Go to:
Esta página em português Ajuda Autenticar-se
Pré-candidaturas mobilidade 2019/2020
Today is sunday
Você está em: Start > EIC0105

Site map
Edifício A (Administração) Edifício B (Aulas) - Bloco I Edifício B (Aulas) - Bloco II Edifício B (Aulas) - Bloco III Edifício B (Aulas) - Bloco IV Edifício C (Biblioteca) Edifício D (CICA) Edifício E (Química) Edifício F (Minas e Metalurgia) Edifício F (Minas e Metalurgia) Edifício G (Civil) Edifício H (Civil) Edifício I (Electrotecnia) Edifício J (Electrotecnia) Edifício K (Pavilhão FCNAUP) Edifício L (Mecânica) Edifício M (Mecânica) Edifício N (Garagem) Edifício O (Cafetaria) Edifício P (Cantina) Edifício Q (Central de Gases) Edifício R (Laboratório de Engenharia do Ambiente) Edifício S (INESC) Edifício T (Torre do INEGI) Edifício U (Nave do INEGI) Edifício X (Associação de Estudantes)

Statistical Methods

Code: EIC0105     Acronym: MEST

Classification Keyword
OFICIAL Mathematics

Instance: 2018/2019 - 2S Ícone do Moodle

Active? Yes
Responsible unit: Department of Industrial Engineering and Management
Curso/CE Responsável: Master in Informatics and Computing Engineering

Study cycles/ courses

Acronym No. of students Study Plan Curricular Years Credits UCN Credits ECTS Contact hours Total Time
MIEIC 216 Syllabus since 2009/2010 1 - 4,5 56 121,5

Teaching - Hours

Lectures: 2,00
Recitations: 2,00
Type Teacher Classes Hour
Lectures Totals 1 2,00
António Miguel da Fonseca Fernandes Gomes 1,50
Carlos Manuel Milheiro de Oliveira Pinto Soares 0,50
Recitations Totals 8 16,00
António Miguel da Fonseca Fernandes Gomes 4,00

Teaching language



This course unit aims to provide students with an integrated vision of the basic concepts and techniques of Statistics.

Learning outcomes and competences

At the end of this course unit, students should be capable of:

-using methods to explore, summarize and present data;

- using statistical inference methods.

Working method



  1. INTRODUCTION TO STATISTICS: Data and Observations. Populations and Samples. Statistical Method.

  2. DESCRIPTIVE STATISTICS: Types of Data and Measure Scales. Summarizing Categorical, Quantitative and Bivariate Data.

  3. PROBABILITIES: Random Experiments. Sampling Spaces and Events. Probability, Conditional Probability and Independence. Total Probability and Bayes Theorem.

  4. RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS: Random Variables. Discrete and Continous Random Variables. Mass, Density and Cumulative Probability Functions. Population Parameters. Joint Probability Distributions. Covariance and Correlation. Transformed Variables.

  5. MAIN DISCRETE AND CONTINUOS DISTRIBUTIONS: Binomial, Negative Binomial, Hypergeometric and Poisson Distributions. Uniform, Exponential and Normal Distributions. Chi-square, t and F Distributions.

  6. SAMPLING AND SAMPLING DISTRIBUTIONS: Sampling and Random Sampling. Sampling Distributions. Central Limit Theorem. Generation of Random Variables.

  7. ESTIMATION AND CONFIDENCE INTERVALS: Estimators and Estimates. Confidence Interval. Confidence Intervals for Expected Values, Variances and Proportions. Sample Size Determination. 

  8. STATISTICAL HYPOTHESIS TESTING: Statistical Inference Logic and Scope. Hypothesis Testing Methodology. Significance Level and Statistical Power (Type I and Type II Errors). Relationship between Hypothesis Testing and Confidence Intervals. Hypothesis Testing concerning Expected Values, Variances and Proportions.

  9. INTRODUCTION TO REGRESSION ANALYSIS: Simple Linear Regression Model. Regressin Parameters Estimation (OLS). Inferences about regression Parameters. Predictions based on the Simple Linear Regression Model. Regression Assumptions.

  10. INTRODUCTION TO DATA MINING: Main Concepts and Applications. Data Analysis with RapidMiner.

Mandatory literature

A. Miguel Gomes e José F. Oliveira; Estatística - Apontamentos de Apoio às Aulas, 2018
Rui Campos Guimarães e José António Sarsfield Cabral; Estatística, 2ª edição, Verlag Dashofer, 2011. ISBN: 978-989--642-108-3

Complementary Bibliography

Devore Jay L.; Modern mathematical statistics with applications. ISBN: 978-1-4614-0390-6
Nathan Tintle, Beth L. Chance, George W. Cobb, Allan J. Rossman, Soma Roy, Todd Swanson, Jill VanderStoep; Introduction to Statistical Investigations, Wiley, 2015. ISBN: 978-1-119-15430-3
Wonnacott Thomas H. 1935-; Introductory statistics. ISBN: 0-471-51733-X

Teaching methods and learning activities

Theoretical classes: presentation of the course unit themes followed by examples and problem solving Theoretical-practical classes: problem solving and clarification of doubts




Physical sciences > Mathematics > Probability theory
Physical sciences > Mathematics > Statistics

Type of assessment

Distributed evaluation with final exam

Assessment Components

Designation Peso (%)
Exame 75,00
Participação presencial 0,00
Teste 25,00
Total: 100,00

Amount of time allocated to each course unit

Designation Time (Hours)
Estudo autónomo 72,00
Frequência das aulas 56,00
Total: 128,00

Eligibility for exams

Admission criteria set according to Article 4 of General Evaluation Rules of FEUP.

Calculation formula of final grade

The final mark (CF) will be obtained by the following formula:
CF = 0.25 AD + 0.75 EF

AD - Quizzes:
- 6 quizzes (pratical classes);
- the quizzes mark (AD) is obtained by the average of the best 4 marks achieved by each student.

EF - Final Exam
- written exam.

To pass this course, apart from a final grade no less than 10, is required a minimum grade of 7 in the final exam.

Special assessment (TE, DA, ...)

Special evaluations will be made by a written exam.

Classification improvement

Students may choose between:

- improving simultaneously components Quizzes (AD) and Final Exam (EF);

- improving only component Final Exam (FE).

Recommend this page Top
Copyright 1996-2018 © Faculdade de Engenharia da Universidade do Porto  I Terms and Conditions  I Accessibility  I Index A-Z  I Guest Book
Page generated on: 2018-12-16 at 11:09:30