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Resumo

O conceito de micro-rede surgiu nos Estados Unidos, em virtude de políticas implementadas pelo
Departamento de Energia que pretendiam proteger e melhorar a fiabilidade do sistema elétrico
do seu país, permitindo também potenciar a eficiência dos seus mercados de energia elétrica
mais competitivos [1]. Paralelamente, este conceito tem vindo a ser desenvolvido no continente
europeu e asiático, particularmente no Japão, com o intuito de promover pesquisa, desenvolvi-
mento, demonstração e implantação do conceito de micro-rede [2] [3]. Atualmente, a necessidade
de promover políticas que atenuem a dependência das centrais ditas clássicas que, tipicamente,
consomem grandes quantidades de combustíveis fósseis e, consequentemente, contribuem para a
emissão de gases de efeito de estufa, intensifica o interesse de implementar e alargar a aplicação
deste conceito.

Uma micro-rede é composta por uma rede de distribuição, tipicamente de baixa tensão, na
qual são interligadas pequenas unidades de produção de energia elétrica, denominadas de micro-
fontes, juntamente com cargas controláveis e dispositivos de armazenamento de energia. Por
último, são incluídos sistemas de gestão e controlo suportados por uma infra-estrutura de comu-
nicações que permite um modo de operação coordenado e controlado e por último, capacidade de
operação em dois modos distintos: operação em modo interligado com a rede de distribuição de
média tensão local ou, por outro lado, operação em modo autónomo, desligada da rede de média
tensão. A operação de uma micro-rede em modo autónomo é dominada por inversores que têm
a responsabilidade de controlar os valores da frequência e da tensão, garantindo que os valores
estão inseridos dentro de gamas admissíveis de funcionamento, garantindo também pontos de fun-
cionamento que se traduzam em maior eficiância e fiabilidade do sistema elétrico. Acresce ainda,
tal como referido anteriormente, o facto de estas redes estarem estabelecidas em baixa tensão e
como tal os cabos elétricos que as constituem apresentaram uma predominância da resistência face
à reactância, levando a que o trânsito de potência ativa influencie de forma significativa o perfil
das tensões enquanto que a potência reactiva, por outro lado, é incapaz de controlar os perfis de
tensão. Ao longo desta dissertação será então considerado um controlo dos VSI (Voltage Source
Inverters) com base na manipulação dos seus droops potência reactiva/tensão e droops potên-
cia ativa/frequência com o objetivo de apresentar, implementar e avaliar estratégias para a op-
eração e manutenção de uma micro-rede em modo isolado, garantido condições apropriadas para
manutenção dos níveis de tensão e despacho de potência reativa favoráveis mediante diferentes
cenários de operação. Será então definida e desenvolvida uma metodologia baseada em controlo
de droop dos inversores, sendo que as estratégia de controlo irá correr ao nível do controlador
central da micro-rede (MGCC), responsável pela definição dos ajustes de controlo de tensão.

Palavras-chave: baixa tensão, controlo de tensão, controlo droop, despacho de potência reativa,
inversor de fonte de tensão, micro-rede, modo autónomo, produção dispersa.
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Abstract

The MicroGrid (MG) emerged in the United States due to the support provided by the Department
of Energy that intended not only to protect and enhance the reliability of the United States electric
power system, but also to improve the efficiency of competitive markets [1]. Similarly, Europe
and Asia, in particular Japan, are walking in the same path, actively promoting research, develop-
ment, demonstration and deployment of the MG [2] [3]. Nowadays, the need to promote policies
that reduce the dependence from fossil fuelled generation plants that contribute significantly to
the emission of Greenhouse Gases, intensifies the interest in implementing and generalizing the
application of the MicroGrid concept.

A MicroGrid is composed by a distribution network, typically set at low voltage, with dis-
tributed energy sources, known as MicroSources (MS), together with controllable loads and
storage devices. Lastly, management and control systems supported by a communication infras-
tructure are included, allowing an operation in a controlled and coordinated way in two different
operation modes: interconnected with the upstream Medium Voltage distribution network and,
on the other hand in standalone/islanded mode, disconnected from the upstream medium volt-
age distribution network. The operation of a MG in islanded mode is dominated by inverters
that have the responsibility to control frequency and voltage profiles, ensuring that their values
are within acceptable ranges while also present set-points that translate in higher levels of effi-
ciency and reliability of the electric power system. Moreover, these networks are typically set at
low voltage, where electrical cables existent possess a predominance of the resistance over the
reactance (X�R) which on its turn causes the active power flow to significantly influence voltage
profiles as it exists a direct coupling between active power and voltage and additionally, reactive
power is not able to control voltage. Throughout this dissertation it will be considered a control
based on Voltage Source Inverters (VSI) based on the manipulation of its reactive power/voltage,
Q/V, and active power/frequency, P/f, droops aiming to present, implement and evaluate control
strategies for the operation of a MicroGrid in islanded mode, guaranteeing appropriate conditions
for voltage control and reactive power dispatch upon different operating scenarios. By defining
a methodology for the modelling approach of a MG with droop controlled converters and setting
possible strategies for voltage/reactive power problem, the strategies may run at the MGCC level,
thus constituting a secondary voltage control mechanism.

Keywords: distributed generation, droop control, islanded mode, low voltage, microgrid, re-
active power dispatch, voltage control, voltage source inverter.
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Chapter 1

Introduction

This chapter intends to present a succinct contextualization of the topic addressed within the scope

of this dissertation. The development of the Electrical Power System, planet’s sustainability and

environmental awareness that led to the development of Renewable Energy Resources and Dis-

tributed Generation (DG) are briefly addressed. Afterwards it is introduced the MicroGrid (MG)

concept and subsequent issues that arise and serve as a motivation of the dissertation. The next

sections outline the objectives that are proposed to be obtained in this dissertation and the structure

of the dissertation.

1.1 Motivation of the dissertation

Historical development of Electrical Power Systems had inherent constraints related to the tech-

nologies and resources available. Consequently, countries had commonly installed large scale

generation power plants such as hydro, fossil fueled and nuclear power plants that were located in

remote places. Therefore, the energy was transmitted over long distances until reaching its final

consumer. Additionally, it led to an electrical energy chain that was highly reliant on imported

fossil and nuclear fuels in each country. Furthermore, the energy demand continued to raise and

the increased dependence on imported fossil fuels deepened international political instability that

affected the primary energy resources prices. Additionally, the planet’s sustainability started being

questioned and environmental concerns and climate change issues started gaining a lot of impor-

tance and the typical Electrical Power System arrangement was targeted. The Consortium for

Electric Reliability Technology Solutions, CERTS, found in 1999, is an example of this shift as its

creation intended to research and develop methods and technologies that could improve not only

the efficiency, but also the reliability of the United States Electric power system [1].

Since energy is the basis of economic development, energy policies were created in order to

assure a continuous and sustainable economic growth that could increase energy efficiency and

increase renewable energy resources integration in order to diminish climate changes, particularly

global warming. Kyoto’s protocol [6] which was created in 1997 and signed by 59 countries is an

example of environmental awareness, as it set goals that aimed to be reached by the year of 2020:

1



2 Introduction

• 20% reduction on Greenhouse Gases (GHG);

• 20% improvement in energy efficiency;

• 20% increase in the share of renewable energy.

More recently, in December 2015, the Paris Agreement [7], set a new global agreement to

combat climate change, adopted under the United Nations Framework Convention on Climate

Change (UNFCCC). Countries submitted national plans listing their intentions for addressing the

climate change challenge after 2020. As a result, the Paris Climate Agreement intended to combat

climate change and adapt to its effects, strengthening the global response upon the temperature

rise, tracing a new course in the global climate effort. The Agreement was signed by 197 states

and 122 of those parties have ratified or acceded to the Agreement, most notably China, the United

States and India, the countries with three of the largest greenhouse gas emissions.

The policies introduced empower even further the development of Renewable Energy Sources

(RES) and Distributed Generation (DG) in order to achieve the affirmed climate goals. Nowa-

days, technologies such as photovoltaic cells, wind generators, microturbines and fuel cells can

be used nearer the final consumer. These technologies, which will be explained in further de-

tail in Chapter 2, are becoming increasingly deployed in the electrical networks, enlarging the

energy generation portfolio and creating a paradigm shift in the electric sector, since the electric

generation is no longer predominantly centralized. This paradigm shift will also be discussed in

Chapter 2.

It is undeniable that the exploitation of DG capabilities can offer advantages to system opera-

tors such as the postponement of investments on transmission/distribution systems and reduction

of losses in the distribution system much due to the fact that energy production is now nearer the

final consumption spot when considering relatively low levels of DG penetration. In [8] it is listed

the main drivers to the adoption of DG into electric power systems, stating environmental, political

and economical reasons.

While the advantages related to the integration of low levels of DG units are appraised, when

facing a massive integration of these type of units in distribution networks, various technical issues

start to arise and must be tackled because there is a risk of negating some of the aforementioned

benefits since, for example, the losses in the distribution system may raise for high levels of DG

integration. Typically, DG connection has been following a purely passive approach commonly

known as "fit and forget", and such policy may cause problems such as voltage profiles and con-

gestion levels. Consequently, it is urgent to develop coordinated strategies for the operation and

control of DG sources, loads, and storage devices that may allow a massification of DG deploy-

ment. This requirements and hurdles led to the development of the MicroGrid concept. Sum-

marily, a MG is composed with small modular generation technologies, known as microsources

(MS), controllable loads and storage devices, embedded in a low voltage distributed system. The

defining characteristic of this type of grids is the fact that they can be operated while being con-

nected to the main power network, or alternatively, in an islanded mode, through a controlled and

coordinated way.
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MG can be seen as the next step forwards towards a further decentralization of decision mak-

ers, by allowing the costumer to actively participate in the electricity market. This next step needs

to be supported by an institutional restructuring of the electricity supply industry and alteration in

the scale and location of electricity production in order to smooth the transition.

An operation of a MG requires an approach that faces technical and non-technical issues, most

notably, the study of a MG design and operation, so that the level of penetration of RES and other

MS is as high as possible and development and demonstration of control strategies that allow a

proper operation and management of a MG, which means that technical constraints associated

to frequency and voltage values are within acceptable ranges, meeting not only safety but also

customer requirements.

Considering the operation of a MG with several Voltage Source Inverters (VSI) and resorting to

droop characteristics, namely P/f and V/Q droops it is possible to establish a similar concept asso-

ciated to conventional power system where synchronous generator provide active power/frequency

and reactive power/voltage control capabilities. Nevertheless, solving the power flow for a MG

cannot be done through conventional approaches, such as Newton Raphson, because in islanded

mode there is no slack bus and frequency is not constant, like in grid connected mode. Addi-

tionally, there is a direct dependence of the power on frequency due to the droop characteristics.

Moreover, given the specific nature of a MG, some issues need to be tackled. The resistive nature

of a LV system means that voltage profile is severely influenced by the active power flow. Addi-

tionally, voltage and reactive power control needs to take into consideration that voltage has local

characteristics and network cable impedances prevent precise reactive power sharing among VSI.

As a result, it is necessary to define and develop strategies for the operation and manage-

ment of a MG in standalone mode, assuming a droop controllable approach, ensuring appropriate

conditions for voltage control and reactive power dispatch.

1.2 Objectives of the dissertation

As previously referred, a successful design and operation of a MG is the key to further promote

the growth of DG that, between many other advantages already stated, present practically non-

existent emissions and will augment the contribution to lessen the global warming phenomenon.

The operation of a MG, particularly when considering an islanded operation mode, exhibit unique

features. Most of the MS considered, such as photovoltaic panels, microturbines and fuel cells

resort to power electronic interfaces in order to provide an adequate flexibility and controllability.

This type of power system naturally differs from a conventional system that utilizes synchronous

generators which leads to different characteristics:

• Altered dynamic behaviour due to very low global inertia;

• Slow responses to control signals from controllable MS such as Fuell Cells.

Additionally, in low voltage (LV) MG, the high resistance compared to the reactance of LV

lines requests specific strategies for voltage and frequency control. Consequently, this dissertation



4 Introduction

will be focusing on demonstrate the feasibility of the MG concept taking into consideration the

following aspects:

• Develop an adequate framework for islanded MG and its implementation in Matlab/Simulink
platform;

• Identification of voltage control and reactive power sharing issues during MG autonomous
operation;

• Identification of voltage/reactive power sharing control mechanisms in autonomous
MG;

• Comparison between the identified voltage control and reactive power dispatch strate-
gies and identification of resulting impacts.

1.3 Structure of the dissertation

This section intends to briefly portray the structure outlined for the dissertation. Apart from this

introductory chapter, the work developed within the scope of this dissertation contains four (4)

more chapters and three (3) appendixes.

In chapter 2, state of the art, it is introduced the Distributed Generation topic. This chapter

also provides a detailed characterization of the MicroGrid concept and associated MicroSources

technologies.

In Chapter 3 it is addressed the MicroGrid control related to islanding operation mode. It

is identified the power electronics converters commonly existent in the grid, possible operation

modes, namely Single Master and Multi Master Operation. Lastly, it is issued in detail the fre-

quency and voltage control regarding MicroGrids under islanded mode operation. It should be

stated that the chapter’s principles considered here also serve as foundations to the simulation plat-

forms developed. It is addressed the issue of LV cables that have a high resistance in comparison

to its reactance and the inability of reactive power injection to control voltage profiles. Limita-

tions caused by a reactive power/voltage and active power/frequency droop control approach are

addressed, as well as how it is dealt with the fact that power flows in islanded MG can not be

solved in conventional modes, since there is no compensator/reference bus.

Chapter 4 presents, through illustrative examples, the effectiveness of the proposed control

strategies under different scenarios and then proceed to compare the proposed voltage control /

reactive power dispatch strategies.

Chapter 5 conducts the main conclusions of this dissertation and also suggestions and perspec-

tives for future paths to explore.

In Appendix A it is presented an explanation of the EPSO (Evolutionary Particle Swarm Op-

timization) evolutionary algorithm applied under the Matlab R© /Simulink R© simulation process.

In Appendix B it is illustrated the MicroGrids dynamic simulation platform, detailing the models

adopted and its control parameters. Finally, in Appendix C is presented the article written within
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the scope of this dissertation, containing an overview of the topic addressed, as well as some of

the results obtained through the developed of the two different strategies.
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Chapter 2

State of the art

This chapter addresses the Distributed Generation (DG) subject and the change of paradigm that

electric industry sector is facing when considering the integration of DG into the distribution sys-

tem. It is also presented the general characteristics of different types of DG technologies and main

applications such as Photovoltaic Panels (PV) Micro wind generators, single shaft microturbines

(SSMT), fuel cells and storage devices. Last, it is discussed the MicroGrid (MG) concept, ex-

plaining its operational control architecture and modes of operation, while also mentioning some

of the contribution to the distribution system, particularly its contribute to service restoration.

2.1 Introduction

Conventional power systems are facing numerous challenges because environmental awareness

and technological developments are forcing the boundaries and putting in question a model based

on a vertically integrated structure and heading towards a deregulated environment with open ac-

cess to the distribution network, something that could favour the development of DG [9]. As a

result, the continuous growth on the interest in connecting generation plants to the distribution

network gained a lot of momentum, altering electrical power system operators and planers chal-

lenges. Simultaneously, policies have been implemented to further develop DG technologies and

respective application in order to achieve environmental goals. As a result, from the technical point

of view, while a low level of DG penetration poses no major concerns, the tendency to increas-

ingly augment DG implementation in electrical distribution systems causes a major revolution and

several issues arise [10]:

• voltage profile modification;

• global system stability;

• harmonic distortion levels increase;

• islanded mode operation capabilities.

7
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These issues, mainly caused by power injection in the distribution network, must be tackled in

order to ensure a positive shift in the electrical power system actual configuration.

2.2 Distributed Generation

Distributed Generation, also known as Embedded Generation, still lacks an universal and formal

definition widely accepted. Several authors [11] [12] [13] [14] try to elaborate DG definitions that

diverge, mostly due to the size of the DG units, but allow different generation schemes such as

small-scale generation units connected to the distribution network up to solutions that include large

scale wind farms. Nevertheless, within the scope of this dissertation, given such wide range of

definitions, the DG concept is assumed to be related to the electricity generation activity regarding

the lower voltage level of the electric power system. In terms of technologies, which will be further

explained in section 2.4, the DG units size has ratings that vary between few tens of kilowatts given

the Low Voltage (LV) grid technical limitation to receive high injection powers. These smaller

scale DG units are also commonly known as MicroSources (MS).

2.2.1 The paradigm shift in the Electrical Power System

Electrical Power Systems, when first designed, had an hierarchical structure well defined, as seen

in Figure 2.1 [4]. They were composed of 3 levels: generation, transmission and distribution. In

the upper level, energy was produced in large scale through generation units that fed the transmis-

sion system, allowing the transport of energy to substations located near consumption zones. This

energy was then extracted and distributed along different stages of voltage being subsequently

stepped down from High Voltage (HV), Medium Voltage (MV) until Low Voltage (LV) levels,

reaching every consumer according to their level of demand.

From a technical point of view, this arrangement lead to unidirectional power flows. Conven-

tional power system possess some advantages in terms of operation and management simplicity

because the interconnected system allows the transport of bulk power over large distant with re-

duced losses, while bulk power system interconnection and large scale generation units improve

overall system stability. Additionally, since the power flows are unidirectional, the design and

mode of operation at the distribution level is simpler. Finally, the electrical efficiency of large

power plants is higher when compared with small scale generation units, assuming they have

similar technological levels [15]. However, conventional power systems also have some disadvan-

tages like the large distance existent between producer and consumer which increases the cost of

the transmission network. Conventional generation units are starting to get outdated, with reduced

efficiency especially when compared with the technology currently available. Additionally, their

environmental impact is higher since their main source is fossil and nuclear fuels or coal. Lastly,

while this classical structure was relatively simple to operate from the distribution network point

of view, this hierarchical system has some reliability concerns since a problem affecting a high hi-

erarchical level can significantly affect hierarchical levels below given the dependency established

between different levels.
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Figure 2.1: Conventional power system organization [4]

Over the recent years, however, with the increase in DG units being connected to the distribu-

tion network, the classical structure initially set is facing some challenges since this conventional

electric power paradigm was not designed to accept power injections at distribution levels as the

unidirectional power flow may no longer be true in some situations.

In a wider context, DG can also be seen as a more complex concept, since it is also necessary

to consider new devices that start to be connected to the system, such as energy storage devices

and controllable loads, as seen in [8] which are referred as Distributed Energy Resources (DER).

Additionally, a "fit and forget" policy towards DG installation must be taken aside and they will

have to start participating actively in the supply chain, offering additional services to the electricity

network and improving increased reliability, flexibility and lower prices which will also allow the

connection to the system of more DG units. This new concept is based on a full exploitation of all

resources available, adopting and improving the active management of the distribution grids [8]

in order to improve system efficiency and its operating conditions, ensuring higher standards for

electricity supply.

The restructuring process that has been taking place in the electricity industry is leading to the

functional separation of the vertically integrated utilities that once existed into well defined activ-

ities: generation, transmission and distribution. This eases the access to the networks, which con-

tributes to increase the competitiveness of the market, deepening the participation of customers,

since they can actively participate and look for the best suited service.
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2.3 Microsources technologies

This section describes some of the technologies that can be found within every MS available in

MG. Among the renewable technologies, photovoltaic and wind generator systems are detailed,

while microturbines, fuel cells and storage devices are also briefly addressed.

2.3.1 Photovoltaic panels

Photovoltaic (PV) panels are the most common technology in LV distribution network and its high

power capacity per unit weight is one of the biggest selling points. Additionally, photovoltaic

technology can also power remote and underdeveloped places that do not have electrical systems

and, in industrialized countries, they can also provide grid support applications.

Figure 2.2: Photovoltaic effect

The basic building block of a PV panel is a solar cell, which is a semiconductor, usually made

of silicon, that converts sunlight directly in electricity, as illustrated in figure 2.2. This process of

conversion is called photovoltaic effect [16]. Typically, the front of the silicon cell is doped with

phosphorous to give it a negative character (n-type silicon) while the rest is doped with a small

quantity of boron to give it a positive character (p-type silicon). The interface between the layers,

junction, contains electric field.

When photons hit the semiconductor materials, they transmit their energy to the valence elec-

trons of the semiconductor, breaking the link that maintains them attached to the atoms. Each

broken link origins a free circulating electron inside the solid which on its turn origins a gap, the

lack of an electron in the broken link. Since electric field exists between the two layers (junction),
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electrons and gaps circulate in opposite directions creating an electric current that flows in the

direction of the electric field. Finally, through an external circuit it is possible to deliver the energy

supplied by photons when the electric-gap core is formed.

Given the fact that a solar cell is only capable of generating very low voltage/current char-

acteristics that are not suited for most of applications, in order to overcome this problem, solar

cells are connected in series and/or parallel, creating a module that can present usable voltage and

current values, as in figure 2.2. Depending on the requirement of the application these modules

can be combined even further in series and/or parallel. These group "modules" formed are known

as a PV arrays.

The PV array can not operate autonomously since it needs a system to conduct, control, con-

vert, distribute and in some cases store the produced energy. Consequently, the electric energy

produced needs to be converted to AC power, something that is done by a power electronic device

(inverter). If storage is also a requirement, it is necessary to utilize battery banks and controllers.

Besides, the solar cell V-I characteristic is nonlinear and varies with irradiation and temperature.

Generally, there is a single point on the V-I or V-P curve, called the Maximum Power Point (MPP),

at which the entire PV system operates with maximum efficiency, producing its maximum output

power. The location of the MPP is not known, but can be located, either through calculation mod-

els or by search algorithms. Therefore Maximum Power Point Tracking (MPPT) is required in a

PV system, allowing the PV to maintain the operating point at its MPP [17] [18] [19].

The development in solar PV technology is growing very fast in recent years due to technolog-

ical improvement, cost reductions in materials and policies that support renewable energy based

electricity production. In [20], for example, it is shown that Photovoltaic is one of the fastest

growing industries, with annual growth rates at a rate of 35–40%.

In short, PV technologies comprise 4 generations:

• Fist Generation: Crystalline Silicon Cells with approximately 90% of the current market;

• Second Generation: Fine Film Technologies on Rigid Substrates (glass or ceramic) with

approximately 10% of the current market;

• Third Generation: Nanotechnologies for the formation of thin films on Flexible substrates.

Better use of all Solar spectrum (multijunction cells with the use of concentration);

• Fourth Generation: Concentrator Photovoltaics (CPV).

The efficiency of the solar cell is one of the main concerns in the market and, for example,

nowadays it has values of approximately 28% for monocrystalline silicon solar cells. The growth

in solar photovoltaic technologies, specially through different materials for solar cells that can

positively improve the efficiency of a PV module is crucial so, third and fourth generation can see

an increase of its share in the market, diminishing the "reliance" on first generation technologies.
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2.3.2 Micro wind generators

Wind energy is the most mature of the renewable energy technologies apart from hydro [21]. Wind

energy is a result of kinetic energy existing in a moving mass of air. Movement of air happens

because irradiance from the sun heats up the air, leading to pressure differences in the atmosphere

and forcing the air to rise. Conversely, where temperatures fall, a low pressure zone develops

and winds balance out the differences. Wind turbines capture the air flow by converting it into a

rotational movement, which subsequently drives a conventional generator for electricity.

Assuming air mass flows through the blades of a wind turbine with v(t) speed, the power of

that air movement at t time can be obtained through the following equation:

P(t) =
1
2
×Cp×ρ×A× v(t)3 (2.1)

Where:

• Cp (adimensional): turbine power coefficient ;

• ρ (kg/m3): density of the air;

• A (m2): area swept by the wind turbine blades;

• v(t) (m/s): wind speed.

The aforementioned turbine power coefficient, was first introduced by a German physicist

Albert Betz who, in 1919, concluded that no wind turbine can convert more than 16/27 (59.3%)

of the kinetic energy of the wind into mechanical energy turning a rotor. To this day, this is

known as the Betz Limit or Betz’ Law [22]. The theoretical maximum power efficiency of any

design of wind turbine is 0.59, or in other terms, no more than 59% of the energy carried by the

wind can be extracted by a wind turbine. This is called the “power coefficient” and is defined as:

Cp,max = 0.59. Nevertheless, wind turbines cannot operate at this maximum limit. The Cp value

is unique to each turbine type and it is a function of wind speed that the turbine is operating in.

Once it is incorporated the engineering requirements of a wind turbine, strength and durability in

particular, the real world limit is below the Betz limit with values ranging from 0.35 up to 0.45.

This coefficient that measures wind turbine efficiency, is often used by the wind power industry

since it represents the ratio of actual electric power produced by the wind turbine divided by the

total wind power flowing into the turbine blades at a specific wind speed.

Regarding a wind generator system in itself, its main component is the turbine nacelle, as

illustrated in figure 2.3 [5], which accommodates the mechanisms, generator, power electronics,

and control cabinet. The mechanisms, including yaw systems, shaft, and gear box, facilitate me-

chanical support to various dynamic behavior of the turbine. The generator is dedicated to the

conversion between mechanical energy, which is captured by turbine rotor, and electrical energy.

Lastly, the electrical energy generated needs to be regulated and conditioned in order to be con-

nected to the power grid. In [23], for example, it was shown the operating ability in standalone

grid-connected mode of a small wind turbine.
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Figure 2.3: Wind power system nacelle [5]

Since the main goal of this dissertation is not particularly concerned in providing a deep view

of MS technologies, it will only be listed the most "popular" options of the generators used:

• SCIG: Squirrel Cage Induction Generator wind system;

• DFIG: Doubly Fed Induction Generator wind system;

• PMSG: Permanent Magnet Synchronous Generator wind system.

While the aforementioned generator wind systems are more oriented for higher rated power

wind turbines and installation in higher voltage levels, other technologies are best suited when

considering micro wind turbines in a low voltage MG such as:

• BDFIG (brushless DFIGs);

• DDSG (system direct-drive synchronous generator);

• SRG (System Switched Reluctance Generator system);

• Multiple-stage geared SCIG system;

• Radial/axial/transversal-flux PM generator systems.

These solutions generally require relatively complex operation principle and equipment as-

sembly.

Regarding induction generator wind systems, they can be divided in three groups, according

to the operations of induction generator speed:
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• Fixed-speed;

• Limited-variable-speed;

• Variable-speed wind systems.

Table 2.1 enumerates the disadvantages among different wind power systems [5].

Table 2.1: Advantages vs. Disadvantages between different wind power systems

Advantages Disadvantages

Fixed-speed
system

a. Simple construction and robust
b. Low cost and maintenance
c. Easy control

a. Not optimal operation, thus low
efficiency
b. Easy power fluctuation caused
by wind speed and tower pressure
c. External reactive power com-
pensation is needed
d. Weak capability of FRT

Limited-speed
system

a. Limited speed variation is im-
plemented
b. The slip ring may be replaced
by optical coupling

a. Speed variation range depends
on the size of the variable rotor re-
sistance (<10%)
b. The controlled rotor power
must be dissipated by heat in the
resistor
c. Still need reactive power com-
pensation and cannot support the
grid alone

Variable-
speed system

a. Large range of speed variation
b. Appropriate control enables
optimal operation for maximum
power extraction
c. No external power compensa-
tion is needed and is able to sup-
port the grid
d. High FRT capability
e. Suitable and commonly used
for large-scale wind farms

a. Relatively complicated control
system
b. Higher converters and control
costs
c. May need a multistage gearbox
and slip ring in DFIG system
d. May need expensive PM ma-
terial and large diameter design in
direct drive

The introduction of power electronic devices in the systems enabled them to perform total or

partial decoupling between the generator and the grid frequency, allowing more efficient extraction

of the available power. It also allows the control of the active and reactive power injected, which

further improve operation and control capabilities of the electrical grid.

Regarding the axis orientation of the wind turbine, there are two different types that can be

used for electric power generation [24]:

• Vertical axis turbine;
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• Horizontal axis turbine.

While the horizontal axis is the most common, it presents some disadvantages, particularly in

situations of more turbulent wind flows where vertical axis wind turbines perform better, such as

urban areas.

Last, despite the fact that it is one of the most mature renewable energy technology (apart

from hydro), as mentioned above, its implementation is not as high as one would expect because

the cost per unit of turbines with lower power ratings is higher when compared to higher power

turbines installed in wind farms. Additionally, the natural resources available vary from country

to country and some situations the weather and geographic conditions may not be favourable.

2.3.3 Single shaft microturbines

Microturbines, particularly those with a single shaft design1, are mechanically simple devices,

having high operation speed, in the range of 50.000rpm up to 100.000rpm. Their design com-

bines the reliability of commercial aircraft auxiliary power units with the low cost of automotive

turbochargers. Despite their mechanical simplicity, microturbines rely on power electronics to

interface with the grid. Their primary fuel is natural gas, although they may also burn propane

or liquid fuels in some applications, allowing clean combustion with low particulates emissions.

This type of microturbines is particularly interesting in CHP (Combined Heat and Power) as it

improves overall system efficiency.

Compared with the other DG technologies, microturbine has the advantages of lower initial in-

vestment and maintenance costs, low emission, higher reliability and relatively noise level [25]. In

Figure 2.4: SSMT system scheme [4]

figure 2.4 taken from [4], it is illustrated the scheme of a SSMT, based on Brayton thermodynamic

cycle. The most distinctive feature is the "Recuperator" as it increases overall system efficiency by

1split shaft is not discussed in this dissertation
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pre-heating the air. The first step of this cycle is the compression and, as referred, the pre-heating

of the ambient air. When the air enters in the combustor, it is mixed with fuel and then ignited

and the resulting gas flow is expanded over the turbine, turning the shaft and ultimately, producing

energy that is properly conditioned through a AC/DC/AC inverter in order to be connected to the

grid.

2.3.4 Fuel cells

The fuel cell principle was first discovered 150 years ago but material problems prohibited its

commercialization during a long time. However, in the last 30, some technological developments

led to two types of fuel cell technologies: low and high temperature operation cells.

Table 2.2 enumerates the different cell types and its main characteristics [26].

Table 2.2: Data of types of fuel cells

Fuel cell type Mobile ion Operating
temperature

Applications and notes

Alkaline (AFC) OH− 50–200oC

Used in space vehicles, e.g.
Apollo, Shuttle.

Proton exchange
membrane
(PEMFC)

H+ 30–100oC

Vehicles and mobile applica-
tions, and for lower power CHP
systems.

Direct methanol
(DMFC)

H+ 20–90oC

Suitable for portable electronic
systems of low power, running
for long times

Phosphoric acid
(PAFC)

H+ 220oC

Large numbers of 200-kW CHP
systems in use.

Molten
carbonate
(MCFC)

CO2−
3

650oC

Suitable for medium- to large-
scale CHP systems, up to MW
capacity

Solid oxide
(SOFC)

O2− 500–1000oC

Suitable for all sizes of CHP sys-
tems, 2 kW to multi-MW.
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Fuel cells, also suited for distributed generation applications, offer high efficiency and low

levels of emissions but, despite current technological advances, are still relatively expensive. These

electrochemical devices convert the chemical energy contained in some fuels into electricity. Some

power generation technologies add an intermediate step to generate electricity as the production of

heat from fuels followed by its conversion into mechanical energy that is used to drive an electrical

generator [27].

Phosphoric acid cells are commercially available in the 200kW range, and high temperature

solid-oxide and molten-carbonate cells could be promising for MG application. The main focus

in development made by automotive companies is considering the possibility of using on-board

reforming of gasoline or other common fuels to hydrogen, to be used in low temperature pro-

ton exchange membrane (PEM) fuel cells. Fuel cell engine designs are being considered, as they

promise high efficiency without significantly polluting emissions associated with internal combus-

tion engines. Higher temperature PEMs are also under development, being particularly interesting

for CHP applications.

The fuel cell will continue to play a very particular role, since hydrogen is not easy to store

and to transport. The more promising target is the utilization of liquid methanol.

2.3.5 Storage devices

Energy storage technologies do not represent energy sources but they provide added benefits to

improve system stability, power quality and reliability of supply. Storage devices such as batteries

and ultracapacitors are important components of a MG since storage on the microsource dc bus

provides ride-through capabilities during system changes. Storage systems have become more

versatile as they can provide high levels of power with short time responses. Energy storage can

also boost the output of a DG unit so it can meet brief but high "needle peak loads" that sometimes

occur. Energy storage systems can be used to follow the net load changes, stabilize voltage and

frequency, manage peak loads and improve power quality. They can support renewable integration

since Renewable Energy Sources (RES) may be problematic due to their variable and intermittent

nature. In addition, wind fluctuations, lightning strikes, sudden change of a load, or the occurrence

of a line fault can cause sudden momentary dips in system voltage [28].

There is a wide range of solutions currently available, depending on the application intended

[15]:

• Batteries;

• Capacitor Storage;

• Superconducting magnetic energy storage;

• Mechanical storage: flywheels; pumped and compressed fluids.

Energy storage can be defined as the conversion of electrical energy from a power network

into a form in which it can be stored (chemical, thermal or mechanical) until converted back
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to electrical energy [29] [30]. The only exception is the capacitor storage. Additionally, energy

storage systems can be divided into four categories, according to the type of energy storage system

and specificity of the application for which it is planned [31]:

• Low power applications in isolated areas (emergency terminals support);

• Medium power applications in isolated areas (individual electric systems or town supply);

• Network connection with peak levelling

• Power quality control applications.

Within the scope of this dissertation, the technologies that are most relevant in the intended MG

application are batteries, supercapacitors and flywheels, technologies that are briefly described in

the following sections. Further information regarding the other technologies mentioned can be

found in [31].

2.3.5.1 Batteries

A number of different battery technologies exist for use as utility-scale energy storage facilities.

Primarily, these have been lead-acid, but other battery technologies like sodium-sulfur (NaS),

lithium-ion (Li-ion) and hybrid lithium-ion, and nickel-cadmium are also commercially available

[15].

Figure 2.5: Discharge mode: electrochemical operation of a cell [4]

All batteries are electrochemical cells composed of two electrodes separated by an electrolyte

so, despite being commonly known as "batteries", they are actually a "cell", the basic electrochem-

ical unit, that can be combined in series and/or parallel with more cells depending on the intended

output capacity in terms of voltage and current. A battery converts chemical energy into electric



2.3 Microsources technologies 19

energy through an oxidation-reduction reaction, where electrons from one material are transferred

to another by means of an electric surface. As a result, during discharge, ions from the anode (first

electrode) are released into the solution (electrolyte) and deposit oxides on the cathode (second

electrode) as seen in figure 2.5 [4]. Reversing the electrical charge through the system recharges

the battery. When the cell is being recharged, as illustrated in figure 2.6 [4], the chemical reactions

are reversed, restoring the battery to its original condition.

Figure 2.6: Charge mode: electrochemical operation of a cell [4]

Batteries are an adequate option for storing small to medium quantities of electricity. However,

its utilization should take into account the charge and discharge cycles, since it can affect the

battery lifetime. Since batteries gradually suffer from degradation of their storage characteristics

after repeated charge/discharge cycles, it is recommended to submit them to no more than half,

or less, charge/discharge cycles. This is due to the fact that the chemical reaction involved in the

discharge cycle is not completely reversed during the charge cycle, contaminating the electrolyte,

damaging the electrodes and in severe cases permanent molecular damages on components [15]

[32].

2.3.5.2 Supercapacitor

Supercapacitors offer high power density, fast transient response, low volume and low internal

resistance, making them suitable for pulsed load applications [33]. Supercapacitors merge some

of the characteristics of capacitors and electrochemical batteries, except that there is no chemical

reaction, increasing its cycling capacity. Energy storage in supercapacitors is done in the form of

an electric field between two electrodes. The energy/volume obtained is superior to that of capac-

itors at very high cost but with better discharge time constancy due to the slow displacement of

ions in the electrolyte [31]. Supercapacitors are durable (8–10 years), presenting a 95% efficiency

and 5% per day self-discharge, meaning that the stored energy must be used quickly.
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In figure 2.7 [4] it is represented the conventional arrangement of a supercapacitor, where it

can be identified two capacitors, one at each carbon electrode, connected in series and the elec-

trolyte serve as a link between the two capacitors [34]. So, technologically, it is an electrochemical

device similarly constructed to batteries since it has two porous electrodes immersed in an elec-

trolyte solution flowing into and around the porous electrode plates that, as mentioned, are made

of activated carbon whereas the electrolyte solution is usually potassium hydroxide (NaOH) or

sulphuric acid (H2SO4). The use of porous materials in the electrodes and, simultaneously, a liq-

uid electrolyte solution, can be translated in high capacitance values, particularly when compared

to conventional capacitors.

Figure 2.7: Electrochemical supercapacitor [4]

Electrochemical batteries have been used for different energy storage applications since they

can store large amounts of energy and provide high power levels in a relatively small weight/volume

ratio. However, batteries have many limitations like low power density, poor temperature perfor-

mance, charge and discharge cycles are somewhat limiting and it requires repeated replacements

throughout the life of system [33]. Additionally, this type of technology raises environmental con-

cerns since they use chemicals to power their reactions. Some of these chemicals, such as nickel

and cadmium are extremely toxic and can endanger humans and the environment. Nevertheless,

this technology is still very popular, mainly due to low cost and sometimes a lack of an efficient

alternative. In this regard, supercapacitors can provide a simple solution to improve performance

and reliability and provide burst of power over many hundreds of thousands of cycles. They also
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have much higher power density, extremely longer cycle life, wide temperature range (-40oC to

+65oC) but low energy density. It can also back up short term power mismatches between power

available and power required with reduced system size and cost [35] [36] [37].

2.3.5.3 Flywheels

Traditionally, flywheels were used to achieve smooth operation of machines. The early systems

were purely mechanical, consisting of only a wheel attached to an axle. Nowadays, flywheels

are complex constructions where energy is stored mechanically and transferred to and from the

flywheel by an integrated motor/generator and possibly power electronics [38]. A flywheel stores

energy by accelerating a rotor up to a high rate of speed and maintaining the energy in the system

as inertial energy. The energy is stored in the rotor proportionally to its momentum, but the square

of the angular momentum. The flywheel releases the energy by reversing the process and using

the motor as a generator. As the flywheel releases its stored energy, the flywheel’s rotor slows until

it is fully discharged [39]. Although most of the flywheel technology was developed in the auto

and aerospace industry, flywheels are targeted for power delivery capabilities in the 150 kW up

to 1MW range. These systems are compact and have lower maintenance costs and requirements

when compared to battery systems. The main concern for development of this technology has

been the power quality and reliability market.

Figure 2.8: Components of a flywheel

Figure 2.8 shows the general components of the flywheel energy storage system. The kinetic

energy stored in a flywheel is proportional to the inertia of the rotating mass and to the square of

its angular speed speed as described:

E =
1
2

Jω
2 (2.2)

Where:
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• E: kinetic energy (J);

• J: inertia of the rotating body (kg.m2);

• ω: angular velocity (rad.s−1).

Modern flywheels main parts are a power converter, a controller, a stator, bearings and a rotor.

The rotor includes the rotating part of the motor/generator and the flywheel proper [40]. The

inclusion of a rectifier and a converter to the generator allowed to increase the delivered amount

of kinetic energy stored in the wheel, further increasing ride-through capability. Power electronics

also allow the operation of flywheels at higher speeds, increasing stored kinetic energy in the

rotating mass, achieving higher levels of energy and power densities [38].

In a flywheel, the rotating body that stores kinetic energy is connected to a variable speed

Permanent Magnet Synchronous Generator, PMSG, that can operate as motor by accelerating

the rotating body or as a generator by using the stored kinetic energy and convert it to variable

frequency AC power [38]. In the charging state, storage of kinetic energy, power is absorbed from

the grid and then converted into an appropriate form to drive the PMSG as a motor, which speeds

up the flywheel. In the discharging state, the kinetic energy stored in the flywheel is converted to

electricity by the motor which acts as a generator and the flywheel reduces its speed.

Flywheels, in terms of power quality applications, are appropriate to support the load through-

out most of events, standing for less than a second, such as voltage sags and they can also provide

power in order to support a system load during a few tens second while a standby generator is

bought on-line. These sort functions were usually performed by chemical batteries but flywheels

can compete with them since there is no capacity degradation and the lifetime of the flywheel is

almost independent from the depth of charge and discharge cycles. Additionally, determining the

state of charge in batteries is somewhat difficult, while in flywheels its state of charge depends on

the rotational speed [41]. Last, it should be noted that flywheels are not suitable for low power

applications (less than 100kW) since they present high power and energy densities and also high

self-discharge rates. In this case, supercapacitors prove to be the cost-effective solution [42].

2.4 MicroGrid in depth

The massive adoption of DG resources throughout the electric system, supported by a maturation

of some DG technologies, raises several technical issues that need to be tackled. As a result,

in order to overcome these challenges and to maximize the potential benefits associated to DG

resources, it is crucial to develop a coordinated strategy for its operation and control, while also

taking into consideration electric loads and storage devices. A possible solution is the development

of the MicroGrid (MG) concept. The development of this concept can be seen as an evolution

of simple distribution networks with high levels of DG units where the formation of active LV

networks can benefit the Distribution Network Operator (DNO) and the end user. From the grid’s

perspective, the advantage of considering a MG is the fact that it can be seen as a controlled entity

within the power system with the possibility to be operated as a single aggregated load. From
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a customer point of view, the existence of a MG can benefit them them, since the consumer is

able to act both as a buyer or seller of thermal and electrical energy, in a prosumer ("producer" +

"consumer") attitude, while also providing uninterruptible power, enhance local reliability, reduce

feeder losses, and support local voltages/correct voltage sag. Additionally, the pattern of exchange

of energy services between the MG and the bulk power provider grid is determined by prevailing

economic conditions.

However, it is necessary to achieve a coordinated control of the MG cell, in order to get the

flexibility of operation required. To achieve that, it is necessary to develop an hierarchical control

structure, developed according to the MG requirements and based on a network of controllers with

local intelligence.

Since MGs are a future power system configuration that provides economic and environmental

benefits while raising numerous economic, commercial and technical challenges that need to be

addressed, United States, Europe, Japan and Canada are working in this sense, providing efficient

solutions and trying to demonstrate MG operating concepts in laboratories and pilot installations.

The MG concept was first introduced in the United States by The Consortium for Electric

Reliability Technology Solutions (CERTS) [1], established in 1999 to explore implications for

power system reliability of emerging technological, economic, regulatory–institutional and envi-

ronmental influences. From the inception of CERTS, the likely emergence of DG was recognized

as an important factor, and it has been a focus of the CERTS. The specific concept of the CERTS

Microgrid (CM) was fully developed by 2002.

In the European Union, the promotion and deployment of DER is expected to benefit energy

consumers, energy system and the environment through optimization of the value chain from

energy suppliers to end users. MG are considered a basic feature of future active distribution

networks, able to take full advantage of DER, if coordinated and operated efficiently. They have

been studied in a number of research and development projects, forming a key component in the

Strategic Research Agenda for Europe’s Electricity Networks of the Future [43].

Japan is the current world leader in MG demonstration projects. The Japanese government set

ambitious targets for increasing the contribution of RES, such as wind turbines and PV panels, but

the fluctuating power of RES could degrade the country’s outstanding power quality reliability [3].

MG related research and development activities in Canada are focused on MV. Most were

initiated in universities or as part of the Decentralized Energy Production program managed by

the Canada Centre for Mineral and Energy Technology (CANMET). Research and development

projects in Canada are mostly carried out in collaboration with the electric utility industry, manu-

facturers, and other stakeholders in DER integration and utilization.

2.4.1 MicroGrid Operational Control Architecture

Typically, a MG can be defined as a LV network that contains:

• Feeders that supply electric loads;

• Microgeneration systems based on Renewable Energy Sources (RES);
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• Storage devices;

• Hierarchical management and control scheme that guarantees that all elements of the

MG are aggregated in a single cell interfaced to the electrical power system.

Figure 2.9 [4], [44] properly illustrates the composition aforementioned. Microgeneration

systems previously stated can be seen as energy sources such as photovoltaic panels, micro wind

generator and microturbines whose technologies have already been described in previous sections

and can either be controllable or non-controllable.

Figure 2.9: MG architecture [4]

Given the fact that a MG requires high levels of flexibility, the system is centrally controlled

and managed by the MicroGrid Central Controller (MGCC), which is installed in the LV side

of the MV/LV distribution transformer, as seen in Figure 2.9, allowing to communicate with

controllers located at a lower hierarchical level. This second hierarchical level is composed by

Microsource Controllers (MC) that control MS and storage devices at a local level and Load
Controllers (LC) that manage electric loads.

The operation and control of the entire system is possible since it exists communication and

interaction between the aforementioned hierarchical control levels. LC and MC serve as interfaces

to control loads and MS active and reactive power management. The MGCC, being a central

controller, ensures an adequate technical and economical management of the MG, providing set-

points to MC and LC.

In order to actively contribute to enhance the management and operation of the MV distribution

system, the MGCC should be able to communicate with the Distribution Management System
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(DMS) which is located upstream, in the distribution network. DMS is responsible for monitor-

ing, controlling and optimizing the distribution network operation network, being supported by a

SCADA (Supervisory Control and Data Acquisition).

A SCADA allows:

• Data Acquisition through RTU (Remote Terminal Units);

• Alarm monitoring and processing;

• Manual/Automatic Control;

• Data Storage, event log, report creation and analysis.

A MG has the ability to operate in two different modes, either connected, or isolated from the

upstream MV network. Such operation modes can be defined as [44]:

• Interconnected Mode: the MG is connected to the MV network and can be totally or

partially supplied by it, while in some cases it can also inject power into the main system.

• Emergency Mode: the MG has the ability to move to islanded mode following a failure in

the upstream network or due to planned action, such as maintenance procedures. Addition-

ally, in case of a general blackout, it can locally perform a service restoration procedure.

Both cases result in an autonomous operation from the MG, similar to physical islands elec-

tric power systems.

2.4.2 Microgrid communication infrastructure

Given the architecture previously described, it is necessary to grant communication capabilities

between the MGCC and local controls in order to perform an optimized control and operation of

the system. The data to be exchanged between network controllers includes:

• Set-points to LC and MC;

• Active and reactive powers, voltage levels and messages to control MG switches. This

information is requested by MGCC to LC and MC.

In order to reduce telecommunication infrastructures costs, given the short geographical span

of the MG, it could be exploited the concept of Power Line Communication technology) since the

connectivity characteristics of the power grid provide the appropriate physical link between the

different elements of the MG control system.

For a small MG, an Home Area Network (HAN) and a Neighborhood Area Network (NAN)

[45] [46] are enough to operate a smart power system. Additionally, applications used in MG may

affect the determination of communication technologies. SCADA system, for example, collects

data at every few seconds or every minute. As a result, the requirement for data transmission rate

and latency is not too high.
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2.4.3 Low voltage microgrids and contribute to service restoration

MicroGrids feature several advantages being the most notable ones the deferral of investments in

both transmission and distribution systems and last, the ability to reduce of losses in the distribu-

tion system. Nevertheless, MG can also contribute for power system restoration further improving

overall system’s reliability. Traditionally, restoration procedures focus on the restoration of bulk

power transmission systems and its loads while DG is located at the bottom of the hierarchy, being

reconnected when the system is energized and with stable values of voltage and frequency, based

on the principle that its integration should not jeopardize the power system.

Conventional power system restoration plan is defined step-by-step, using predefined guide-

lines and operating procedures, recurring to decision support tools that assist system operators.

The main focus is the plant preparation for restart, followed by network energizing and system

rebuilding. MG, in this regard, besides allowing a reduction on interruption times at LV levels by

operating in an islanded mode, can also provide faster Black Start (BS) fully exploiting its gener-

ation and control capabilities. A BS or service restoration consists in a process where, following

a complete blackout, a system is restarted and a reconstruction of its networks and restoration of

its service takes place without relying on other systems, fully depending on its self-starting units

[47].

Figure 2.10: Schematization of the modes of operation that can be performed by a MicroGrid

An innovative approach in order to achieve system recovery following a general/local black-

out that prevents a MG to shift into an islanded mode operation, consists in a local BS in the

LV grid that is followed by the MG synchronization with the MV grid, which can be seen as

a bottom-up strategy. This can result in a restoration service within each MG area of influence

that when merged with the traditional top down strategy can allow to further reduce restoration

times and unserved electricity during failures [48]. Since there are several issues related not only
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with conventional power system restoration but also MG restoration it is needed to define spe-

cific restoration strategies, as seen in [4]. The MS that are present in the MG make use of power

electronic interfaces that allow the connection to the LV grid. Besides, MS operation has specific

restrains, related to the slow response of the control signals and during transients, power balance

is guaranteed by storage devices since there are no synchronous machines connected to the grid.

Summarily, the coordination of the MG resources allows it to operate not only in "normal"

mode, connected to the upstream MV network, but also in emergency mode, as illustrated in

figure 2.10.

2.5 Summary and conclusions

This chapter presented a general overview regarding the paradigm shift in the electric power sys-

tem motivated by the increasing integration of DG in the system that is questioning the "validity"

of vertically integrated utilities, since DG units can reduce transmission and distribution costs

while also lessen the environmental impacts caused by promoting technologies that can produce

energy with reduced levels of carbon dioxide and other GHG emissions.

While the development and increased DG deployment is a positive happening, its connection

to the distribution network also needs another "paradigm shift" in the sense that DG integration

needs to actively contribute to the management of the distribution grids, instead of a pure passive

approach, also known as "fit and forget". This contribution can lead to a fully active distribution

network, where DG, responsive loads and storage devices capabilities can be fully explored in

order to further improve the system reliability and efficiency, operating conditions and quality of

electricity supply.

Regarding MS technologies, it should be noted that in some cases, the lack of power electron-

ics minimizes their role in a MG as they do not provide the required flexibility to ensure operation

as a single aggregated system.

The MicroGrid structure assumes an aggregation of loads and microsources operating as a

single system providing both power and heat. The majority of the microsources must be power

electronic based to provide the required flexibility to insure controlled operation as a single ag-

gregated system. This control flexibility allows the MicroGrid to present itself to the bulk power

system as a single controlled unit, have plug-and-play simplicity for each microsource, and meet

the customers’ local needs. These needs include increased local reliability and security.

While a MicroGrid presents several advantages, it also raises some issues namely voltage con-

trol, power flow control, load sharing during islanding, protection, stability and overall operation.

The ability of the MicroGrid to operate connected to the grid as well as smooth transition to

and from the island mode is another important function. While this issue is not debated in this

dissertation, in [4] some strategies are suggested to overcome this problem.
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Chapter 3

Microgrid control during islanding
operation

The following chapter intends to give an insight on the main control strategies for grid inverters

that allow the operation of a MicroGrid (MG) connected to the upstream Medium Voltage (MV)

distribution network or isolated from the main grid.

Lastly, this chapter explains not only primary and secondary frequency control, but also also

voltage control, topics that are crucial to understand the principles applied within the scope of this

dissertation and that allow a successful operation of a MG in islanded mode.

3.1 Power electronics embedded in the grid

One of the key features that enables a MG application is the power electronics, control, and com-

munications capabilities that allow a MG to function as a semiautonomous power system. In fact,

power electronics are one of the distinguishing features of any MG. The interest in power elec-

tronics is due to the fact that most of the Microsources (MS) currently available can not be directly

connected to the Low Voltage (LV) grid due to the characteristics of the energy they produce,

requiring a DC/AC or AC/DC/AC interface.

Contrarily to what is seen in a conventional power system, where it is common to find syn-

chronous generators, a MG, on the other hand, as distinctive features as most of its MS have power

electronic interfaces due to the characteristics of the energy produced that need to be conditioned

in order to be connected to the LV grid. As a result, voltage and frequency control operation is

very different and it is crucial to understand the inverter control mechanics in order to ensure stable

operation towards any given scenario.

In short, while inverters try to replicate some of the functions performed by synchronous

machines in conventional power systems, they still have different characteristics, which are listed

in the table 3.1 below [49].

This chapter will be focusing on giving an insight of the two main control strategies for grid

inverters [44] [50] [51]:

29
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Table 3.1: Synchronous machine vs. Inverter

Synchronous machine Inverter

Voltage source operation with controlled
magnitude through the use of excitation sys-
tems.

Voltage source (although current source ver-
sions are known) with nearly independent
magnitude control in each phase.

Sine-wave voltage output is taken into ac-
count during the machine design/construction
phase.

Sine-wave can be achieved through the use a
suitable modulator and reference waveform.
Nevertheless, any shape can be achieved as
desired.

High short-circuit current due to low internal
impedances.

Potential short-circuit current is high but pro-
tection against it must be provided in the form
of current limiting functions.

Current rating defined by the winding insula-
tion temperature rise. The thermal time con-
stant of the winding and surrounding material
is large and a useful short term over-rating is
available. Large thermal time constants allow
large fault currents for several main cycles.

Current rating defined by the temperature rise
of the semiconductors, which have very low
thermal time constants. Large currents cause
semiconductor failure in less than 1 ms. The
cooling system has also low thermal time con-
stants, limiting the over-rating capabilities.
Inverter over-rating is necessary to accommo-
date over-currents.

Real power exchange is dictated by the torque
applied to the shaft. Power sharing is based
on the use of control systems as a function of
system frequency.

Real power exchange is dictated by the refer-
ences applied to the control system, subjected
to the DC-link capacity to sink the requested
power.

• PQ inverter control: also known as grid tied inverters, they are responsible for exporting

a controlled amounts of active and reactive power, acting like a current-controlled voltage

source and operating in grid-connected mode [49] [52] ;

• VSI inverter control: Voltage Source Inverters (VSI) have the ability to control the fre-

quency and magnitude of its output voltage [49] [52], behaving like a voltage source.

Since in a MG there are no synchronous machines that guarantee the balance between demand

and supply through frequency control, inverters take this responsibility during islanded operation

mode. When the MG is connected to the MV network, all inverters can operate in PQ mode since

voltage and frequency are defined by the main system. However, when considering an islanded

mode scenario, the disconnection of the main power supply leads to the loss of the MG, as it is no

longer possible to maintain balance between load and generation and for an instance, frequency

and voltage control [4]. In order to overcome this critical situation, VSI have a crucial role in MG

operation as they can operate in parallel with other voltage sources [44]. Therefore, it is possible

to migrate and operate in islanded mode since it provides references for voltage and frequency

without needing to change the control mode.
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3.1.1 PQ inverter control

This type of control mechanism for power converters, also know as the control of a grid tied

converter, is based on the fact that they synchronize with an existing grid, injecting to it given

amounts of active and reactive power. Its two main functions can be enlisted as follows:

• Grid-connection operation;

• Meet active and reactive set-points.

In addition to the aforementioned functions, it is also responsible for controlling the DC-link

voltage of the cascading DC/AC/DC system [53].

Figure 3.1: PQ inverter control [4]

The implementation of a PQ inverter control intends to act as a current-controlled voltage

source, as it is illustrated in Figure 3.1 [4], [44] and it can be operated with a unit power factor or

receive a set-point for the output reactive power, either locally or either from the MicroGrid Central

Controller (MGCC). Power calculation is obtained by considering current components in phase

and quadrature, iact and ireact respectively, with the inverter terminal voltage. The control system

has two cascade loops. The inner control loop adjusts the inverter internal voltage, v*, to meet a

desired current, ire f , while the outer loop comprises active and reactive power regulators. PI-1 and

PI-2 regulators also seen in figure 3.1 allow to set active and reactive power output values. PI-1

regulator adjusts the active current output to be delivered to the grid, correcting power variations
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in the MS that induce a DC-link voltage deviation. PI-2 regulator enables the control of reactive

power by adjustment of the magnitude of the inverter reactive current output.

3.1.2 Voltage Source inverter control

A Voltage Source Inverter (VSI) is designed through appropriated control mechanisms so that it

emulates the behaviour of a synchronous machine by controlling voltage and frequency on an AC

system [49] [52] [54] and, simultaneously, enabling parallel operation of variable frequency AC

voltage sources. In conventional power systems the load variation is shared among synchronous

generators according to their droop characteristics. As a result, in a situation where load increase

occurs, synchronous generators react by decreasing the frequency according to their droop value.

Conversely, when load decrease occurs, frequency increases accordingly to their droop value.

Finally, reactive power sharing is done by introducing a droop characteristic in the voltage magni-

tude. Ultimately, a VSI can be seen as a voltage source since the magnitude and the frequency of

its output voltage can be controlled through droops as seen in equation 3.1 and equation 3.2.

ω = ω0− kP×P (3.1)

V =V0− kQ×Q (3.2)

Where:

• P - inverter active power output;

• Q - inverter reactive power output;

• kQ, kP - droop slope (positive) values;

• ω0 - angular frequency idle value of the inverter at no load condition;

• V0 - voltage idle value of the inverter at no load condition.

In figure 3.2 [4], [55] it is presented the control scheme principle of a VSI. The basic idea of

the model is based on equation 3.1 and equation 3.2, which requires the computation of output

active and reactive power, whose computation is based on voltage and current measurement. After

the measurement process, it is introduced a delay in order to allow decoupling between active

and reactive power (identified as "Decoupling" set of blocks). In one dimension, by resorting

to the reactive power/voltage droop, kQ, the reactive power defines the magnitude of the output

voltage. In another dimension the active power/frequency droop, kP, determines the frequency of

the output voltage. Additionally, in this loop, it is included a phase feed-forward gain, k f f , for

stability purposes. Lastly, in the "Three-phase voltage computation" set of blocks it is generated a

three-phase set of voltages that ultimately lead to voltages v∗a, v∗b and v∗c which serve as reference

signals to control the VSI switching sequence through the Power Width Modulation (PWM) block,

ensuring a correct implementation of a three-phase balanced model of the VSI.



3.1 Power electronics embedded in the grid 33

Figure 3.2: Voltage source inverter control [4]

A VSI, when interconnected with a stiff AC system with a ωgrid frequency and Vgrid voltage,

the voltage and frequency references of the VSI are externally imposed, as described in [56].

Additionally, as seen in figure 3.3 and equation 3.3 and 3.4, active and reactive output power, P1

and Q1 respectively, can be obtained in the VSI output by adjusting the idle values of the angular

frequency ω01 and voltage V01.

Figure 3.3: Frequency versus active power droop [4]



34 Microgrid control during islanding operation

ω01 = ωgrid− kP×P1 (3.3)

V01 =Vgrid− kQ×Q1 (3.4)

If a cluster of VSI operate in a standalone AC system, power sharing occurs when frequency

variation takes place. As a result, ∆P, which represents the total power variation, has the following

equation that is valid for a system considering a Multi Master Operation1 with n VSI:

∆P =
n

∑
i=1

∆Pi (3.5)

Regarding frequency control, which will be further detailed in section 3.4, in short therms, the

frequency variation can be mathematically described as:

∆ω = ω0− kP×P− [ω0− kP× (P+∆P)] = kP×∆P (3.6)

Figure 3.4: P-f droop
Figure 3.5: Q-V droop

Regarding voltage/reactive power control capabilities of a VSI, its control can also be based on

droops, as demonstrated in [52]. However, voltage has local characteristics because the impedances

of the network cables do not allow precise sharing of reactive power among VSI.

Analyzing figures 3.4 and 3.5 that are related to equations 3.1 and 3.2 and correspond to P-f

and Q-V characteristic droops of any given VSI, it can also be stated that the greater the slope of

one VSI in comparison to the nominal slope, the smaller the share of that unit [57].

3.2 Single Master Operation

Operating a MG with a single VSI and several PQ controllers is the definition of a Single Master

(SMO) control strategy, as illustrated in figure 3.6 [4], [44]. When operating in islanded mode,

1Multi and Single Master Operation strategies are presented in the following sections
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VSI sets the voltage and the frequency reference that allow the operation of the PQ controlled

inverters. Additionally, the VSI also ensures fast load tracking during transients.

Conversely, MGCC uses the information received from MG local controllers and performs

load control actions and defines the VSI droop settings, while it also updates each PQ inverter

set-point to achieve an optimal operation configuration taking into account voltage levels, active

power dispatch and reactive power flows.

Figure 3.6: Single master Operation scheme [4]

3.3 Multi Master Operation

In the section above, a single VSI was responsible for providing voltage and frequency reference

when in islanded mode. However, as illustrated in figure 3.7 [4], [44], [51], in a Multi Master

operation (MMO), several VSI operate an isolated network in a similar way as conventional power

systems who possess synchronous generators that control active power/frequency and reactive

power/voltage. While the mode of operation is similar, in a MG this is performed by resorting

to frequency/active power and voltage/reactive power droops instead of conventional voltage and

speed governors. In short, by using additional VSI in parallel, redundancy in grids can be achieved.

This solution avoids the master/slave operation meaning, in fact, that all VSI form the grid.

While it is not the objective of this dissertation, MMO as it was demonstrated in [48], can be

seen as the best option (when compared to a SMO) to implement a BS strategy.
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Figure 3.7: Multi master Operation scheme [4]

3.4 Frequency Control

MicroGrids can provide premium power functions using control techniques where the MG can

perform in islanded mode and automatically reconnect to the bulk power system if needed.

When considering an interconnected operation mode, the frequency of the LV grid is set by

the external grid. Additionally, its loads receive power both from the grid and from local MS.

However, if the grid power is lost, the MG can shift to island mode operation, leading to voltage

phase angles alterations at each MS in the MG, resulting in an apparent reduction in local fre-

quency. This frequency reduction combined with a power increase allows for each MS to provide

its proportional share of load without immediate new power dispatch from the MGCC. As a result,

in islanded mode, some problems must be tackled such as small errors in frequency generation at

each inverter and the necessity to alter power operating set-points in order to match load variations.

Power versus frequency droop functions at each MS can address these problems without needing

to rely on a complex communication network, while the overall system moves to a new operation

point both in voltage and in frequency, dependant on the local load. After that, it is needed to
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restore the nominal value of the frequency by changing the idle frequency value of each inverter,

while maintaining the output power constant which makes it possible to change the frequency of

the MG without altering the output power of the VSI.

3.4.1 Primary Frequency control

The following equations reflect the proportional relation existent between the VSI active power

output and the frequency deviation of a MG:

∆ω = ω0− kP×P− [ω0− kP× (P+∆P)] = kP×∆P (3.7)

∆V =V0− kQ×Q− [V0− kQ× (Q+∆Q)] = kQ×∆Q (3.8)

Due to the fact that the storage devices that are coupled with the VSI have fast response

capabilities, these devices are responsible for reacting in situations where load/power variations

occur and also the moments subsequent to MG islanding meaning that they have high impact on

primary frequency control. As illustrated in figure 3.8 [4], [51], when the VSI increases its output

power, the MG decreases in accordance to the active power/frequency droop meaning that the

value of this droops affects the slope of the correlation seen in the aforementioned figure. This

situation happens since the VSI, as already mentioned in previous sections, acts as a voltage source

and when power imbalances occur due to disturbances, it demands large currents from the VSI,

forcing it to increase their output power.

Figure 3.8: Correlation between frequency and active power variation [4]

The VSI action behaviour following disturbances also needs to take into account the type of

operation chosen, which means that a SMO or MMO, described in the previous sections, lead to

different mechanics. As a result, when considering a SMO mode where the MG is interconnected

with the upstream MV network and it is injecting a certain amount of active power, P0, in the

moments subsequent to MG islanding, the frequency shifts to a new value, ω1, while the active
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power increases to a new value as seen in figure 3.8, P1. The difference between P1 and P0,

∆P, (representing the power imbalance between MG local load and generation and generation

following islanding) corresponds to the amount of power absorbed from the upstream MV network

if considering an interconnected operation mode. In this strategy, the single VSI existent act as

the "maestro" and the frequency is determined by its P-f droop function. On another perspective,

when considering a MMO mode, with n VSI operating in parallel and standalone AC system, a

power variation ∆P in the system, forces the equation 3.5 in section 3.1.2 (Voltage Source Inverter

Control) to be fulfilled, ensuring that the power variation in the system is properly shared within

the existent VSI.

Through the following matrix equation 3.9, by combining every droop characteristic of the

VSI present in the MG in a MMO mode, the steady state power variation in each VSI, ∆Pn, and

the system frequency, ωgrid , enables to determine MG frequency deviation and the power sharing

among the VSI following variations in generation/load during islanded mode.

1 kP1 0 0 . . . 0

1 0 kP2 0 . . . 0

1 0 0 0 . . . 0

. . . . . . . . . 0
. . .

...

1 0 0 0 . . . kP1

0 1 1 0 . . . 1


×



ω ′

∆P1

∆P2

∆P3
...

∆Pn


=



ωgrid

ωgrid

ωgrid
...

∆P

ωgrid


(3.9)

Where:

• ω ′ corresponds to the post-disturbance angular frequency of the MG;

• ωgrid is the pre-disturbance MG angular frequency of the i-th VSI: ωgrid = ω0i - ki × Pi.

3.4.2 Secondary Frequency control

As seen in the previous section, during islanded mode operation, the frequency of the MG deviates

from its nominal value when facing power or load variations. Consequently, in situations where

the MG frequency value stabilizes in a number different to the nominal one, storage devices,

theoretically would keep injecting or absorbing active power until frequency deviation is equal to

zero. In practice, due to the fact that storage devices have high capabilities for injecting power

only during small periods of time, its storage capacity is finite and should restrict their actuation

only during transient situations, preventing to run out of energy. As a result, it is necessary to

include a control feature that corrects permanent frequency deviations in a MG during islanded

mode for any operation scenario, relieving the dependence and restrains associated to the storage

devices, namely the small time period of actuation capability.

Figure 3.9 [4], [44] properly illustrates the issue previously mentioned since whenever a fre-

quency deviation occurs, power injection/absorption from the storage devices that are coupled
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Figure 3.9: VSI power injection/absorption vs. MG frequency deviation [4]

with the VSI takes place, exhibiting a proportional relationship between frequency deviation and

power injection/absorption and also restrains associated to the power ratings of the storage device,

since after a certain frequency deviation, the storage device is incapable of injecting more power.

The control feature needed, which is actually a secondary frequency control, aims to restore

the frequency to the nominal value, in this case 50Hz, following any power imbalance. There

are two main strategies: local secondary control and centralized secondary control. The local

secondary control uses a Proportional-Integral (PI) in each controllable MS as seen in figure 3.10

[4], [44]. In short terms, when considering a VSI controlled inverter, the frequency error is the

input of the PI controller that determines the new ω0 value. If considering a PQ controlled inverter,

the frequency error is also the input of the PI controller that, instead, allows to determine the new

active power reference point, Pre f . Centralized secondary control, on the other hand, is performed

by the MGCC through algorithms implemented in the software. Both strategies use the frequency

deviation error to set the values for active power output of the MS.

Figure 3.10: Local secondary control using a Proportional-Integral controller [4]

Within the scope of this dissertation, it will be considered the local frequency control. While

in SMO strategy the target value is an active power set-point for a controllable MS, in a MMO

strategy the target value is directly an active power set-point of a controllable MS connected to a

PQ inverter or, additionally, a new value for the idle frequency of a VSI connected to a MS that

comprises storage devices in the DC-link.
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3.5 Voltage Control

LV distribution systems differ from the MV distribution systems in the sense that the cables have

a high resistive nature in comparison with its reactance. While working well in a power grid with

mainly inductive line impedances, the traditional decoupling principles (where the line resistance

is neglected) leads to a concern when implemented on a LV MG, where the feeder impedance is

not inductive and the line resistance, RC cannot be neglected.

Figure 3.11 [4] illustrates a VSI and its respective inductance, Lcoupl , and a LV cable, repre-

sented by RC, connecting the VSI to the stiff AC power source, Vgrid .

Figure 3.11: VSI and stiff AC power source connected through a LV cable [4]

Active and reactive power of the inverter can be determined through the following equations:

Pinv =
Vinv

R2
C +X2

C
[RC(Vinv−Vgrid cos(δ ))+XCVgrid sin(δ )] (3.10)

Qinv =
Vinv

R2
C +X2

C
[RC(Vgrid sin(δ )+XC(Vinv−Vgrid cos(δ )] (3.11)

Since XC, as mentioned is admitted to being equal to zero (XC=0), the aforementioned equa-

tions can be rearranged as follows:

Pinv =
V 2

inv

RC
−

VinvVgrid

RC
cos(δ ) (3.12)

Qinv =
VinvVgrid

RC
sin(δ ) (3.13)

Previous equations 3.12 and 3.13 indicate that active power flow is mainly related to the volt-

age magnitude and the reactive power to the phase difference between voltage sources. In this

specific case, a possible approach could consist on using reverse droop concepts. Besides, in this

case, it will not be possible to establish an effective power dispatch, since each load will tend to

be fully supplied by the nearest generator. Due to the resistive nature of LV distribution networks,

reactive power injection is unable to control voltage magnitude. In that sense, the MGCC, being

a central controller, could perform reactive power set-point for each MS through, for example, a

dedicated software in order to promote adequate technical and economical management policies.
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To avoid P–Q coupling, virtual active and reactive powers can be used, while being decoupled

through frame transformations with the line impedance angle information [58]. Despite being ef-

fective for power control in grid-connected mode, this method is unable to directly share the actual

active and reactive powers between the DG units in MG islanding operation mode. Another way

to decouple the powers with direct power control is to employ the virtual voltage and frequency

control frame as demonstrated in [59]. However, these frame transformation methods are prone

to the accuracy of the power control due to unequal impedance voltage drops. In [60] the DG

interfacing inverter is controlled with a virtual output inductor that introduces a predominantly

inductive impedance without the need of line impedance information in a order to control the de-

coupled active and reactive power flows in a similar manner as the conventional power system

with a high X/R ratio.

Therefore reactive power injection cannot properly control voltage profiles. In fact, active

power flow is linked to the voltage magnitude and the reactive power flow related to the phase

difference between voltage sources. Within the scope of this dissertation voltage control is made

through VSI where the manipulation of the reactive power/voltage droops (Q-V) can cause current

circulation among VSI. They depend on the dispatched active power assigned to the inverter and

on the VSI idle voltage.

Within the scope of this dissertation, since it is assumed a reactive power/voltage and active

power/frequency droop control approach, some issues need to be addressed, particularly the fact

that a droop based strategy prevents the classical formulation of a power flow since it is not possible

to define the classical voltage controlled buses, as well as the reference and compensator bus.

3.5.1 Solving a power flow in islanded MicroGrid

Solving the power flow for a MicroGrid can not be done through conventional approaches, re-

curring to methods like Newton Raphson because, in islanded mode, there is no slack bus and the

frequency is not constant, like in a grid connected mode. Additionally, there is a direct dependence

of the power on frequency due to the droop characteristics. In [61] it is proposed a modified New-

ton Raphson method that bypasses the absence of slack bus and formulates the generator bus as a

droop bus. Moreover, the bus at which the DG is connected either can not be classified as slack,

PV or PQ bus in a power flow because the active and reactive powers, voltage magnitude and

angle of the droop bus are not pre-specified, being dependent on the system parameters meaning

that conventional approaches can not be considered in case islanded microgrids.

Typically, power flow models have three types of buses: slack bus, generating bus and load

bus. Considering a generating bus, the active power and voltage magnitude may be specified

by varying the mechanical torque and generator field current. All other buses specify real and

reactive power. Generally all real power values at all the buses cannot be specified independently

because power balance needs to be validated. The power at the slack bus is left open to, as the

name suggests, take up the slack and balance the change in real power and provide a reference

to the rest of the generators in the system. However, slack bus is not viable since in a standalone

operation mode any change in power requirements needs to be evenly distributed among the VSI.
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The changing frequency will influence the power flow solution and ultimately, a varying frequency

will influence the voltage magnitude and angle.

Given the difficulties of having an expedite tool capable of providing a solution for the power

flow probe in droop controlled autonomous MG, it was decided to explore an alternative solution

based on the simulation models available in the Matlab/Simulink libraries.

First, it is necessary to take into consideration the VSI inverter model presented earlier in this

chapter, in section 3.1.2 (figure 3.2). The initial step is to implement not only the kP (P-f) but also

the kQ (Q-V) droop mechanisms in a synchronous machine model available in Matlab/Simulink

library while still guaranteeing the equivalency of the droop controlled VSI mechanism.

In a VSI, the basic relation between the active power variations and angular variations is given

in figure 3.12 through a linear transfer function, as follows:

Figure 3.12: Voltage Source Inverter transfer function

As a result, VSI transfer function ∆ω/∆P can be presented in the given form:

∆ω

∆P
=

kP

TdPs+1
=

1
TdP
kP

s+ 1
kP

(3.14)

For this machine, represented as a constant voltage source behind an internal reactance, the

classic swing equation [62] in the Laplace domain (considering small frequency variation) can be

mathematically represented as follows:

∆ω

∆P
=

1
2Hs

(3.15)

Additionally, if we consider that a fast control mechanism is added to the simplified model of

the synchronous machine, its model can be represented as illustrated in figure 3.13. The ∆ω/∆P

transfer function of the figure is given by:

∆ω =
1

2Hs
(∆P− 1

R
∆ω)⇔ ∆ω

∆P
=

1
2Hs+ 1

R

(3.16)

It is now possible to observe that equation 3.14 and equation 3.16 have an equivalent arrange-

ment, allowing to define the following equivalences:

H⇔ TdPs
2kP

(3.17)
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1
kP
⇔ 1

R
(3.18)

Figure 3.13: Synchronous machine transfer function

This means that in the simplified model available in the Matlab/Simulink for synchronous

machines, there is a link between the machine inertia (H) and the control parameters of the active

power droop of a VSI (TdPs, active power decoupling delay and kP, active power droop).

Taking now into consideration the VSI model with respect to the reactive power droop, we

can also define the same characteristic for the simplified synchronous machine model in Mat-

lab/Simulink.

Figure 3.14: VSI kQ droop control based on a SSM

Where:

• V: internal voltage of the simplified synchronous machine.

• Q: reactive power output of the machine model.

Finally, the simulation model to implement in Matlab/Simulink is depicted below, figure 3.15,

having the key advantage of of running in the "phasor simulation mode", thus providing the nec-

essary simulation speed while keeping the equivalency to the droop controlled VSI.

Where:
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• X: internal reactance of the synchronous machine (being equal to the coupling reactance of

the VSI for equivalency purposes) as illustrated in figure 3.15.

Figure 3.15: Integrated equivalent model of VSI with droop control based on a SSM

3.5.2 Voltage control: formulation of the problem

Having defined a methodology for the modelling approach of a MG with droop-controllable con-

verts where the primary voltage control mechanism is assumed by the Q-V droop implemented

in the VSI, it is now necessary to define possible strategies for the voltage/reactive power control

problem. This strategies will run at the MGCC level, thus constituting a secondary voltage control

mechanism that will run periodically. The voltage control problem can be generally defined as

follows:

minOF(X ,u) (3.19)

Subject to:

• g(X,u) = 0

• V min
i ≤ Vi ≤ V max

i

• Qmin
i ≤ Qi ≤ Qmax

i
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Where:

• X is the MG state vector corresponding to the node voltages and phase angles;

• u is the control vector, corresponding to the idle voltages V0i of the Q-V droop function of

each VSI;

• g(X,u) stand for equality constraints, representing the power flow balance in the autonomous

MG;

• Vi is the voltage at each bus i (i = 1...n);

• V min
i , V max

i are the minimum and maximum voltages admissible at bus i;

• Qmin
i , Qmax

i are the minimum and maximum reactive powers of each VSI.

With respect to the objective function (OF), it is proposed two alternatives/strategies:

1. Minimization of the voltage magnitude deviation with respect to the nominal value:

OF1(X ,u) =
n

∑
i=1

(Vi−1)2

2. Minimization of the active power losses in the autonomous MG:

OF2(X ,u) = Plosses(X ,u)

Both strategies are treated with respect to their performance and impact in MG operation in

the next chapter

3.6 3-phase load and network modelling considerations

The feasibility of islanded mode operation was performed through the analysis of the LV network

dynamic behaviour considering only three-phase balanced operation, despite the fact that it is not

the most common situation in LV distribution networks. Two load types were considered: constant

impedance loads (dependent on frequency and voltage) and motor loads. Load characteristics

greatly influence the dynamic behaviour of the MG.

As a result it was chosen a Three-Phase Dynamic Load block since as the name suggest,

implements a three-phase, three-wire dynamic load whose active power P and reactive power

Q vary as function of positive-sequence voltage. Negative and zero-sequence currents are not

simulated. The three load currents are therefore balanced, even under unbalanced load voltage

conditions.

The parameters set are the following:
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• Nominal L-L voltage and frequency: Specifies the nominal phase-to-phase voltage, in volts

RMS, and nominal frequency, in hertz, of the load.

• Active and reactive power at initial voltage: Specifies the initial active power P0, in watts,

and initial reactive power Q0, in vars, at the initial voltage V0.

• Initial positive-sequence voltage V0: Specifies the magnitude and phase of the initial positive-

sequence voltage of the load.

• When using the Load Flow tool or the Machine Initialization tool of Powergui to initialize

the dynamic load and start simulation in steady state, these two parameters are automatically

updated according to values computed by the load flow.

• External control of PQ: It was considered, thus enabling active and reactive power of the

load to be defined by an external Simulink R© vector of two signals.

Figure 3.16: 3-phase Dynamic Load final aspect

3.7 Summary and conclusions

This chapter presented two inverter control strategies for power export to an AC system and two

control strategies that can successfully exploit a MG in islanded mode. In that regard, it was

also shown the need to establish control strategies within the MS in order to improve the MG

capabilities and functionalities.

Frequency and voltage control are two of the main concerns when operating a MG, especially

when considering islanded mode, as they need to be within certain limits and a MG as specific

features, namely low global inertia and LV lines that present higher resistance when compared
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to its reactance. These points of operation are constantly changing, since power production and

levels of consumption are being constantly changed as well. In that regard, the inverters existent

in the MG allow stable frequency and voltage profiles. As a result, the specific nature inherent to

a MG requires unique control strategies for frequency and voltage control.

The PQ inverter control is operated in grid connected mode, injecting a certain amount of ac-

tive and reactive power set-point to the network. Regarding the VSI, its action during islanded

mode can be seen as a frequency controller, playing a similar role of the synchronous generators

present in conventional systems, which are responsible for controlling primary frequency. Sum-

marily, VSI can be seen as a voltage source where the magnitude and frequency of the output

voltage is controlled through droops.

Despite the fact that it was not addressed within this dissertation, load shedding can enhance

some MG operating conditions, especially cases where load is greater than generation. This proce-

dure is particularly useful since not only does it aid frequency restoration to its nominal value, but

it can also prevent larger frequency amplitude deviation which is an important issue, since storage

devices have finite storage capabilities.

This chapter also intended to give an insight regarding how the MG was built under a sim-

ulation environment. The main concern was to develop a VSI model that could actually present

the features and type of responses in accordance to what was described in the previous chapter.

In fact, modelling a VSI proved to be the most challenging device because there are no models

available in the Simulink catalog. As a result, in order to overcome this aspect, it was proposed

to use a simplified synchronous machine emulating the behaviour of a VSI. The swing equation

allowed to establish a relation between synchronous machines and droop values of the inverter.

It was also addressed the implications of applying a droop control approach, since the formu-

lation of classical power flows can no longer be applied since the slack bus cannot be considered

in standalone operation mode

In short, the presented model allowed to implement a VSI based on droops, where the active

power determines the output voltage frequency through the P-f droop, or kP, while reactive power

determines the magnitude of the output voltage through the Q-V droop, kQ.

The next chapter demonstrates, in a simulation environment, the feasibility of the proposed

control strategies in order to achieve improved MG operation conditions, particularly voltage pro-

files and reactive power flows.
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Chapter 4

Evaluation of the performance of
voltage and reactive power dispatch
control strategies

This chapter intends to present, through illustrative examples, the effectiveness of the proposed

control strategies that were applied in different operating scenarios of a MicroGrid (MG) test case.

Simultaneously, the results obtained were compared with initial scenario, where there is not any

voltage/reactive power sharing secondary control mechanisms actuating in the MG. Last, it is

made a comparison between the proposed voltage control and reactive power dispatch strategies

and enhancement of resulting impacts.

4.1 Introduction

As seen in Chapter 3, primary voltage/reactive power control mode based on droops for any given

Voltage Source Inverter (VSI) raises some difficulties, particularly due to the fact that voltage has

local characteristics due to the cable impedances of the network that prevent precise sharing of

reactive power among VSI. Additionally, the operability of droops in inverters is a concept that

derives from inductive coupled voltage sources. However this is not valid in Low Voltage (LV)

lines due to its resistive predominance, meaning that reactive power is related with phase shift and

active power with voltage. This particularity raises the need to develop specific control strategies

for voltage and frequency.

This chapter’s main focus is to present the obtained results from two different control strategies

for voltage control and reactive power dispatch assuming different load scenarios and simultane-

ously, assuming a three-phase balanced model of the proposed load scenarios. As a result, it

is admitted that the values of the loads are known and the inverters will establish the proposed

strategies in steady-state conditions. Additionally, the load scenarios try to cover a wide range of

situations, namely high imbalance between loads, balance between loads and high levels of load

that pretend to simulate a peak scenario or a situation where load is close to generating capacity.

49



50 Evaluation of the performance of voltage and reactive power dispatch control strategies

These load scenarios naturally lead to different scenarios mainly in terms of voltage and power

flow profiles, which on its turn put to the test the robustness of the proposed control strategies. As

mentioned in the introduction, simulations are performed by using Matlab R© /Simulink R© envi-

ronment which will ultimately allow the evaluation and comparison between the proposed control

strategies.

4.2 Case Study

The system that was subject to test in Matlab R© /Simulink R©environment is composed by two VSI

connected by a cable typically seen in LV lines and two different loads, as illustrated in figure 4.1.

The arrangement of the simulation system tested under Matlab/Simulink platform can be seen

in Appendix B or simply in figure 4.1.

Figure 4.1: Case study system

Regarding the components considered under the simulation MG, the VSI characteristics can

be seen in table 4.1. For the LV cable applied in the MG, it was considered a 200m long, 95mm2

aluminum cable, with a resistance of 0,094Ω and a reactance of 0,0154Ω (R/X=6).

The first step was to consider the VSI parameters presented in table 4.1 and apply them ac-

cordingly to the parameters requested (applying unit conversion equivalencies if necessary) in the

equivalent model based on the Matlab/Simulink Simplified Synchronous Machine (SSM), as seen

in table 4.2.

Last, rated power and power factor values considered for both VSI were:

• Pn = 50 kW

• cosφ = 0.9

The reactive power limit values are now determined:

Qmin ≤ Q ≤ Qmax⇔−24.16kVar ≤ Q ≤ +24.16kVar
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Table 4.1: VSI parameters

Parameter VSI 1 VSI 2 Units

Idle frequency, f0 50 50 Hz

Idle voltage, V0 1.0 1.0 p.u.

Active power decoupling delay, tdP 0.6 0.6 s

Reactive power decoupling delay, TdQ 0.6 0.6 s

Active power droop, kP −1.2566×10−4 −1.2566×10−4 rad.s−1.W−1

Reactive power droop, kQ −3.0×10−4 −3.0×10−4 V(p.u.).var−1

Coupling inductance 0.5 0.5 mH

Taking into consideration the VSI parameters defined in table 4.1 and making use of the model

equivalency between the VSI and the SSM as seen in equation 3.17 and 3.18 (Chapter 3), it is

presented in table 4.2 the simulation parameters for the SSM. So, the values considered had to

maintain the equivalency of a droop controlled VSI approach.

Table 4.2: SSM

Parameter Value Units
Nominal power 50×103 VA
Line-to-line voltage 400 Vrms
Nominal frequency 50 Hz
Inertia 2× ( 0.6

2×1.2566×10−4 )/(50π) kg.m2

Damping factor 0 puo f torque
puo f speed

Internal Resistance 10×10−6 Ω

Impedance Inductance 0.5×10−3 H

For each scenario, it is also necessary to consider a strategy for the active power dispatch
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among the VSI, since it influences the voltage profile and consequently, reactive power. The

dispatch can be done considering that in steady state the following equations hold:
P1 = P01− 1

R1
∆ω

P2 = P02− 1
R2

∆ω

P = P1 +P2

(4.1)

and ∆ω = 2π×50−ωgrid

Where:

• P1,P2: active power output from VSI 1 and VSI 2, respectively;

• P01,P02: reference active power for VSI 1 and VSI 2, respectively;

• P = P1 +P2: total active load in the system (losses negleted);

• ∆ω: frequency variation;

• ωgrid : frequency of the MG.

4.2.1 Definition of case study scenarios

As already mentioned, the main focus of this chapter is to present two different control strategies

for voltage control and reactive power dispatch assuming different load scenarios that try to cover

a wide range of situations. Consequently, three different scenarios were considered, as seen in

table 4.3.

Table 4.3: Scenarios

Active Power
Load 1 (kW)

Reactive Power
Load 1 (kVar)

Active Power
Load 2 (kW)

Reactive Power
Load 2 (kVar)

Scenario 1 85 15 15 10

Scenario 2 25 10 25 10

Scenario 3 25 10 60 15
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Summarily, scenario 1 tries to replicate a case where there is a high imbalance between the two

loads and the biggest load is requesting 85% of the sum o each VSI nominal power rating (since

each VSI as a 50kW power rating). Scenario 2 considers a balanced situation between the active

power demanded in load 1 and load 2, while the total amount of active power requested remains

moderate. In the last scenario, while it is not as severe as scenario 1, the imbalance is the opposite

since it is load 2 that is requesting most of the active power. Given the aforementioned scenarios,

where in some situations there are high imbalances between load requests and high levels of load

demand it is likely that the MicroGrid operation conditions without control are far from ideal

and ultimately, it may occur violation of technical constrains such as overvoltage profiles, and

extremely high imbalances between the levels of reactive power being produced by each VSI, as

discussed in the following section.

4.3 Microgrid without secondary control

In order to fully understand the impact caused by the proposed strategies, it is first necessary

to analyze the aforementioned study scenarios. The main concern is to verify the behaviour of

voltage and reactive power flows observed in both inverters. Active power is not a relevant issue

since both inverters have the same active power/frequency droop. This means they are intended to

share active power in the exact same proportion. The following images (4.2, 4.3 and 4.4) illustrate

the behaviour if the three different proposed scenarios without any control are applied.

Figure 4.2: Scenario 1: VSI 1, VSI2 reactive power and voltage profiles

Figure 4.3: Scenario 2: VSI 1, VSI2 reactive power and voltage profiles
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Figure 4.4: Scenario 3: VSI 1, VSI2 reactive power and voltage profiles

The first thing that can be quickly identified is that in all cases there is an high imbalance

between reactive power flows. Additionally, in all scenarios, VSI 2 is injecting more reactive

power than its maximum admissible value, as mentioned in section 4.2 (Qmax = 24.16kVar). In

scenarios 2 and 3, VSI 1 is absorbing reactive reactive power. So, the question is: why do this

issues occur? Analyzing scenario 3, for example, VSI 2 is injecting more than the totality of

reactive power required by load 2. Terminal voltage of VSI 1 is higher than VSI 2 because the high

resistive nature of LV networks means that in order to exist power flow from one side to another,

VSI 1 needs to increase its voltage in order to supply load 2. So, voltage imbalances between

inverters tend to be higher when the imbalances between loads are more severe. In scenario 2, for

example, since loads 1 and 2 are approximately the same, its voltage is nearly identical.

In short, these scenarios demonstrate that while in some cases the operation could be somewhat

feasible, they are extremely unreliable and in real conditions can not perform adequately. So, by

implementing control features that allow a MG to operate in adequate conditions, it is possible to

improve the system efficiency and quality of electricity supply.

4.4 Results and evaluation of control strategies applied

As seen in the previous section, reactive power flow imbalance is a serious concern. One approach

could consist in altering the reactive power/voltage droop characteristics of the inverters. For

example, in scenario 3, in order to reduce the reactive power absorption of VSI 1 its idle voltage

could be increased up to values that can prevent this absorption. This could be done manually but

it would be impractical, especially if considering a more complex MG with more VSI devices.

So, the natural step would consist on establishing a control strategy that could be implemented

as a software module in the MGCC (secondary control functionality), improving its technical and

management capabilities.

The next sections present the obtained results from the proposed strategies compared and

evaluated through analysis of the previous scenarios. This tests were once again conducted in

Matlab/Simulink environment and using a program interface that automatically set the adjusting

parameters. The results were obtained by recurring to the Evolutionary Particle Swarm Optimiza-

tion (EPSO) algorithm. Besides, the fact that this algorithm can penalize and eliminate situations
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where technical restrains are not met is a very important feature that, despite the "quality" of the

strategy to be applied is guaranteed to be feasible from a technical point of view. EPSO algorithm

is properly explained in Appendix A. It is also important to mention that the main goal is to make

a proof of concept of the proposed control management approach, rather than the development of

an efficient and dedicated optimization tool for this specific application.

As mentioned and discussed in chapter 3, section 3.5.2 (voltage control: formulation of the

problem), two strategies were considered, having the following objective:

• Strategy 1: minimization of the voltage deviation with respect to the nominal value (1p.u.).

• Strategy 2: minimization of the islanded MG active power losses.

The proposed optimization strategies were applied, for each of the defined scenarios, being the

output the definition of the idle voltage of each VSI (V01 for VSI 1 and V02 for VSI 2).

4.4.1 Results and analysis of the control strategies: scenario 1

Figure 4.5: Strategy 1, Scenario 1 - VSI 1, VSI2 reactive power and voltage profiles

Figure 4.6: Strategy 2, Scenario 1 - VSI 1, VSI2 reactive power and voltage profiles

Considering strategy 1, when compared with the initial setup, reactive power profiles have

been significantly modified since it is now VSI 1 the device injecting practically the totality of

requested reactive power from both loads. So, this method, in this case, did not contribute to

improve reactive power share between inverters and regarding voltages levels, they got closer to
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values of 1p.u.. Nevertheless it provided a solution that did not violate any technical restrains

(admissible voltage and reactive power levels.

Strategy 2 shows almost ideal reactive power flow dispatch since each VSI is displaying values

almost identical to the nearest load. Voltage profiles slightly increased and voltage on VSI 2 is

greater than on VSI 1 because the biggest load power dispatch is load 1. Consequently, VSI 2

needs to raise its voltage in order to allow active power flow from VSI 2 to supply load 2. In

this method, the idle voltage is at its maximum admissible value which can be explained as a

mechanism that helps avoiding reactive power flow between inverters to happen.

In this scenario, characterized for a high imbalance between loads (L1 >> L2), strategy 2

achieves a satisfactory control management results, while strategy 1 did not show much improve-

ments.

4.4.2 Results and analysis of the control strategies: scenario 2

Figure 4.7: Strategy 1, Scenario 2 - VSI 1, VSI2 reactive power and voltage profiles

Figure 4.8: Strategy 2, Scenario 2 - VSI 1, VSI2 reactive power and voltage profiles

In scenario 2, the strategies applied show significant improvements over its initial setup and

it can almost be considered an ideal situation. Regarding strategy 1, both voltages are exactly at

1p.u. and reactive power share is almost perfect. This may indicate that this control strategy could

be suited for situations where the required load is similar in different places (L1' L2) something

that despite not being common has its merits.
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If the previous strategy already showed satisfactory results, the second strategy leads to a fur-

ther optimized situation regarding reactive power share and voltage magnitude. First, by analyzing

the objective function value obtained, which represents the active power losses is equal to zero and

since the losses have a quadratic dependence on current, it is also safe to ensure that power flow is

non-existent since the current is practically zero. So this configuration leads to a situation where

each inverter supplies the nearest load.

4.4.3 Results and analysis of the control strategies: scenario 3

Figure 4.9: Strategy 1, Scenario 3 - VSI 1, VSI2 reactive power and voltage profiles

Figure 4.10: Strategy 2, Scenario 3 - VSI 1, VSI2 reactive power and voltage profiles

Finally, in scenario 3, the implementation of the control strategy 1 allowed VSI 1 to stop from

absorbing reactive power since its idle voltage was slightly raised while on the other hand the idle

voltage in VSI 2 was decreased, resulting in a lower reactive power imbalance. Regarding voltage

levels, once again, they are much closer to 1p.u., since the objective function aims to minimize the

deviation from that value.

Once again, despite a different scenario, the method proposed (strategy 2) shows very good

results with moderate voltage levels and almost perfect reactive power share. Similarly to scenario

1, the solution presented is hindered by the fact that VSI 1 can not increase any further its idle

voltage value in order to avoid reactive power flow between inverters. On a side note, it should

be stated that in these types of situations, where maximum idle voltage value is reached, when

applying the EPSO algorithm, the optimal solution is found in shorter number of iterations.
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4.4.4 Evaluation of the control strategies: overview

While previous sections showed the behaviour of the MG for each scenario and comparing its

"performance" regarding the two control strategies only in terms of reactive power and voltage

profiles, this section intends to give more detailed view by also considering the losses for each

case. As such, the obtained results are summarized in the following table:

Table 4.4: Summarized results

Voltage (p.u.) Reactive Power (kVar) Idle Voltage (V) Plosses (W)
Scen VSI 1 VSI 2 VSI 1 VSI 2 VSI 1 VSI 2

1 1 1.02 0.9 24.3 400 400 1605 no control
1 1.01 24.2 0.9 423 404 1499 strategy 1

1.07 1.08 12.7 13.9 440 430 1220 strategy 2
2 1.02 1.02 -7.3 27.8 400 400 342 no control

1 1 9.2 10.8 410 397 1 strategy 1
0.92 0.92 9.2 9.2 379 366 0 strategy 2

3 1.04 1.03 -14.5 40.3 400 400 999 no control
1.01 1 0.8 24.2 403 391 449 strategy 1
1.07 1.06 10.0 16.4 440 420 307 strategy 2

Figure 4.11: Strategy 1 vs. strategy 2: Comparison between idle voltages (V01 and V02)

Figures 4.12, 4.13 and 4.14 illustrate the impact caused on the MG active power losses which

allows savings of:

For scenario 1:

• Strategy 1: 6,6%;

• Strategy 2: 24,0%.

For scenario 2:
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Figure 4.12: Active power losses for scenario 1

Figure 4.13: Active power losses for scenario 2

Figure 4.14: Active power losses for scenario 3

• Strategy 1: 99,8%;

• Strategy 2: 100%.
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For scenario 3:

• Strategy 1: 55,1%;

• Strategy 2: 69,2%.

These savings take into comparison the initial setup. Once again these values demonstrate the

necessity of implementing a secondary voltage control mechanism that allows the adjustment of

the VSI idle values where strategy 2 allows enhanced reactive power sharing between inverters

and also lower levels of active power losses.

4.5 Summary and conclusions

This chapter intended to present, test and evaluate two different strategies that allow an adequate

voltage control and reactive power dispatch. In order to test this methods in the MG assembled, it

was taken three different scenarios that tried to emulate distinctive scenarios.

Regarding the first strategy, its performance was dependant on the load conditions, providing

an adequate control strategy in situations where there is a balance between loads. However, when

load imbalance occurs, its performance is not reliable, since the reactive power sharing among VSI

is no longer satisfactory. This control strategy ensures that the all VSI operate as near as possible

from the 1p.u. voltage band.

The second strategy, which considers the minimization of active power losses, presented con-

sistent results towards any given load scenario, contributing for an adequate reactive power sharing

within the admissible limits of operation. While on the first strategy control the voltages had a ten-

dency to be as near as possible from 1p.u., in this strategy, however, the voltage profile was much

more variable but always within acceptable values.

Finally, the following tables summarize the idle voltage alteration of each VSI for each strat-

egy, under the three load scenarios considered. It can be observed that the idle voltages have

significant alterations especially when considering the loss minimization strategy. This may in-

dicate that an operation of a MG without any control was far from ideal when considering the

resultant power flows. Additionally it can be seen that in two situations VSI 1, scenario 1 and 3,

where high imbalance load occurs, the inverter can no longer increase its idle voltage since it is at

its maximum admissible value. Strategy 1, on the other hand, did not have such drastic alterations,

because voltage profiles in the initial situation, where there was not any type of control, did not

deviate very much from 1p.u. (in scenario 3 VSI 1 had the highest voltage value of 1.04p.u., core-

spondent to the highest voltage registered) and as a result is actuation was not as severe as when

considering the second control strategy.

In general, the obtained results evidence that the different operational conditions in the MG

demand for careful adjustments of the the VSI idle voltage.
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Table 4.5: Control Variable values system active power losses obtained: strategy 1

V01 (V) V02 (V) Plosses (W)

Scenario 1 423 404 1499

Scenario 2 410 396 1

Scenario 3 403 391 449

Table 4.6: Control Variable values system active power losses obtained: strategy 2

V01 (V) V02 (V) Plosses (W)

Scenario 1 440. 429 1220

Scenario 2 379 366 0

Scenario 3 440 420 307
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Chapter 5

Conclusions and future work

5.1 Conclusions

The paradigm shift that is affecting the electric power systems has been severely motivated by

the massive penetration of Distributed Generation (DG) in the distribution network. A MicroGrid

(MG), by having the ability to operate as an active cell of the distribution network with the ability

the operate interconnected with the upstream network or in islanded mode, requires well defined

modes of operation.

This dissertation focused on presenting voltage control and reactive power dispatch strategies

for MG in islanded mode. Low voltage (LV) distribution systems possess cables with an high

resistive nature and reactive power injection cannot control voltage magnitude profiles so, voltage

control was performed by Voltage Source Inverters (VSI), recurring to reactive power/voltage

droops under a Multi Master Operation (MMO) strategy.

First, in order to present strategies that could in fact control voltage, it was necessary to im-

plement a MG in a simulation environment. The implementation took into account the features,

capabilities of the inverters. When simulating and solving any given power flow, one must remem-

ber that there is no slack or voltage controlled bus in a MG so, conventional methods can not be

applied as frequency is not constant and will influence the voltage magnitude and angle. Modelling

a VSI also had to consider some constraints in the simulation platform and it was necessary to use

a Simplified Synchronous Machine pre-built block while also guaranteeing equivalency between

synchronous machine and a droop base inverter approach.

By successfully implementing a simulational MG that could replicate its behaviour in islanded

mode, two different strategies were considered under three different power dispatch scenarios. One

assumed the minimization of voltage magnitude deviation with respect to the nominal voltage and

the other control assumed the minimization of the active power losses. The Evolutionary Particle

Swarm Optimization (EPSO) algorithm was used to solve the proposed optimization problem, in

order to sustain the importance and need of having secondary regulation functionalities for voltage

and reactive power in a MG.
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The first method was somehow unreliable because it was dependant on the load dispatch ar-

rangement. So, in cases where imbalances in power dispatched loads were minor, each VSI idle

voltage value was adjusted so that it could reach a magnitude as close as possible to 1p.u. and

reactive power share was satisfactory. However, in cases where high load dispatched power im-

balances occurred, the method did not obtain the same levels of performance. Nevertheless, this

actuation always ensures that no technical restrains are violated.

Regarding the second proposed method, minimization of active power losses, since the losses

have a quadratic correlation with current, it should be expected that the VSI manipulate its idle

voltage value so that the reactive power flow is as little as possible. This was translated into

satisfactory and consistent results regarding different scenarios, since reactive power was much

more close to be perfectly shared among VSI. Some results went a little below the ideal operating

scenario, simply because the idle voltage admissible band of values did not allow some VSI to

adjust even further its point of operation.

5.2 Suggestions for future investigation work

Given the fact that the MG set of analysis performed in this dissertation assumed balanced condi-

tions, LV distribution systems are in fact unbalanced systems, meaning that further analysis need

to be made in order to validate the effectiveness of the proposed control strategies in such situa-

tions. Moreover, the unbalanced situation is worst when considering the fact that small scale MS

are typically single phase units.

It would also be interesting to test the possibility of the proposed strategies being, in fact,

performed at the MGCC level through algorithms implemented in the software and evaluate its

performance and feasibility in real time, under constant alterations in the values of load/generation.

It is also necessary to take into consideration MG scenarios with integration of Renewable

Energy Sources (RES), such as solar photovoltaic (PV), being necessary to include the control

capabilities of their inverters in the proposed strategies. Furthermore, managing such a system

will require a deeper approach in order to consider the energy/state of charge issues in VSI energy

storage devices, thus leading to the implementation of multi-temporal approaches.



Appendix A

Applying an evolutionary algorithm to
enhance voltage and reactive power
dispatch control

Inspired in biology, EPSO (Evolutionary Particle Swarm Optimization) is one of the Evolutionary

Computation algorithms existent and can be defined as an hybrid process. Its formulation is one of

the most successful and it is a process that, when compared with other meta-heuristic models [63],

displays overall better results and ability to solve problems with high optimization issues. Past

studies and benchmarking demonstrate that EPSO has led, generally speaking, to better results

than alternative methods [64], [65].

Applications of the EPSO algorithm have already been reported in many power systems prob-

lems where EPSO displayed faster convergence and better solutions when compared with other

meta-heuristics. In [63], it successfully solved the optimization problem of voltage control and

loss minimization in a conventional power system. In [66] and [67] it was also successfully val-

idated EPSO algorithm in order to control voltage and reactive power on networks integrating

microgrids in the interconnected mode.

A.1 EPSO in detail

EPSO present a set of solutions for each iteration, known as particles. In each iteration, each

particle, Xi, moves according to the “movement rule” which will define the next position of the

particle. Finally it should be noted that a particle can be interpreted as a potential solution for any

given optimization problem. In this model each particle group sets vectors that define:

• position, represented by Xi;

• speed, represented by Vi;

• best position occupied by the particle up until that exact moment, represented by bi;
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• cooperation, represented by bG.

The set of vectors identified allow the formulation of the movement rule which will determine

the new position of each particle belonging to the solution swarm:

Xnew
i = Xi +V new

i (A.1)

Vi can be defined as the speed of the particle Xi and obtained through the following equation:

V new
i =Wini .Vi +Rnd().Wmi(bi−Xi)+Rnd().Wei(bG−Xi).P (A.2)

In equation A.2 the aforementioned factors can be properly identified:

• inertia represents the first term which tends to maintain particle’s movement on the same

direction presented before;

• memory is represented in the first term and is defined by the presence of the vector with the

best fitness position that was reached up until that moment;

• cooperation which can be identified as the third term of the equation, stimulates the swarm’s

information exchange, attracting particles to the best point reached by the whole swarm.

The equation A.2 also introduces a set of W parameters that allow the occurrence of mutation

processes within these strategic parameters. in index stand for the inertia, index m for memory

weight and index c for the weight of the cooperation in a determined posterior position. Rnd()

generates random numbers that belong to an uniform distribution included in the interval [0,1].

Finally, figure A.1 properly illustrates the movement of a given particle:

Figure A.1: Particle’s movement: the influence of inertia, cooperation and memory.

A.2 Distinctive features of EPSO

One of the distinctive features of this method is the fact that it has auto-adaptive capabilities when

solving any given problem since it can automatically adjust its parameters and behaviour, reacting

to the way in which the problem process of solving is being developed. This type of auto-adaptive
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models require the algorithm to autonomously develop the ability to establish and modify its own

behaviour according to the problem, avoiding dependencies on exterior parameters. As a result,

it is possible to conceive an algorithm with not only learning ability but also with intelligent

behaviour that allow an increased performance control on the algorithm itself.

A.3 EPSO’s algorithm in depth

The EPSO, as initially mentioned, can be defined as an hybrid process since it merges the opti-

mization abilities of particle swarms through information exchange during their movement, with

techniques linked to the classical PSO (Particle Swarm Optimization). Moreover, it is also an auto-

adaptive evolutionary algorithm that includes a mutation process. The algorithm is composed with

the following stages:

1. Replication: Each particle Xi is replicated r times;

2. Mutation: Each particle Xi suffers a mutation of its parameters W;

3. Reproduction: Each mutated particle Xi generates a descendant according to the movement

equation A.1;

4. Evaluation: The fitness of the new individual is calculated based on the new position taken

in the dimensional space;

5. Selection: Through Stochastic Tournament Selection or other selection processes1, the best

particle survive and give origin to a new generation that is composed by all descendants

selected from all particles of the previous generation.

With the algorithm previously described, it is possible to formulate an adequate process that

helps solving the problem targeted in this dissertation. In figure A.2 it is represented a flowchart

with the steps followed in order to obtain such results. The first step is to read the technical data

necessary to produce a lognormal distribution. Simultaneously, it is defined the dimension of the

population and maximum number of iterations to be considered. Next step consists in generating

the first population with a size accordingly to what was initially set. After the creation of the

population, the computation enters in a loop that will only end when the maximum number of

iterations defined is obtained. The population (pop) is cloned and mutated (pop’), leading to a new

population with double of its size (pop + pop’). After this process, it is applied the movement rule

to every particle. All particles existent are tested in the Simulink model and then evaluated through

the defined objective function. In the evaluation process, penalization are also applied in cases

where restrictions are violated, such as situations where the solution produces overvoltages or

any other type technical violation that turns the operation of the MicroGrid technically unfeasible.

Finally, the selection process occurs and it is applied an elitist selection, meaning that only the best

1The simulations performed within the scope of this dissertation applied methods that selected particles that had the
best fitness, known as elitist selection
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individuals are selected, resulting in a population with half of its initial size, pop. The iteration

ends and it is memorized the best position obtained so far by each particle and also the best position

obtained by all set of particles. When the loop ends the results are saved and correspond to the

best solution found that properly solves the optimization problem formulated.
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Figure A.2: Flowchart.
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Appendix B

Dynamic Simulation Platform
developed under the
Matlab R© /Simulink R© environment

This appendix illustrates the Microgrid (MG) dynamic simulation platform developed under the

Matlab/Simulink environment, exploring the SymPowerSystems toolbox and illustrating the set-

tings considered to implement an islanded MG. The simulation platform is built in a modular

way, where the control parameters and models can be modified using the mask functionalities,

providing user-friendly models on a graphical perspective.

B.1 Models’ implementation scheme and parameters

B.1.1 Power flow settings

Powergui block is a particularly useful tool as it allows to solve the power flow of the circuit

through different methods:

• Continuous, which uses a variable-step solver from Simulink;

• Ideal switching continuous;

• Discretization of the electrical system for a solution at fixed time steps;

• Phasor solution.

The method chosen was the phasor solution and the mask interface can be seen below. In this

box, the only needed value to add is the phasor frequency, in this case 50Hz.

B.1.2 Simplified Synchronous Machine

The Simplified Synchronous Machine block models both the electrical and mechanical character-

istics of a simple synchronous machine.
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Figure B.1: Solver parameters

Figure B.2: Powergui parameters settings

The electrical system for each phase consists of a voltage source in series with an RL impedance,

which implements the internal impedance of the machine.

• ∆ω: Speed variation with respect to speed of operation

• H: constant of inertia

• Tm: mechanical torque

• Te: electromagnetic torque

• Kd : damping factor representing the effect of damper windings (equal to 0 given the fact it

is being implemented a VSI model, inertia less)
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• ω(t): mechanical speed of the rotor

• ω0: speed of operation (1 p.u.)

Inputs and Outputs

• Pm: The mechanical power supplied to the machine, in watts. The input can be a constant

signal or it can be connected to the output of the Hydraulic Turbine and Governor block. The

frequency of the internal voltage sources depends on the mechanical speed of the machine.

• w: The alternative block input instead of Pm (depending on the value of the Mechanical

input parameter) is the machine speed, in rad/s.

• E: The amplitude of the internal voltages of the block. It can be a constant signal or it can

be connected to the output of a voltage regulator. If you use the SI units machine, this input

must be in volts phase-to-phase RMS. If you use the pu units machine, it must be in pu.

• m: The Simulink output of the block is a vector containing measurement signals. You can

demultiplex these signals by using the Bus Selector block provided in the Simulink library.

Depending on the type of mask that you use, the units are in SI or in pu. It was considered:

Rotor speed (rad/s), Electrical power Pe (W) and Internal voltage Ea (V)

Figure B.3: SSM block parameters

B.1.3 MG full arangement under Matlab environment

Finally, the simulation platform obtained has the following structure:
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Figure B.4: Matlab/Simulink final simulation arrangement

Figure B.5: LV cable parameters
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Figure B.6: VSI in blocks

Figure B.7: SSM parameters
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Voltage and Reactive Power Control
in Autonomous MicroGrids

Ivan Nascimento∗, C. L. Moreira†

Abstract—Microgrids have been receiving increasing interest
due to the fact that they can operate autonomously following
disturbances that may occur in the upstream network. Its
operation in islanded mode is dominated by inverters that have
the responsibility to control the frequency and voltage profiles
within acceptable ranges. Typically set at low voltage, this type
of networks present a resistive nature, which on its turn causes
the active power flow to significantly influence voltage profiles.

In this regard, this paper pretends to define and develop two
strategies for the operation and management of a microgrid in
standalone mode with droop controllable converters, ensuring
appropriate conditions for voltage control and reactive power
dispatch. The results were obtained under a tailor-made Mat-
lab/Simulink platform.

Index Terms—Droop control, islanded operation, microgrid,
reactive power dispatch, voltage control, voltage source inverter.

I. INTRODUCTION

AMicrogrid (MG) can be seen as a small scale power
LV network that has Distributed Generation (DG) units,

loads and storage devices connected to it while being sup-
ported by a communication infrastructure that enables ap-
propriate management and control. A MG has the ability to
operate in two modes: normal and emergency mode [1]. In nor-
mal mode both voltage and frequency are externally imposed
by the stiff AC system. Conversely, in emergency mode, the
previous assumption is invalid and some considerations need to
be readjusted. Considering the operation of a MG with several
Voltage Source Inverters (VSI) and resorting to droop charac-
teristics, namely P/f and V/Q droops it is possible to establish
a similar concept associated to conventional power system
where synchronous generator provide active power/frequency
and reactive power/voltage control capabilities. Nevertheless,
solving the power flow for a MG cannot be done through
conventional approaches, such as Newton Raphson, because
in islanded mode there is no slack bus and frequency is not
constant, like in a grid connected mode. Additionally, there
is a direct dependence of the power on frequency due to the
droop characteristics. Moreover, given the specific nature of a
MG, some issues need to be tackled. The resistive nature of a
LV system means that voltage profile is severely influenced by
the active power flow. Additionally, voltage and reactive power
control needs to take into consideration that voltage has local
characteristics and network cable impedances prevent precise
reactive power sharing among VSI.

∗Ivan Nascimento, Master in Electrical and Computers Engineering Student
at FEUP (email: ee08165@fe.up.pt)
†Carlos L. Moreira is with INESC Porto and also with FEUP, Faculty of

Engineering of the University of Porto, Portugal (email: clm@fe.up.pt)

Given the difficulties of having an expedite tool capable
of providing a solution for the powerflow probe in droop
controlled autonomous MG, it was explored an alternative
solution based on the Simplified Synchronous machine simu-
lation model model available in the Matlab/Simulink library.

II. DROOP CONTROLLABLE VSI APPROACH

A. Modelling VSI with Simplified Synchronous Machine

Modelling a VSI had to take into consideration constraints
related to the simulation platform and it was used a Simplified
Synchronous Machine (SSM) pre-built block by proving the
relation of the time constants on a synchronous machines and
droop based inverters. For this machine (and adding a fast
control mechanism), represented as a constant voltage source
behind an internal reactance, the classic swing equation in the
Laplace domain can be mathematically represented as follows:

∆ω

∆P
=

1

2Hs + 1
R

(1)

VSI transfer function ∆ω/∆P can be presented in the given
form:

∆ω

∆P
=

kP
TdP s + 1

=
1

TdP

kP
s + 1

kP

(2)

Equations 1 and 2 have an equivalent arrangement, allowing
to define the following equivalences:

H ⇔ TdP s

2kP
(3)

1

kP
⇔ 1

R
(4)

P/V droop does not have any alteration relatively to VSI
model because it sets the internal voltage of the SSM model.

B. Problem formulation

Having defined a methodology for the modelling approach
of a MG with droop-controllable converts where the primary
voltage control mechanism is assumed by the Q-V droop
implemented in the VSI, its now necessary to define possible
strategies for the voltage/reactive power control problem. This
strategies will run at the MGCC level, thus constituting a
secondary voltage control mechanism that will run periodically
at the MGCC level. The control strategies applied made use
of Evolutionary Particle Swarm (EPSO) algorithm [3] and can
be defined as follows:

minOF (X,u) (5)
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Subject to:
• g(X,u) = 0
• V min

i ≤ Vi ≤ V max
i

• Qmin
i ≤ Qi ≤ Qmax

i

Where:
• X is the MG state vector corresponding to the node

voltages and phase angles
• u is the control vector, corresponding to the idle voltages

V0i of the Q-V droop function of each VSI
• g(X,u) stand for equality constraints, representing the

power flow balance in the autonomous MG
• Vi is the voltage at each bus i (i = 1...n)
• V min

i , V max
i are the minimum and maximum voltages

admissible at bus i
• Qmin

i , Qmax
i are the minimum and maximum reactive

powers of each VSI
With respect to the objective function (OF), it is proposed

two different strategies:
1. Minimization of the voltage magnitude deviation with

respect to the nominal value:

OF1(X,u) =

n∑
i=1

(Vi − 1)2

2. Minimization of the active power losses in the au-
tonomous MG:

OF2(X,u) = Plosses(X,u)

III. SIMULATION RESULTS AND DISCUSSION

A. Test Network Characterization
The MG subject to test in Matlab/Simulink environment is

composed by two VSI (VSI 1, VSI 2) connected by a cable
typically seen in LV lines and two different 3-phase balanced
loads (L1, L2) as illustrated in figure 1. It should be stated
that there are no energy storage devices in the system since, it
was assumed a steady-state period of time, where the values
of load and generation were known. The LV cable applied in
the MG was a 95mm2 aluminum cable, with a resistance of
94mΩ and a reactance of 15,4mΩ (R/X=6).

Figure 1. Microgrid for the Matlab Simulink simulation platform

The test complied 3 different scenarios as follows:
• Scenario 1: L1 = 85kW + 15kVar; L2 = 15kW + 10kVar;
• Scenario 2: L1 = 25kW + 10kVar; L2 = 25kW + 10kVar;
• Scenario 3: L1 = 25kW + 10kVar; L2 = 60kW + 15kVar
The synthesis of the obtained results is presented:

Table I
SUMMARIZED RESULTS: VOLTAGE, REACTIVE POWER AND ACTIVE POWER

LOSSES)

Voltage
(p.u.)

Reactive Power
(kVar)

Plosses
(W)

Scen VSI 1 VSI 2 VSI 1 VSI 2
1 1 1.02 0.9 24.3 1605 no control

1 1.01 24.2 0.9 1499 strategy 1
1.07 1.08 12.7 13.9 1220 strategy 2

2 1.02 1.02 -7.3 27.8 342 no control
1 1 9.2 10.8 1 strategy 1

0.92 0.92 9.2 9.2 0 strategy 2
3 1.04 1.03 -14.5 40.3 999 no control

1.01 1 0.8 24.2 449 strategy 1
1.07 1.06 10.0 16.4 307 strategy 2

IV. CONCLUSIONS

The results prove the importance of considering a strategy
for applying secondary voltage control mechanisms, allowing
the inverters to adjust its set-points according to the conditions
of the MG, improving its efficiency.

The first method proved to be unreliable given its depen-
dency on load dispatch arrangement. In cases where imbal-
ances in power dispatched loads were minor, each VSI idle
voltage value was adjusted so that it could reach a magnitude
as close as possible to 1p.u. and reactive power share was sat-
isfactory. However, in cases where high load dispatched power
imbalances occurred, the method did not obtain the same levels
of performance. Nevertheless, this actuation always ensures
that no technical restrains are violated.

Regarding the second proposed method, minimization of
active power losses the results were satisfactory and consis-
tent regarding different scenarios, since reactive power was
much more close to be perfectly shared among VSI, while
minimizing system losses.

These strategies will run at the MGCC level, constituting a
secondary voltage control mechanism.
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