

lot of 20kg, etc; 

** 
Reactors capacity used = total reactors capacity allocated to the process 

∑ ∑ ∑      
                   

, calculated during the post processing phase of CPLEX. 

When analyzing Figure 5.5 and Table 5.1, it can be seen that the production of 30 

kg of product P1 has a cost always bellow 2,000. The most costly production case is to 

consider 3 lots of 10 kg (3L10), with a cost of 1,922.5, which leads also to the highest 

completion time. This indicates that the processing units are used inefficiently, as it can 

be seen by the value of 27,100 liters of reactors capacity allocated to the process (see 

Table 5.1). Assuming a production of 40 kg, the costs increase by 23% considering just 

one lot, however the completion time goes from 112 hours to just 40 hours. Again with 

the increase of the number of lots the process requires more reactors capacity and takes 
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more time. An increase of the production to 60 kg (assuming a single lot) has almost no 

effect in the cost, and has no impact on the completion time and no impact on the reactors 

capacity allocated. Interestingly, the production of 3 lots of 20 kg results in a lower cost, 

in a lower reactors capacity and in a lower completion time, when compared with the 

production of 2 lots of 30 kg. The production of 80 kg (assuming a single lot) increases 

the costs by 6% of the 60 kg production case, but keeps the same completion time. While 

the production of 100 kg (assuming a single lot) increases the cost by 40% (assuming a 

single lot) and more than doubles the completion time, when compared with the 80 kg 

production case.  

As conclusions it can be said that the tradeoffs associated to the scheduling 

decisions are related to the task-unit assignment and storage costs. The allocation of tasks 

to the smaller capacity units may result in lower operational costs, but may lead to longer 

completion times, since tasks may need to occur multiple times or a higher number of 

changeovers may be required; both situations potentially leading to an increase in the 

storage costs. 

5.5.4.2   Scheduling Solutions 

Following the previous analysis, we now derive full schedules for the production of the 

four products, with different lot sizes and scheduling horizons of 1 and 2 weeks. Since all 

products are scheduled simultaneously, the tradeoffs discussed above become more 

complex, resulting in the Gantt charts of Figure 5.6.  

The first instance (INST1) is depicted in Figure 5.6 a) and considers the production 

of just one lot in a scheduling horizon of 1 week (21 time intervals of 8 hours). Figure 5.6 

b) shows the second instance (INST2) also based on a single lot, but considering now a 

scheduling horizon of 2 weeks (42 time intervals of 8 hours). Figure 5.6 c) depicts the 

third instance (INST3) for the production of 2 lots of each product, in a scheduling 

horizon of 2 weeks. Table 5.2 summarizes the cost structure of each instance. The 

objective function utilized is the profit maximization       (see expression (5.16)). 
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Table 5.2 – Cost structure of each instance.  

Instance 
Profit 

[m.u.] 

Value of 

the 

products 

[m.u.] 

Storage 

costs 

[m.u.] 

Operational 

costs [m.u.] 

Backlog 

costs 

[m.u.] 

Lot costs 

[m.u.] 

INST1 48,438.8 56,000.0 1,646.2 5,520.0 0.0 395.0 

INST2
1)

 49,441.4 56,000.0 1,413.6 4,750.0 0.0 395.0 

INST3
2)

 48,754.7 56,000.0 1,450.3 5,350.0 0.0 445.0 

1) 
Solution within 3.32% of the optimal solution; 

2) 
solution within 5.34% of the optimal solution. 

The most compact schedule is obtained with instance INST1 (see Figure 5.6). 

Processing units need to accommodate the demand in just one week, and this leads to a 

high occupation rate of the processing units. By extending the scheduling horizon to 2 

weeks (INST2), units can be used more efficiently, with a reduction of the costs and an 

associated profit increase, see Table 5.2. 

For INST1 the profit is equal to 48,438.8 m.u., while INST2 has a profit of 

49,441.4 m.u., which is at least 2% higher, since the solution of INST2 has potentially 

some margin for improvement because it is not an optimal solution (3.32% gap). 

Moreover, the schedule of INST1 is inherently more complex to execute in practice, since 

several production tasks are repeated in order to fulfill the demand, see Figure 5.6 a). For 

example, in INST1 it can be seen that TASK1 of product P1 occurs 5 times, while in 

INST2, see Figure 5.6 b), this task occurs only 2 times. 

In instance INST3, we have defined 2 lots for each product in a scheduling horizon 

of 2 weeks. This scenario tends naturally to impose additional idle periods for the units, 

as a consequence of the changeover periods; nevertheless the profit is comparable with 

the one obtained in INST1. Looking at the lot size decision variables of instance INST3, 

Product P1 has lots with 56 kg and 64 kg, resulting into a total amount of 120 kg. The 

demand of Product P2 was 70 kg, resulting into one lot of 16.8 kg and another of 53.2 kg. 

The lots of product P3 have 23.5 kg and 26.5 kg for fulfilling a demand of 50 kg, and 

product P4 had a demand of 60 kg that was fulfilled through lots of 28 kg and 32 kg. As 

discussed in the above section, the lot size has impact on the task-unit assignments, thus 

lots of the same product may have been assigned to different processing units. Globally, 

INST3 has lower storage costs, but has higher operational and lot setup costs.  

Concerning the model performance, the computational time to obtain solutions is 

surely the main drawback when solving large instances. The numerical results 
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demonstrate that CPLEX version 12.5.1 could not prove optimality for INST2 and INST3 

during a computational time of 3,600 seconds. However, it should be noted that, from a 

practical perspective, the solutions presented in this paper have been considered very 

satisfactory by the industrial practitioners. 
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Figure 5.6 – Production schedules: a) INST1; b) INST2; c) INST3. 
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5.6   Implementation 

Although a huge progress has been recently achieved on the development of new 

mathematical formulations, conceptual frameworks and ontologies, the implementation of 

optimization models in the industry is far from being trivial. The implementation 

challenges are due to a wide spectrum of issues that are related to: a) understanding the 

model capabilities and limitations by the industrial practitioners; b) definition of model 

specifications and their impact on the decision-making process; c) definition of the most 

relevant modeling tradeoffs (model detail versus computational time versus quality of the 

solutions); d) development of efficient models capable to be used across several functions 

inside a company; e) models assessment; and f) models scale-up to the development of 

robust software applications. 

The industrial context has motivated the present work and based on the results 

obtained, some guidelines are now provided that may help academics and industry 

practitioners on the collaborative development and deployment of optimization tools with 

industry. In fact our experience suggests that the implementation of optimization models 

in real production environments can strongly benefit from a previous development of 

case-specific models, oriented to a confined manufacturing system. These first 

developments provide academics and industrial practitioners with the necessary 

knowledge and confidence to address more complex problems. Thus in general, the 

implementation approach should go from case-specific to more general models. 

Following a model-based approach, as suggested in this paper, the definition of the 

scheduling problem should be done together with the definition of the model 

specifications. This will contribute to the alignment of the problem requirements with the 

modeling capabilities.  

Test and evaluation of models are also critical activities, since they provide 

valuable information for the identification of problem constraints and the development of 

solution approaches, targeting the improvement of the model performance. In this 

direction, generic and flexible ways of delivering model solutions are required. Powerful 

prototype visualization tools to enable a fast analysis of solutions can in general be built 

with a reasonable effort. 
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The solution methodology proposed in this paper takes into account some of these 

implementation challenges and aims at contributing to the development and deployment 

of optimization models in industry. A major advantage of the methodology comes from 

the fact that it is based on components, used as a way to build the adequate information 

context (Problem representation and Decision-making process) and thus designing 

consistent models. We believe that methodologies as the one proposed in this work can 

clearly lead to further improvements in the area. 

5.7   Further Developments 

Having presented a scheduling methodology that allows solving scheduling problems and 

having illustrated its application to a real case-study from the chemical-pharmaceutical, 

we now identify some major research topics that can contribute for the improvement of 

the developed methodology and the adoption of optimization models by the industry. 

The major disadvantage of using exact models is undoubtedly the prohibitive 

computational time required to obtain schedule solutions of large instances. Therefore, 

the development and assessment of non-exact methods such as (meta) heuristics and 

decomposition approaches is a natural and promising research line. The main goal of such 

research is to decrease the computational time, while still obtaining satisfactory solutions. 

Rescheduling features should also be addressed in an explicit way so as to account 

for unexpected changes in the demand and processing time delays. 

One important aspect along the work developed is concerned with the problem 

representation. This turned out to be key point to guarantee close interaction with the 

planners. Although further developments on it should be performed namely, it should be 

improved in order to deal with more complex process operations and restrictions, and to 

enhance the cost modeling features. These functionalities can also be very useful to other 

participants in the scheduling process, such as sales and R&D departments. 

Furthermore, any problem representation must be based on coherent information 

structures and this can be achieved by using standards such as ANSI/ISA (S88 and S95). 

The standardization of the solution methodology presented in this paper is a natural next 

step of this research, and will contribute to the harmonization of concepts and to the 

generalization of the information structures, thus facilitating the integration with other 

manufacturing systems. It is recognized (Henning, 2009; Klatt & Marquardt, 2009) that 
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there is a lack of software packages capable of representing the scheduling problem in a 

user-friendly way, and that are not therefore immediately accessible to industrial 

practitioners. In this way, research should focus on the difficulties of the development and 

test of model-based approaches collaboratively with the industry. More efforts should be 

devoted to the development of confined optimization applications, in which the required 

data can be captured through a reduced number of steps and integrated in the decision-

making processes of the companies. This will promote the development and assessment 

of optimization models in real production environments and consequently promote their 

adoption by the industry. 

5.8   Conclusions 

The existing planning and scheduling frameworks and ontologies provide a clear 

view on the typical requirements, information flows, core decisions and integration issues 

of the scheduling decision-making processes. They present building blocks for structuring 

complex and highly integrated systems. Nevertheless frameworks do not yet give an 

answer to the question of how planning or scheduling should be done in a specific 

company or industry. This happens because planning and scheduling decision-making 

processes are usually case-specific, and the available building blocks are not enough to 

define and integrate planning optimization methods in companies. 

In this paper, we have proposed a solution methodology for production scheduling 

in chemical batch plants, supported by a MILP model. Our methodology has integrated 

some characteristics of existing frameworks, and was applied to a real case in the 

chemical-pharmaceutical industry, so as to build a systematic approach for representing 

and solving the scheduling problems.  

We have developed a MILP discrete-time model based on the one proposed by 

Moniz et al. (2013), however other models could also be used. The data used by the 

MILP is automatically taken from the process representation tool developed in this work. 

The model is then run for different scenarios, and scheduling solutions and key 

performance indicators are represented in Gantt charts and tables, to support the decision-

making process of the planners.  

On the case-study addressed, two types of analysis were done. First, an evaluation 

of the processes alternatives and their associated costs was performed. Second, 
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production schedules for scheduling horizons of 1 and 2 weeks were produced. Numerical 

results show that the model performed well in all instances. However CPLEX could not 

prove optimality for the larger problem instances. In general, the developed framework 

proved to be very useful for the company in the scheduling decision-making process and 

provided a solid base for structuring the scheduling related data. 

The proposed methodology has a set of advantages, which are related to the general 

representation of the scheduling problem that can be used by several departments in the 

company and to the integration of the decision-making process with the optimization 

model. In our view, this has been a missing unifying point that could promote the 

adoption of planning and scheduling optimization tools in the industry. Methodologies 

should clearly define how tools should be applied and used in the company decision-

making processes. In this field, research work is still required to map current planning 

and scheduling practices into coherent methodologies capable of efficiently using 

methods and tools, to systematically delivery planning and scheduling solutions. 

The experience presented in this paper clearly shows the need for new innovative 

approaches and further levels of cooperation between academia and industry, to address 

the still open challenges in the adoption of advanced optimization approaches for 

industrial companies. 

Appendix 

Planning and Scheduling Frameworks 

 

Figure 5.7 - Supply chain planning matrix - source (Meyr et al., 2005). 
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Figure 5.8 - Process operations hierarchy - source (Bassett et al., 1996) 

 

Figure 5.9 - Planning information flow in a manufacturing system – source (Pinedo, 2002). 
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Figure 5.10 - Automation pyramid - source (Harjunkoski et al., 2009) .  

 

Figure 5.11 - Purdue Reference Model(ANSI/ISA-95, 2000).  
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Notation 

Indices 

   delivery period 

   Lot 

   Task 

p  Product 

   resource (processing unit, intermediary or final product) 

   time interval 

 

Sets 

     demand of product r at time interval t  

      delivery window of lot l and resource r (final product) at delivery 

period d 

   processing units 

   scheduling horizon 

   intermediaries 

      intermediaries subject to a non-intermediate storage policy 

  
     intermediaries produced by task k and subject to a non-intermediate 

storage policy 

   lots 

    lots associated with resource r 

    lots associated with task k 

    tasks that require resource r (processing unit, intermediary or final 

product) 

  
   tasks that consume resource r (intermediary or final product) 

  
 

  tasks that produce resource r (intermediary or final product) 

   products 

   production resources 

 

Parameters 

    processing time of task k 
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production/consumption proportion of resource (intermediary or final 

product) r in task k at time ϴ relative to the start of task 

  
     cost of storage of products and intermediaries r 

  
  

  operational costs of task k  

  
   

   
     lot fix and variable costs 

       changeover time in processing unit r from lot l to lot l’ 

  
  tasks k associated with processing unit r and lot l 

  
      

     minimum and maximum lot l size 

   
     maximum resource availability of resource r (intermediary or final 

product) at time interval t 

    
      resource r (intermediary or final product) availability of lot l at task k 

in the beginning of the planning horizon 

   length of the scheduling horizon 

   
    earliest time interval of lot l at delivery d 

   
    latest time interval of lot l at delivery d 

    value of product r 

    
        

     minimum and maximum capacity of resource r (processing unit) for 

task k of lot l 

 

Variables 

    amount of product manufactured by lot l – lot size (continuous) 

      batch size of task k and lot l at time interval t (continuous) 

       
delivery of resource (final products) r of lot l at time interval t available 

from task k (continuous)  

      binary variables that are equal to 1 if task k starts lot l at time interval t  

       
resource r (intermediaries or final products) availability, produced by 

task k of lot l at time interval t (continuous)  

     
   amount of resource r (intermediaries or final products) consumed from 

task k of lot l at time interval t (continuous)  

     
 

  amount of resource r ( intermediaries or final products) produced by 

task k of lot l at time interval t (continuous)  

     binary variables that are equal to 1 if l lot has been produced 
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Supporting Information 

Networks 

 

Figure 5.S1 – Recipe of product P1. 

 

Figure 5.S2 - Recipe of product P2. 

 

Figure 5.S3 - Recipe of product P3. 

 

Figure 5.S4 - Recipe of product P4. 
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Data 

Table 5.S1 – Products demand, delivery dates and backlog costs. 

Product 

Earliest 

delivery 

date 

Latest 

delivery 

date 

Minimum 

amount 

[kg] 

Maximum 

amount 

[kg] 

Backlog 

costs 

[m.u/kg] 

P1 21 21 0 120 250 

P2 21 21 0 70 200 

P4 21 21 0 60 100 

P3 21 21 0 50 120 

Table 5.S2 – Minimum and maximum lot sizes, economic value and lot setup costs. 

Product Lot 

Minimum 

lot size 

[kg] 

Maximum 

lot size 

[kg] 

Value 

[m.u] 

Lot 

setup 

cost 

[m.u.] 

P1 L1 10 80 250 5 

P1 L2 10 80 250 5 

P2 L1 10 60 200 25 

P2 L2 10 60 200 25 

P3 L1 10 30 120 10 

P3 L2 10 30 120 10 

P4 L1 10 40 100 10 

P4 L2 10 40 100 10 
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Table 5.S3 – Materials initial, minimum and maximum availability, inventory costs and storage 

policy. 

Resources 

Init. 

availability 

[kg] 

Max. 

availability 

[kg] 

Inventory 

cost 

[m.u./kg] 

Storage 

policy 

P1_S0 100,000 100,000 0.07 UIS 

P1_S1 0 0 0 ZW 

P1_S2 0 10,500 0.04 FIS 

P1_S3 0 4,500 0.01 FIS 

P1_S5 0 0 0.08 NIS 

P1 0 10,000 0.9 FIS 

P2_S0 100,000 100,000 0.05 UIS 

P2_S1 0 0 0 ZW 

P2_S2 0 0 0.03 NIS 

P2_S3 0 0 0 ZW 

P2_S4 0 2,000 0.07 FIS 

P2_S5 0 3,500 0.01 FIS 

P2 0 10,000 0.6 FIS 

P3_S0 100,000 100,000 0.05 UIS 

P3_S1 0 0 0.03 NIS 

P3_S2 0 3,000 0.04 FIS 

P3_S3 0 0 0 ZW 

P3_S4 0 0 0.07 NIS 

P3_S10 0 0 0.02 NIS 

P3 0 10,000 0.8 FIS 

P4_S0 100,000 100,000 0.05 UIS 

P4_S1 0 1,500 0.03 FIS 

P4_S2 0 0 0.07 NIS 

P4 0 10,000 0.5 FIS 
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Table 5.S4 – Characteristics of the processing units. 

Unit Type 

Min. 

Volume 

[l] 

Max. 

Volume 

[l] 

Cost 

[m.u.]  

R2 REACTOR 45 500 50 

R3 REACTOR 75 1,700 100 

R5 REACTOR 20 800 60 

R6 REACTOR 70 2,700 200 

R7 REACTOR 60 4,800 300 

R8 REACTOR 150 9,300 600 

R9 REACTOR 65 12,400 700 

FD1 FILTER/DRYER 25 1,600 20 

FD2 FILTER/DRYER 20 530 10 

Table 5.S5 – Changeovers time of each unit (cr). 

Unit 
cr 

[hours] 

R1 8 

R2 16 

R3 8 

R4 16 

R5 16 

R6 16 

R7 24 

FD1 16 

FD2 8 

Table 5.S6 – Changeovers time between products (cr + products changeover time in hours). 

Products P1 P2 P3 P4 

P1 cr cr+2 cr+2 cr+16 

P2 cr+16 cr cr+2 cr+16 

P3 cr+16 cr+16 cr cr+16 

P4 cr+16 cr+16 cr+16 cr 
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Table 5.S7 – Numerical results of the processes evaluation. 

Amount 

produce

d [kg] 

Process/lots 

Int. 

variables/cont. 

variables/ 

Constraints 

Nodes Iterations 
Gap 

(%) 
Objective 

CPU 

time 

(sec) 

30 

P1/1LOT30 221/1124/1858 70,183 578,331 0.0 1,108.6 5.8 

P1/2LOT15 442/2225/5005 20,871 379,326 0.0 1,134.6 10.7 

P1/3LOT10 663/3326/8372 29,256 1,479,559 0.0 1,922.5 41.4 

P1/1LOT10+1LOT20 442/2225/5005 35,102 538,112 0.0 1,341.5 10.6 

40 

P1/1LOT40 221/1124/1858 90,210 554,767 0.0 1,365.0 6.2 

P1/2LOT20 442/2225/5005 43,783 788,227 0.0 1,595.0 12.9 

P1/4LOT10 884/4427/11959 75,031 8,891,340 0.0 2,973.5 275.3 

P1/1LOT10+1LOT30 442/2225/5005 69,026 1,595,698 0.0 1,903.0 22.4 

60 

P1/1LOT60 221/1124/1858 210 2,901 0.0 1,375.0 1.1 

P1/2LOT30 442/2225/5005 72,327 2,298,281 0.0 2,511.8 30.0 

P1/3LOT20 663/3326/8372 35,729 1,668,960 0.0 2,446.0 56.8 

P1/4LOT15 884/4427/11959 49,107 3,358,538 0.0 3,021.6 139.1 

80 

P1/1LOT80 221/1124/1858 75 981 0.0 1,455.0 1.2 

P1/2LOT40 442/2225/5005 47,819 1,125,153 0.0 2,782.2 18.3 

P1/1LOT20+1LOT60 442/2225/5005 17,652 315,810 0.0 2,185.0 7.4 

P1/1LOT20+2LOT30 663/3326/8372 
104,49

5 
7,006,803 0.0 3,623.2 220.8 

100 

P1/1LOT100 221/1124/1858 27,578 295,301 0.0 2,030.0 4.0 

P1/2LOT50 442/2225/5005 1,544 588,788 0.0 2,823.7 12.8 

P1/4LOT25 884/4427/11959 40,646 5,071,307 0.0 5,131.2 236.5 

P1/2LOT25+1LOT50 663/3326/8372 46,179 4,404,857 0.0 3,631.2 144.9 

Table 5.S8 – Numerical results of the production schedules. 

Instance 

Int. variables/cont. 

variables/ 

Constraints 

Nodes Iterations 
LP 

relaxation 

Gap 

(%) 
Objective 

CPU 

time 

(sec) 

Inst1 884/4669/9350 1,256,627 96,031,323 52,768.9 0.01 48,438.8 1,474 

Inst1
1)

 884/4669/9350 26,558 2,875,997 52,768.9 4.41 47,773.4 98 

Inst2
2)

 1724/9121/18233 480,471 40,955,822 52,779.1 3.32 49,441.4 3,672 

Inst2
1)

 1724/9121/18233 7,617 1,291,875 52,779.1 4.90 49,130.5 80 

Inst3
2)

 3448/18069/52036 70,560 10,987,254 52,738.9 5,34 48,754.7 3,623 

1)
 Stopping criterion is the integrality gap of 5%.; 

2)
 Stopping criterion is the time limit of 3,600 

seconds.  
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Abstract 

Regular and non-regular production can often be found in multipurpose 

batch plants, requiring two distinct operating strategies: campaign and 

short-term production. This paper proposes a solution approach for 

simultaneous scheduling of campaign and short-term products in 

multipurpose batch plants. Regular products follow a cyclic schedule and 

must cover several product deliveries during the scheduling horizon, 

while non-regular products have a non-cyclic schedule. The proposed 

approach explores the Resource-Task Network (RTN) discrete-time 

formulation. Moreover, a rolling horizon approach, and reformulation 

and branching strategies have been applied to deal with the 

computational complexity of the scheduling problem. Real case instances 

of a chemical-pharmaceutical industry are solved, showing the 

applicability of the solution approach. 

Keywords: Multipurpose batch plants, campaign and short-term 

scheduling, rolling horizon, MILP models, Resource-Task Network.  
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6.1   Introduction 

Multipurpose batch plants may operate in campaign or short-term modes, or may have 

both operational modes running in the same facility. The latter is the case of some process 

industries such as the chemical-pharmaceutical industry where high and low volume 

products need to be produced simultaneously. Products that are already in 

commercialization commonly present stable demands and are produced in large batches, 

being the campaign mode the preferred operational mode. In this case, the production 

resources are allocated to tasks that are executed in a cyclic way, thus defining production 

lines that tend to be stable for long periods of time. This approach leads to obvious 

benefits such as minimizing the changeovers costs while reducing the complexity of the 

operations. Alternatively, plants may also have short-term demands. Here, customers’ 

orders of low quantities are placed for specific time windows. In the case of the chemical-

pharmaceutical industry the products under development fit in this situation.  

Globally, multipurpose batch plants need then to respond to a heterogeneous 

demand and plant resources have to be shared between campaign and short-term 

production modes. The plant responsiveness becomes critical and should be able to 

accommodate new orders at the minimum cost and with the minimum perturbation of the 

existing schedule, since as pointed out by Shah (2004), time-to-market is certainly the 

most important driver in the pharmaceutical industry.  

Modeling and optimization methods have been extensively applied in batch 

processes problems, requiring a clever exploitation of the problem structure (Reklaitis, 

1995). Moreover, the integration of different dynamic decisions such as design, planning 

and scheduling proved to be a good way of tackling the complexity of these problems 

(Barbosa-Povoa, 2007; Verderame et al., 2010). 

The present paper addresses this problem and proposes a solution approach for 

scheduling multipurpose batch plants that simultaneously consider two different operating 

conditions – regular and non-regular production. The former encompasses products that 

are manufactured regularly in predefined production lines and the latter includes under 

development products having no defined production lines. The production resources are 

shared between both types of products. The rest of the paper is structured as follows. In 

section 6.2, a literature review is presented. The main characteristics of the scheduling 

problem are presented in section 6.3 and the proposed algorithm is described in section 
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6.4. In section 6.5, a mathematical model for the problem is presented. In section 6.6 are 

presented the solution methods and in section 6.7 the numerical results are discussed. 

Finally, in section 6.8 some concluding remarks are given. 

6.2   Background 

6.2.1   Scheduling of Multipurpose Batch Plants 

Scheduling of multipurpose batch plants has been intensively addressed in the literature, 

covering a wide range of problems. On the production planning and scheduling problems 

a variety of modeling tools has been developed to tackle the associated problems, see 

reviews by (Mendez et al., 2006; Barbosa-Povoa, 2007; Li & Ierapetritou, 2008; 

Maravelias & Sung, 2009; Li et al., 2010; Verderame et al., 2010). Both the State-Task 

Network (STN) presented by Kondili et al. (1993) and the Resource-Task Network 

(RTN) suggested by Pantelides (1994) became two major frameworks used for solving 

scheduling problems in the chemical process industry, where discrete and continuous 

representations of time have been explored.  

Discrete-time formulations easily model inventory and backlog costs, intermediate 

and delivery dates, and often result into compact formulations that can be easily modified. 

However, they present some problems when modeling variable processing times and 

sequence-dependent changeovers. Moreover, the efficiency of the discrete-time models 

and the feasibility of the solutions depend on the number and duration of the time 

intervals considered. To overcome these issues, continuous-time models were developed, 

where different time grids were used. Common time grid formulations for all resources 

were developed by (Schilling & Pantelides, 1996; Castro et al., 2001; Maravelias & 

Grossmann, 2003) and unit-specific time events formulations were developed by 

(Ierapetritou & Floudas, 1998; Janak et al., 2004; Vooradi & Shaik, 2012). Continuous 

time formulations lead however to more complex models and present larger integrality 

gaps. Even though the above mentioned developments represent a large step in the 

optimization of the process industry operation, the requirements found in real production 

environments often lead to new challenges that have not yet been adequately addressed in 

the literature. 



160 Moniz, S. 

 

 

One relevant scheduling issue regards the determination of detailed schedules in 

large time horizons. Such problem is due to various reasons. Scheduling problems may 

depend on recipes with short and long processing tasks, thus a sufficient large time 

horizon is required to accommodate all products. Moreover, production planning may 

need to be checked and validated at the operational level. These cases can be found in 

many chemical industries and are difficult to solve especially if different products recipes 

are present. The obvious and immediate approach for tackling this type of problems is to 

apply a short-term scheduling model for the entire planning horizon. However, a 

scheduling model with such dimension would hardly be solved. Alternative approaches 

such as cyclic scheduling, campaign planning and decomposition methods have been 

developed aiming at decreasing this modeling challenge. 

Shah et al. (1993) presented a general framework for periodic scheduling of 

multipurpose batch plants. The model is based on the State-Task Network representation 

in which the “wraparound operator” is developed. This approach can deal with complex 

operations of batch plants, but it is only suitable for single campaigns. Later on, Schilling 

and Pantelides (1999) proposed a mixed integer non-linear programming (MINLP) model 

for addressing the periodic scheduling problem. Due to difficulties in the linearization the 

authors developed a special branch-and-bound (B&B) algorithm that branches the 

discrete and continuous variables. More recently, Pochet and Warichet (2008) propose a 

continuous time MILP formulation for solving the periodic scheduling problem and use 

strengthening techniques to improve the model computational time, and MIP based 

heuristic methods to obtain good solutions quickly in the larger instances. Addressing the 

same type of problem, You et al. (2009) compared the Dinkelbach’s algorithm with 

commercial MINLP solvers and verified that this algorithm performed better. Castro et al. 

(2003) proposed discrete and continuous-time formulations based on the RTN 

formulation for deriving optimal periodic schedules. Results favor the discrete-time 

periodic formulation in the case study addressed by the authors. Wu and Ierapetritou 

(2004) developed a cyclic schedule approach based on the STN using a continuous time 

formulation. This approach assumes stable demand for the time horizon under 

consideration and aims at determining the optimal cyclic schedule and cycle length. 

Moreover, the approach has a decomposition scheme for determining the startup and 

shutdown phases. Pinto et al. (2005) increased the complexity of the periodic scheduling 
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by simultaneously considering the design and retrofit of multipurpose batch plants. The 

model is based on a discrete-time RTN formulation. Castro et al. (2008) solved an 

industrial scheduling problem from the chemical-pharmaceutical industry by proposing a 

periodic RTN formulation. 

For campaign planning a number of algorithms have been presented in the 

literature. Mauderli and Rippin (1979) proposed a sequential approach where first 

alternative production lines with single products are generated, and then campaigns with 

several products are formed from the combination of two or more single product 

production lines. A screening procedure is applied to identify the dominant campaigns 

and, in a last step, a production plan is generated by solving a LP or MILP problem that 

allocates the dominant campaigns to the available production time. Papageorgiou and 

Pantelides (1993) proposed a hierarchical approach for multipurpose batch plants that 

takes into account the inherent flexibility of such plants with respect to intermediate 

storage policies and processing units utilization. A three-step approach is presented. The 

first step determines the number of campaigns and active stages in each campaign. The 

second step addresses the campaigns separately to derive the optimal cyclic schedules for 

the active stages and aims at improving the production rates of some stages. Finally, the 

third step reconsiders the timing of the campaigns determined in the previous step 

attempting to maximize the overall production value. Later Papageorgiou and Pantelides 

(1996a, 1996b) proposed a single-level model for planning and scheduling of 

multipurpose batch plants capable of simultaneously determining the campaigns (duration 

and products), the unit-task allocation and the task timings. Sundaramoorthy and Karimi 

(2004) propose a multi-period continuous-time MILP model. Computational tests have 

shown that the model is quite efficient even for long term planning periods. A limiting 

aspect of the approach followed by the authors is that production lines are considered 

instead of processing units, thus it is assumed that processing units are permanently 

allocated to a specific production line and cannot be shared. In practice, it is common to 

select a set of production resources to define a production line that will operate during a 

certain time period, sufficient to supply a given demand. More recently, Fumero et al. 

(2012) presented a solution approach for the scheduling of multistage multiproduct batch 

plants. They first solve a simplified slot-based continuous–time formulation that involves 

preordering constraints for the assignment of batches to slots in each stage. This provides 
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a good upper bound for the campaign length of the detailed scheduling model solved in 

the second phase. 

Regarding decomposition methods a good discussion is presented by Bassett et al. 

(1996). The authors analyze several decomposition methods for large-scale scheduling 

problems. Considering the same type of problems Wu and Ierapetritou (2003) developed 

an iterative approach that uses a lower bound obtained by heuristic-based decomposition 

approaches and an upper bound based on Lagrangean relaxation and Lagrangean 

decomposition. Lin et al. (2002) developed a rolling horizon approach. A two-level 

decomposition model is proposed to determine the current horizon and the products that 

shall be included. Wu and Ierapetritou (2007) also used a rolling horizon strategy to solve 

a planning and scheduling problem with uncertainty. A sequence factor is used to 

estimate the impact of the tasks sequencing in the planning problem. This parameter is 

used to make the planning and scheduling results converge. Erdirik‐Dogan and 

Grossmann (2007) addressed the single stage problem with parallel units and sequence 

dependent changeovers. They propose an aggregate planning model that underestimates 

the effects of the changeovers and sequencing variables, but can be solved very 

efficiently; and a detailed scheduling model that models accurately the tasks sequencing 

and changeovers. To solve the larger instances a rolling horizon approach is suggested. 

Amaro and Barbosa-Póvoa (2008, 2008b) also studied the large scale scheduling and 

planning problems of batch plants using an extended STN representation (Chain-STN) in 

a supply chain context. An hierarchical decomposition procedure was proposed to link the 

planning with the scheduling decisions and a real case-study of a pharmaceutical industry 

was solved. Stefansson et al. (2011) proposed a decomposition algorithm that prioritizes 

the scheduling of the bottleneck units. The approach is applied to a multistage batch plant 

and the problem is decomposed into two parts. They start by solving the bottleneck stage 

and then solve the remaining stages. Moreover, they compare discrete-time formulation 

based on Kondili et al. (1993) with a continuous-time general precedence formulation 

based on Méndez et al. (2001). The continuous-time formulation (limited to sequential 

processes) have provided more accurate solutions and used less computational time, 

compared with the discrete-time general formulation. Recently, Sundaramoorthy and 

Maravelias (2011) shown that discrete-time models have many advantages over 

continuous-time formulations. Their study indicates that discrete-time models have better 
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performance concerning the solution times and integrality gap. Moreover, discrete-time 

formulations can be easily modified to account for other processing characteristics. In 

order to address the computational burden of the MILP models, Velez and Maravelias 

(2013) propose three reformulations to define the number of batches of each task and use 

as basis the STN formulation. Tests have shown that branching on the integer variable 

number of batches eliminates many symmetric solutions, leading to improve the model 

performance. 

The existing approaches can deal with several problem complexities, but they are 

still quite limited in simultaneously managing mixed operating strategies such as the 

regular and non-regular production, or the campaign and short-term scheduling. The work 

described in this paper aims at reducing this gap and proposes a simple three-step 

approach that tries to explore the specific problem structure and the current industrial 

planning procedures, as used in the chemical-pharmaceutical industry. 

6.2.2   Motivation for a Mixed Strategy 

Depending on the product recipes structure and on the allowable task / processing unit 

assignment, we may have multiproduct or multipurpose operating strategies (Reklaitis, 

1995). Multiproduct batch plants are settled to manufacture products that have similar 

recipes, with production lines employing many-to-one processing unit / task assignments 

and operating cyclically to accommodate serial campaigns. Multipurpose batch plants 

under campaign operation are more appropriate for products with dissimilar recipes, 

allowing many-to-many processing unit / task assignments, and possibly having several 

campaigns involving several production lines, each operating cyclically. General 

multipurpose plants can also be defined and refer to multipurpose plants that operate with 

no defined production lines and with non-periodic production, where different types of 

products are simultaneously produced.  

In practice, a mixed strategy may be present in a given plant. This occurs when the 

product portfolio combines characteristics of both strategies. In these cases, part of the 

plant may operate using dedicated production lines, while the other part operates in the 

multipurpose mode; or the same resources may be shared among the processes that have 

to be performed. Since production resources such as processing units, raw materials or 

utilities are shared, scheduling integration is required. Table 6.1 summarizes the 
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characteristics of regular and non-regular production for the case of the chemical-

pharmaceutical industry. Non-regular products are products that do not have long-term 

demand, they are produced in relatively low quantities and for specific time windows. 

Therefore, they do not justify the establishment of dedicated production lines. The 

pharmaceutical products under development fit into this category. On the other hand, 

regular products have typically well-defined recipes and stable production lines and 

involve the delivery of large amounts of products during long periods of time. 

Table 6.1 – Characteristics of regular and non-regular production in the chemical-pharmaceutical 

industry. 

Non-regular production Regular production 

There are stable and unstable product recipes. 

Recipes may change as a result of the process 

development. 

Products have stable product recipes. Changes 

in the recipes are possible to do, but require 

legal and customer approvals.  

Production has an irregular demand pattern 

and is triggered by customer orders. 

Production has a regular demand pattern, 

usually established by a master production 

plan. 

Demand needs are specified for a short period 

of time, typically few weeks. 

Demand needs are planned for long term, 

typically from several months to one year.  

Assignment of processing units to tasks can 

vary (e.g. scale–up of the production 

processes) 

Assignment of processing units to tasks tends 

to be permanent, despite the existence of 

alternative processing units. 

Products have tight delivery windows. Products have relaxed delivery dates. 

6.3   Problem Description 

In the problem under investigation we consider that the following information is 

available: (i) the detailed recipes of the products that will be produced in campaign and 

short-term modes; (ii) the maximum and minimum capacity of the processing units; (iii) 

the demand and the delivery dates; (iv) changeover times required to clean units between 

products; (v) the minimum and the maximum cycle time for the regular products; and (vi) 

the costs and economic value of the products.  
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The objective is to maximize the overall profit for all products, while determining: 

(i) the cycle time T for the products to be scheduled in a campaign mode; (ii) the task unit 

assignment and sequencing for all products; (iii) the tasks batch sizes and storage levels; 

and (iv) the number of campaign cycles. Each product is defined by a recipe (see Figure 

6.1) that identifies the task sequence with the respective processing time and allowable 

processing units. Raw materials and final products have unlimited storage, while storable 

intermediaries have finite storage. Task batch sizes are limited by the capacity of the 

processing unit chosen. 
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Figure 6.1 – Recipes of products PA, PB, PC, PD and PE.  
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6.4   Proposed Algorithm 

To solve the integrated problem as described above, we propose the following three-step 

procedure (see Figure 6.2). In the first step, we determine the campaign schedule for the 

products that will be manufactured in campaign mode, with regular products being 

distributed into campaigns that may have one or more products. In the second step, we 

create campaign tasks for each schedule determined in the first step. These are aggregate 

tasks that consume and produce resources according to the campaign schedule. In the 

third step, we run the scheduling model having the campaign tasks of the regular products 

and the detailed recipes of the non-regular products. Campaign tasks follow the concept 

of supertasks that were firstly suggested by Zentner et al. (1994) and Bassett et al. (1996), 

and more recently by Moniz et al. (2012). 

 

 

Figure 6.2 – Suggested approach for regular and non-regular production scheduling. 

6.4.1   Step 1 – Determination of the Campaign Schedule 

One possible approach to derive the campaign schedule is to run a periodic schedule 

formulation as suggested by Shah et al. (1993). In this case, the periodic schedule consists 

in a plan in which tasks are executed with a cyclic pattern. Processing units will have a 

cyclic operation as well. This schedule can be repeated successively until the demand is 

satisfied, assuming that periodic schedules can be derived and applied during a long time 

horizon, under stable operation and product demand (Shah et al., 1993). Cyclic 

scheduling implies the existence of two distinct time periods: the startup and shutdown 

phases. The former is related to the initial schedule that produces the intermediaries 

needed for the periodic schedule and the latter is related to the final schedule required for 

the conclusion of the production of all remaining intermediaries.  

In practice, the periodic scheduling is a valid approach under the following 

assumptions. In the cases where the products are produced during long time horizons and 

the schedule can be replaced by a shorter and cyclic schedule that is repeated until the 

fulfillment of the demand. Products should have well defined recipes and few alternative 
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production routes. If recipes have several alternative production routes, the tasks-units 

assignment will tend to vary as well. Therefore, it would be preferable to derive schedules 

in which the task-unit assignment is not limited to a repeating pattern initially determined. 

In the practical case of recipes having several alternative units per task, it would be 

desirable to use the task-unit assignment flexibility across the schedule, instead of using a 

repeating pattern during the entire time horizon. 

Several advantages can be pointed out to the periodic scheduling. The suggested 

schedule is easier to implement due to the repetitive pattern of the tasks execution. 

Moreover, the computational burden of solving a large and non-periodic scheduling 

problem can be avoided by solving a smaller periodic scheduling problem. 

To overcome the assumption of stable production demands and to avoid startup and 

shutdown effects an alternative approach is used in this work. A non-cyclic schedule can 

be derived assuming that the storable intermediaries are available in the beginning of the 

schedule execution and that are replaced in the same quantity when the schedule finishes. 

This schedule can be modeled using a campaign task that can be repeated successively 

during the scheduling horizon to satisfy the product demand. This allows the execution of 

campaign tasks without the need of startup and shutdown periods, being the overall 

schedule more responsive. The major disadvantage of this approach is the fact that 

storage costs of the intermediaries tend to be higher, this representing a tradeoff between 

schedule responsiveness and storage costs. Note that, although the schedule formulation 

being used is non-cyclic, this approach retrieves schedules in which tasks are executed 

with a specific cycle, thus we can still call this a cyclic schedule. This concept is better 

explained later on. 

The storable intermediaries are specific characteristic of each recipe since they 

depend on the chemical stability and storage conditions of the material. For example, in 

Figure 6.1, the storable intermediaries are identified by the bold states.  

As it can be seen in Table 6.1, the characteristics of regular production are 

appropriate for a cyclic schedule operation. Regular products have stable recipes, the 

assignment of the processing units to tasks tends to be permanent, the demand is known 

in advance for a long time horizon, and delivery dates are more flexible if compared with 

non-regular production, suggesting that this kind of production can be managed through a 

make-to-stock policy. 
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In this context, the most common objective function is the maximization of the net 

production over the cycle time under consideration. However, objectives such as 

maximizing the average profit or minimizing costs can be used too. In this work, we have 

used net production as the objective because we have assumed that campaigns have single 

products and that the control over the schedule production rate is a relevant indicator for 

measuring the schedules performance. 

6.4.2   Step 2 – Creation of the Campaign Tasks 

The level of abstraction chosen for modeling recipes will have a direct impact on the 

model size and therefore on its applicability. High detailed recipes will conduct to more 

exact models that are however more difficult to tackle computationally. On the other 

hand, less detailed recipes result into simpler models, and those are easier to handle. The 

strategy followed in this work exploits the problem structure as described above. Thus, 

regular products are modeled using campaign tasks. These are aggregate tasks that model 

the cycle-time and resources allocation/release profile of the schedule determined in step 

1. Instead of having a detailed schedule that considers all resources and tasks, we have 

created a single task for modeling the entire schedule. In this way, many resources and 

tasks that are considered in step 1 can be disregarded. This reduces the model size in step 

3, in terms of the number of binary and continuous variables and constraints. 

For example, product PB requires five tasks and has a total of four intermediaries 

(see Figure 6.3), and from these only the intermediary S2 is storable. Using a cyclic 

schedule formulation any schedule having a cycle time equal to four (T=4) will serve the 

purpose (see Figure 6.3 a)). Nevertheless, the implementation of this schedule requires 

startup and shutdown phases, as shown in Figure 6.3 b). On the contrary, using the non-

periodic formulation presented in section 6.5.1, startup and shutdown phases are not 

required, since materials availability is ensured by the campaign task (see Figure 6.3 c)). 

In this way, to produce two batches of product PB the cyclic scheduling requires 13 time 

intervals, while if campaign tasks are used 9 time intervals are sufficient. 
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a) 

 

b) 

 

c) 

Figure 6.3 – a) cyclic schedule of PB (T=4); b) cyclic schedule of PB considering the startup and 

shutdown phases; c) scheduling of PB considering campaign tasks. 

The corresponding campaign task is depicted in Figure 6.4 and will have a length 

of 5 time intervals      . Unit U2 is allocated to task TASK1 at the beginning of the 

campaign task execution      . Task TASK3 is executed one time interval after in unit 

U1 and consumes the previously stored intermediary S2, and at       tasks TASK2 

and TASK5 are executed to replenish the intermediary S2 and to produce product PB at 

     , respectively. It can be verified that the cycle of the periodic scheduling is 4 

shifts and that the campaign task takes 5 shifts. However, since the campaign task allows 

for superposition of 1 shift the resulting throughput time of product PB is also equal to 4 

shifts. The superposition of campaign tasks is then allowed as can be seen in Figure 6.3 c) 
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and is defined in the mathematical formulation through the coefficient units’ 

allocation/release of the RTN formulation.  

 

Figure 6.4 - Campaign task for product PB, with respective resource allocation profile. 

This approach does not imply any reduction of the solution space of the schedule 

obtained in step 1, since processing units allocation/release to/from tasks is transposed to 

the campaign task respecting the sequencing obtained. Moreover, it is important to make 

a distinction between materials that need and do not need inventory control. If we need to 

have control over the availability of certain materials, for example stable intermediaries 

or final products, then these materials need to be modeled in the campaign task. These 

materials must be storable, to allow the execution of the campaign task without the need 

of the startup and shutdown phases. All the other materials can be omitted from the 

campaign task because they are produced and/or consumed within the campaign tasks, 

and we can simply assume that they are available when required. 

6.4.3   Step 3 – Scheduling Model 

Finally, the scheduling model in step 3 integrates both production types but with different 

aggregation levels. Regular production is modeled by campaign tasks, while non-regular 

production is represented by the detailed recipes. The model used in this step is presented 

in section 6.5.3. 

The approach suggested in this work addresses the complex modeling challenge of 

the scheduling problem, by proposing different decomposition schemes, for different 

production types, that are typically found in the chemical-pharmaceutical industry. 
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6.5   Mathematical Formulations 

The integrated algorithmic approach described above is based on a set of mathematical 

formulations that are characterized below. 

6.5.1   Step 1 – Determination of the Campaign Schedules (CS model) 

The campaign schedules are obtained using the non-periodic RTN discrete-time 

formulation (6.1) to (6.8).  

By assuming that the storable intermediaries are replenished until the end of the 

schedule (time T) through constraints (6.4), the resulting schedule can be repeated 

successively and startup and shut-down phases can be avoided. The production resources 

   include processing units, raw materials, intermediaries and final products (     

        ), where   is the campaign task          . In this way, we can define 

campaign tasks having different products that share the set of processing units  . The 

availability of the production resources is given by the resources balance constraints  

(6.1).     are continuous variables that denote the availability of the resource   at time 

interval  , while     are binary variables that are equal to one if task   starts at time 

interval  . The amount of resource (processing units) allocated or released by each task is 

specified by the parameter     , which can take values during the processing time of the 

task     . Similarly, materials are consumed and produced at the proportion      of the 

task batch size that is modeled through the continuous variables    . The resources 

maximum availability is guaranteed by constraints (6.2). Task batch size variables     are 

activated through the binary variables     in constraints (6.3), which also ensure that the 

task batch sizes are within the capacity limits of the processing units. The set of 

constraints (6.4) ensures the intermediaries balance at the end of the schedule. These 

constraints are essential to guarantee the replacement of the storable intermediaries at the 

end of the schedule. The net production of the final products over time   is given by 

constraints (6.5), where    is the net production of final product  . And constraints (6.6) 

define the production bounds for   , by imposing minimum and maximum amounts 

   
    and   

   , respectively. The variables domain is defined in (6.7). 
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Selection of the intermediaries 

The formulation presented above assumes that the storable intermediaries are given 

so as to avoid startup and shutdown phases of the campaigns. Alternatively, the storable 

intermediaries can be determined by the optimization model, assuming that these 

intermediaries are not raw materials and final products, and that they have an initial 

amount that is replenished at the end of each campaign. The CS model can be easily 

modified to account for these requirements. The initial amount of the intermediaries is 

now given by the decision variable   
     

 that replaces the parameter   
     at constraints 

(6.1) and (6.4). For processing units, raw materials and final products   
     

 must be 

equal to the initial availability   
    , as expressed by (6.7.1) . For the intermediaries, 

  
     

 is confined by the maximum availability   
   , see (6.7.2). Note that, if   

    is 

equal to 0 then this intermediary is not eligible to be a storable intermediary. 

  
     

   
                   (6.7.1)  
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(6.7.3)  

To have a limit on the number of storable intermediaries a new binary variable    

can be used. So,    is equal to 1 if intermediary   has been selected as storable 

intermediary. Constraints (6.7.3) ensure that no more than   intermediaries can be 

storable. 

Objective Function 

The objective function is the maximization of the production rate and is given by 

expression (6.8). Several alternative schedules can be derived by solving the same model 

for different values of T, with T between Tmin and Tmax. Tmin is equal to the maximum 

processing time required to produce the stable intermediaries or the final product. Tmax is 

defined as the maximum acceptable duration for the campaign schedule. The selected 

schedule will give the maximum production   for each product  . Moreover, in order to 

calculate the minimum amount of product that can be delivered by each campaign cycle, 

the model was solved fixing the binary variables     determined previously and assuming 

a minimization version of the objection function (6.8). The minimum and maximum 

values of    represent the production bounds of product  , and are used in step 2 as the 

minimum and maximum lot size (   
       

   ) of product   at campaign task  . 

   
 

 
∑   

    

  
(6.8)  

6.5.2   Step 2 – Creation of the Campaign Tasks 

Campaign tasks now are created taking as a basis the time   chosen in Step 1. 

These tasks will consume/allocate and produce/release resources according to the 

resources/tasks assignment made in Step 1. This approach allows modeling campaigns, as 

they are viewed as single production tasks, taking advantage of the uniform 

representation of the RTN formulation. Figure 6.5 depicts the campaign tasks for regular 

products PA and PB. The lot size is between the maximum     
     and minimum     

     

allowable production taking into account the requirements of the recipes. The 
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consumption and production proportions of the materials in the campaign tasks are 

calculated through the ratio amount of material required /amount of final product. 

Therefore, the campaign task of PA has a processing time of 152 hours which results in a 

net production of 235 kg at the maximum lot size and PB campaign task has a processing 

time of 40 hours and delivers 120 kg. In step 3, it is used a RTN non-periodic formulation 

for scheduling all products. In order to account for lot-size-dependent processing times 

and also alternative units, a piecewise approximation can be done by creating multiple 

instances of the campaign tasks. The new campaign tasks will have different lot-size 

intervals that correspond to different processing times and/or units. 

 

 

Figure 6.5 – Campaign tasks for the regular products PA and PB. 

6.5.3   Step 3 – Detailed Scheduling Model (DS model) 

Finally, a single schedule with campaign and short-term products is built by using 

constraints (6.9) to (6.18) and objective function (6.19). Again, we use as basis the RTN 

formulation. 

In order to model sequence-dependent changeovers, the product index   is 

considered in the resource availability     
   continuous variable. Thus,     

   variables 

give the processing unit   availability for product   at time interval  . The changeover 

tasks are defined by       
   binary variables that are equal to 1 if a changeover task occur 

on the processing unit   between products   and    at time interval  . The 

assignment/sequencing    
   variables and the batch size    

  variables are similar to the 

CS model. The superscript DS in the variables and sets indicate that they refer to the 

detailed model.  

In this way, the resources balance constraints (6.9) determine the availability of the 

processing units for each product and time interval. The unit availability     
   is equal to 

the availability in the previous time interval        
   plus the availability resulting from 
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the unit’s allocation/release to/from the production or changeover tasks at time interval t. 

The production tasks coefficients      define the unit e allocation/release done by task k 

at time   relative to the start of the task, and the changeovers coefficients           give 

the allocation/release of unit   from product    to     being the product   held by the unit 

  at time   relative to the start of the changeover task. Constraints (6.10) do the initial 

assignment of processing units to products. Since constraints (6.9) ensure that no 

processing units are eliminated or created, no resource bounds on these variables are 

required. 

Constraints (6.11) are needed to determine the materials availability    
  . The set 

material resources   includes raw materials, intermediaries and products,       

 , of both campaign and short-term products. The coefficient      defines the proportion 

of materials consumed and produced of the batch size    
  . The continuous variables    

   

express the deliveries of the products at each the time interval t. We assume that    
   will 

always have non positive values, thus no material receipts are expected to occur during 

the scheduling horizon    . Constraints (6.12) define the minimum and maximum 

materials availability allowed for each time interval. Constraints (6.13) ensure that the 

batch size    
   is between the minimum    

    and maximum    
    allowed capacities of 

the processing units   and are just defined for the non-regular products, while constraints 

(6.14) define the minimum and maximum lot size of the campaign tasks (regular 

products). 

On the demand side, the variables    
   must be equal to zero for all materials, 

except for final products, see constraints (6.15), and at the time intervals different of the 

delivery dates   , see constraints (6.16). The minimum and maximum amount of each 

delivery is specified by constraints (6.17). Production requirements were modeled as “soft 

constraints” to avoid schedule infeasibilities. The missing deliveries are expressed by the 

continuous variables    
        , which are penalized in the objective function through 

coefficient   . Practice demonstrates that this is often the case when dealing with 

medium and long term scheduling. Finally, expressions (6.18) express the variables 

domain.  
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Objective Function 

The objective function is given by expression (6.19) and maximizes the profit, 

taking into account the value of the products, inventory costs of the materials and 

changeovers costs. The last term introduces a penalty cost for missing deliveries.  

   [∑ ∑       
        

    

    
     

 ∑ ∑   
      

  

     

 ∑ ∑ ∑ ∑         

                  

 ∑ ∑      
       

    
     

] 

(6.19) 

6.6   Solution Methods 

The DS model can directly be solved using an exact method such as the branch-and-

bound (B&B). However, with the increase of the number of resources or the number of 

tasks or, mainly, with the increase of the time periods (resulting from decreasing the 

duration of the time intervals or increasing the scheduling horizon), the model would lead 

to large optimization problems that would hardly be solved by exact methods in 

acceptable amount of time. Alternatively, decomposition approaches can be applied to 

obtain satisfactory solutions quickly.  

In this work, we have decided to apply a rolling horizon approach based on the 

works by Dimitriadis et al. (1997) and Erdirik‐Dogan and Grossmann (2007), and the 

reformulation and branching strategy proposed by Velez and Maravelias (2013). The 

rolling horizon approach considers the detailed scheduling model (DS) and an aggregate 

planning model (AP), and is applied as depicted in Figure 6.6. The algorithm will 

progressively increase the horizon of the DS model and shrink the horizon of the AP 

model. The reformulation and branching strategy goal is to improve the performance of 

the B&B by reducing the symmetry of the scheduling solutions. Several modifications 

were performed in both methods so as to improve their performance. 
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6.6.1   Aggregate Planning Model (AP model) 

The main objectives of the AP model are to obtain a fair estimative of the scheduling 

solution, at a low computational time, and to trigger adequate production needs at the 

time interval boundary with the DS model, when running the rolling horizon approach. 

To achieve that, sequencing and detailed timing variables of the DS model were ignored 

and the planning horizon was divided in periods having duration of one week. Product 

demand and the corresponding deliveries take place only at these periods; therefore they 

are called delivery periods. Note that, the AP model considers the same delivery periods 

as the DS model. 

Although solutions obtained by the AP model cannot be applied because tasks-

sequencing are not modeled, the model yields upper bounds on the profit value. The AP 

model is based on the aggregate planning model proposed by Erdirik‐Dogan and 

Grossmann (2007) and is defined by constraints (6.20) to (6.30) and objective function 

(6.31). We have considered the continuous variables    
   that define the availability of 

material   at delivery period  , the continuous variables    
   that define the total amount 

of material processed by task   at delivery period   and the continuous variables    
   

that define the amount delivered of final product   at delivery period  .  

Materials balance constraints (6.20) are defined for all delivery periods and 

materials. The proportion of material consumed and produced is given by the parameter 

   . Since the detailed timing and sequencing constraints have not been considered, there 

is no need to model the availability of the processing units. The minimum and maximum 

materials availability is given by constraints (6.21); the demand “soft-constraints” are 

given in (6.22); and deliveries cannot take place for raw materials and intermediaries, see 

constraints (6.23) and (6.24). Constraints (6.25) and (6.26) bound the total amount of 

material processed by tasks of the non-regular products and of the campaign tasks 

respectively. They are similar to constraints (6.13) and (6.14) of the DS model, however 

in the AP model they are required to compute the number of batches of each task (the 

integer variables    
  ). 

The production capacity is expressed in terms of time available in the processing 

units by delivery period    
  . The first summation of constraints (6.27) defines the total 

time required by tasks      in processing unit   and the second summation accounts 

for an estimation of the changeovers times. The binary variables     
   determine if 
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product   is produced in unit   at delivery period   and the parameter      is the 

changeover time, which is assumed to be equal to all products and units. Since the tasks 

sequence is not known, the expression ∑      
  

          could lead to an overestimation 

of the changeovers times in the cases that the unit ends with one product in delivery 

period   and starts with the same product in delivery period    . Thus, the third term of 

constraints (6.27) is added so as to express the fact that the number of changeovers is 

equal to the number of products minus one. Constraints (6.28) and (6.29) are used to 

define the variables      and constraints (6.30) to define the variables domain.  

The task processing times is given by the parameter    , but is defined in a 

different way for the regular and non-regular products. Since the regular products are 

modeled through campaign tasks,     value is equal to the sum of the processing times of 

all tasks assigned to unit e in the campaign task. Thus in campaign tasks,     retrieves the 

total time campaign task   requires from processing unit  . Regarding the non-regular 

products, the value of     is just determined by the processing time of each task, so 

      . 

Constraints 

   
   (  

                 
       )

 ∑       
      

               

    

 (6.20) 

     
      

                  
(6.21) 

   
          

      
         

                    
(6.22) 

   
                   

(6.23) 

   
                        

(6.24) 

   
      

      
       

       
               

         
(6.25) 

  
      

      
     

      
                  

(6.26) 

∑    
      ∑     

  

   

               
                

    

 
(6.27) 



6   Paper 4: Simultaneous Regular and Non-Regular Production Scheduling of 

Multipurpose Batch Plants 
181 

 

 

   
        

                          
(6.28) 

   
    ⌊

   
  

   
⌋      

                          
(6.29) 

   
                    

   
                    

   
                   

   
                   

   
                   

    
                          

(6.30) 

Objective Function 

The objective function (6.31) aims at maximizing the profit and is similar to the 

objective function of the DS model, differing only in the time and tasks sequencing 

aggregation.  

   [∑ ∑     
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(6.31) 

6.6.2   Rolling Horizon (RH Approach) 

The RH approach is defined by the DS model constraints for the detailed scheduling 

horizon and by the AP model constraints for the aggregate planning horizon. The 

objective is to maximize the profit given by the sum of the objective functions of the two 

models.  
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Figure 6.6 – Rolling horizon approach. 

Figure 6.6 depicts three iterations of the RH approach considering a scheduling 

horizon of six weeks and a rolling horizon window of two weeks. In each iteration, the 

task-unit assignment binary variables    
   determined in the previous iteration are fixed. 

By fixing those variables the computational complexity of the DS is reduced while some 

flexibility is kept on the batch size continuous variables    
  . In the last iteration, the DS 

model is applied to the entire scheduling horizon. Two different fixing strategies are 

tested. This will be explained in detail below. 

An important choice in this approach is the length of the scheduling horizon 

(rolling horizon window) that the DS model should consider. This length cannot be too 

large as it would result in prohibitive solution times of the DS model, and it cannot be too 

small as it is limited by the production lead time of the products. 

An additional set of constraints is added to link both models. Constraints (6.32) 

impose that the materials available at the end of the detailed scheduling horizon are equal 

to the initial amount of materials available for the AP model. Constraints (6.33) enforce 

that no task is executed in the DS model if it cannot be finished. These constraints are 

important to ensure feasibility in the intervals boundaries between the DS and AP models, 

by blocking the occurrence of tasks that may lead to overproduction, as explained by 

Dimitriadis et al. (1997).  
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Constraints 

 
    
     

             
(6.32) 
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(6.35) 
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(6.36) 

Variables Fixing Strategies 

As mentioned, two distinct strategies are followed regarding variables fixing (see 

Figure 6.6). Strategy 1 is similar to the approach followed by Dimitriadis et al. (1997) and 

Erdirik‐Dogan and Grossmann (2007). Here, the binary variables    
   and       

   that are 

equal to 1 in each iteration of the RH are fixed in the next iteration through constraints 

(6.34) and (6.35). Additionally, we proposed a mixed approach, Strategy 2, which 

determines, in each iteration of the RH, the number of times a task runs    
     

 in the 

DS model. In the right-hand side of expression (6.36) the parameter    
     

 gives the 

number of tasks occurrences grouped by alternative tasks. The set    gives the group of 

tasks, while set     gives the tasks considering the existing alternative processing units to 

task   . Then, in the following iteration of the RH, constraints (6.34) and (6.35) are 

applied in the first time intervals, while constraints (6.36) are applied in the last time 

intervals of the DS model, as shown in Figure 6.6. In this way, Strategy 2 fixes the binary 

variables in beginning of the scheduling horizon     and allows for some flexibility on 

the task-unit assignment at the end of this time horizon, where there is the link with the 

AP model.  
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6.6.3   Reformulation and Branching Strategies 

Velez and Maravelias (2013) studied the scheduling problem and proposed a 

reformulation for the MILP model that considers new integer variables    
   for 

determining the number of times task   runs. The authors demonstrated that giving higher 

branching priority to the    
   variables lead to the elimination of many symmetric 

solutions and improved the computational performance of the scheduling model. To 

account for this approach, constraints (6.37) and (6.38) are added to the DS model. 

Moreover, since the DS model accounts for sequence-dependent changeovers, we 

propose new integer variables    
   to determine the number of changeovers associated 

to product  . These new variables are defined by constraints (6.39). 

Constraints 

∑    
      

  

     

          
(6.37) 

     
   ⌊

   

  
⌋        

(6.38) 

∑ ∑ ∑ ∑         
  

                 

    
                         

(6.39) 

6.7   Results 

In this section, we propose to solve the illustrative example depicted in Figure 6.7 and a 

real case-study from a chemical-pharmaceutical industry shown in Figure 6.1. The 

proposed algorithm for regular and non-regular production scheduling and the solution 

methods are tested for several time horizons (4, 8 and 12 weeks). Although scheduling 

scenarios using campaign tasks cannot be directly compared with scenarios that consider 

the detailed recipes, since they target different scheduling solutions, we extensively 

compare both scenarios so as to evaluate the impact of the cyclic operation in the 

schedules.  

The formulations used are summarized in Table 6.2 and were implemented using 

ILOG/CPLEX version 12.5.1, running on an Intel Xeon at 3.33GHz machine with 24 GB 

of RAM. We test three reformulations of the DS model. DS1 and DSp1 models account 

for the reformulation and branching priority as proposed by Velez and Maravelias (2013). 
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DS2 model includes the reformulation with the    
   and    

   integer variables and 

giving no branching priority. Finally, RH1 implements the variables fixing strategy 1 and 

RH2 considers the variables fixing strategy 2. In strategy 2, constraints (6.34) and (6.35) 

are applied to the detailed scheduling horizon minus the last week, while constraints 

(6.36) are applied over the last week. For example, in the 8 weeks scheduling and 

assuming a rolling horizon window of 3 weeks, in the second iteration of the RH 

constrains (6.34) and (6.35) are applied in the two first weeks and constrains (6.36) are 

applied in the third week. 

Table 6.2 – Formulations. 

Model Description Formulation 

AP Aggregate planning model (6.20) to (6.31) 

DS Detailed scheduling model (6.9) to (6.19) 

DS1 
Detailed scheduling model with 

reformulation 1 

(6.9) to (6.19), (6.37) 

and (6.38) 

DSp1 

Detailed scheduling model with 

reformulation 1 and branching 

priority on the variables    
   

(6.9) to (6.19), (6.37) 

and (6.38) 

DS2 
Detailed scheduling model with 

reformulation 2 

(6.9) to (6.19) and 

(6.37) to (6.39) 

RH1 
Rolling horizon with variables fixing 

strategy 1 

(6.9) to (6.18), (6.20) to 

(6.30) and (6.32) to 

(6.35) 

RH2 
Rolling horizon with variables fixing 

strategy 2 

(6.9) to (6.18), (6.20) to 

(6.30) and (6.32) to 

(6.36) 

6.7.1   Illustrative Example 

Here we solve a scheduling problem of reduced size, where 3 products requiring each, 

one reaction task and one filtering task, are considered. The reaction tasks take 16 hours 

and can only be executed by reactor U1, while filtering tasks take 8 hours and have two 

suitable filters, F1 and F2 (see Figure 6.7).  

Since the recipes of the products have a similar structure, they can be represented 

by similar campaign tasks, as depicted in Figure 6.8. The maximum capacity of unit U1 is 

5 tons, and of the filters is 3 tons. Raw materials and final products have finite 

intermediate storage (FIS) and intermediaries follow a zero-wait storage policy (ZW). 

Products P1, P2 and P3 economic values are 10, 20 and 15 monetary units (m.u.); the raw 
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material costs are 5, 3 and 6 m.u.; and the storage costs 0.05, 0.08 and 0.04 respectively. 

Since all the processing times of the tasks are multiple of 8, the time periods were 

assumed to have a fixed duration of 8 hours. The sequence-dependent changeover is of 24 

hours and equal to all three products. The missing delivery costs    are twice the value 

of the products. 

 

Figure 6.7 – Product recipes for the illustrative example. 

 

Figure 6.8 – Illustrative example: campaign task structure.  

The numerical results shown in tables present the following data: the model used; 

the scheduling time horizon; the number of integer and continuous variables and 

constraints; the number of nodes and iterations; the value of the linear relaxation of the 

MILP; the integrality gap; the objective function value and the computational time 

required for solving the instance. Regarding the RH approach the data shown is related to 

the last iteration, with exception of the CPU time column that displays the total time 

required by the algorithm. 
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6.7.1.1   4 Weeks Scheduling 

The solution statistics of the four weeks scheduling problem are given in Table 6.3. As 

can be seen, all models with the exception of the AP model obtained the optimal solution 

of 1,962.3 m.u.. The RH1 required less CPU time than the other models, obtaining the 

optimal solution in just 11.9 CPU seconds (assuming that no campaign tasks are used). 

Note that, RH1 and RH2 have rolling horizon windows equal to 2 delivery periods. 

Moreover, results show that DSp1 model required more than twice the CPU time of DS, 

DS1 and DS2 models, having also higher number of nodes and iterations. 

Using campaign tasks for the three products, the instance size reduced as well as 

the CPU time needed to solve the problem (see Table 6.10 in Appendix B). Again the 

RH1 had the best performance, obtaining the optimal solution in just 5.4 CPU seconds. 

Table 6.3 – Four weeks schedule (4W = four weeks scheduling horizon).  

Model/hori

zon 

Int. variables/cont. 

variables/constraint

s 

Nodes Iterations 
LP 

relaxation 

Gap 

(%) 
Objective 

CPU 

time 

(sec) 

AP/4W 72/145/300 117 673 2,397.36 0.01 2,119.8 0.7 

DS/4W 2295/3337/5646 12,259 2,183,279 2,245.55 0.01 1,962.3 64.5 

DS1/4W 2304/3337/5664 16,731 2,292,919 2,245.55 0.01 1,962.3 60.6 

DSp1/4W 2304/3337/5664 26,301 5,880,359 2,245.55 0.01 1,962.3 142.1 

DS2/4W 2307/3337/5667 13,211 1,750,774 2,245.55 0.00 1,962.3 50.9 

RH1/4W 2295/3337/5703 16 3,787 2,011.01 0.00 1,962.3 11.9 

RH2/4W/ 2295/3337/5650 10,225 1,261,106 2,192.70 0.00 1,962.3 30.0 

6.7.1.2   8 Weeks Scheduling 

With the increase of the scheduling horizon to eight weeks and assuming no campaign 

tasks, none of the DS models proved optimality in the time limit of 3600 CPU seconds 

(see Table 6.4). DS2 requiring just three more binary variables and constraints than DS1, 

performs better computationally. 

Assuming campaign tasks the instance became easier to solve and DS, DS1 and 

DS2 models proved optimality within the 3600 CPU seconds. Additionally, results show 

that the reformulation DS2 had better performance than the DS, DS1 and DSp1 models, 

and that it seems preferable to use the default CPLEX branching priority, instead of 

giving priority to the    
   variables. In both instances DSp1 had the worst performance. 
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Table 6.4 – Eight weeks schedule (8W = eight weeks scheduling horizon; C = campaign tasks 

used). 

Model/horiz

on/aggregati

on 

Int. 

variables/cont. 

variables/constrai

nts 

Nodes Iterations 

LP 

relaxatio

n 

Gap 

(%) 
Objective 

CPU 

time 

(sec) 

AP/8W 144/289/600 3,537 27,943 4,967.20 0.01 4,553.9 1.0 

DS/8W 4563/6625/11214 245,719 77,233,056  4,631.96 2.78 4,111.5 3,601.4 

DS1/8W 4572/6625/11232 323,250 101,340,287 4,631.96 3.09 4,104.0 3,601.5 

DSp1/8W 4572/6625/11232 196,492 88,934,784 4,631.96 8.63 3,940.7 3,601.3 

DS2/8W 4575/6625/11235 361,553 109,406,063 4,631.96 1.79 4,117.5 3,601.5 

DS/8W/C 3549/4597/7152 1,027,859 115,570,751 4,630.48 0.01 4,121.5 2,165.0 

DS1/8W/C 3552/4597/7158 755,217 64,563,162 4,630.48 0.01 4,121.5 1,133.3 

DSp1/8W/C 3552/4597/7158 694,648 160,640,734 4,630.48 2.01 4,121.5 3,601.3 

DS2/8W/C 3555/4597/7161 639,363 56,872,981 4,630.48 0.01 4,121.5 956.2 

 

In Figure 6.9, it is represented the CPU times and objective function values 

assuming that recipes are aggregated using campaign tasks. Concerning just the 

computational time, the RH is certainly the most competitive method. While DS2 

required 956.2 CPU seconds to obtain a solution of 4,121.5 m.u., RH2.2 (rolling horizon 

window equal to 4 delivery periods) just took 63.7 CPU seconds to obtain a solution with 

profit equal to 4,112.2 m.u. (see Table 6.11 and Table 6.12 in Appendix B). Nevertheless, 

results indicate that RH approach is very dependent on the definition of the variables 

fixing strategy and the length of the rolling horizon window. As shown in Figure 6.9, for 

the same rolling horizon window the RH2 had always better results than RH1 and 

solutions tend to improve with the increase of the rolling horizon window. The lower 

profit solution was obtained by RH1/8W/C which is by 5% less than the best solution 

found. The best solution among the RH methods was retrieved by RH2.2/8W/C
 
that 

assumes a rolling horizon window of 4 delivery periods and is just by 0.2% inferior to the 

best solution found.  
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Figure 6.9 – Eight weeks schedule: models computational times and objective function values. 

(RH1 and RH2 have rolling horizon windows equal to 2 delivery periods; RH1.1 and RH2.1 have 

rolling horizon windows equal to 3 delivery periods; RH1.2 and RH2.2 have rolling horizon 

windows equal to 4 delivery periods). 

6.7.1.3   12 Weeks Scheduling 

The longest scheduling horizon this paper considers is of 12 weeks. The best solution 

found was obtained by the DS model in 3,395 CPU seconds, assuming campaign tasks, 

with a profit of 6,182.8 m.u. (see  

Figure 6.10). The lower profit solution, among the DS models, was retrieved by DSp1. 

Although the use of campaign tasks leads to a reduction of more than 20% of the number 

of integer variables, the DS1 and DS2 models could not deliver solutions within an 

integrality gap of 5% and time limit of 3600 CPU seconds. 

Once more the quality of the solutions delivered by the RH approaches strongly 

depends on the variables fixing strategy and on the length of the rolling horizon window. 

The lower profit solution was retrieved by RH2 and is by 6 % inferior to the best solution. 

The best solution among the RH approaches was obtained in just 132.9 CPU seconds by 

RH2.2 with a profit of 6,162.1 m.u.. 
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Figure 6.10 – Twelve weeks schedule: models computational times and objective function values. 

(RH1 and RH2 have rolling horizon windows equal to 2 delivery periods; RH1.1 and RH2.1 have 

rolling horizon windows equal to 3 delivery periods; RH2.2 and RH2.2 have rolling horizon 

windows equal to 4 delivery periods). 

Overall, the DS models worked reasonably well. However, with the increase of the 

scheduling horizon the DS models could not prove optimality. In opposition, the AP 

model retrieved solutions in very short times but overestimated the production capacity. 

Looking into the 4, 8 and 12 weeks problems, we can conclude that using campaign tasks 

improves the computational performance of the models. The RH approaches ran quite fast 

and obtained good solutions or even optimal solutions. The variables fixing strategy and 

the length of the rolling horizon window strongly affect the quality of the solutions. In 

general, the variables fixing strategy 2 requires more CPU time, but obtains better 

solutions than strategy 1. This is related to the flexibility of constraints (6.36) that do not 

impose a fix task-unit assignment for the time intervals of the DS model that interface 

with the AP model. In other words, task-unit assignment is allowed to change in order to 

better accommodate the production requirements in the next iteration of the RH approach, 

while the CPU time required to solve the DS model is kept low. We can expect better 

solutions if a larger RH window is considered, since scheduling decisions are taken 

considering more data. Nevertheless, it is important to note that with the increase of the 

rolling horizon window the scheduling problem becomes more difficult to solve. 

Therefore, RH window size must be defined taking into account the CPU time required to 

solve the scheduling problem. In order to emphasize the complexity of modeling 

sequence-dependent changeovers in scheduling problems, we note that the 12 weeks 
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instance without changeovers can be solved to optimality in less than 1 second (see Table 

6.15 in Appendix B).  

6.7.2   Real Case Study 

In this section, we solve a real-world scheduling problem from a chemical-

pharmaceutical industry. We consider a multipurpose batch plant producing the 5 

products depicted in Figure 6.1. These are to be scheduled in a time horizon of up to 3 

months and the schedule must give the tasks-unit assignment and sequencing of the 

regular and non-regular products. 

Product PA recipe has 11 tasks and one stable intermediary (PA_S4), requiring a 

production time of 304 hours (sum of the tasks processing times required to manufacture 

one batch). Product PB has 5 tasks, one stable intermediary and a total production time of 

72 hours. Product PC has 6 tasks that require a total of 128 hours. Product PD has 10 

tasks and takes 184 hours. Finally, Product PE has 11 tasks and takes 224 hours. The 

objective is the profit maximization. The scheduling horizon was discretized into time 

intervals of 8 hours, since all task durations are assumed to be multiples of 8. The 

sequence-dependent changeover tasks take 24 hours and the missing delivery costs    

are twice the value of the products. 

We have considered two different production types: non-regular and regular 

production. The products that are produced in a regular basis have been assigned to 

specific production lines, while the non-regular products have more flexibility regarding 

the task-unit assignment. Note that, in the course of the process development of a new 

drug, the set of alternative processing units available for each task tends to become 

smaller leading to stable and well-defined recipes. Thus, in its operation the company 

considers Products PA and PB as regular products that are represented here by the 

respective campaign tasks (see Figure 6.5) and products PC, PD and PE as non-regular 

products, which are represented by their detailed recipe as depicted in Figure 6.1. The 

case study is solved considering 4, 8 and 12 weeks scheduling horizons scenarios. 

In the DS models we have assumed two stopping criteria, the integrality gap of 5% 

and time limit of 14,400 seconds, and in the RH approaches, we have considered the 

integrality gap of 5% and time limit of 3,600 seconds. 
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6.7.2.1   4 Weeks Scheduling 

The results of the 4 weeks scheduling instance are shown in Table 6.5. The best solution, 

without campaign tasks, was obtained by DS1 and DSp1 models in 14,400 CPU seconds, 

with a profit equal to 36,684.7 m.u., while DS2 delivered a solution within 4.98% of the 

optimum in just 7,958.6 CPU seconds. Overall, the RH approaches performed quite well. 

For example, the solution of RH2 was obtained in just 3,610.4 CPU seconds and is by 2% 

inferior to the best solution found. 

Modeling the regular products PA and PB with campaign tasks led to reduction of 

the profit by 7% to 34,268.0 m.u. The storage costs are higher when using campaigns 

since it is required keeping stock of the stable intermediaries. This can be interpreted as 

the cost of the cyclic operation for the regular products. Additionally, note that campaign 

tasks impose strict tasks sequencing for the regular products, which results in a loss of 

flexibility when performing scheduling. On the other hand, campaign tasks allow the 

definition of production lines with cyclic operation, and the control over the inventory of 

the stable intermediaries, leading to more responsive schedules. The DS model had the 

best performance among the detailed models, and the RH2 approach obtained a solution 

within 6% of the best solution, in just 76.6 CPU seconds. Again, results show that RH2 

achieved better results when compared with RH1, but at cost of higher CPU time. 

Table 6.5 – Four weeks schedule (4W = four weeks scheduling horizon; C = campaign tasks used). 

Model/horiz

on/aggregati

on 

Int. variables/cont. 

variables/constraints 
Nodes Iterations 

LP 

relaxation 

Gap 

(%) 

Objectiv

e 

CPU 

time 

(sec) 

DS/4W 15045/18937/33525 198,489 180,675,428 39,524.40 5.52 36,441.2 14,402.9 

DS1/4W 15110/18937/33655 92,545 94,107,274 39,524.40 5.06 36,684.7 14,414.2 

DSp1/4W 15175/18937/33655 91,782 93,376,456 39,524.40 5.06 36,684.7 14,412.6 

DS2/4W 15115/18937/33660 61,821 66,295,967 39,524.40 4.98 36,612.5 7,958.6 

RH1/4W 15045/18937/33618 8,098 2,337,094 37,268.50 4.99 34,206.9 136.2 

RH2/4W 15045/18937/33589 33,768 34,907,653 39,128.90 5.03 36,102.3 3,610.4 

DS/4W/C 13855/15707/27051 106,882 156,144,030 37,946.40 6.19 34,268.0 14,402.7 

DS1/4W/C 13906/15707/27153 84,583 172,741,014 37,946.40 10.80 33,177.3 14,402.1 

DSp1/4W/C 13957/15707/27153 83,771 170,967,461 37,946.40 10.83 33,177.3 14,402.6 

DS2/4W/C 13911/15707/27158 70,537 111,335,068 37,946.40 5.00 34,179.9 9,311.8 

RH1/4W/C 13855/15707/27079 0 5,244 33,470.90 4.78 31,329.4 22.6 

RH2/4W/C 13855/15707/27076 1,859 727,083 36,505.10 3.37 32,275.3 76.6 
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Figure 6.11 depicts the schedule solution of approach RH2/4W/C, thus assuming 

that campaign tasks are used to model the regular products PA and PB. As can be seen, 

two campaigns of PA and four campaigns of PB are scheduled. The first campaign of PB 

starts in week 1 and runs three campaign cycles. At the end of this week 360 kg of PB are 

delivered. This campaign is then interrupted to produce one campaign cycle of PA that 

delivers 235 kg of this product, at the end of week 2. Then, the second campaign of PB 

starts, having also three cycles and delivering 360 kg of this product in week 2. The third 

campaign of PB is initiated in week 3 and has three cycles. At the end of this week, 360 

kg of PB, 64 kg of PC and 208 kg of PE are delivered. In the last week, the second 

campaign of PA and the fourth campaign of PB are performed, delivering 235 kg of PA, 

360 kg of PB and 200 kg of PE. 
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Figure 6.11 – 4 Weeks scheduling of regular and non-regular production (model RH2/4W/C). 
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6.7.2.2   8 Weeks Scheduling 

In the 8 weeks scheduling the RH approaches performed better than the DS models, as 

can be seen in Figure 6.12. The CPU times of the RH approaches are significantly inferior 

to the CPU times required by the DS models and the best solutions found in the scenarios 

with and without campaign tasks were delivered by the RH2 model.  

Assuming campaign tasks, RH2 reached a profit of 60,048.9 m.u., which is by 5% 

inferior to the profit considering that no campaign tasks are used. Among the DS models, 

the time limit of 14,400 CPU seconds was not sufficient to obtain good quality solutions. 

The use of the reformulation and branching strategies presented in section 6.6.3 were not 

advantageous in this instance, since the resultant integrality gaps were higher than 30% 

(see in Table 6.16 in Appendix B). 

 

Figure 6.12 – Eight weeks schedule: models computational times and objective function values. 

(RH1 and RH2 have rolling horizon windows equal to 2 delivery periods; RH1.1 and RH2.1 have 

rolling horizon windows equal to 3 delivery periods). 

6.7.2.3   12 Weeks Scheduling 

In the 12 weeks instance, we opted to just apply the RH approach (see Figure 6.13), since 

in the 8 weeks scheduling horizon the DS models demonstrated to be computationally 

intractable.  

Without campaign tasks, the best solution found has a profit of 91,909.2 m.u. and 

was obtained by RH2.1 in 5,491.0 CPU seconds. Assuming campaign tasks RH2.1 

obtained as well the best solution with a profit of 83,801.40 m.u., which is by 9% inferior 

to the scenario that does not consider campaign tasks. The RH approaches demonstrated 

to be a good alternative when exact methods (as are the DS models presented in this 

paper) tend to obtain solutions with high integrality gaps. In practical terms, the CPU 
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time required by the RH approaches to solve the 3 months scheduling problem has been 

considered acceptable by the company. 

 

Figure 6.13 – Twelve weeks schedule: models computational times and objective function values. 

(RH1 and RH2 have rolling horizon windows equal to 2 delivery periods; RH1.1 and RH2.1 have 

rolling horizon windows equal to 3 delivery periods). 

Generally, the definition of campaign tasks responds to one important requirement 

that we have found in the chemical-pharmaceutical industry: products with well-defined 

recipes are typically produced in the same processing units and follow predefined 

production sequences. Moreover, the number of binary and continuous variables and 

constraints decreased as a result of the task and resource aggregation done in the 

campaign tasks. Campaign tasks provide more responsive schedules by decreasing the 

lead time, but may have higher storage costs as a result of the storage policy for the stable 

intermediaries. The definition of these aggregate tasks allows as well a variation of the 

amounts being produced, limited by a minimum and maximum production lot, which is 

not possible to achieve if the typical periodic scheduling approach is applied. 

6.8   Conclusions 

This paper addresses the scheduling multipurpose of batch plants that simultaneously 

consider two different operating conditions – regular and non-regular production. The 

former encompasses the products that are manufactured regularly in predefined 
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production lines and the latter includes under development products having no defined 

production lines.  

A solution approach to solve such problem is proposed, which was developed 

along mathematical formulations based on RTN. The approach considers the integration 

of campaign and short-term scheduling in multipurpose batch plants, and proposes a 

three-step procedure that firstly determines the campaign schedule, secondly creates the 

campaign tasks and thirdly obtains a detailed schedule for the campaign and non-regular 

products. Campaigns are modeled as aggregate tasks that take into account the production 

resources determined previously, while the non-regular products are modeled using their 

detailed recipe. Campaign tasks proved to be an efficient concept in the cases where the 

definition of production lines requires cyclic operation mode, which is the procedure 

followed at the pilot company of this study. In the case study, the use of campaign tasks 

led to a reduction of the profit by 7%, 5% and 9% in the 4, 8 and 12 weeks schedules 

respectively, when compared with the scenarios that do not consider campaign tasks. This 

profit reduction can be interpreted as the cost of the cyclic operation for the regular 

products. 

To deal with the computational complexity of the larger instances, we have decided 

to compare the performances of a rolling horizon approach based on Dimitriadis et al. 

(1997) and Erdirik‐Dogan and Grossmann (2007) with the reformulation and branching 

strategy proposed by Velez and Maravelias (2013). Moreover, we have performed several 

modifications in both methods in order to improve their performance. We propose a 

reformulation that considers new integer variables for the number of changeovers. 

Overall, the reformulation proposed by Velez and Maravelias (2013) together with the 

proposed reformulation improved the results of the base formulation. The combination of 

the two reformulations demonstrated better performance when compared with the 

reformulation of Velez and Maravelias (2013). Nevertheless, numerical results show that 

it is preferable to use the default CPLEX branching priority. 

In the smaller instances, the DS models obtained the best solutions in very 

competitive time. Increasing the size of the scheduling problem, the DS models led to 

solutions with high integrality gaps (over than 30%) and required considerable CPU time, 

while the RH approaches obtained better solutions in very small CPU time. The 

performance of the RH approaches can be truly improved by adapting the variables fixing 
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strategy and the length of the rolling horizon window to the problem. Additionally, it is 

important to note that the RH can naturally integrate the reformulation strategies for 

improving the performance of the algorithm. 

For further study the authors aim to address other task-unit and temporal 

decomposition approaches inspired by current industrial practices. Moreover, 

improvements on the solutions obtained by the rolling horizon, while keeping this 

approach tractable for large instances, will be also explored. 

Notation 

Indices 

l campaign 

d delivery period 

e processing unit 

k, k' task 

m material 

p product 

r resource 

t time interval 

Sets 

    production tasks (without considering processing units) 

    alternative tasks to k 

  
    delivery periods of product m of the detailed scheduling model 

     delivery periods of the aggregate planning model 

  
    delivery periods of product m of the aggregate planning model 

E  processing units (equipments) 

        processing units that are fixed in the rolling horizon approach 

       scheduling horizon 
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          time horizon corresponding to the fixed tasks 

I  intermediaries 

    intermediaries associated to campaign   

   campaigns  

M  materials (raw materials, intermediaries and final products) 

   tasks 

        tasks that are fixed in the rolling horizon approach 

    tasks that require resource r 

    tasks that consume or produce material m 

    tasks associated to unit e 

    tasks k associated to campaign l 

  
    tasks of the non-regular products that require unit e 

    campaign tasks of the regular products 

  
   tasks k associated to campaign l and unit e 

     tasks k of product p associated to unit e 

P  products 

        products that are fixed in the rolling horizon approach 

     products associated to campaign   

    products p that can be produced in unit e 

R  
production resources (processing units, intermediaries and final 

products) 

    
production resources (processing units, intermediaries and final 

products) associated to campaign   

Parameters 

    processing time of task k 

     
processing time of task k in unit e (used in regular and non-regular 

products) 

      
allocation/release coefficient of resource r in task k at time   relative to 
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the start of task 

      
allocation/release coefficient of unit e in task k at time   relative to the 

start of task 

      
production/consumption of resource r in task k at time   relative to the 

start of task 

      
production/consumption of material m in task k at time   relative to the 

start of task 

    value of product m 

           

allocation/release changeover coefficient of unit   from product    to 

product     being at product   and at time   relative to the start of the 

changeover task 

     production/consumption of material m in task k 

    non-delivery penalty factor for product m 

  
      

     minimum and maximum amounts for product r 

  
     cost of materials for product m 

  
     cost of storage of material m 

       changeover duration 

    changeover cost in unit e 

         changeover time between product    and product     in unit e 

   
    length of delivery period d 

   
       

     minimum and maximum lot size of product r at campaign task k 

   
     

  number of times task k runs (used in the rolling horizon approach) 

   
     ,   

      minimum and maximum amount of product m for delivery d 

   
     maximum resource availability of resource r at time interval t 

   
     maximum material m availability at time interval t 

   
     maximum resource availability of material m at delivery d  

  
        material m availability in the beginning of the planning horizon 

  
      resource r availability in the beginning of the scheduling horizon 

  
      unit e availability in the beginning of the scheduling horizon 
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      material m  availability in the beginning of the scheduling horizon 

   cycle time 

     length of the scheduling horizon 

    time interval of the delivery period d 

   
       

     minimum and maximum capacity of unit e for task k 

    raw materials 

     raw materials associated to campaign   

 

Variables  

   
     

continuous variables that define the delivery of product m at time 

interval t 

   
         continuous variables that define the slack of product m at delivery d 

   
    

continuous variable that define the amount of product m delivered at 

period d 

   
         continuous variable that define the slack of product m at delivery d 

    continuous variables that define the net production of resource r 

  
       

continuous variables that define the resource r availability in the 

beginning of the scheduling horizon 

     
continuous variables that define the resource availability r at time 

interval t  

    
    

continuous variables that define the resource availability r of product p 

at time interval t 

   
      allocation of unit   at the beginning of the scheduling horizon 

   
    

continuous variables that define the material availability   at time 

interval    

   
     

continuous variables that define the availability of material m at 

delivery d 

  
        

continuous variables that define the material m availability in the 

beginning of the planning horizon (used in the rolling horizon) 

       
    

continuous variables that define the batch size of task k at time interval 

t  
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continuous variables that define the total amount of material processed 

by task k at delivery d 

        
     

binary variables that define the changeover task in unit   between 

product  ′ and product  ′′ and at time interval   

       
    binary variables that define if task k starts at time interval t 

  
    integer variables that define the number of times task k runs 

   
    

integer variables that define the number of changeovers associated to 

product p 

   
    

integer variables that define the number of occurrences of task k at 

delivery d  

    
    

binary variables that define if product p is produced in unit e at 

delivery period d 

     binary variables that define the selection of the storable intermediaries 

Appendix A – Problems Data 

Table 6.6 – Demand in tons for the illustrative example. 

Weeks 1 2 3 4 5 6 

Product min max min max min max min max min max min max 

P1 5 20 20 30 5 40 0 0 5 15 0 0 

P2 0 20 10 10 10 30 20 30 10 30 15 30 

P3 0 30 0 0 10 30 10 20 5 10 5 20 

Weeks 7 8 9 10 11 12 

Product min max min max min max min max min max min max 

P1 0 0 20 30 0 20 15 25 20 40 10 20 

P2 5 5 10 40 10 60 5 10 5 15 10 20 

P3 0 0 15 40 0 0 20 30 0 30 10 20 
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Table 6.7 – Demand in kg for the case study. 

Weeks 1 2 3 4 5 6 

Product min max min max min max min max min max min max 

PA 0 0 200 250 0 0 200 300 200 300 200 300 

PB 200 360 200 360 200 360 200 360 0 0 200 360 

PC 0 0 0 0 70 140 0 0 0 0 0 0 

PD 0 0 0 0 180 260 0 0 0 0 0 0 

PE 0 0 0 0 0 0 140 200 0 0 0 0 

Weeks 7 8 9 10 11 12 

Product min max min max min max min max min max min max 

PA 0 0 200 300 0 0 200 300 0 0 200 300 

PB 200 360 200 360 0 0 360 480 0 0 360 480 

PC 0 0 200 220 0 0 100 120 0 0 0 0 

PD 0 0 200 220 0 0 0 0 0 0 200 220 

PE 0 0 160 180 0 0 140 160 0 0 140 160 

Table 6.8 – Processing units’ characteristics for the case study. 

Unit 
Max. 

Volume 

Min. 

Volume 

U1 4000 100 

U2 6300 150 

U3 10000 50 

U4 1000 100 

U5 1300 50 

U6 1000 50 

U7 7000 130 

U8 4000 80 

U9 6300 150 

U10 4000 120 

F1 800 50 

F2 500 30 

D1 900 100 

D2 600 100 

V1 1000 100 
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Table 6.9 – Products value and raw material costs for the case study (m.u. –monetary units). 

 

Economic 

value 

[m.u]  

Raw 

material 

cost 

[m.u/kg]  

PA 10 5 

PB 20 3 

PC 15 6 

PD 30 11 

PE 70  36 
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Appendix B – Solution Statistics 

Table 6.10 – Illustrative example: four weeks schedule with campaign tasks. 

Model/horizo

n/aggregation 

Int. variables/cont. 

variables/constraints 
Nodes Iterations 

LP 

relaxation 

Gap 

(%) 

Objecti

ve 

CPU 

time 

(sec) 

AP/4W/C 48/85/204 0 51 2,303.09 0.00 2,090.0 0.3 

DS/4W/C 1785/2317/3600 22,606 1,409,338 2,243.73 0.01 1,962.3 21.3 

DS1/4W/C 1788/2317/3606 10,508 693,224 2,243.73 0.01 1,962.3 16.9 

DSp1/4W/C 1788/2317/3606 53,784 5,283,160 2,243.73 0.01 1,962.3 55.0 

DS2/4W/C 1791/2317/3609 16,471 1,190,734 2,243.73 0.01 1,962.3 22.3 

RH1/4W/C 1785/2317/3623 0 911 2,009.23 0.00 1,962.3 5.4 

RH2/4W/C 1785/2317/3602 12,666 617,703 2,191.95 0.01 1,962.3 13.9 

Table 6.11 – Illustrative example: eight weeks schedule with campaign tasks. 

Model/horiz

on/aggregati

on 

Int. 

variables/cont. 

variables/constr

aints 

Nodes Iterations 
LP 

relaxation 

Gap 

(%) 

Objectiv

e 

CPU 

time 

(sec) 

AP/8W/C 96/169/408 0 120 4,766.13 0.00 4,397.5 0.3 

DS/8W/C 3549/4597/7152 1,027,859 115,570,751 4,630.48 0.01 4,121.5 2,165.0 

DS1/8W/C 3552/4597/7158 755,217 64,563,162 4,630.48 0.01 4,121.5 1,133.3 

DSp1/8W/C 3552/4597/7158 694,648 160,640,734 4,630.48 2.01 4,121.5 3,601.3 

DS2/8W/C 3555/4597/7161 639,363 56,872,981 4,630.48 0.01 4,121.5 956.2 

RH1/8W/C 3549/4597/7223 3,953 114,599 3,991.50 0.01 3,918.2 9.7 

RH2/8W/C 3549/4597/7202 15,207 749,948 4,030.27 0.00 3,949.2 36.4 

Table 6.12 – Illustrative example: eight weeks schedule with campaign tasks and different rolling 

horizon windows. 

Model/horizo

n/aggregation 

Int. variables/cont. 

variables/constraint

s 

Nodes Iterations 
LP 

relaxation 

Gap 

(%) 
Objective 

CPU 

time 

(sec) 

RH1.1/8W/C 3549/4597/7223 2,370 82,848 4,146.74 0.00 4,046.4 21.9 

RH2.1/8W/C 3549/4597/7203 10,083 650,502 4,226.94 0.00 4,081.3 47.3 

RH1.2/8W/C 3549/4597/7198 46,449 2,734,607 4,228.89 0.01 4,040.5 57.4 

RH2.2/8W/C 3549/4597/7180 23,631 2,245,720 4,387.78 0.01 4,112.2 63.7 
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Table 6.13 – Illustrative example: twelve weeks schedule.  

Model/horizo

n 

Int. 

variables/cont. 

variables/constrai

nts 

Nodes Iterations 

LP 

relaxatio

n 

Gap 

(%) 

Objecti

ve 

CPU 

time 

(sec) 

AP/12W 216/433/900 10,528 149,206 7,561.25 0.01 6,973.1 2.0 

DS/12W 6831/9913/16782 219,941 70,867,983 6,971.51 6.27 6,150.1 3,602.0 

DS1/12W 6840/9913/16800 185,686 67,646,537 6,971.51 7.10 6,156.4 3,602.2 

DSp1/12W 6840/9913/16800 89,491 49,004,502 6,971.51 14.71 5,805.0 3,601.8 

DS2/12W 6843/9913/16803 142,460 57,272,458 6,971.51 8.16 6,062.6 3,601.9 

RH1/12W 6831/9913/17085 10,610 595,273 6,021.66 0.01 5,806.1 89.9 

RH2/12W 6831/9913/17033 13,688 1,384,723 6,072.89 0.00 5,806.1 177.4 

AP/12W/C 144/253/612 191 1,063 7,142.23 0.01 6,538.7 0.8 

DS/12W/C 5313/6877/10704 507,264 87,286,615 6,969.79 4.85 6,182.8 3,395.0 

DS1/12W/C 5316/6877/10710 603,294 89,337,815 6,969.79 5.64 6,100.2 3,602.1 

DSp1/12W/C 5316/6877/10710 270,009 82,649,307 6,969.79 7.77 6,070.3 3,601.8 

DS2/12W/C 5319/6877/10713 402,645 69,102,174 6,969.79 6.78 6,135.3 3,601.8 

RH1/12W/C 5313/6877/10817 931 20,258 6,045.70 0.01 5,888.8 14.3 

RH2/12W/C 5313/6877/10800 8,708 368,738 6,007.75 0.01 5,808.4 28.9 

Table 6.14 – Illustrative example: twelve weeks schedule with campaign tasks and different rolling 

horizon windows. 

Model/horizon

/aggregation 

Int. 

variables/cont. 

variables/constrai

nts 

Nodes Iterations 
LP 

relaxation 

Gap 

(%) 

Objectiv

e 

CPU 

time 

(sec) 

RH1.1/12W/C 5313/6877/10809 10,834 636,166 6,298.37 0.00 6,053.7 28.4 

RH2.1/12W/C 5313/6877/10793 18,487 1,448,855 6,348.70 0.01 6,059.2 83.4 

RH1.2/12W/C 5313/6877/10796 7,907 640,003 6,397.02 0.00 6,124.9 45.2 

RH2.2/12W/C 5313/6877/10778 45,417 3,067,954 6,441.88 0.01 6,162.1 132.9 

Table 6.15 – Illustrative example: twelve weeks schedule without changeovers. 

Model/horiz

on/aggregati

on 

Int. variables/cont. 

variables/ 

constraints 

Nodes Iterations 
LP 

relaxation 

Gap 

(%) 
Objective 

CPU 

time 

(sec) 

AP/12W 108/433/684 0 50 7,651.25 0.00 7,394.8 0.2 

DS/12W 2277/8386/15261 0 3,704 7,161.65 0.00 7,161.7 0.5 
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Table 6.16 – Case study: eight weeks schedule. 

Model/horizo

n/aggregatio

n 

Int. variables/cont. 

variables/constraints 
Nodes Iterations 

LP 

relaxation 

Gap 

(%) 

Objectiv

e 

CPU 

time 

(sec) 

AP/8W 888/1673/3736 191,528 9,010,675 75,124.20 0.01 73,162.4 234.5 

DS/8W 29913/37605/66577 40,970 41,645,010 74,239.90 39.33 52,082.6 14,439.9 

DS1/8W 29978/37605/66707 30,153 52,636,580 74,239.90 32.30 54,873.5 14,410.6 

DSp1/8W 29978/37605/66707 30,214 52,706,062 74,239.90 32.30 54,873.5 14,410.7 

DS2/8W 29983/37605/66712 38,707 57,944,461 74,239.90 45.75 49,799.2 14,409.8 

RH1/8W 29913/37605/66821 17,306 18,499,174 64,136.60 5.99 58,683.1 4,174.9 

RH2/8W 29913/37605/66875 10,514 17,955,601 67,495.30 6.06 62,723.5 7,043.4 

RH1.1/8W 29913/37605/66813 6,190 4,710,039 64,804.60 4.99 60,731.5 920.7 

RH2.1/8W 29913/37605/66815 10,820 13,144,695 56,595.80 6.07 52,366.7 7,330.9 

AP/8W/C 776/1225/3000 73,152 2,939,395 73,629.80 0.01 72,245.6 34.3 

DS/8W/C 27547/31183/53719 31,175 51,628,895 70,684.50 34.92 51,748.6 14,434.8 

DS1/8W/C 27598/31183/53821 27,502 58,879,606 70,684.50 42.33 49,140.8 14,405.4 

DSp1/8W/C 27598/31183/53821 27,274 58,684,118 70,684.50 48.10 47,228.0 14,406.0 

DS2/8W/C 27603/31183/53826 22,846 48,608,967 70,684.50 31.24 53,212.2 14,444.7 

RH1/8W/C 27547/31183/53861 11,324 9,035,461 61,884.80 5.00 54,195.3 1,648.2 

RH1.1/8W/C 27547/31183/53878 24,206 19,340,491 63,654.80 4.80 58,025.2 5,858.9 

RH2/8W/C 27547/31183/53877 20,922 15,976,374 65,922.00 4.98 60,048.9 4,020.3 

RH2.1/8W/C 27547/31183/53883 27,601 26,477,756 64,161.40 5.99 58,641.7 7,493.2 

Table 6.17 – Case study: twelve weeks scheduling. 

Model/horizon

/aggregation 

Int. variables/cont. 

variables/constraints 
Nodes Iterations 

LP 

relaxation 

Gap 

(%) 
Objective 

CPU 

time 

(sec) 

AP/12W 1332/2509/5604 492,694 35,230,261 110,455.00 0.01 107,688.0 471.7 

RH1/12W 44781/56273/100159 625 141,187 89,929.90 1.73 87,907.5 1,473.9 

RH1.1/12W 44781/56273/100106 7,125 3,039,419 89,763.10 3.97 85,504.6 2,587.2 

RH2/12W 44781/56273/100181 1,286 1,069,626 95,020.30 2.94 91,140.1 4,653.4 

RH2.1/12W 44781/56273/100061 8,370 6,191,209 96,480.00 3.86 91,909.2 5,491.0 

AP/12W/C 1164/1837/4500 70,965.00 3,798,482 108,357.00 0.01 106,446.0 56.63 

RH1/12W/C 41239/46659/80744 190 97,528 85,952.10 4.90 81,790.3 2,788.05 

RH1.1/12W/C 41239/46659/80667 3,933 1,112,363 87,456.00 4.86 80,867.7 7,555.55 

RH2/12W/C 41239/46659/80713 2,887.00 1,287,263 86,198.00 1.70 82,639.4 4,419.79 

RH2.1/12W/C 41239/46659/80645 5,592 2,878,518 86,647.10 2.81 83,801.4 8,203.44 
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7   Conclusions and Future Research 

This thesis presents some new models and resolution approaches for the scheduling 

problem in multipurpose batch plants, as part of the development of a broader scheduling 

methodology. The primary objective of this work was to develop a general and integrated 

methodology for these complex, highly combinatorial problems. A real case-study from 

the chemical pharmaceutical industry was used as test-bed in this research. Emphasis was 

given to the specific features of this industrial sector, involving a significant work to 

contextualize and determine how the planning and scheduling functions are performed. 

The key contributions of this thesis and recommendations for future research are 

summarized in what follows. 

7.1   Main Contributions of the Thesis 

Scheduling problems in process industries have received considerable attention in the past 

decades due to their importance for the efficiency of operations. A variety of modeling 

approaches has appeared in the literature, introducing different types of formulations and 

involving multiple decisions and objectives. In general, there has been an effort to take 

into account the computational efficiency of the formulations, particularly when 

addressing large-scale scheduling problems. Nevertheless, modeling, computational 

performance, and the integration of optimization methods in the real decision-making 

processes of companies, are still open issues that have been addressed in this study. 

In summary, this thesis: a) presents the Delivery Tradeoffs Matrix to expose the 

tradeoffs occurring in the drug development cycle; b) introduces the equipment redesign 

problem, which in practice permits more flexibility to the task-unit assignment decisions; 

c) proposes a new formulation to efficiently deal with sequence-dependent changeovers 

and temporary storage in the processing units (two complicating requirements of the 
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discrete-time formulations); d) provides a new methodology that integrates the problem 

representation, the scheduling model, and the decision making process; and e) proposes 

non-exact methods based on a task-unit aggregation and time-based decompositions for 

solving large scale instances. In more detail, the contributions of each chapter are 

described below.  

Chapter 2 redefines the planning and scheduling functions for the context of the 

chemical-pharmaceutical industry. Addressing design and scheduling decisions 

simultaneously is particularly interesting for executing processes that are under 

development. Moreover, we suggest a conceptual representation of the tradeoffs 

occurring in the drug development cycle, named the Delivery Tradeoffs Matrix. 

Chapter 3 introduces the scheduling problem with equipment redesign. This 

problem has to do with performing changes in the processing units (mainly reactors) such 

that those units are capable of performing additional tasks. Allowing for changing the 

equipment in such way that the task-unit suitability is increased, can be viewed as an 

innovative approach to increase flexibility of batch plants. 

Chapter 4 presents another contribution of practical importance. An efficient and 

general MILP discrete-time formulation for scheduling of multipurpose batch plants has 

been developed, that explicitly models the inventory carried out in each task. Following 

this modeling strategy, some aspects that might be quite complicated for discrete-time 

formulations, such as sequence-dependent changeovers and temporary storage in the 

processing units, can be modeled through new types of constraints, leading to very 

efficient models. Moreover, several other requirements that are common in the chemical 

and biochemical-pharmaceutical industries have been taken into account. These 

requirements, somehow neglected by existing formulations, include lots blending and lots 

traceability, alternative task-unit allocation, and task-unit-layout assignment. 

Chapter 5 proposes a new methodology for addressing and solving scheduling 

problems in chemical batch plants. The developed conceptual framework can be seen as 

an innovative way to integrate the representation of the scheduling problem, the 

optimization model, and the decision-making process, in a coherent methodology to be 

used across several departments. The proof-of-concept of the methodology was 

performed in the case-study company, and demonstrated its applicability under realistic 
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production scenarios. Moreover from a theoretical point of view, the proposed 

methodology can be a good starting point for significant, further developments.  

Finally, Chapter 6 proposes differentiated aggregation levels for campaign and 

short-term scheduling. This solution approach contrasts with existing methods since, 

using the same model, it delivers schedules with periodic and non-periodic patterns. In 

practice, the approach can be used for the medium-term scheduling of batch plants in 

which production resources are shared between campaign and short-term operation 

modes, thus improving the system responsiveness. The developments were based on the 

RTN formulation, and to tackle large scale problems a rolling horizon approach, 

reformulation and branching strategies have been introduced. 

The outputs of this thesis are significant contributions for better modeling 

scheduling problems and for solving real world problems in chemical batch plants. They 

can also be viewed as a sound basis for the development of improved and more 

sophisticated decision support tools for dealing with those problems. 

7.2   Recommendations for Future Research 

The ideas presented in this thesis point to several interesting research developments in the 

area. Five research opportunities are outlined in what follows, reflecting possible 

improvements on the current work or new research topics. The first research opportunity 

is related to the scheduling problem with equipment redesign. The second is concerned 

with the development of better aggregation formulations as part of the rolling horizon 

algorithm. The third is associated to processes scale-up strategies. The fourth proposes a 

hierarchical planning and scheduling approach. Finally, a fifth opportunity is related to 

the characterization of the uncertainty in the scheduling model. 

The Scheduling Problem with Equipment Redesign 

An efficient use of the processing units is fundamental to decrease the operational costs 

and increase the responsiveness of the manufacturing system. Thus, it would very 

interesting to extend the formulation developed for equipment redesign to account for 

multiple equipment modifications, and to derive operational schedules considering those 

modifications and associated setups. Note that this approach contrasts with work in the 

literature that has been mainly focused on the determination of production schedules, 
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where task-unit assignment is done considering a set of processing units with fixed 

characteristics or, alternatively, the problem is addressed from the design perspective, in 

either a retrofit or a grassroot design perspective. 

Scheduling Solutions of Large Instances 

In practice, decision-making processes need to address complex decisions, leading often 

to mathematical programming models with a very large number of 0-1 decision variables. 

The computational performance of models is then of extreme importance, since decision-

making processes ask for models that are capable to deliver good quality solutions in very 

short times. The rolling horizon algorithm presented in chapter 6 has been designed to 

tackle this computational complexity, but it can still be improved by developing more 

accurate and still time-efficient aggregate formulations for the scheduling problem. 

Moreover, the development and assessment of (meta) heuristic procedures should also be 

explored, since these procedures should hopefully allow the determination of good 

solutions in very short computational times that could serve as warm start to a second 

stage optimization algorithm. 

The Scheduling Problem and Scale-up Strategies 

In the chemical-pharmaceutical industry, probably more than in other sectors, the product 

is strongly linked to the process. The way chemical processes are designed, implemented, 

and scaled-up strongly determine the overall cost of the product, the total production 

time, and also the global efficiency of the multipurpose batch plant. In this context, an 

interesting question arises: how to define optimal scale-up strategies taking into account 

the optimal utilization of the multipurpose batch plant? Answering this question may 

require modeling scale-up decisions overtime and the development of efficient 

formulations / solution approaches that select the adequate processing units in the course 

of successive process scale-ups. Although the scheduling model proposed in this thesis 

(see Chapter 4) accounts for lot size decision variables, a holistic approach capable of 

addressing the long–term dimension of the scale-up decisions and the multi-objective 

nature of the problem is a step that should be pursued.  
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Hierarchical Planning and Scheduling 

This thesis addresses the scheduling problem considering several time horizons (short and 

medium-term). An immediate consequence of this strategy is that decisions are taken in 

just one decision level. Another way to address the problem would be to identify the 

different types of decisions, in a hierarchic way. For example, in a multi-site 

manufacturing system, as is the case of the company addressed in this study, the decisions 

on the allocation of products to plants would be made first than the task-unit assignment 

decisions. Or even, tasks-unit assignment and task-unit sequencing could be performed in 

sequence. In this way, a hierarchical approach would frame planning and scheduling 

decisions, according to the company’s decision-making principles, this surely leading to a 

significant decrease of the computational burden. 

Dealing with Uncertainty 

The scheduling problem addressed in this thesis has been considered as deterministic. 

Although this seems to be as reasonable assumption, allowing for the determination of 

realistic scheduling solutions, uncertainty may be present in some important parameters. 

Uncertainty is mainly associated to the processing times of tasks of the products under 

development and to the demand. The extension of the formulation present in Chapter 4 to 

deal with uncertainty will surely be of great practical relevance. 


