
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Real-time Limited Preemptive
Scheduling

José Manuel Silva dos Santos Marinho

Doutoramento em Engenharia Electrotécnica e de Computadores

Orientador: Stefan Markus Ernst Petters (Dr.)

2015

c© José Manuel Silva dos Santos Marinho, 2015

Real-time Limited Preemptive Scheduling

José Manuel Silva dos Santos Marinho

Doutoramento em Engenharia Electrotécnica e de Computadores

2015

This thesis was partially suported by FCT (Portuguese Foundation for Science

and Technology) under PhD grant SFRH/BD/81085/2011

UNIÃO EUROPEIA
Fundo Social Europeu

O desenho de sistemas reativos de alto desempenho depende do controlo preciso de var-
iáveis impactantes no comportamento do sistema. As entidades responsáveis por este con-
trolo tomam, comummente, corpo num dispositivo computacional digital. As propriedades
dinâmicas dos fenómenos sob controlo, em conjunto com os requisitos de comportamento
pretendido pelo projetista, impõem restrições ao máximo espaçamento temporal entre a
observação de um evento e a correspondente atuação.

A área de sistemas de tempo-real providencia uma base teórica sobre a qual propriedades
temporais do sistema são estudadas, possibilitando a derivação de garantias mínimas de de-
sempenho.

As análises providenciadas são por definição seguras, i.e. , qualquer garantia dada sobre
a obtenção das metas temporais será verificada, sob qualquer pretexto concebível, durante
a utilização do sistema. Uma análise segura tem geralmente associada a si um nível de
pessimismo. Pessimismo, em termos gerais, é uma medida da dificuldade de caracterização
do pior caso possível verificável durante a utilização do sistema, por mais improvável que
seja a ocorrência desse pior caso. É somente possível reduzir o pessimismo das análises
através do uso de estratégias de escalonamento que se caracterizem por uma maior e melhor
especificação das circunstâncias observadas durante a utilização do sistema. Estas políticas
de escalonamento deverão obter um desempenho melhor ou semelhante àquelas em que
existe menor informação sobre os possíveis cenários.

As características temporais do sistema são largamente afetadas pelo fenómeno da pre-
empção. Uma preempção define-se pela interrupção de uma dada tarefa, por outra de maior
prioridade, durante um intervalo de tempo. A tarefa que interrompe acede a recursos par-
tilhados alterando o seu estado. Quando a tarefa inicial tornar a executar, irá sofrer uma
interferência temporal adicional devido à alteração de estado dos recursos partilhados. A
natureza deste tipo de interferência é bastante complexa. Inerentemente, a caracterização do
pior cenário possível esta dotada de um pessimismo acentuado. Nesta tese o comportamento
das preempções e as suas consequências, no pior caso, são estudadas num enquadramento
de prioridades limitadas, o que permite a redução considerável do pessimismo das análises
temporais em comparação com os métodos existentes na literatura.

Os algoritmos de escalonamento providenciados oferecem melhores garantias de de-
sempenho na fase de conceção, bem como melhor comportamento em média durante a
execução do sistema.

i

ii

Abstract

Physical phenomenons, regardless of its degree of human intervention, from the more pris-
tine to the more vain facets of some human made appliance, require controlling strategies
to achieve an intended set of properties or some performance level. The controllers’ imple-
mentation may range from the simpler mechanical or analog circuitry but more commonly
are embodied as a recurrent set of commands on some computational boolean logic device.
The dynamic properties of such physical phenomenons, paired with the designer intended
behaviour, impose restrictions on the maximum delay between an event and the desired ac-
tuation. Real-time systems strive to provide a framework where the considerations about
the overall system’s temporal feasibility are drawn. In a nutshell, real-time systems enable
guarantees on the temporal properties of the computational apparatus which are used in
such control loops. Any analysis used in the hard real-time framework should be proven
safe. This generally means that the outcome of any analysis states whether all the tem-
poral properties can be guaranteed or that some cannot be trusted upon. The quantity of
pessimism involved in the analysis – which leads to an abundance of false negatives or to
an over-provisioning of resources – should be reduced as much as possible. Analysis’ pes-
simism can be thought of, in broad terms, as an artefact of the lack of information necessary
to accurately characterize the worst-case temporal behaviour of each application. The pes-
simism can only be mitigated by employing mechanisms where more abundant information
about the worst-case run-time behaviour is available. These mechanism should nevertheless
have a better or comparable performance to the ones with reduced certainties.

In this thesis both scheduling algorithms and accompanying analysis tools are provided
which, by enhancing the available information about what might happen at run-time, allow
for a reduction on the level of pessimism associated with the analysis outcomes and bring
a better performance in the average case situation. An interesting aspect pertaining to real-
time systems is the nature and implications associated with pre-emption. A pre-emption
occurs when an application is swapped for another in the execution platform to which it
eventually returns. Besides from the time the pre-empting application prevents the pre-
empted one from executing, some shared resources are accessed by the former which will
potentially interfere with the remaining execution of the latter. The nature of the interference
occurring at such resources as the caches or dynamic branch predictors just to name a few
is highly complex to analyse and generally a single and oftenly quite isolated worst-case
quantity is assumed in the state-of-the-art real-time analysis.

The quantification of the worst-case penalty associated to pre-emptions and the bound-
ing their frequency of occurrence constitutes the bulk of this thesis’ contribution. Both
scheduling algorithms as well as analysis are provided that both decrease the worst-case
number of pre-emptions and also diminish the penalty considered per instance of this event.

iii

iv

Acknowledgements

I feel fortunate for having had the opportunity to conduct research in such a supportive
Laboratory where much of the strain of being a PhD student is waned. I am grateful to Ed-
uardo Tovar for having built such a sustainable research environment where any reasonable
material request is hardly ever denied. CISTER’s team – non-static in time – was always
extremely capable. I wish to acknowledge all of the people whose time frame in this team
overlaps with mine (even if partially) and to thank all of whom positively contributed to
my experience here, whether with fruitful discussions or by easing much of the every-day
bureaucracy as Sandra Almeida, Inês Almeida and lately Cristiana have so efficiently done.

A note of appreciation is due to Dr. Vincent Nélis for his contribution to this work and
for his habit of finding holes in other people’s work, which I find most amusing and ever
since tried to mimic.

I am invaluably grateful to Dr. Stefan Petters for enduring me throughout these years.
In many accounts he has been a thoughtful and kind supervisor. I wish to thank him espe-
cially for his patience with my deambulations, my random neglect for bibtex entries and for
always making the effort to motivate me. His expertise on the pre-emption delay, WCET
computation, systems architecture (processor and O.S.) and on general real-time scheduling
subjects were fundamental for the development of many aspects of my work. More recently,
his commitment to reviewing this document was truly remarkable. Research duties aside, I
will always remember the time when we (along with Filipe Pacheco and Björn Andersson)
did a 2 day road-trip across Europe (from the approximate N.E. extreme to the S.W. corner –
all thanks to Eyjafjallajökull, RTAS 2010 and CISTER money), this one is truly memorable
for me, despite it being strenuous at the time.

Several contributions in this thesis resulted from collaborations with researchers exter-
nal to CISTER, namely Dr. Isabelle Puaut, Dr. Robert I. Davis and Dr. Marko Bertogna. I
am deeply thankful to all the co-authors for the time they put on the discussions we had and
solutions collaboratively derived.

I wish to thank Dr. Michael Paulitsch for having hosted me at Airbus Group Innovations
and for giving me a task to perform which was as much to my liking as it was challenging.

Several people exerted a positive influence on me through the years, out of that set I
find it only fair to mention Professor Gabriel Falcão in this context. As my MSc. thesis
co-advisor he was largely responsible for getting me interested by academic research.

Finally, I would like to thank my Mother for nurturing my curiosity from early age.
I am mostly grateful to my family for their encouragement and for accepting the choice
of delaying my entry into adulthood, and to Sara for having shared all this time with me,
keeping me focused whenever I went astray, for being my partner in the full sense of the
word.

v

vi

Contributions

Over the course of this Ph.D. the following works have been accepted for publication in
peer reviewed venues:

ETFA 2014 - José Marinho, Vincent Nélis, Stefan M. Petters, "Temporal Isolation with
Preemption Delay Accounting" [MNP14]

RTSS 2013 - José Marinho, Vincent Nélis, Stefan M. Petters, Marko Bertogna, Rob
Davis, "Limited Pre-emptive Global Fixed Task Priority" [MNP+13]

RTCSA 2013 - Rob Davis, Alan Burns, José Marinho, Vincent Nélis, Stefan M. Petters,
Marko Bertogna, "Global Fixed Priority Scheduling with Deferred Pre-emption" [DBM+13],
[Best Paper Award]

RTNS 2012 - José Marinho, Stefan M. Petters, Marko Bertogna, "Extending Fixed Task-
Priority Schedulability by Interference Limitation" [MPB12]

SIES 2012 - José Marinho, Vincent Nélis, Stefan M. Petters, Isabelle Puaut, "An Im-
proved Preemption Delay Upper Bound for Floating Non-preemptive Region" [MNPP12b]

DATE 2012 - José Marinho, Vincent Nélis, Stefan M. Petters, Isabelle Puaut, "Preemp-
tion Delay Analysis for Floating Non-Preemptive Region Scheduling" [MNPP12a]

EUC 2011 - José Marinho, Stefan M. Petters, "Job Phasing Aware Preemption Deferral"
[MP11]

RTSOPS 2011 - José Marinho, Gurulingesh Raravi, Vincent Nélis, Stefan M. Petters,
"Partitioned Scheduling of Multimode Systems on Multiprocessor Platforms: when to do
the Mode Transition?" [MRNP11]

ECRTS 2011 - Vincent Nélis , Björn Andersson, José Marinho, Stefan M. Petters,
"Global-EDF Scheduling of Multimode Real-Time Systems Considering Mode Indepen-
dent Tasks" [NAMP11]

WARM/CPSWEEK 2010 - José Marinho, Stefan M. Petters, "Runtime CRPD Manage-
ment for Rate-Based Scheduling" [MP10]

vii

“Wo gehobelt wird, fallen Späne”

– German Proverb

viii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Real-world Timing Requirements . 2
1.2 System Model . 4
1.3 Schedulers . 6
1.4 Background on Caches . 8
1.5 Thesis Organization . 12

2 Related Work 15
2.1 WCET Upper-bound Computation . 15

2.1.1 Measurement Based . 15
2.1.2 Static Analysis . 15

2.2 Pre-emption Delay Estimation . 18
2.3 Pre-emption Delay Integration with Schedulability Assessment 22
2.4 Limited Pre-emptive Scheduling . 27

2.4.1 Floating Non-pre-emptive Regions 29
2.4.2 Fixed Non-pre-emptive Regions 30

2.5 Temporal Isolation Enforcement . 34

3 Extensions to the Limited Pre-emptive Model 37
3.1 On-line FTP Floating Non-Pre-emptive Region Extension 37

3.1.1 Admissible Pre-emption Deferral 39
3.1.2 Practical Usage of Equation (3.3) 42
3.1.3 Sufficient Schedulability Condition for Proposed Framework 43
3.1.4 Admissible Deferral Approximation 46
3.1.5 Implementation Overhead . 47
3.1.6 Tighter Bound on the Number of Pre-emptions 47

3.2 Evaluation . 49
3.2.1 Discussion . 50
3.2.2 Simulations . 50

3.3 Floating Non-pre-emptive Schedulability Increase 53
3.4 Ready-Q locking concept . 55

3.4.1 Ready-Q Lock Implementation Considerations 56

ix

CONTENTS

3.4.2 Maximum Interference Computation 59
3.4.3 Ready-queue Locking Time Instant 63
3.4.4 Ready-q Locking with Pre-emption Threshold 64
3.4.5 Pre-emption Upper Bounds . 68
3.4.6 RQL Evaluation . 69
3.4.7 Discussion . 72

4 Pre-emption Delay Upper-bound for Limited Pre-emptive Scheduling 73
4.1 CRPD Estimation . 74
4.2 Computing Execution Intervals . 74

4.2.1 Computation of fi(t) . 76
4.3 Determination of Pre-emption Delay Upper-bounds 76

4.3.1 Extrinsic Cache Miss Function . 81
4.3.2 Pre-emption Delay Computation using Extrinsic Cache-miss Function 85
4.3.3 Reducing the pessimism of fi(t) 90
4.3.4 Reducing the pessimism of Gi(t) 93

4.4 Experimental Evaluation . 94
4.4.1 fi(t) functions . 94
4.4.2 Pre-emption Delay Estimations 94

5 Temporal-isolation Enforcement 97
5.1 Chapter-wise Update on System Model 98
5.2 Pre-emption Delay Accounting Approaches Comparison 100
5.3 Proposed Budget Augmentation Framework 104

5.3.1 Temporal-isolation Framework Description 104
5.3.2 Temporal-isolation Schedulability Analysis 105

5.4 Proposed Budget Donation Framework . 106
5.5 Limiting the Pre-emption Induced Budget Augmentation for Misbehaving

Tasks . 110
5.6 Implementation Issues . 111
5.7 Example of Framework Usage with CRPD 113

5.7.1 Temporal-isolation Assumptions 114
5.7.2 Experimental Results . 115

5.8 Temporal-isolation Framework Considerations 117

6 Multi-processor Limited Pre-emptive Theory 119
6.1 Global Fixed Task Priority Response Time Analysis 120
6.2 GFTP Limited Pre-emptive Scheduling Policies 126
6.3 RDS Lower Priority Interference . 128
6.4 ADS Lower Priority Interference . 129
6.5 Fixed Task Priority Limited Pre-emptive Schedulability Test 130
6.6 Maximum Interference from Lower or Equal Priority Non-Pre-emptive Re-

gions in ADS . 131
6.7 System Predictability with Fixed Non-pre-emptive Regions 136
6.8 Experimental Section for an Overhead-free Platform Model 138

6.8.1 Blocking Estimation . 138
6.8.2 Pre-emptions in Simulated Schedules 139

x

CONTENTS

6.8.3 Schedulability assessment of RDS vs. ADS 142
6.9 Accounting for Pre-emption Delay in the Global Schedule 146

6.9.1 Pre-emption and Migration Delay Bound for Fully Pre-emptive GFTP146
6.9.2 Pre-emption and Migration Delay Bound for ADS GFTP 147
6.9.3 Pre-emption and Migration Delay Bound for RDS (Last Region

only) GFTP . 148
6.9.4 Pre-emption and Migration Delay Bound for RDS (Multiple Non-

pre-emptive Regions) GFTP . 148
6.10 Schedulability Assessment of ADS vs. Fully Pre-emptive with CPMD . . . 149

6.10.1 Discussion of Pre-emption Delay Results 149
6.11 Global Floating Non-pre-emptive Scheduling 151
6.12 Schedulability Increase for Fixed Non-pre-emptive GEDF 154

7 Summary and Future Directions 157
7.1 Future Directions . 159

References 163

xi

CONTENTS

xii

List of Figures

1.1 Flight Level Closed Loop Controller Diagram 2
1.2 Correct controller behaviour versus incorrect behaviour 3
1.3 Conceptual Real-time System . 6
1.4 Cache Representation . 9

2.1 Example CFG . 17
2.2 Limited Pre-emptive Schedule vs Fully Pre-emptive Schedule (task-set in

Table 2.1) . 29
2.3 Floating Non-pre-emptive Region Scheduling Example 30

3.3 Scenario Motivated by Theorem 2 . 46
3.4 Outline of the Devised Approximations for Equation 3.3 46
3.8 Ready-Q Locking Example. 56
3.9 rlist List Evolution over Time . 57
3.10 Schedulability Condition . 62
3.11 Set of Relevant Offsets for Frame q . 63

4.1 Example of CFG for loop-free code. 75
4.2 Comparison between Function fi and the Run-time Pre-emption Delay . . . 77
4.3 Algorithm iteration sketch . 78
4.4 Example glocal

b Function Where BBb Execution May Generate at Most 10
Extrinsic Cache Misses . 82

4.5 gout
b Computation for BBb . 83

4.6 Algorithm Iteration Sketch . 85
4.7 f local

b (t) Graphical Example . 91
4.8 Task Wide fi(t) Obtention . 91

5.1 Sporadic Server Budget Replenishment 99
5.2 Budget Augmentation Example . 104
5.3 Excessive Pre-emption Delay Due to Minimum Interarrival Time Violation 107
5.4 Budget Augmentation Example . 111
5.5 Pre-emption Delay Compensation Array 112
5.6 Bit Field Snapshots of Relevance . 113

6.1 Functions W NC(τ j, t) and W CI(τ j, t) depiction for a given task τ j 120
6.2 Functions W diff(τ j, t) depiction for two distinct relations between C j and R j 123

xiii

LIST OF FIGURES

6.3 Intersection Points Between the W diff(τ j, t) Functions of Distinct Higher
Priority Tasks . 124

6.4 Possible Priority Inversion After a Job From τi Commences Execution in RDS127
6.5 Maximum Interference Function Due to m Non-pre-emptive Regions of

Lower or Equal Priority Tasks . 131
6.6 Depiction of the solution provided for Problem 1 134
6.7 Blocking Estimations (k=8,n=88). 139
6.8 Observed Pre-emptions in Simulated Schedules, m=2,n=20 140
6.9 Observed Pre-emptions in Simulated Schedules, m=2,n=32 141
6.10 Observed Pre-emptions in Simulated Schedules, m=4,n=32 141
6.11 Observed Pre-emptions in Simulated Schedules, m=4,n=64 142
6.12 Results for m=2 and n=10 with Ti ∈ [400,40000] 143
6.13 Results for m=2 and n=20 with Ti ∈ [400,40000] 144
6.14 Results for m=4 and n=20 with Ti ∈ [400,40000] 144
6.15 Results for m=4 and n=40 with Ti ∈ [400,40000] 145
6.16 Execution model . 147
6.17 depiction of a m pre-emption chain triggered by a single job release 148
6.18 Results for m=2 and n=10 with Ti ∈ [400,40000] and CPMD value per Pre-

emption as a random variable in the interval [0,40] 150
6.19 Results for m=2 and n=20 with Ti ∈ [400,40000] and CPMD value per Pre-

emption as a random variable in the interval [0,40] 151
6.20 Results for m=3 and n=15 with Ti ∈ [400,40000] and CPMD value per Pre-

emption as a random variable in the interval [0,40] 152
6.21 GEDF Example Schedules. 155

xiv

List of Tables

2.1 Limited Pre-emptive Motivating Task-set 29

3.1 Example Task-set Denoting a Pre-emption Corner-case 48
3.2 Floating Non-Pre-emptive Increased Schedulability Task-set 53
3.3 Floating Non-Pre-emptive Unschedulable Task-set 54

6.1 GEDF example task-set . 154

xv

LIST OF TABLES

xvi

Acronyms and Abbreviations

ACS Abstract Cache States
BB Basic Block
BRT Block Reload Time
CFG Control Flow Graph
CPMD Cache Related Preemption and Migration Delay
CRPD Cache Related Preemption Delay
CUV Cache Utility Vector
DJP Dynamic Job Priority
ECB Evicting Cache Blocks
ECS Evicting Cache Set
EDF Earliest Deadline First
FJP Fixed Job Priority
FTP Fixed Task Priority
GFTP Global Fixed Task Priority
LCS Live Cache State
LMB Leaving Memory Blocks
RCS Reaching Cache State
RMB Reaching Memory Blocks
RQL Ready Queue Locking
RTA Response Time Analysis
SIL Safety Integrity Level
UCB Usefull Cache Blocks
WCET Worst-case Execution Time
WCRT Worst-case Response Time

xvii

ACRONYMS AND ABBREVIATIONS

xviii

Chapter 1

Introduction

The vast majority of the digital computing devices are embedded into larger systems, where

the functionality is greater than the one provided by the computing apparatus. Some of

these embedded devices, due to the constraints of the systems in which they are embedded,

need to meet temporal requirements.

The term real-time is sometimes miss-understood. Real-time systems as a subject does

not necessarily deal with high performance devices where the focus is on the presentation of

the results to the user such that the illusion of latency absence would be produced. Straight-

forwardly, real-time system design focuses on obtaining upper-bounds on the completion

time of a given workload on a given hardware platform.

In order to derive such upper-bounds the specifics of the workload and of the execution

platform need to be studied. Generally a model of the workload is created and the assess-

ment of the schedulability is done considering its characteristics. Any considered system

is assumed to be deterministic. This means that if the initial state is fully characterized

and the model is sufficiently detailed then a perfect description of future states is obtained.

Both the attainment of the full initial state description and the model might be prohibitively

expensive in time and complexity terms. Hence generally over-approximations of both are

considered in the analysis. The level of detail contained in the workload and the hardware

platform models influences the pessimism involved in the analysis and the time consumed

to perform it. It is common that increasing the detail level of the model leads to lengthy and

more complex analysis processes.

Rather than dealing with average-case situations, the analysis in real-time systems is

concerned with the worst-case scenario. For this scenario, which has to be specified on the

framework provided by the concrete model adopted, each task in the system is certified to

finish the entire work issued by it before a pre-specified time instant. This time instant is

commonly referred to as the deadline. If the worst-case workload completion time is smaller

than the workload deadline than the workload is termed schedulable on that platform.

1

1.1. REAL-WORLD TIMING REQUIREMENTS

1.1 Real-world Timing Requirements

Any outcome emerging from the processing carried out from a digital computer loses in-

terest as time passes. The sole purpose of computers is to process and transmit signals to a

given entity which at times takes decisions and acts based on the provided output. An en-

tity may entrust a computer with the task of answering a given question, say, the “Ultimate

Question of Life, the Universe, and Everything” 1. If the answer is presented 7.5 million

years later, so long that the entity forgot what the question was, little usage exists for the

glorious outcome of 42. Whether 42 is a correct outcome or not is not of importance in

real-time systems research but rather the focus of the areas of dependability and reliability.

Real-time systems research focuses only on the timing aspects of the solution generation.

In the most evident scenarios a timing drift of the output generation instant from the ac-

tual useful output generation time interval brings no consequence other than lack of system

responsiveness and frustration for the eventual operator.

There are cases though, where the failure to generate the computation output on time has

substantially more severe consequences. Let us observe the requirements of a given system

responsible for adjusting and maintaining a plane cruising altitude. This system, given

an altitude set-point, will be responsible for actuating on the airplane control surfaces and

engines such that the set-point is reached while meeting certain performance requirements.

altitude
set point Ki

Kd
d
dt

∫
dt

Kp

Figure 1.1: Flight Level Closed Loop Controller Diagram

In this example the altitude controller is implemented with a classic Proportional Inte-

gral and Derivative (PID) controller (Figure 1.1). After the controller parameters are tuned

in continuous time so as to achieve the intended closed loop system behaviour, the controller

1illustrative example extracted from the book “The hitchhiker’s guide to the galaxy” , ISBN:0517542099
9780517542095

2

1.1. REAL-WORLD TIMING REQUIREMENTS

is mapped into an equivalent discrete time controller. The discrete time version of the con-

troller is implemented in software and run in the execution platform. The specificities of

the controller parameter tuning and mapping process from continuous time to discrete are

not fundamental for the understanding of the issues up for discussion. The single fact that

the reader must acknowledge is that during the mapping procedure one sampling period

is chosen (Ts). This sampling period is at the heart of the controller description and be-

haviour. In order for the closed loop transfer function to be in accordance with the one

derived, this sampling rate must be stringently met. This means that at every Ts time units

the set-point has to be evaluated as well as the current airplane altitude. Having the two in-

put variables the control signal is computed. This computation has to be completed before

the next control period. The consequences of not meeting the strict timing requirements of

this controller may be mild, in the sense that the system may take longer than intended to

match the actual altitude to the set-point. In a worst case the controller may become unsta-

ble, leading to violent altitude oscillations from the plane as depicted in Figure 1.2. If the

system does not behave according to the specification, given some circumstances, it may

lead to life threatening situations or significant financial losses. It is fundamental to ensure

that such situation can never happen irrespective of the circumstances 2.

time

A
lt
it
u
d

e

time

A
lt
it
u
d

e

Set point Set point

Figure 1.2: Correct controller behaviour versus incorrect behaviour

In order to prove the correct temporal behaviour of the system a framework where such

proofs can be derived is required. In this framework the interaction between different soft-

wares and the executing platform is modelled. Let us describe a possible system abstraction

where the correct temporal behaviour of the system can be proven.

2The presented PID example constitutes an oversimplification of a flight controller implemented in a digital
apparatus, its intention is solely to illustrate the origin of the temporal constraints in hard real-time systems

3

1.2. SYSTEM MODEL

1.2 System Model

The control system is generally devised assuming that all the procedures involved take an

infinitesimally small time interval. This is of course not true in a real system. All the

procedures when implemented in software will take a non-negligible time interval to com-

plete and in order for the correct system execution to be guaranteed, the intended timing

properties of such setup must be guaranteed as well.

The given controller has to execute a set of software routines every Ts time units. These

routines are constituted of for instance: sampling the relevant state variables (accelerome-

ters, pressure sensor, etc.), computing the open loop quantities (proportional, integral and

derivative part); lastly the control command is issued to the actuators. These computational

steps are modelled in our system by a workload quantity.

Definition 1 [Workload]: metric of computation requirement which executes upon a given

platform. One unit of workload takes one units of time to execute in a given platform.

The workload requirement of the filter may eventually be variable. As variable as it

may be, the software running implementing the controller will always be composed of a

finite set of instructions (assuming that for every loop in the program the maximum number

of iterations is known and is bounded). If each instruction takes a finite amount of time to

complete then the software will execute until completion in a finite amount of time as well.

An upper-bound on this time quantity may be derived, and is commonly termed Worst-case

Execution Time (Chapter 2).

The entity to which the execution requirement is associated to is termed job.

Definition 2 [Job]: a given quantity of workload released in the system at a specific time

instant with absolute deadline and a maximum workload requirement.

The jobs are nothing more than an abstract representation of software executing upon

a given platform. The amount of software instructions is well bounded. This bound on

the maximum number of software lines executing within each job is modelled as a work-

load quantity. In concrete terms, a job models an execution requirement that will take no

more than a prespecified number of time units of access to the platform to execute until

completion.

With a job we can model the execution of the controller software implementation during

one sampling period. However, the controller will require its software implementation to

execute once every sampling period. In order to model this recurrent execution a concept

termed task is employed.

Definition 3 [Task]: entity responsible for releasing jobs with a minimum separation be-

tween each individual release.

4

1.2. SYSTEM MODEL

A task is an overall abstract representation of the execution behaviour of a given piece

of software on a given platform as well as of its temporal requirements.

To summarize we state that a task is then characterized by the three tuple 〈Ci,Di,Ti〉.
This document focuses purely on tasks where Di 6 Ti which is commonly referred to as

constrained deadline model. The parameter Ci represents the worst-case execution time of

each job from a task τi, Di is the deadline relative to the job release and Ti the (minimum)

distance between consecutive job releases. Each task τi may release a potentially infinite

sequence of jobs with releases separated by at least Ti time units. Every job k from task τi

has an absolute deadline defined at time di,k = ri,k +Di, where ri,k is the absolute release

time instant of job k from task τi.

Returning to the controller example context: in order to ensure that all the workload of

the control loop is completed before the next period, one can arbitrate the relative deadline

of the control task to be equal to Ts, since only after Ts time units will the controller have

to provide the actuator commands. If only the mentioned controller was executing on the

platform it would suffice to check whether Ci 6 Di. If that condition is met the controller

is guaranteed to execute all software instructions before the deadline, hence the timing

properties would be met, leading to a controller which exhibits the behaviour intended at

the design stage.

As we have seen that a real-time system is composed both of software and correspond-

ing execution platform. The software part of the real-time system constitutes a real-time

application (Figure 1.3). Several distinct applications might eventually coexist in a single

platform.

A real-time application may in fact incorporate more than a single software component.

Definition 4 [Real-time application]: Collection of software constructs which by execut-

ing upon the hardware platform provide the functionality intended by the system designer

respecting the pre-specified timing constraints.

A real-time application may be seen as a collection of, for instance, several digital

controllers and filters, some interface applications and avionics display generation. Where

all of these subconstituents share a common execution platform. Each of those software

pieces can be modelled as a task. Each of which with their specific timing requirements.

The collection of software constructs is then commonly modelled as a set of real-time

tasks termed task-set. The task-sets considered in this document are formally defined as

τ = {τ1, . . . ,τn}, meaning that τ is composed of n tasks elements.

When checking whether the workload of the controller is able to complete before their

deadlines (i.e. ensuring the correct system temporal behaviour) one has to take into con-

sideration the remaining constituents of the task-set and the way they interfere with each

other when contending for execution on the platform. The entity responsible for mediating

the contention for processor usage is denominated by “scheduler”. Considering the task-set

5

1.3. SCHEDULERS

R
ea

l−
ti

m
e

A
p
p
li

ca
ti

o
n

IIR_filter.c PID_controller2.c

External Input
R

ea
l−

ti
m

e
S

y
st

em

External Output

Execution Platform

PID_controller1.c

Figure 1.3: Conceptual Real-time System

characteristics as a whole along with the scheduler properties enables the system designer to

prove whether all software constructs will manage to execute on the platform while meeting

their timing requirements.

1.3 Schedulers

The scheduler takes the decision of which task to execute at any time instant following a

specific scheduling policy. A scheduling policy is a well-defined set of rules which dictate

which software executes when and on which processor. The scheduling policy used to

carry out a given workload will greatly influence the temporal behaviour of the tasks in the

system. There are several distinct scheduler classes:

1. Fixed task priority (FTP): each task in the system has a given predefined priority,

every job released by that task executes at its priority level;

2. Fixed job priority (FJP): at the time of release of a job from the given task a job

priority is decided upon. From the job release until its workload completion the job

will hold the same priority.;

3. Dynamic job priority (DJP): The priority of a given job may vary over time.

These three categories tend to be employed when describing on-line schedulers, never-

theless static schedulers such as cyclic executives are also subject to this grouping since the

6

1.3. SCHEDULERS

workload is still prioritized according to a set of rules even though this process occurs at

design time and not during system execution.

The choice of which scheduling policy to use is an exercise where the up and down sides

of the alternatives have to be carefully considered by the system designer. Scheduling dis-

ciplines may be weighted according to several metrics. An important one is schedulability

(i.e. its ability to schedule task-sets such that all the tasks meet their timing requirements).

Definition 5 [Schedulable task-set]: A task-set is said to be schedulable on a given plat-

form by a scheduling algorithm A if, for all τi ∈ τ , any job released by τi is guaranteed to

complete at least Ci units of workload in a time interval from the release of the job (ri,k) and

the absolute deadline of the job (di,k = ri,k +Di) in any valid schedule generated by A .

Increased schedulability guarantees (i.e. the ability to schedule more task-sets) generally

come at the cost of increased complexity in the scheduling decisions. This may lead to

unnecessary overheads due to scheduler operation, which lead to computational resources

being wasted and added complexity in the scheduler implementation.

In single-core there exist FJP (e.g. EDF [LL73]) DJP (e.g. LLF [OY98]) scheduling

policies which are optimal when considering that interference between task occurs solely

on the processor. The scheduler implementation of these policies will generally take a

greater quantity of information as an input for their on-line decision making, thus being

prone to also greater run-time overheads. In that respect the fixed task priority scheduling

algorithm presents a relatively small complexity.

If a given task-set is schedulable with a lower complexity scheduling mechanism, then

there might be little motivation for deciding to use a higher complexity one. In this work

the scheduling policy put to use is generally FTP.

The most common scheduling policies considered in the literature are fully pre-emptive.

In this type of scheduling mechanism, at any time instant t, the job executing on the proces-

sor is the highest priority job in the system. Whenever a task gets assigned to the processor it

is either the case that the previously executing task has terminated or that it got pre-empted,

which implies that it still had remaining work to complete. When using fully pre-emptive

schedulers little information is available on where these pre-emptions may occur, which can

be problematic if the pre-emption impact needs to be quantified.

As it turns out, an important aspect pertaining to the operation of the system is the

number of pre-emptions the tasks are subject to. The pre-emptive behaviour will give rise

to overheads not present when a given workload is integrally executed without interruption

of any sort. These overheads are generally taken as null or negligible in scheduling theory,

but are in fact substantial.

Non-pre-emptive scheduling policies are safe from these overheads. In this scenario,

when a job from a task is dispatched onto the processor it will not suffer any pre-emptions by

7

1.4. BACKGROUND ON CACHES

any workload irrespective of its priority. This generally comes at the cost of decreased abil-

ity to schedule workload (i.e. to meet the task-set deadline guarantees). A hybrid method

between fully pre-emptive and non-pre-emptive scheduling policies may be considered in

order to have better scheduling ability and more information on the pre-emptive behaviour

of the system. In these scheduling policies pre-emptions are allowed under certain restric-

tions.

This might be in the form of setting fixed pre-emption points to enable a tighter bound

on the number of pre-emptions. Setting pre-emption points is an effective method to in-

crease the schedulability of fixed task-priority systems [BBM+10]. The mechanism de-

nominated fixed non-pre-emptive regions, relies on specific pre-emption points inserted into

the task’s code. This has to be done at design time, relying on WCET estimation tools that

can partition a task into non-pre-emptible sub-jobs [BBM+10]. This is highly restrictive

since these points can not be replaced at run-time making changes to the task-set difficult.

Some systems require on-line changes whether on the workload itself or just on their rate

of execution and temporal deadlines, hence would require the pre-emption points to be re-

placed. Furthermore, the choice of pre-emption points placement proves to be a non-trivial

task for complex control-flow graphs. Which is an additional concern for the application

developer and a potential source of errors. Since the incorrect placement of the pre-emption

points may lead higher priority workload to violate its temporal constraints. Having a more

flexible mechanism helps to reduce development, software maintenance, and update costs.

It also facilitates the operation of systems which require run-time workload changes. An

example of a considerably more flexible limited pre-emptive mechanism is the floating non-

pre-emptive regions model. In this model a non-pre-emptive region of execution is started

at the time instant t when a job of higher priority than the currently executing job from task

τi, is released where at time t− ε the job from task τi had the highest priority from all the

active jobs at that time instant. This non-pre-emptive region has a limited duration which is

a function of the higher priority workload.

1.4 Background on Caches

It is common for current high-performance processors to sport several architectural acceler-

ation units. This is the case of caches due to the big discrepancy between the execution core

and memory throughput [EEKS06, RGBW07]. In the embedded world the range of cache

levels present in each processor vary from zero up to three. Generally the processors which

lack caches present a relatively low clock frequency so the divergence between processor

and memory throughput is not relevant. For the high end performance spectrum caches are

widely employed and the importance of their analysis grows.

8

1.4. BACKGROUND ON CACHES

Caches are subsystems which display, at any time-instant, an associated “state”. These

units quasi-continuously face state changes at run-time. In particular, it is the case for task

pre-emptions: when a task resumes its execution (after being pre-empted), the cache(s) will

display a state which is different from its state at the time the task got interrupted.

Let us briefly describe the workings of caches. A cache is a memory region which takes

considerably less time to be accessed in comparison to the main system memory.

set 2 line 1 line 2

line 1 line 2 line Iset X

line 1set 1 line 2 line I

line I

L bytes

Figure 1.4: Cache Representation

A given cache architecture geometry is completely defined by four parameters (Fig-

ure 1.4), namely cache size (cache-size), number of cache sets in the cache (#cache-sets) ,

number of cache lines per set (#associativity) and line size (line-size). The number of cache

lines per set is also termed associativity. In is said that if a cache has #associativity lines per

set that it is a #associativity−set associative cache. The associativity may vary between two

extremes, #associativity = 1 which is termed direct mapped and #associativity = cache-size
line-size

which is termed fully associative. In the direct mapped case each memory block can reside

only in a single cache line. In the fully associative scenario each memory block can be

loaded into any cache line. Cache lines have a given length (line-size) of several bytes. In

regular processor architectures a cache line will hold either line-size = 64 or line-size = 128

bytes. If a cache is said to have a size of cache-size bytes then it is composed of

#cache-sets def
=

cache-size
line-size×#associativity

(1.1)

cache sets.

All memory locations in the system map to a specific cache set. The mapping function

9

1.4. BACKGROUND ON CACHES

cache-set-map is defined as follows:

cache-set-map(address, line-size,#cache-sets) def
=

⌊
address
line-size

⌋
mod #cache-sets . (1.2)

This means that whenever a memory location is referenced, when the corresponding

memory line is fetched it will be mapped to the cache-set-map(address, line-size,#cache-sets)

cache set and stored in some cache lines belonging to that set.

When a memory address is referenced two situations may arise:

• address is in cache in which case a cache hit is said to occur

• address is not in cache at this time a cache miss occurs, and the line where the refer-

enced memory address sits is loaded into the cache.

A memory reference is generally between one to 64 bits in length and the address points

to the first byte. When a memory is referenced the entire line where the memory is resides

is brought to the cache. This means that when a given address is referenced then the line-size

bytes in the set {address mod #associativity, · · · ,(address mod #associativity)+line-size}
are loaded into the cache.

If the destination set is filled with valid memory lines but does not contain the referenced

memory block, one of the lines present in the set has to be evicted in order to make space

for the current line reference. There exist several cache replacement policies that mediate

the line eviction on the cache sets. The most commonly considered in worst-case execution

time assessment are Least Recently Used (LRU), First In First Out (FIFO), Pseudo Least

Recently Used (PLRU).

• LRU: From all the memory blocks in a given set, the one which was referenced the

furthest in the past is the one evicted at the time of a new memory block insertion

into the cache set. Since this replacement policy relies on dlog2(#associativity!)e
additional bits per cache-set so as to preserve a full track of the entries age it is

uncommon for LRU to be employed for #associativity > 4;

• FIFO: if a given memory block is not in the cache set then it is inserted into the

cache head and evicts the last element in the queue. A memory reference to a given

line in the set does not alter the set ordering. Hence, a cache line can only survive in

a set for I−1 new element insertions

• PLRU: There exist several possibilities of implementing this type of cache replace-

ment protocol. Overall, it tries to approximate the behaviour of LRU without incur-

ring on the resource usage and greater latencies involved with actual LRU implemen-

tation. In the tree based implementation, the log2(#associativity)+ 1 most recently

10

1.4. BACKGROUND ON CACHES

used cache lines are safe from eviction [RGBW07], whereas an eviction victim is cho-

sen dependent on the state of the tree from the #associativity− log2(#associativity)−
1 remaining cache lines. This implies that PLRU caches may be approximated to

an equivalent LRU cache with #associativity′ = log2(#associativity) + 1 and size

cache-size′ = #associativity′× line-size×#cache-sets.

By far the most employed in modern processors, when #associativity > 2 is PLRU, for

#associativity = 2 then LRU is commonly used.

Once the cache set and the cache line where the referenced memory line is going to be

placed, the evicted cache line may or may not be written to the lower memory level. This

will largely depend on the write policy of the cache. The two most common are:

• write-through: all memory block modifications are added to the cache and in par-

allel written to lower memory levels;

• write-back: changed memory blocks in the cache are only written to lower memory-

levels once an eviction occurs.

The write-through will have as a consequence that every memory store induces a change

on main memory following said reference. This may greatly increase the traffic observed

in the communication bus. On the other hand the write-back policy has the unfortunate

consequence that when a write occurs which yields a cache miss then it can only be com-

pleted once the evicted cache is written onto lower levels. This situation only occurs in

data caches, since generally instructions change (self-modifying code) is not perceived as

an architectural use-case.

In the architectural model employed in this work we use two values to model the be-

haviour of cache hits and misses. A cache hit has a latency of THIT time units. In regular

processors THIT is a constant value of between one or few processor clock cycles. The

systems considered are composed of a single cache level, hence a cache miss occurrence

triggers a memory fetch from main memory to the cache. A cache miss is assumed to have

a latency TMISS. Even though a cache miss will have a variable latency, TMISS is conser-

vatively assumed to be a constant, upper-bounding the maximum amount of time that a

memory block takes to be transfered from main memory to the cache, which is one memory

operation for write-through and two memory accesses for the write-back policy (in case the

evicted line had been modified – dirty bit set). This previously holds true for data caches,

whereas the TMISS for instruction caches is set to one memory access time irrespective of the

write policy. Furthermore we will restrict our model to systems for which #associativity = 1

since it allows for easier explanation of the concepts and extensions to #associativity > 1

for well behaved replacement policies as LRU are trivial to obtain.

If a task has several memory blocks in cache which may reuse in the future and its

execution is interrupted by another task, some of these blocks may get evicted. When the

11

1.5. THESIS ORGANIZATION

task resumes execution the state of the cache will be distinct in relation to the point when it

was pre-empted. Eventually the task as it executes requires the state of the cache to be re-

established. The reconstruction procedure is subject to time penalties. In real-time systems,

where timeliness is an essential property of the system, these penalties need to be carefully

evaluated to ensure that all deadlines are met.

Generally, since the WCET is computed for each task in isolation, all the overheads

attached to the scheduler pre-emptive behaviour are not present in the WCET value. The

consequences of pre-emptive behaviour then has to be accounted for at later stages of the

schedulability analysis. In order to avoid double accounting of overheads, it is important to

have in mind the assumptions and procedures used in the WCET computation. For instance

the cache misses considered in WCET should not be again considered as an effect of the

pre-emptive behaviour.

Once an upper-bound of the overheads has been computed an integration into the schedu-

lability tests is performed for the current workload such that the schedulability is guaranteed

in any possible scenario. More on the subject of WCET computation, pre-emption delay

assessment and schedulability conditions taking both parameters into account are described

in Chapter 2.

1.5 Thesis Organization

The thesis put forward on this work grounded both on several state-of-the-art works and

novel contributions presented in this document is clearly posed in the following wording:

Thesis– Limited pre-emptive schedulers allow for significantly reducing pessimism in
the pre-emption delay accounting in single-core and for enhanced schedulability

when employing global fixed task priority schedulers.

In this thesis the theory of limited pre-emptive scheduling is addressed and extended.

Following this preliminary chapter(1), where the work is put into context and a broad depic-

tion of the real-time area is provided, the related work is described (Chapter 2). The related

work chapter covers the aspects of the worst-case execution time computation strategies.

The assumptions taken during these steps greatly influence the considerations taken during

the pre-emption delay assessment. An overview of the literature pre-emption delay assess-

ment strategies for regular fully-pre-emptive scheduling is provided. Finally some further

information is provided on the matters of limited pre-emptive theory in single-core and

related to the temporal-isolation aspects.

The bulk content of the thesis is provided in the chapters succeeding the state-of-the-art.

The thesis can be broadly organized in in four main areas content-wise:

• Single Processor Limited Pre-emptive Theory Extension (Chapter 3):

12

1.5. THESIS ORGANIZATION

The single-core limited pre-emptive theory for fixed task-priority scheduler is revis-

ited. An series of methodologies are provided which, by resorting to information

available at run-time, allow for extensions to the non-pre-emptive region length to be

obtained. The properties of the algorithms with respect to pre-emptions is studied

and upper-bounds on the number of pre-emptions are derived. Experimental results

are presented showing that the proposed solution reduces the observed number of

pre-emptions when compared to the state-of-the-art limited pre-emptive method.

A method to increase the schedulability in a similar way to the one achieved with

fixed non-pre-emptive regions is also presented in this chapter. Unlike the more static

limited pre-emptive schedulers (fixed non-pre-emptive) the more dynamic (floating

non-pre-emptive) does not easily allow for schedulability increases. The presented

ready queue locking mechanism prevents higher priority releases that occur after a

prespecified time instant to interfere with lower priority pending work. An integration

of this methodology with the well known pre-emption threshold is described as well.

The derivation of the schedulability conditions is presented.

• Pre-emption Delay estimation for the Floating Non Pre-emptive Region Model
(Chapter 4): The usage of the floating non-pre-emptive region model in the state

of the art works so far only allowed for a reduction on the number of pre-emptions

quantified at design time. In this section the scheduling information is exploited in

the analysis along with a further description of the workload to be executed and the

evolution of the pre-emption delay cost as the execution progresses. A method which

considers a function of the pre-emption delay per progress unit is described which

yields an upper-bound on the pre-emption delay a task is subject to in the floating

non-pre-emptive region model. Further extensions to this model are provided that

take into account an additional function and reduce the pessimism taking into account

assumptions from the WCET analysis phase.

• Ensuring Temporal-isolation in Platforms with Non-negligible Pre-emption Over-
heads (Chapter 5): More often than not, temporal-isolation is overlooked in the real-

time theory. The same cannot be said in industry where strong independence must

be proven between separate workload modules in order for systems to be certified.

This Chapter proves that the state-of-the-art temporal-isolation solutions are wasteful

of resources and that in more complex models fail to provide the temporal-isolation

property at all. An alternative method to encompass the temporal-isolation problem-

atic in systems with non-negligible pre-emption delays is described. This method is

presented for single-core scheduling but can be adapted to multi-core scheduling as

well.

13

1.5. THESIS ORGANIZATION

• Derivation of the Limited Pre-emptive Theory for Global Multiprocessor Schedul-
ing (Chapter 6):

This Chapter delves on the multi-processor limited pre-emptive theory. The deriva-

tion of some models for limited pre-emptive scheduling (fixed non-pre-emptive) is

described for global fixed task priority. The floating non-pre-emptive region model

theory is further addressed as well. Even though most of the work was carried out

assuming fixed global task priority schedulers it is shown that the limited pre-emptive

scheduling mechanism allows for a schedulability increase in the GEDF case. Exper-

imental results were obtained in order to assess whether the same patterns observed

for single core would translate into global scheduling with respect to schedulability

and overall estimation of pre-emptions.

The thesis is finalized by Chapter 7 where a summary of the thesis is provided and the

a list of possible future directions is debated.

14

Chapter 2

Related Work

2.1 WCET Upper-bound Computation

Execution time bounds for task operation are an ubiquitous input in real-time systems the-

ory. The value is computed in isolation or with the inherent assumption of non-pre-emptive

execution. The computation of these upper-bounds may be divided into two distinct cate-

gories.

1. Measurement Based

2. Static Analysis

3. Hybrid

2.1.1 Measurement Based

Measurement based WCET estimation procedures rely on the end-to-end or partial execu-

tion of the task in order to extract an estimate of the upper-bound. A set of relevant input

vectors is decided a-priori by the system designer. The main drawback of this approach is

that it is often impossible to know a-priori which input vector will lead to the worst-case

execution time. As a result the largest execution time observed can not be trusted as a safe

upper-bound, and thus can not really be employed as an input for schedulability assessment

in hard real-time systems. An additional concern is that measurement based WCET estima-

tion does not easily allow for the quantification of the pre-emption delay associated to each

task.

2.1.2 Static Analysis

A different approach for the execution time estimation is the static analysis of the task. This

methodology relies on four specific steps:

15

2.1. WCET UPPER-BOUND COMPUTATION

• Control Flow Graph (CFG) extraction;

• Micro-architectural modeling;

• Value analysis;

– Path analysis;

– Constraint analysis;

• Value computation

In the first step the program is parsed at source or machine language level in order to

extract valuable information for subsequent analysis steps. Using abstract interpretation a

structural representation of the program is achieved [CC77]. This abstract representation is

a directed graph denominated control flow graph (CFG) [CP01].

The set of nodes composing a CFG are of different types:

• Entry: has no predecessors and a single successor;

• Assignment: has exactly one predecessor and one successor. The functional parts of

the code (i.e. the actual instructions) are associated to this node;

• Test: has a predecessor and two successors. The jump instructions are associated with

such nodes;

• Junction: has more than one predecessor and a single successor. Every execution path

joining will occur in this node type;

• Exit: has one predecessor and no successors.

A CFG is then a directed graph where nodes are termed basic blocks. An example is

provided in Figure 2.1.

At this point the CFG is again parsed, at the value analysis step, in order to remove

infeasible paths, and extraction of loop bounds. This is done either by knowing the set of

possible inputs or by analyzing the semantics of the program.

The information present in the CFG may be exploited by several techniques to compute

the WCET. As next step, the Micro-architectural modeling procedure is performed. This is

constituted by analyzing each instruction in the assignment Basic Block (BB) of the CFG

with respect to its latency. Another important aspect of this stage of WCET computation

lies on the classification of the memory references with respect to both instruction and data

caches.

In order to classify each memory instruction the CFG is parsed by two fixed point al-

gorithms, the must and may analysis, with the knowledge of the cache, line size and asso-

ciativity level. The must analysis computes, for each program point the set of memory lines

16

2.1. WCET UPPER-BOUND COMPUTATION

which must be in the cache at each program point. The may analysis, in contrary, computes

the set of memory lines which may be in the cache for every program point. Both must and

may analysis sets are Abstract Cache Set (ACS) since they are the product of an analysis

which does not consider a specific program path.

This in turn yields the following memory reference classification:

• always-hit (AH): at the given program point the memory address referenced by the

instruction is present in the ACSmust ;

• always-miss (AM): at the given program point the memory address referenced by the

instruction is not present in the ACSmust nor in the ACSmay;

• not-classified (NC): the memory line referenced in the current instruction is not in the

ACSmust but is part of the ACSmay.

For a system with a single cache level the memory references classified as AH will be

treated as a cache hit, whereas the ones classified as AM and NC are treated as cache misses.

1

3

4

5

2

0

6

Figure 2.1: Example CFG

With the memory classifications available, the cost of executing each basic block is

extracted.

As a last step the value computation is performed. Having the cost of each basic block

execution and the set of feasible paths in the CFG, a technique called Implicit Path Enu-

meration is used. In this framework all possible paths from the CFG are encoded in a linear

equation which is then maximized. The outcome of the maximization is the WCET for the

given task.

A simpler mechanism may be used in the value computation stage. This method termed

tree based analysis relies on the information provided by a syntax tree rather than a CFG.

Though the procedure may be explained from a CFG perspective. Basic blocks belonging

to the same path segment have their execution cost summed in order to create a fictitious

node with the computed execution cost. In the case of a conditional path in the CFG the

17

2.2. PRE-EMPTION DELAY ESTIMATION

maximum between the two possible fictitious nodes is taken and another fictitious node is

created to represent this conditional part of the program.

Overall the main drawback of static WCET computation is that it relies on an accu-

rate model of the target platform. This, in order not to be optimistic, will have to rely on

pessimistic values for the parameters used to model the behaviour of the execution plat-

form. On the other hand measurement based mechanisms can never be guaranteed to be

safe and since no cache analysis is performed will always lack information to compute an

upper-bound on the CRPD.

2.1.2.1 Hybrid Approach

It is possible to create tools which consist not only of static analysis but also perform mea-

surements on the program or segments of it on the target platform. These methods embody a

category denominated as hybrid approach [Bet10]. The CFG information is extracted from

the source or object code. Having the program logical structure available one can run the

code segments in order to obtain execution upper bounds for each segment in the real plat-

form. Before each segment is run a worst-case scenario can be constructed depending on

architectural considerations. This can be for instance the flushing of all caches or running

a specific piece of code which polutes the cache forcing subsequent writes to memory for

every cache miss observed during the segment run. The segment execution times are then

merged in order to obtain a safe upper-bound on the worst case execution time of the task.

This tries to overcome the limitations from the previous approaches by joining the best

of both worlds. Since static analysis is employed upper-bound on the pre-emption delay

penalties can be extracted from the formal analysis of the object code.

2.2 Pre-emption Delay Estimation

As mentioned before, the WCET analysis inherently considers each task in isolation similar

to what occurs in non-pre-emptive scheduling. As it turns out generally the system has a

pre-emptive scheduler which in turn requires the effect of pre-emptions to be incorporated

into the execution time of the tasks.

The pre-emption delay is present whenever some subsystem used in the task execu-

tion exhibits some inherent state. A set of states are assumed in the WCET computation.

Whenever a pre-emption occurs, the pre-empting task may alter the state of several of the

subsystems present in the execution environment. Whenever the pre-empted task resumes

execution, if the subsystems it is using are in a different state in comparison to the time in-

stant at which it was pre-empted, it will eventually suffer from pre-emption delay in future

execution points. It is inherently assumed that the state changes for these subsystems have

a non-negligible time penalty.

18

2.2. PRE-EMPTION DELAY ESTIMATION

The subsystem considered most often in literature is the cache. This is due to the large

size of these apparatus and the time penalty for a cache miss which is around two orders of

magnitude greater than the latency of a cache hit in modern architectures [McK04, EEKS06,

BDM09, RGBW07]. Cache Related Pre-emption Delay (CRPD) estimation has been a sub-

ject of wide study. Several methods have been proposed that provide an off-line estimation

based on static analysis, for this inter-task interference value.

Lee et al. presented one of the earliest works on CRPD estimation for the instruction

caches [LHS+98] where the notion of the set of memory blocks that might have been used

in the past and may be used in the future, termed Useful Cache Blocks (UCB), was first

introduced.

A UCB, for a given program point, is one which might have been used in any program

path leading to this program point, which was not evicted, and that might be used in any

future program point accessible from the current location.

The computation of UCB sets is carried out in an abstract interpretation framework.

Lee et al. defines genb to be the set of memory accesses operated at basic block b mapped

into their corresponding cache line [LHS+98]. For example consider a cache with X = 4

cache sets, if in BBb memory addresses m1, m2 and m4, which map to cache set 1,2 and 4,

are referenced then genb = {m1,m2,⊥,m4}. Where ⊥ signifies that there are no memory

references in BBb mapping to cache block 3. The following operator will aid us on the

algorithm explanation task:

x� y def
=

y[i] , if y[i] 6=⊥
x[i] , if y[i] =⊥

(2.1)

Both x and y are an ACS. An ACS is a representation of all the memory blocks which

may be in each cache set at a given time. In definition of the operator 2.1, the values x[i]

and y[i] represents the contents of the ith cache set in ACS x and y respectively.

There are two ACS computed per basic block, both obtained by a fixed point algorithm.

The first, Reaching Memory Blocks (RMB), is computed by an algorithm starting from the

first node of the CFG [LHS+98]. The RMB set computed in Algorithm 1, for each BBb

presents the information of all the memory blocks which might have been loaded into the

cache on any CFG path leading to BBb which have not been evicted since.

19

2.2. PRE-EMPTION DELAY ESTIMATION

Algorithm 1: RMB set computation

foreach b ∈CFG do
RMBIN

b = /0
RMBOUT

b = genb

change = true
while change do

change = f alse
foreach b ∈CFG do

RMBIN
b =

⋃
p∈pred(BBb) RMBOUT

p

prev = RMBOUT
b

RMBOUT
b = RMBOUT

b �genb
if RMBOUT

b 6= prev then
change = true

The LMB [LHS+98] set computed in Algorithm 2, for a given BBb contains the infor-

mation of the first memory reference which maps to each cache block from any BB j in all

the paths of the CFG accessible from BBb. The Algorithm for its computation is as forth:

Algorithm 2: LMB set computation

foreach b ∈CFG do
LMBIN

b = genb
LMBOUT

b = /0
change = true
while change do

change = f alse
foreach b ∈CFG do

LMBIN
b =

⋂
s∈successor(BBb) LMBOUT

s

prev = LMBOUT
b

LMBOUT
b = LMBIN

b �genb
if LMBOUT

b 6= prev then
change = true

Both sets RMB and LMB represent a possible set of memory blocks present in each

cache line for every program point. Lee et al. considers the RMB and LMB to be a set of

elements uniquivocally associated to each cache set. These represent all the possible mem-

ory blocks which may be present in each cache set [LHS+98]. When a union is performed

between LMB and RMB sets this implies a union over all the elements which may reside in

a given cache set.

For example, consider the abstract cache states RMBOUT
x = {a,b,c,⊥} and RMBOUT

y =

{a, f ,⊥,h}. Further consider that BBx and BBy to be the predecessors of BBb. The computa-

tion RMBIN
b = RMBOUT

x ∪RMBOUT
y has the output {a,b,c,⊥}∪{a, f ,⊥,h}= {a,b, f ,c,h}.

This example holds true for the LMB computation as the union operation over the LMB sets

is defined in the same manner. The union of the sets provides an over-approximation on the

20

2.2. PRE-EMPTION DELAY ESTIMATION

number of memory blocks, which may be required in the future, that may be evicted if a

pre-emption occurs in a given BBb. The result of the union is the UCB set, which is formally

defined in the following manner for each BBb:

UCBb
def
= ones(RMBOUT

b

⋂
LMBIN

b) (2.2)

The function ones() returns a set of binary values, where for each cache line, if the set

is empty then 0 is returned for the corresponding element, otherwise 1 is returned.

A slightly altenate manner to compute the UCB set is presented by Mitra et.al. [NMR03].

In this work, the computed RMB and LMB are multi-sets. On the basic blocks where CFG

paths merged, the join function has as output a set of abstract cache states. These multi-set

are termed leaving and reaching cache states respectively (LCS and RCS). This means that

the join operation on the LMBs and RMBs is done in the following manner:

LMBOUT
b =]s∈successor(BBb)LMBIN

s (2.3)

RMBIN
b =]p∈pred(BBb)RMBOUT

p (2.4)

This leads to less pessimism in the CRPD analysis but at the cost of considerable com-

plexity. While intersecting the LCS and RCS multi-sets at each basic block a multi-set of

UCBs is obtained. The fundamental concept of UCB is still the same.

Another alternative for UCB computation is presented by Altmeyer [AB11]. The par-

ticularity of this work is the focus on the join operation defined over the LMB and RMB

sets. Altmeyer observed that, since memory accesses which are not considered as cache hits

are already accounted as cache misses in the WCET analysis, these should not be double

accounted formally in the CRPD estimation. Hence only cache lines which must definitely

be in the cache are to be considered in the computation of the UCB sets. In order to en-

force this observation the join operation defined over the LMB and RMB sets is changed.

This operation is then the intersection of the cache line sets between RMBs. Consider the

previously referred example where RMBOUT
x = {a,b,c,⊥} and RMBOUT

y = {a, f ,⊥,h}.
Assuming that BBc and BBy to be the predecessors of BBb, the following computation

RMBIN
b = RMBOUT

x ∩RMBOUT
y has the output {a,b,c,⊥}∩{a, f ,⊥,h}= {a,⊥,⊥,⊥}. The

computation of LMBs is the same as the one defined in the work of Lee et al. [LHS+98].

The remainder of the algorithm for RMB computation is the same as Algorithm 1.

A fundamental assumption taken in the work of Lee et al. [LHS+98] is that the set of

UCB is constant throughout a basic block. This assumption is only correct for instruction

cache analysis, since by definition a basic block is a set of sequential instructions. Hence

there can not be an instruction used in the beginning of a basic block which is later reused.

For data caches this assumption no longer holds. This implies that the UCB set for data

21

2.3. PRE-EMPTION DELAY INTEGRATION WITH SCHEDULABILITY
ASSESSMENT

caches is not constant per basic block and hence has to be computed at each program point,

or at least at every program point where a data reference occurs.

An alternative, present in the literature, regarding data cache pre-emption delay analysis

was devised by Ramaprasad [RM06a]. In this work, rather than relying on UCB information

at each program point, threads connecting memory references to the same address are cre-

ated. At any program place the number of threads connecting memory references prior and

later to the given point will constitute the pre-emption delay associated to an interruption of

the program at the current execution point.

2.3 Pre-emption Delay Integration with Schedulability Assess-
ment

Pre-emption delay estimation is of little value without its integration into the schedulability

analysis of the task-set. Several approaches have been proposed in the literature to perform

this analysis. Scheduling analysis by Lee et al. [LHS+98] is based on response-time anal-

ysis (RTA) by using the PCi(t) to denote the maximum pre-emption delay observed in the

schedule until time t and incorporating that quantity into the response time of the task.

Let us define the following concept which allows for a simpler exposure of the theory

at hand:

Definition 1 [level-i schedule]: The schedule composed solely by the sub-set of T contain-

ing only task of priority equal or higher than τi.

The concept of level-i schedule is henceforth defined for fixed task priority only, and is

only employed in that context.

The RTA is defined as [LHS+98]:

Rk
i =Ci + ∑

j∈hp(i)

⌈
Rk−1

i
Tj

⌉
×C j +PCi(Rk−1

i) (2.5)

This is solved by aid of a fixed point algorithm, i.e. the algorithm terminated in the kth

iteration such that Rk
i = Rk−1

i . The function PCi(t) denotes the worst-case CRPD generated

in the level-i schedule in a time interval of length t and is defined as:

maximize PCi(t)
def
=

i

∑
j=2

g j(t)× f j (2.6)

The variable f j encodes the maximum pre-emption delay which a job from τ j can suffer

as a consequence of a single pre-emption.

22

2.3. PRE-EMPTION DELAY INTEGRATION WITH SCHEDULABILITY
ASSESSMENT

The function g j(t) represents the upper-bound on the cumulative number of pre-emptions

which jobs from task τ j may suffer in a time interval of length t. This variable is restricted

by the two following inequalities.

1. ∑
j
k=2 gk(t)6 ∑

j−1
b=1

⌈
Ri
Tb

⌉

2. g j(t)6
⌈

Ri
Tj

⌉
×∑

j−1
k=1

⌈
R j
Tk

⌉

Constraint number one dictates that the number of pre-emptions which jobs from task of

the set {τ2, · · · ,τ j} suffer in a time interval of length t is limited by the number of releases

of jobs of tasks in the set {τ1, · · · ,τ j−1}. The second constraint limits the number of pre-

emptions that jobs from task τ j may suffer in a time interval of length t to the number of

releases of jobs from task τ j in the said interval times the maximum number of pre-emptions

each single job from τ j may suffer in the worst-case scenario.

Lee et al. [LHS+98] uses integer linear programming (ILP) to maximize the function

PCi(t) (2.6). This yields an upper-bound on the pre-emption delay suffered by each task.

The ILP problem is solved for every iteration of the response time fixed point algorithm

(Equation (2.5)) where the objective function maximized is PCi(t). This approach is very

complex due to the need for linear programming solving at every iteration.

An extension of this work by the same authors [LLH+01] exists. In this, the variable f j

ceases to be treated as constant value for each τ j but rather a table of values which considers

all possible combinations of higher priority tasks pre-empting task τ j. A constraint on f j

is added to the previously described optimization problem formulation. The complexity of

the approach is exacerbated since the ILP needs to be solved at every iteration of the RTA

computation for each task with the added constraint complexity. Since then, the focus of

the CRPD related literature has shifted from the ILP formulation to a rather less complex

framework which explores particularities of the scheduler and the patterns of cache usages

in order to compute CRPD upper-bounds.

Busquets et al. also used RTA [BMSO+96]. In this work the pre-emption delay is

considered from the point of view of the pre-empting task. The concept of Evicting Cache

Blocks (ECB) is used to model the maximum amount of information a pre-empting task may

evict from the cache. The ECB is the ones(RMBOUT
exit) set where the BBexit is the terminating

basic block of the task’s CFG. The computation of ECB may be also written as:

ECB j
def
=

⋃

b∈CFG j

UCB j
b (2.7)

Let us assume TMISS to be a constant value representing the maximum latency associated

with each cache miss. Busquets defines the following value:

γ
bus
i, j

def
= TMISS×|ECB| . (2.8)

23

2.3. PRE-EMPTION DELAY INTEGRATION WITH SCHEDULABILITY
ASSESSMENT

The value γbus
i, j encodes the maximum pre-emption delay which each job from task τ j

can induce on tasks in the set {τ j+1, · · · ,τi}.
The response time equation is then written as:

Rk
i =Ci + ∑

j∈hp(i)

⌈
Rk−1

i
Tj

⌉
× (C j + γ

bus
i, j) (2.9)

Mitra provided a simple mechanism to compute the maximum pre-emption delay which

a pre-empting task τ j may cause on a pre-empted task τi for a single pre-emption [NMR03].

The value CRPD(τ j,τi) is defined as:

CRPD j,i
def
= TMISS× max

b∈CFG
{
∣∣∣UCBb

i

⋂
ECB j

∣∣∣}. (2.10)

This means that the maximum pre-emption delay a τ j may cause on τi for a single pre-

emption occurs on the BBb of task τi such that the intersection of the set UCBb
i associated

to the BBb of τi has the maximum number of common elements with ECB j of task τ j.

The CRPD bound is then integrated with the schedulability test in the following way:

Rk
i =Ci + ∑

j∈hp(i)

⌈
Rk−1

i
Tj

⌉
× (C j +

j+1

∑
l=i

CRPD j,l) (2.11)

The sum of the CRPD is performed over the set of lower priority tasks { j + 1, · · · , i} in

order to account for the chained pre-emptions where a task τ j can evict useful cache lines

from more than one lower priority task.

An extension of this work is presented by Tan, where chained pre-emption are accounted

for [TM07]. Tan defines the maximum pre-emption delay a task τ j may cause in the lower

priority schedule to be:

γ
tan
i, j

def
= TMISS×

∣∣∣∣∣∣

 ⋃

l∈{ j+1,··· ,i}
MUMBSl

⋂ECBWMP

j

∣∣∣∣∣∣
. (2.12)

The maximum set of Useful memory blocks (MUMBS) as is a term coined by Tan which

denominates a union of all the UCB sets of every program point of the analysed task.

MUMBS def
=
⋃

p∈P

UCBp (2.13)

Where P is the set of program points of a given task which have a UCB set defined

for. Again for instruction caches it suffices to consider the CFG at BB granularity. The

ECBWMP set is in turn the largest set of memory references mapping to each cache line

along a single path of the pre-empting task, which is the worst case MUMBS path (WMP).

24

2.3. PRE-EMPTION DELAY INTEGRATION WITH SCHEDULABILITY
ASSESSMENT

The safety of the approach considering a single path for the pre-empting task ECB relies on

the over-approximation taken in the MUMBS definition.

Altmeyer has adapted Tan’s work in order, dropping the ECBWMP per path concept and

considering a unified ECB i.e. enclosing all memory references occurring in any possible

pre-empting task’s path [AB11]. As for the UCB it only considers the UCB per program

point [AB11]. This yields:

γ
tan
i, j

def
= TMISS× max

{bi∈CFGi,··· ,b j+1∈CFG j+1}

∣∣∣∣∣∣

 ⋃

l∈{ j+1,··· ,i}
UCBbl

l

ECB j

∣∣∣∣∣∣

 . (2.14)

Both CRPD bounds may be used in the RTA present in Equation 2.9.

As a later contribution Altmeyer proposed a CRPD bound considering chained pre-

emptions:

γ
alt
i, j

def
= TMISS× max

k∈{i,··· , j+1}

∣∣∣∣ max
b∈CFGk

{
UCBb

k ∩

 ⋃

h∈{1,··· , j}
ECBh

}|

 (2.15)

Another less complex algorithm in comparison to Lee et al. [LHS+98] resorting to RTA

was presented by Petters and Färber [PF01]. In this work an iterative algorithm is used

which considers the worst-case pre-emption delay generated in a level-i schedule but with-

out resorting to the ILP formulation devised by Lee et al. [LHS+98]. The fixed point al-

gorithm for the RTA computation is nevertheless similar. The variable ∆i, j(t) as defined by

Petters encodes the maximum pre-emption delay task τi suffers from all jobs of task τ j re-

leased in a given time interval of length t. First, Petters considers the tasks τl ∈ { j−1, · · · , i}
set which exhibits the highest pre-emption delay penalty. The pre-emption cost of task τk

is then accumulated for the cumulative number of times jobs task τl may be pre-empted

by jobs from τk in the interval of length t. The ∆i, j(t) computation for each RTA iteration

finishes when
⌈

t
Tj

⌉
pre-emptions have been considered. Which means that the exact upper-

bound on the number of releases of τ j in the interval being analysed are considered. This is

an inherently UCB based analysis. The RTA analysis is then written as:

Rk
i =Ci + ∑

j∈hp(i)

⌈
Rk−1

i
Tj

⌉
×C j +∆i, j(Rk−1

i). (2.16)

Staschulat and Ernst built upon Petters’ work providing a solution for CRPD integration

with schedulability test which incorporates the ECB information as well [SE04]. In this

work varying pre-emption costs were considered. The RTA analysis is rewritten as:

Rk
i =Ci + ∑

j∈hp(i)

⌈
Rk−1

i
Tj

⌉
×C j +∆

sta
i, j (R

k−1
i). (2.17)

25

2.3. PRE-EMPTION DELAY INTEGRATION WITH SCHEDULABILITY
ASSESSMENT

Where the ∆sta
i, j (t) parameter denotes the pre-emption delay caused by jobs from task τ j in a

given time window of length t defined as:

∆
sta
i, j (t)

def
= TMISS×

n

∑
l=1

(t)
∣∣∣∣

l
max(M)

∣∣∣∣ . (2.18)

The function maxh() returns the hth biggest value in the set.

The function n(t) states the maximum number of jobs from tasks in the set { j, · · · , i−1}
which can be released in an interval of length t, i.e.:

n(t) def
=

i−1

∑
l= j

⌈
t
Tl

⌉
. (2.19)

The variable M is defined as:

M def
=]i

k= j+1]
⌈

t
Tk

⌉

m=1
ˆδ j,k (2.20)

Where ˆδ j,k is a set containing exactly
⌈

Rk
Tl

⌉
elements which are the highest CRPD values

associated to consecutive pre-emptions by jobs from τ j on a single τk job. Hence ˆδ j,k is

defined by Staschulat as:

ˆδ j,k
def
=

{
δ

1
j,k, · · · ,δ

⌈
Rk
Tl

⌉

j,k

}
(2.21)

where δ 1
j,k =max1

p∈CFG{UCBp
k ∩ECB j} , δ 2

j,k =max2
p∈CFG{UCBp

k ∩ECB j} and generically

δ h
j,k = maxh

p∈CFG{UCBp
k ∩ECB j}.

The complex formulation presented by Stachulat enables the consideration of variable

pre-emption costs through the execution of each job, though no ordering of occurrences is

considered.

All of the CRPD aware schedulability tests presented thus far are for the fixed task

priority scheduling policy. Another work exists integrating CRPD into the schedulability

analysis of EDF. This consist of demand-bound function based procedure proposed by Ju

et al. [JCR07]. Ju, as Mitra did, considers the pairwise pre-emption delay CRPD j,i which

encodes the maximum CRPD penalty a job from task τ j may induce in a job from τi. Let

us define the demand bound function of a given task (dbf) [Bar05]:

db f (τi, t)
def
=

⌊
t−Di

Ti

⌋
×Ci (2.22)

26

2.4. LIMITED PRE-EMPTIVE SCHEDULING

Ju extends this definition by considering the Ci of the task and the maximum pre-

emption delay it is subject to as an upper-bound for its workload, which yields:

db f Ju(τi, t)
def
=

⌊
t−Di

Ti

⌋
× (Ci + ∑

j∈Hi

ni, jCRPD j,i). (2.23)

In Ju’s formulation H is the set of tasks of smaller relative deadline than τi, which are

the only tasks which can in fact pre-empt jobs from τi and ni, j =
⌈

Di−D j
Tj

⌉
upper-bounds the

maximum number of times jobs from τ j may pre-empt a single job from τi.

EDF successfully schedules the task-set if the following condition is verified:

∀t ∈ L, ∑
τi∈T

db f Ju(τi, t)6 t (2.24)

Note that this schedulability test is sufficient but no longer necessary when CRPD is

considered in the task-system due to the overestimation involved in the pre-emption delay

estimation.

2.4 Limited Pre-emptive Scheduling

Non-pre-emptive scheduling has its benefits. Besides completely removing the problem of

pre-emption delay, it schedules some task-sets that would not otherwise be schedulable un-

der fully pre-emptive fixed priority (FP) [WS99] and enables considerable memory savings

by allowing for the existence of a single stack of size equal to the maximum stack require-

ment by any task that compose the task-set. Nevertheless non-pre-emptive scheduling is not

always a feasible solution to resort to.

Fully pre-emptive scheduling has its own drawbacks since there exists an inherent dif-

ficulty in assessing the worst-case number of pre-emptions in these policies. This may lead

to overly pessimistic analysis.

A different type of scheduler which does not lie in either extremes (fully pre-emptive or

non-pre-emptive) allows for the encompassing of the benefits observed in both extremes.

This can be achieved by thoughtfully restricting the pre-emptions, either by scheduler

aid or by using specific pre-emption points in the code. The framework offers a viable

ground over which to address the problem of pre-emption delay estimation. Scheduling the

workload with such sort of policies enables more information to be present at the design

time with respect to where the pre-emptions will occur in a given system execution.

The sole purpose of a scheduling algorithm is to determine which tasks execute on the

target processor at each point in time. A scheduling algorithm can be, non-ambiguously,

described through a function A . A takes as an input the set of active tasks and knowledge

27

2.4. LIMITED PRE-EMPTIVE SCHEDULING

of future task releases when available. The output of A is a partially ordered set of tasks.

The m highest priority tasks are then executed upon the available processors.

The scheduling algorithms are generally classified according to the A behaviour with

respect to the priority ordering.

1. fixed task priority each job is assigned the same fixed priority

2. fixed job priority each job is assigned a fixed priority which is not necessarily the

same as previously or subsequently released jobs (from the same task)

3. dynamic job priority the priority of the job varies during its frame (between its

absolute release time and absolute deadline)

It is easy to observe that algorithms of type 1 are a subset of type 2 which in turn are a

subset of type 3. The algorithms of the subsets are associated to lower run-time complexity

when compared to the ones on the complement set which yields the super-set.

Generally these algorithms tend to dispatch onto the execution platform the highest

priority workload which is available to be executed at any instant in time.

Any scheduler for which a task pre-empts another running in the system immediately

before a given time instant t when the pre-empting task had a priority increase that surpasses

the pre-empted task can be termed as a fully pre-emptive scheduler.

In informal terms, limited pre-emptive schedulers can be seen as the product of slight

modifications to the so called fully pre-emptive schedulers such that the pre-emptions do

not generally occur synchronously with the release or increase in the priority level of some

workload but in a more controlled manner after, for instance, a known time interval elapses.

At run-time some pre-emptions which would generally occur in the fully pre-emptive sched-

ule are now said to be deferred in the limited pre-emptive model.

The more common limited pre-emptive scheduling algorithms existing in literature, al-

though being generally referred to as extensions to type 1 and 2 schedulers, can in fact

be considered to be type 3 algorithms. The pre-emption deferral can in fact be seen as a

temporary priority increase from the part of the executing task. Another analogy, which is

more commonly referred to is that whenever a pre-emption is being deferred, the task which

remains executing is in fact executing – for a limited time interval – in a non-pre-emptive

manner.

The mechanism of pre-emption deferral has a number of advantages as has been pointed

out in several works [YBB10, YBB09, BBM+10]. These scheduling policies present a

trade-off between the extremes of fixed priority non-pre-emptive and fully pre-emptive

scheduling. Gang Yao et al. provide a comparison of all the available methods described so

far in literature [YBB10].

Aside for enabling heightened sense of where pre-emptions occur, the limited pre-

emptive model also allows for schedulability increases. An example is provided in task-set

28

2.4. LIMITED PRE-EMPTIVE SCHEDULING

C T
τ1 2 10
τ2 9 12

Table 2.1: Limited Pre-emptive Motivating Task-set

shown in table 2.1 where the task fails to be schedulable under fully pre-emptive fixed task

priority but it is in fact schedulable by non-pre-emptive scheduling. For this task-set, the

fully pre-emptive schedule is displayed in Figure 2.2 to the right. One possible limited pre-

emptive schedule which ensures schedulability of the task-set is displayed in the same figure

to the left. It is apparent that task τ2 misses a deadline at t = 12 since it still has one unit of

pending workload at this deadline. In the exemplified limited pre-emptive schedule all tasks

meet their deadlines until t = 24 and hence it is concluded that the task-set is schedulable

with this policy since at exactly t = 24 there is virtually no pending workload left to process

in the system.

τ1

τ2

τ1

τ2

0 2 20 t 0 2 10 12 t1210 24

Figure 2.2: Limited Pre-emptive Schedule vs Fully Pre-emptive Schedule (task-set in Ta-
ble 2.1)

The limited pre-emptive scheduling algorithms can be categorized into two broad groups

depending on the nature and properties of the non-pre-emptive regions. This two groups are

denominated as:

• Fixed non-pre-emptive;

• Floating non-pre-emptive.

2.4.1 Floating Non-pre-emptive Regions

In the regular floating non-pre-emptive region scheduling, each task τi has a maximum

deferral time defined which will be denoted by the parameter Qi. When a task τi is executing

and τi is not the highest priority task in the ready queue, then it is said that a pre-emption

deferral chain is occurring. A pre-emption deferral chain, as is shown in Figure 2.3 starts

with a higher priority release, and lasts at most Qi time units. At the end of a pre-emption

deferral chain a pre-emption invariably happens. In Figure 2.3 task τi is executing when

29

2.4. LIMITED PRE-EMPTIVE SCHEDULING

a job from τ j is released, at some time in between a job from τk is released. The deferral

chain ends exactly Qi time units after the first higher priority release.

τk

τi

τj

Qi

t

Figure 2.3: Floating Non-pre-emptive Region Scheduling Example

All the scheduling policies presented so far were created with the intention of enabling

the floating non-pre-emptive regions usage. Effectively by extending the schedulability of

fixed task priority the overall admissible blocking tolerance of higher priority tasks will

increase in accordance. A practical consequence is that the allowed non-pre-emptive re-

gions will increase in size in comparison to the limits considered by the schedulability test

which does not contemplate the schedulability increase (i.e. the fully pre-emptive condi-

tion). Having bigger values for the non-pre-emptive regions is obviously advisable since

this will inevitably allow for a reduction on the number of pre-emptions, and will enable

less pessimism in the pre-emption delay computation [MNPP12a]. In the simple ready

queue locking, and in the ready queue locking with pre-emption threshold maximum block-

ing times admissible for all the tasks are computed. This information alone enables the

usage of the floating non-pre-emptive regions scheduling.

2.4.2 Fixed Non-pre-emptive Regions

The mechanism of restricting pre-emptions was first proposed by Burns et al. [Bur95] where

only fixed non-pre-emptive regions are considered (fixed pre-emption points).

The fixed non-pre-emptive region model differs from the previously mention (floating)

in that the pre-emption points are restricted to occurring at very well defined points in the

task code.

In this work it is referred that dividing the tasks into a set of consecutive non-pre-

emptive jobs would be a interesting way of increasing the schedulability of the task-sets.

This initial work suffered from the shortcoming of only considering the first frame of a task

in a synchronous release situation to account for the critical situation.

Keskin et al. discuss the theory of fixed non-pre-emptive region schedulability [KBL10].

The author deemed the available test [Bur95] optimistic, arguing that under no assumptions

30

2.4. LIMITED PRE-EMPTIVE SCHEDULING

the worst-case response time for a job of task τi may no longer arise in the first critical

region in a synchronous release situation but that it may show up in a job k of task τi in the

level- i active period generated at a synchronous release situation.

Until this point, the answer to what the maximum length of the non-pre-emptive regions

would be had not been found yet. A basic ingredient for this is identifying the amount of

slack in the higher priority schedule. Slack computation was the subject of some attention in

the past [DTB93, LRT92]. These works mainly deal with the detection of slack in the sched-

ule that enables the execution of aperiodic tasks with low priorities to execute uninterrupted.

This benefits the latency of those applications considerably. The drawback of these methods

is that they either rely on off-line analysis and the periodic behaviour of hard deadline tasks

[LRT92] or on the on-line computation of the slack using methods with variable execution

(recursive method) time and high complexity [DTB93]. The previously mentioned works

do not address the issue of pre-emption reduction nor consider slack stealing on a purely

hard real-time system. A similar point of view is proposed by Dobrin et al. [DFP01]. In

this work an off-line analysis parses the schedule identifying pre-emptions. It then tries to

remove these by changing tasks priorities and the offsets without jeopardizing the schedu-

lability. This method is solely applicable to periodic task-sets though. Slack computation

in a schedule is the base theory for computing the maximum allowed blocking times for a

given set of tasks. The maximum admissible blocking time depends on the task-set and the

priority relation between the tasks and the scheduling policy. The first maximum admissible

blocking time computations were proposed by Baruah [Bar05] for EDF scheduling policy,

and later by Yao et al. [YBB09] for fixed task priority scheduling mechanism. In the initial

work Baruah defined a maximum length for the non-pre-emptive chunks of each task. At

the deadline of the first job of each task τ j, in a synchronous release with all other higher

priority tasks, the slack (β j) is computed:

β j
def
= D j− ∑

h∈{1,··· , j−1}
db f (D j,τ,h). (2.25)

The value β j denotes the maximum amount of blocking time the task would endure

without missing a deadline. The maximum length of the non-pre-emptive regions of each

task τi is referred to as Qi which is defined as:

Qi
def
= min

j∈{1,··· ,i−1}
β j (2.26)

This ensures that task τi never induces a bigger blocking time to higher priority jobs

from task τ j where j ∈ {1, · · · , i− 1} such that they would miss a deadline. Note that in

this situation tasks are ordered by increasing relative deadlines ∀i ∈ {1, · · ·n−1}Di 6 Di+1.

The priority of the workload is a function of each jobs absolute deadline (EDF [LL73]).

31

2.4. LIMITED PRE-EMPTIVE SCHEDULING

This result was then further extended by Baruah and Bertogna in order to consider a

variable length for the non-pre-emptive regions of each task [BB10]. In this work a mono-

tonically decreasing function is considered Q(t).

Q(t) def
= min

t ′∈[0,t]
t ′− ∑

i∈{1,··· ,n}
db f (t ′,τi) (2.27)

Assume that at time t2, a job from task τi which was released at time t1 < t2, is executing

on the processor. Further assume that at time t2− ε the job from τi is the highest priority

active job in the system and that at time instant t2 task τ j releases a job. At this event the job

from task τi will start executing non-pre-emptively for Q(t1 +Di− t2). It is easily shown

that Qi 6 Q(t1 +Di− t2), hence this extension enables bigger non-pre-emptive regions for

each task at the cost of added run-time overhead. The authors propose the usage of a table

to implement this mechanism and observe that the number of table elements is generally

quite small.

A fixed priority scheduling method has been devised by Yao et al. [YBB09]. Yao

defines an upper bound on the maximum admissible blocking time each task may suffer as:

βi
def
= max

t∈[0,Di]
t− ∑

j∈{1,··· ,i}
rb f (t,τ j), (2.28)

Where

rb f (t,τi)
def
=

⌈
t
Tj

⌉
×C j. (2.29)

The maximum length of the non-pre-emptive regions is then defined as:

Qi
def
= min

j∈{1,··· ,i−1}
β j (2.30)

The computed value is the maximum allowed for systems scheduled with floating non-

pre-emptive regions but it is not optimal when fixed non-pre-emptive regions are considered.

Still this only allows the scheduling of tasks that were schedulable under the fully pre-

emptive model. The author proves that if the task-set is schedulable under fully pre-emptive

fixed priority, the job of task τi with worst-case response time will still be the first job in the

synchronous release situation.

Later the work was extended with fixed non-pre-emptive regions in mind [YBB11a].

Since the last part of τi executes non-pre-emptively for a maximum duration of Qi time

units. The maximum admissible blocking time per task is then rewritten as:

βi
def
= min

k∈{0,··· ,K}

{
max

t∈[k×Ti,k×Ti+Di−Qi]

{
t− ∑

j∈{1,··· ,i−}
rb f (t,τ j)+Ci−Qi

}}
, (2.31)

32

2.4. LIMITED PRE-EMPTIVE SCHEDULING

where k upper-bounds the maximum number of jobs τi has in a level-i busy period blocked

by the maximum admissible time.

Let us assume Li(B) to be the maximum length of the level-i busy period blocked for B

time units,

Li(B)
def
= min{t|t− (B+ rbf(Γi, t)) = 0} . (2.32)

Then K may be written as:

K def
=

⌈
Li(Qi)

Ti

⌉
, (2.33)

since the level− i busy period can never be blocked by more than Qi time units.

In the initial work [YBB09] the regular fully pre-emptive schedulability test was em-

ployed. In this case the synchronous release of all higher priority tasks constitutes the worst

possible case from the point of view of higher priority workload interference. As the work

was extended to take into advantage the schedulability gains possible with the fixed non-

pre-emptive region model, a new schedulability test was devised [YBB11a]. In this new test

not only the first frame of each task in a synchronous release situation had to be checked for

deadline misses. Instead all the frames in the busy period commencing with a synchronous

release need to be checked to ensure all deadlines are met. This is tied to the fact that, with

this analysis, task-sets which were not schedulable under fully pre-emptive fixed task prior-

ity might be so. Hence, due to the larger non-pre-emptive regions, some workload might be

postponed to execute in a future time interval when compared to the interval observed with

fully pre-emptive fixed task priority scheduling.

The pre-emption delay estimation problem using fixed non-pre-emptive region schedul-

ing was presented by Bertogna et al. [BBM+10]. In order to reduce CRPD, the usage of

fixed non-pre-emptive areas of code is proposed. There exists an extensive set of possible

pre-emption points. For each pair of points a pre-emption delay value is defined. Bertogna

et al. propose in their model a mechanism to choose a set of points as actual pre-emption

points such that, the worst case execution time distance between each chosen pair of points,

considering pre-emption delay is never greater than Qi time units, otherwise higher priority

task’s temporal requirements might not be met. This work may be used both with fixed task

priority as well as with EDF, the Qi parameter considered for each scheduling policy is the

one defined in [YBB11a] and [Bar05] respectively.

An extension of this work was presented by Bertogna et al. in [BXM+11], where the

optimal set points is selected with the aim of minimizing the pre-emption delay the task

may suffer overall. This has the limitation of requiring manipulation of the code of tasks

and thus is not very amenable to system developers. Also, it is not straightforward to take

into account tasks with complex control-flow graphs [BXM+11]. Additionally it can not

be easily applied in situations where the task-sets are subject to run-time changes, as the

maximum distance between pre-emption points is defined by the higher priority workload.

33

2.5. TEMPORAL ISOLATION ENFORCEMENT

A different mechanism to reduce pre-emptions was proposed by Express Logic [Lam]

termed pre-emption threshold. In this work a task may only pre-empt another if its priority

is bigger than that task’s pre-emption threshold. Wang and Saksena provided an optimal

priority assignment for pre-emption-threshold scheduling policy [WS99]. The pre-emption

thresholds are computed by aid of a search algorithm that will test several possibilities until

it either reaches a solution that ensures schedulability for the given task-set or fails. The

pre-emption-threshold values are the sufficient for ensuring schedulability. Later the work

was extended [SW00] by the same authors to assign the pre-emption threshold to the highest

possible priority value which maintains schedulability.

2.5 Temporal Isolation Enforcement

Before a safety-critical system can be deployed and marketed, a certification authority must

validate that all the safety-related norms are met. All the components comprising that sys-

tem (the software, the hardware, and the interfaces) are scrutinized to ensure conformance

to safety standards. Timing guarantees must be derived at design time and consequently en-

forced during run-time for the system to be certified. These timing guarantees are obtained

through timing and schedulability analysis techniques, which are typically more accurate

and simpler when spatial and temporal isolation between tasks is provided. This is because

timing analysis techniques must thoroughly examine every shared resource and identify a

worst-case interference scenario in which the analysed task incurs the maximum delay be-

fore accessing the shared resource[s]. Without a proper isolation between the tasks: First,

the number of interference scenarios to be explored may be out of proportion, hence com-

pelling the analysis techniques to introduce an undesired pessimism into the computation

by over-approximating these scenarios. Secondly, having a high number of possible inter-

ference scenarios naturally increases the probability of encountering a “pathological” case,

where the delay incurred by the analysed task in that particular scenario is far higher than in

the average case. Since the analysis tools must capture the worst-case scenario, this patho-

logical case will be retained and used in higher-level analyses (like schedulability analyses)

which are built upon the results of timing analyses (thus propagating the pessimism all the

way up to system-level analyses).

A first step in the certification process is to categorize each component (software and

hardware) by its level of criticality and assign a unitary safety integrity level1 (SIL) to all

components. When integrated in the same platform the components of different SILs share

low-level hardware resources such as cores, cache subsystems, communication buses, main

1A Safety Integrity Level (SIL) is defined as a relative level of risk-reduction provided by a safety function,
or to specify a target level of risk reduction. In simple terms, a SIL is a measurement of performance required
for a safety instrumented function.

34

2.5. TEMPORAL ISOLATION ENFORCEMENT

memory, etc. To provide the required degree of “sufficient independence” between compo-

nents of different SILs, Industry and Academy have been seeking solutions for many years

to (1) render the components of a specific SIL as independent and isolated as possible from

the components with different SILs and (2) upper-bound the residual impact that compo-

nents of different SILs may have on each other after the segregation step, with the primary

objective of certifying each subset of components at its own SIL.

Generally the sufficient separation is achieved in regular system model by resorting to

specific reserves which strictly dictate the rate of access to a given platform by the work-

load. Reservation-based systems are quite a mature topic in real-time literature. Sporadic

servers [AB04, SSL89] are proposed in real-time literature to ensure temporal isolation in

fixed task priority systems. Each server reserves a budget for the task execution. A task can

only execute if the server budget is not depleted. This ensures that the interference gener-

ated by a task in the schedule cannot exceed what is dictated by its server parameters and

servers are the scheduled entities.

Solutions for temporal isolation in Earliest Deadline First (EDF) also exist employing

the sporadic server concept, namely constant bandwidth server (CBS) [AB04] and Rate

Based Earliest Deadline First (RBED) [LKPB06]. Each server has an absolute deadline

associated to it which acts as the server priority. On top of the temporal isolation properties

these frameworks also employ budget passing mechanisms which enhance the average-case

response time of tasks in the system without jeopardizing the temporal guarantees [NP08,

LB05].

The previously employed execution models assume that the interference between work-

load occurs solely on the CPU. As it turns out, if other architectural subsystems are shared

in the execution platform which present some state with non-negligible state transition

times (e.g. caches), interference between task will be created (commonly referred to as

pre-emption delay). The maximum pre-emption delay any task may endure may still be

integrated into the task’s budget2, this solution is shown in this thesis to be subject to heavy

pessimism. When minimum inter-arrival times of tasks cannot be relied upon (i.e. tasks

release jobs at a faster rate than computed at design time), the previously mentioned frame-

works fail to ensure temporal isolation between concurrent tasks in the system.

In order to ensure temporal isolation cache partitioning may be employed [BCSM08].

This technique has the disadvantage of decreasing the usable cache area available to each

task, and as a consequence impacting its performance. Other architectural subsystems ex-

ist (e.g. TLB, dynamic branch predictors, etc.) which cannot be partitioned in order to

remove the interference source between tasks. Recently an approach has been proposed

where, when a task starts to execute it stores onto the main memory all the contents of the

2we assign one server per task, the task and server term is used interchangeably in this document

35

2.5. TEMPORAL ISOLATION ENFORCEMENT

cache lines it might potentially use [WA12]. After the pre-empting task terminates its ex-

ecution it loads back from memory all the memory blocks that it has stored in the cache

at its release. This indeed ensures temporal isolation among different applications but has

several drawbacks. It unnecessarily moves all the memory blocks to main memory which

reside in cache lines it might use even if the actual execution does not access them. This

mechanism significantly increases memory traffic which may be troublesome in multicore

partitioned scheduling due to increased contention on the shared memory bus. In compar-

ison our approach only passes budgets between servers and hence this budget is only used

if it is required. As a last limitation of [WA12] it cannot cope with scenarios where a given

task does not respect the minimum inter-arrival contract part.

As a last resort non-pre-emptive scheduling policies may be employed to ensure tem-

poral isolation in platforms with non-negligible pre-emption delay. By nature, these are

not subject to any pre-emption delay overhead. As discussed previously, this brings the

potential of severely decreasing the ability to schedule a large portion of task-sets.

36

Chapter 3

Extensions to the Limited
Pre-emptive Model

This chapter delves into the extended theory on limited pre-emptive scheduling. Firstly a

mechanism to extend the floating non-pre-emptive region length exploiting the knowledge

of the workload demand available at run-time is presented in section 3.1. This approach

was presented in a prior work [MP11]. Furthermore, a work extending the schedulability

of fixed task priority for single core is described. A concept termed ready-queue locking is

introduced in section 3.4. This scheduling policy is integrated with pre-emption threshold

and with floating non-pre-emptive regions. This was previously published in [MPB12].

3.1 On-line FTP Floating Non-Pre-emptive Region Extension

Pre-emptive schedulers, compared to non-pre-emptive ones [Bur95, GMR00, WS99], in-

troduce time-overheads during the execution of the system, due to context switches and the

loss of working sets in the caches and similar architectural sub-systems, generated by some

pre-empting task [SE04, AMR10, RM06b]. Pre-emption delays are generally considered,

in the pure real-time scheduling theory, to be null or negligible whereas in actual systems

this assumption does not hold. The main motivation for resorting to a simpler model is

that it allows for easier reasoning and presentation of the issues related to the core inter-

est of these works, which is that of the scheduler behaviour and properties. Depending on

the execution platform the pre-emption delay overheads may turn out to be quite signif-

icant [DD10]. The actual incorporation of these quantities in the schedulability test can

be associated to large over-estimations. The main contributor to this exaggeration in its

accounting is associated to the lack of information on the actual worst-case scenarios. The

increased over-estimations lead to task-sets being classified as unschedulable where, in fact,

no deadline could be missed. There is an inherent complexity of estimating the CRPD and

37

3.1. ON-LINE FTP FLOATING NON-PRE-EMPTIVE REGION EXTENSION

also tightly bounding the number of pre-emptions in fully pre-emptive systems. A way to

ease the task of quantifying pre-emption overhead is to introduce restrictions on the pre-

emptions. Two methods may be exploited in this manner. The first, fixed non-pre-emptive

regions, relies on specific pre-emption points inserted into the task’s code. This has to be

performed at design-time, relying on WCET estimation tools [WEE+08] that can partition

the task into non-pre-emptible sub-jobs [BBM+10]. As previously stated, this approach is

highly restrictive since these points cannot be easily replaced. As a consequence, scenarios

where task-set changes are foreseeable (e.g. mode-changes [MRNP11]) cannot cope with

the fixed non-pre-emptive model. Also code reutilization would require a recertification of

its properties. Aside from these more mundane considerations a more fundamental one lies

in the difficulty of pre-emption point placement into non-trivial control-flow graphs. Since

the temporal distance between consecutive pre-emption points must be smaller than a given

value even in the worst-case scenario the average number of pre-emptions during actual

system execution may be similar to the fully pre-emptive scenario in platforms where a big

variation between the worst and the average-case behaviour exists.

The second limited pre-emptive model, floating non-pre-emptive regions, is imple-

mented by disabling pre-emptions for a certain amount of time promptly decided during

system execution. This approach solely relies on the computation of the maximum time

each task can execute non-pre-emptively. These can be changed at run-time if the task-set

changes. The presented work will only address the floating non-pre-emptive regions model.

This is the only model suited for use in open-systems concept [DL97] or multi-mode sce-

narios [SKKC00], where task-sets may vary at run-time. It also has the distinct advantage

that no code changes are required in the application in order to implement it.

In this section the reduction of the observed number of pre-emptions by dynamically

delaying pre-emptions is investigated. This work exploits the maximum admissible block-

ing times of tasks (alternatively termed as maximum admissible pre-emption deferral) and

takes advantage of the existing relative task release phasing at run-time. The maximum

admissible blocking time is defined for every task τ j and is denoted by β j(t). It represents a

lower bound on the time span for which a job from a task τ j can be blocked by lower priority

workload without incurring a deadline miss. This quantity, termed β j(t), is both a function

of the scheduling policy (FTP in this work) and the priority ordering of the task-set. Addi-

tionally the quantity β j(t) is also a function of the currently pending higher priority jobs.

In other words β j(t), as it is computed in this work, takes into the account the knowledge

about arrival phasing of the higher priority jobs. The times tasks execute non-pre-emptively

are,as a consequence, larger than for mechanism relying on pre-computed non-pre-emptive

region lengths [BBM+10].

In this section rl
i(t) represents the absolute time instant of the last release of a job of task

τi with pending workload before (or at) time t. If there is no pending workload from task

38

3.1. ON-LINE FTP FLOATING NON-PRE-EMPTIVE REGION EXTENSION

rl1(t
′)rl2(t

′)

ϕ2
1(t

′)

ϕ2
3(t

′)

τ3

τ2

τ1

τr

tt′

level- 2 schedule

rl3(t
′)

δ2(t
′)

Figure 3.1: Model Notation

τi at time t then rl
i(t) = t. The value δi(t) denotes the amount of time elapsed since rl

i(t),

i.e., δi(t)
def
= t− rl

i(t). Then, let us define by ϕ i
j(t) = rl

j(t)− rl
i(t) the task-relative offset of

task τ j (in relation to task τi at time t), and by ϕϕϕ i(t) the set of all ϕ i
j(t) such that τ j ∈ hp(i).

ϕϕϕ i(t) represents the vector of the offsets of higher priority releases of tasks in relation to τi.

To clarify, this means that all the offsets are considered in relation to rl
i(t) which is the time

instant of the last release of a job from task τi. If rl
j(t)< rl

i(t) then, at time instant t, the last

release of τ j preceded the last release of τi. If there is no pending workload from task τ j at

time t, this implies ϕ i
j(t) = δi(t) since there is no knowledge about future releases of jobs

from τ j. Hene a worst-case scenario is considered, which equates to τ j relesasing a job at

the current time instant t = rl
i(t)+δi(t) The stated notations are clarified in Figure 3.1.

3.1.1 Admissible Pre-emption Deferral

Every task can endure a pre-emption deferral which solely depends on the amount of higher

priority workload that will need to be executed in the future, as will be shown later in this

section. Firstly, a few concepts taken from related work are introduced.

Definition 2 [level- i schedule]: The schedule composed of jobs from task τi and jobs from

tasks with higher priority is denominated as level- i schedule [KBL10].

The reader may find an example for a level- i in use in the graphical representation

provided in Figure 3.1. The amount of idle time that will exist in the level- i schedule is

computed as a function of the known previous higher priority releases that are still deferring.

39

3.1. ON-LINE FTP FLOATING NON-PRE-EMPTIVE REGION EXTENSION

Wi(t,ϕϕϕ i(t)) def
= Ci + ∑

j∈hp(i)
rbf(max(t−ϕ

i
j(t),0),τ j) (3.1)

where

rbf(t,τ j)
def
=

⌈
t
Tj

⌉
×C j. (3.2)

Equation (3.1) [LSD89b] gives us the amount of pending workload in the level- i schedule

that was released up until time instant t and is being deferred (if higher priority constraints

enable so). By computing the difference between Equation (3.1) and the time progression

line for every point in the given time interval [0,δi(t)], chosing the maximum of such values,

the amount of idle time in the schedule for the specified time interval is obtained. This may

be formaly written as

βi(δi(t),ϕϕϕ i(t)) def
= max

t ′∈[0,δi(t)]
(Di− t ′−Wi(Di− t ′,ϕϕϕ i(t))). (3.3)

The intuition behind the Equation (3.3) is depicted in Figure 3.2 for a level-3 schedule.

Figure 3.2 is composed by three plots, the beginning of the referential is rl
3(t) which is

the time instant of the release of the job of τi considered in this example. Without loss

of generality rl
3(t) may equate to 0 (i.e. rl

3(t) = 0). The top graph depicts Equation (3.1)

together with the time progression line. The maximum difference between the time line

and the function defined by Equation (3.1) at every interval [0,δi(t)] (where t ∈ [rl
i ,r

l
i +Di])

is equal to the amount of time when there was no pending workload in the system to be

processed in that cumulative interval. This is apparent by observing the schedule chart in

the middle of Figure 3.2.

The bottom part plot in Figure 3.2 displays the amount of idle time available in the

level-3 schedule at the release time of a job from τ3 and its evolution from when δi(t) = 0

as it progresses towards δi(t) = Di, as the workload of task τ3 gets deferred and the higher

priority workload shifted for δi(t) time units as well. From the point of view of the current

active job of task τ3, as it is deferring its pre-emption in time, the function B3(δ3(t),ϕϕϕ3(t)) in

(3.3) denotes the lower bound imposed by task τ3 on the blocking amount that the level−3

schedule can withstand at time t. In the same figure a situation where no higher priority

releases have occurred prior to rl
3(t) is displayed intentionally in order to provide a clearer

example of the computation of Equation (3.3) and its evolution with time. In this specific

scenario it is easily perceivable that if all higher priority workload is shifted to the right in

conjunction with τi’s job the available idle time will itself “shift” in the same manner, hence

the evolution with time of the bottom plot.

40

3.1. ON-LINE FTP FLOATING NON-PRE-EMPTIVE REGION EXTENSION

τ2

τ3

τ1

B3(δ
t
i,ϕϕϕ

3(t))

W (τ3, t− rl3(t)) t

rl3(t) +D3 rl3(t)

rl3 rl3 +D3

Figure 3.2: Function 3.3 with Unknown Prior Higher Priority Releases

Theorem 1. After the release of a job of τi at time rl
i(t), if some lower priority task is

executing the pre-emption may be safely deferred for βi(δi(t),ϕϕϕ i(t)) time units, without

jeopardizing τi’s deadline.

Proof. At time instant rl
i(t) there will be at least βi(Di,ϕϕϕ

i(t)) time units of idle time in the

level- i schedule up until rl
i(t)+Di. If the level- i pre-emption is deferred for ε time units

then βi(δi(t),ϕϕϕ i(t))− ε time units of idle time would be available for the level- i schedule

at time > rl
i + ε . At the earliest time instant t ′′ which makes βi(δ

t ′′
i ,ϕϕϕ i(t)) = 0 no more

idle time will be available in the level- i schedule until rl
i(t) + Di. From rl

i(t) to t ′′ the

task may be safely delayed since there will always be enough time to execute completely

before its deadline even if fully pre-emptive schedule would be carried out from this point

onwards.

The previous theorem handles a generic case of what was shown in [BB04b] for the

41

3.1. ON-LINE FTP FLOATING NON-PRE-EMPTIVE REGION EXTENSION

synchronous arrival of higher priority workload situation. Note that Theorem 1 only refers

to the amount of time a job of task τi may be deferred so that it does not miss its deadline.

The same reasoning has to be applied to all jobs currently deferring the pre-emption so

that no deadline is missed in the system. At every instant in time, while there are jobs

deferring their pre-emptions βi(δi(t),ϕϕϕ i(t)),∀i ∈ S is computed, where S = lep(j)∩hp(p)

In this case τ j denotes the highest priority task blocked at time t, τp the task currently

running and lep(j) is the set of task of lower or equal priority in relation to task τ j. At

the time instant when there exists an i such that βi(δi(t),ϕϕϕ i(t)) = 0, a pre-emption occurs

and all previously deferring jobs cease to defer, at which point the blocked job with highest

priority is scheduled to execute. Normal fixed priority scheduling is carried out until there

is a release of a task of higher priority than the currently running task. Implementing a

scheduling policy following this exact methodology is clearly unrealistic since it implies a

high complexity algorithm to operate at every instant in time. Some approximations may be

used though. The simplifications rely on the observations described in the following text.

3.1.2 Practical Usage of Equation (3.3)

A straightforward way to exploit the knowledge provided by Equation (3.3), is to trigger

a non-pre-emptive execution region for the job of task τl currently running, whenever a

release from a higher priority job occurs. In the next step the situations where no higher

priority job releases are present in the system is considered, so all the elements in vector

ϕ iϕ i
ϕ i(t) will be equal to the amount of time elapsed since rl

i(t). Equation (3.3) may then be

rewritten as,

βi(δi(t),ϕϕϕ i(t)) = βi(δi(t)), (3.4)

since ∀ j ∈ hp(i),ϕ i
j(t) = δi(t). The non-pre-emptive region should have a duration equal

to mini∈hp(l)(βi(0)). This approach is the one presented by Yao et al. [YBB09]. A simple

low complexity build up on the previous approach would be to still consider βi(0) as the

time a job from task τi may defer its pre-emption, and create a set of rules that enable the

scheduler to perform better or equally well whenever the schedule is not in the worst-case

scenario (synchronous release of higher priority tasks).

Property 1. Whenever a job of task τi is released, if it has higher priority than the running

task and no other job is already deferring its pre-emption, the scheduler may safely delay

its pre-emption by βi(0)).

The Property is a direct consequence of the definition of the βi(δi(t)) function (Equa-

tion (3.4)). By definition if at δi(t) = 0 there exists no pending higher priority workload,

then the level- i schedule can be blocked for βi(0) time units. So task τ3 may be safely

delayed for that amount and always complete before the deadline as stated in Theorem 1.

42

3.1. ON-LINE FTP FLOATING NON-PRE-EMPTIVE REGION EXTENSION

Property 2. If one or more tasks are already deferring their pre-emption and no job has

higher priority than the job from τi, the timer is set to timer = min(timer,βi(0)).

The variable “timer” denotes time instant (t’) when the highest priority blocked task is

poised to pre-empt the currently running task. This variable can be defined for every time

instant t as timer = t ′− t. Henceforth the term “timer” is used to denote both this quantity

as well as the architectural device responsible for automatically updating it at the rate of

time progression.

The previously deferring jobs (if any exist) already set the timer in order not to miss

a deadline. In case the highest priority task at time t is executing upon the platform then

timer = ∞. If the lower priority tasks are to complete execution before deadline the mini-

mum amount of time that all jobs may be deferred for has to be taken into consideration in

this situation.

Property 3. If in the previous situation there is at least one higher priority job already

deferring its pre-emption, the timer is set to min(timer,max(βi(0)− (rl
i(t)− t0),0), where t0

is the instant in time when the first job, from the set of jobs currently blocked, was released.

This is due to the fact that βi(0) represents the amount of time a job may be deferred if

no other higher priority job is deferring at that instant in time. If at time rl
i(t) there is higher

priority workload deferring pre-emption it was released mandatorily after t0 (i. e. t0 < rl
i(t)).

This implies that at time instant t0 no job with higher priority than the current job of task

τi was deferring its pre-emption. If the current job of task τi had been released at time t0 it

could defer its pre-emption until t0+βi(0) without missing its deadline, as a consequence if

the job arrives at a time instant after t0 it can still defer its pre-emption until the same point

in time (t0 +βi(0)).

3.1.3 Sufficient Schedulability Condition for Proposed Framework

The presented framework (properties 1 to 3) cannot schedule all task-sets which would be

schedulable with the fully pre-emptive or regular limited pre-emptive schedulers. When try-

ing to leverage these three properties caution must be exercised in order to make sure that

the following overload situation does not occur. For some task-sets, some arrival patterns

may lead to a task being released in a situation where the admissible pre-emption deferral

would in fact be negative. In this situation a deadline may be missed. During the schedula-

bility test a synchronous release situation is considered. This was proven to be the situation

leading to the worst-case response time of a task in fixed priority scheduling [BLV07a]. In

restricted pre-emption fixed priority scheduling policy the synchronous release of higher

priority tasks situation may not lead to the largest response time of a task [BLV07a].

43

3.1. ON-LINE FTP FLOATING NON-PRE-EMPTIVE REGION EXTENSION

Lemma 1. Not more than one additional job from every higher priority task may appear

(in comparison to the synchronous release case) in the time interval bounded by a release

and a deadline of a task.

Proof. In the synchronous release situation
(⌊

Di
Tj

⌋
+1
)
×C j units of higher priority work-

load per higher priority task may be considered. If some lower priority task defers the start

of execution of a higher priority task then no more than
⌈

Ti+Di
Tj

⌉
×C j units of workload

need to be considered. If a middle priority task τi had a release more than Tj time units after

the release of a job from task τ j then, considering the constrained deadline task model, the

workload of task τ j would have been concluded at the time of release of task τi, hence not

interfering in its response time.

As a consequence of Lemma 1 a sufficient schedulability test ensuring that no such

situations can occur is presented in Equation (3.5).

Theorem 2. A task-set is schedulable when using the presented framework (properties 1 to

3) if, for all tasks, the following inequality is respected:

Di >Ci + ∑
j∈hp(i)

⌊
Di

Tj

⌋
×C j + ∑

j∈hp(i)

(
min(C j,Di−

⌊
Di

Tj

⌋
×Tj

)
(3.5)

Proof. From Lemma 1 a bound on the maximum number of jobs a higher priority task can

release in a given time window is provided. By summing over all higher priority tasks

considering the over-provisioning stated in Lemma 1 an upper-bound on the interference

any task τi suffers in the interval [0,Di] is obtained. Note that the lower priority blocking is

inherently considered by the Lemma 1 since the additional higher priority job considered in

the [0,Di] is a direct consequence of the blocking. Hence the sufficient schedulability test

is proven safe.

The condition stated in inequality (3.5) reflects the fact that at most one additional job

of every higher priority task may be present in the time interval bounded by a release and

deadline of a middle priority job. Equation (3.5) takes into account the workload of ev-

ery higher priority task that executes entirely until completion in a time interval of length

Di and then sums two additional workloads or the length of the interval Di−
⌊

Di
Tj

⌋
× Tj ,

whichever is smaller, as additional higher priority workload. For task-sets that miss the

sufficient schedulability test a safety mechanism needs to be added to the protocol, which

prevents deadlines from being missed. At run-time the sum of the worst-case execution

times of all tasks with higher priority than the running task is computed. If at a release this

value becomes greater than min j∈hp(i)(β j) then the timer is set to t − t0 +min j∈hp(i)(β j).

The previously described set of rules takes into account the existence of job release phasing

in relation to the worst-case (synchronous release of higher priority) during the normal run

44

3.1. ON-LINE FTP FLOATING NON-PRE-EMPTIVE REGION EXTENSION

of the schedule and enables better decisions when sporadic behaviour is present (commonly

denominated as minimum inter-arrival time). The set of rules may be enhanced by consider-

ing that if no higher priority workload is available then the job may be even further delayed.

This fact motivates the following theorem.

Theorem 3. A job of task τi may defer its pre-emption for Di−WCRTi time units while no

job with priority higher than τi is released in the time interval [rl
i(t),r

l
i(t)+∆i].

Proof. The amount of pre-emption deferral time is referred to by ∆i defined as ∆i
def
= Di−

WCRTi. The quantity WCRTi is defined in the usual way, WCRTi = Rk , where k is the

smallest value that satisfies Rk =Rk−1. The Rk value is iteratively computed by the following

equation [Bur95],

Rk =Ci + ∑
j∈hp(i)

⌈
Rk−1

Tj

⌉
×C j (3.6)

and choosing R0 = Ci +∑ j∈hp(i)C j as the initial value in the iteration for R. If no higher

priority job is released in the interval [rl
i(t),r

l
i(t)+∆i], the job from task τi meets its deadline

if it pre-empts at t = rl
i(t)+∆i irrespective of the pre-emption deferral admissible for all

the higher priority workload that may be released after or at instant rl
i(t)+∆i, due to the

definition of WCRTi.

Using the previous theorem in the protocol generates a situation requiring special con-

sideration: Assume one task is deferring, having set the timer on arrival to its corresponding

∆ according to the previous theorem. A higher priority task arriving may not use the past

value in the timer, but needs now to take into account the B(0) of the highest priority job

already deferring.

An example of a problematic situation is displayed in Figure 3.3. If some middle priority

job of task τi is released at time rl
i(t) = 0, followed by a release of a lower priority job from

task τl , ϕ i
l (r

l
l(t)) time units after, the situation depicted in Figure 3.3 may arise. The hollow

arrows in the picture represent timer values that tasks contended with in the timer setting

procedure and set the timer (i.e. were the minimum value at the contending time).

According to previous rules the job from task τl sets the timer since its admissible pre-

emption deferral is smaller than the value τi loaded into the timer, max(Bl(0)− rl
l(t)),0)<

∆i− rl
l(t). At time instant rl

j(t), when a job from task τ j was released (where j is of higher

priority than i) τi has again to check if its admissible deferral time is the minimum among

all deferring jobs. When it was released it tried to set the timer until ∆i, since higher

priority workload is available and no knowledge about Equation (3.3) exists at this stage

apart from βi(0), the scheduler has to check if this would yield the minimum value for the

timer if it was used at time rl
i(t). When this scenario occurs the following relation is true

max(Bl(0)− rl
j(t),0) > max(βi(0)− rl

j(t),0). The timer has to be loaded at this time with

45

3.1. ON-LINE FTP FLOATING NON-PRE-EMPTIVE REGION EXTENSION

τi

τl

τj

τr

rli(t) rll(t) rlj(t) tBi(0) ∆iBl(0)− ϕi
l(t)

Figure 3.3: Scenario Motivated by Theorem 2

max(min(Bl(0)−ϕ i
j,βi(0)−ϕ i

j,∆ j),0). The information on the highest priority job defer-

ring its pre-emption has to be stored then, along with the time instant of its release in order

for the mechanism to work, since when some other higher priority workload is released its

admissible deferral has to mandatorily be re-evaluated.

3.1.4 Admissible Deferral Approximation

It is clear that a trade-off between memory usage and efficiency may be exploited in order

to better use the knowledge presented by Equation (3.3). Using only its initial point is too

restrictive. Two efficient approaches for having a lower bound on βi(a) (Equation (3.4))

are presented, which may be used at run-time to achieve longer pre-emption deferrals. The

following two strategies are employed at the time instant t if task τi was the highest priority

task blocked at time t−ε and at this time instant (t) an even higher priority task is released.

Bi(δ
t
i)

0 Di

in A 1

A 1

A 2

t

Threshold Maximizing the Area

Points Maximizing Area for A 2

Figure 3.4: Outline of the Devised Approximations for Equation 3.3

46

3.1. ON-LINE FTP FLOATING NON-PRE-EMPTIVE REGION EXTENSION

A 1 One may consider the usage of another point of βi(a) function to improve deferral

decisions. Based on the notion that βi(a) is monotonically decreasing, and that dβi(a)
dt =

0 or dβi(a)
dt = −1 the following method may be devised. The value set on the timer is

βi(threshold), i.e. any job of task τi may have its pre-emption deferred for βi(threshold) if

no threshold time units have elapsed since its release when a higher priority release occurs.

After threshold time units have elapsed since the release, the value is set to the timer is

βi(threshold)− (threshold− timer). This approximation is made possible by the specifici-

ties of Equation (3.3) previously referred.

A 2 a linear equation which is a lower bound of βi(a) in the interval [0,∆i] may be created.

This linear function is always smaller or equal to βi(a) and tangent to the convex hull defined

by βi(a). At the time of release of a higher priority task relative to the previously highest

deferring task the deferral is computed by y2−y1
x2−x1

× a+(y1− y2−y1
x2−x1

× x1). Both quantities
y2−y1
x2−x1

and y1− y2−y1
x2−x1

× x1 are computed off-line.

Both methods define a lower bound on βi(a) function which takes up little memory

space and may be exploited quite efficiently. Without any prior knowledge on the arrival

pattern of higher priority workload and possible phasings a rule of thumb stating that both

areas should be maximized to achieve better performance. For the first approach (A 1),

the point that maximizes area = a× βi(a)+ a2

2 is the one chosen. The second one (A 2)

chooses the two adjacent points defined by (x1,y1) and (x2,y2) of the convex hull defined

by function βi(a) that maximize area = y2
1

m +2× y1× x1−m× x2
1 , where m = y2−y1

x2−x1
. Both

approximation are used in a scenario where the previous highest priority job deferring its

pre-emption faces a release from a higher priority job.

3.1.5 Implementation Overhead

All of the methods presented so far have small time complexity, having at most three com-

parisons when setting the timer. At every release a maximum of four values have to be

compared in order to chose the minimum. The last approximations rely on a limited num-

ber of computations, as was shown in A 1 and A 2 description. These computations are

cheap in comparison to the overall savings that they provide.

3.1.6 Tighter Bound on the Number of Pre-emptions

The maximum number of pre-emptions per task may be upper bounded both in the state of

the art [YBB09] as well as in our methods by
⌊

Ci
Qi

⌋
, where Qi = min j∈hp(i)(β j(0)). This

bound is implicitly stated in the work of Yao et al. [YBB09]. For our method it suffices

to state that whenever a job from task τi executes on the processor it will do so for at least

Qi time units uninterrupted by a higher priority workload. Observe that in all the presented

47

3.1. ON-LINE FTP FLOATING NON-PRE-EMPTIVE REGION EXTENSION

protocols, whenever a single higher priority task τ j release occurs, the lower priority task

τi will execute non-pre-emptively for at least β j(0). If subsequent higher priority releases

occur, for which the corresponding tasks have smaller Bk(0) (i.e Bk(0)< β j(0)) in the worst

case scenario then Bk(0) time units would be counted since t0 (the start of the deferral chain).

If Bk(0) = min j∈hp(i)(β j(0)) , then Qi = Bk(0). Hence the same bound applies. Suppose the

following taskset presented in table 3.1

Ci Di Ti Qi

τ1 2 2 5 ∞

τ2 3-ε 15 7 3
τ3 2 15 15 ε

Table 3.1: Example Task-set Denoting a Pre-emption Corner-case

The value denoted by ε is an arbitrarily small value. This yields the following relation,

lim
ε→0

(⌊
Ci

ε

⌋)
= ∞. (3.7)

The bound provided, considering the previous bound for jobs of task τ3 would be overly

pessimistic in cases where Qi is small. Bear in mind that this is an extreme case to motivate

the fact that, in specific situations, the number of higher priority releases in a given interval

is itself a tighter bound on the number of pre-emptions for a given task. All the higher

priority jobs that arrive WCRTi−Qi time units after the job of τi started first to execute

are guaranteed not to pre-empt and hence may be disregarded in the maximum number of

pre-emption computation. This indicates that a suitable bound should then be

min

(⌊
Ci

Qi

⌋
,max

(
∑

j∈hp(i)

⌈
WCRTi−Qi

Tj

⌉
,0

))
. (3.8)

A less pessimistic pre-emption quantification may be obtained by posing the following

trivial optimisation problem, which exploits the notion that some higher priority releases

will lead to extended non-pre-emptive regions. The intent is to maximize the number of

pre-emption taking as constraints: 1) the maximum number of job releases that each task

τ j produces in a interval of length Di; 2) the summation of the non-pre-emptive regions

considered cannot be greater than Ci, since in the worst-case after each execution resume

from τi a higher priority release occurs, triggering a subsequent non-pre-emptive region.

48

3.2. EVALUATION

maximize
i−1

∑
j=1

a j

subject to :

a j 6
⌊

Di

Tj

⌋
, j ∈ {1, · · · , i−1}

i−1

∑
j=1

a j× min
k∈{1,··· , j−1}

{βk}6Ci

A solution to this problem is easily derived by noting that mink∈{1,··· , j−1} {βk} increases

monotonically as the values of j decrease. This motivates Algorithm 3 which computes an

upper-bound on the number of pre-emptions a task τi is subject to.

Algorithm 3: Pre-emption Upper-bound
preempt← 0
exec← 0
j← i−1
while exec 6Ci & j > 1 do

preempt← preempt+min
(⌊

Di
Tj

⌋
, Ci−exec

mink∈{1,··· , j−1}{βk}

)

exec← exec+
⌊

Di
Tj

⌋
×mink∈{1,··· , j−1} {βk}

j← j−1

The upper-bound on the number of pre-emptions is contained on the variable pre-empt.

The algorithm considers the a j coefficients to take the greatest possible value allowed by

its constraint (the maximum number of job releases by τ j in an interval of length Di)

in a decreasing priority order. This maximizes the objective function since the quantity

mink∈{1,··· , j−1} {βk} decreases monotonically as the priority decreases.

3.2 Evaluation

In this section comparative results on all previously mentioned approaches are demon-

strated. The approaches are denominated from first to fourth with the following meaning:

• first approach – implements Properties 1 to 3 ;

• second approach – implements the method described by the Theorem 3 on top of the

first approach;

• third approach – implement the approximation A1 of Equation (3.3) on top of the

second approach;

49

3.2. EVALUATION

• fourth approach – implement the approximation A2 of Equation (3.3) on top of the

second approach.

3.2.1 Discussion

With greater non-pre-emptive execution length, the likelihood of several higher priority jobs

becoming blocked increases. These situations are actually benign and intended, since these

will reduce the amount of pre-emptions generally. Take for instance an illustrative scenario

where task τi is executing and a release from τ j occurs at time instant t followed by a release

of τh at t + δ and i > j > h. In this case at time t τ j becomes blocked. If τ j pre-empted τi

before t +δ then τ j might be pre-empted in the future by the job released by τh at t +δ . If

the non-pre-emptive region of τi is in this case larger than δ then τh will pre-empt only τi

and never the job from τ j. In broad terms one can state that larger non-pre-emptive region

length promote priority ordered schedules from dispatch and hence reduce the number of

required pre-emptions. Parallel to that mechanism, delaying further also enables higher

priority workload to wait for a lower priority job to finish its execution, hence reducing the

number of pre-emptions as well. Both these facts contend with a contrary effect. By further

delaying some middle priority jobs, situations where hypothetical higher priority jobs arrive

and cannot be deferred for the same amount of time will generate pre-emptions where none

should have existed if all jobs were deferred for the same amount of time as a function of

the priority of the running task (Yao et al. approach [YBB09]). Our claim is that the first

two effects generally dominate over the third one. This is supported by the experimental

data presented in the following subsection. The possibilities of increasing the number of

pre-emptions in relation to Yao et al. only stems from the fact that higher priority workload

is being moved in the schedule, which does not change any of the off-line guarantees in

terms of pre-emptions for each task.

3.2.2 Simulations

The three system models were evaluated using simulations. In each model all tasks are gen-

erated using the unbiased task-set generator method presented by Bini and Buttazzo (UU-

niFast) [BB04a]. Tasks are randomly generated for every utilization step, their maximum

execution requirements (Ci) were uniformly distributed in the interval [50,500].

In the first situation the task-set behaves in a fully periodic manner with implicit dead-

lines (Di = Ti). In the second situation constrained deadlines are investigated. The con-

strained deadline model was implemented by randomizing the period of the tasks in re-

lation to their deadlines. For this data run the periods are constructed in the following

manner Di = Ti−S, where S is a random variable with uniform distribution in the interval

[0,0.2×Ti]. In the sporadic model the consecutive release of a task is Ti +A units separated

50

3.2. EVALUATION

from the last release of the same task. A is taken from a uniform distribution in the interval

[0,0.5×Ti].

For every utilization step, the schedule is simulated for 10000 task-sets which respect

the sufficient schedulability test from Theorem 2. The observed pre-emptions are quantified

and its average across all runs is computed. Utilization steps are non-uniformly distributed

and the points are given by the function step(k) = 1.1− 1−k·4
k·4 where k ∈ [0,16]. This enables

us to get a better concentrations of data at higher utilisations.

3.2.2.1 Implicit Deadlines Periodic Model

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7x 104

utilisation

nu
m

be
ro

fp
re

em
pt

io
ns

fourth approach
Yao et al.

(a) Gains on Implicit Deadline Model - 16 tasks

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

12

14

16

18

20

22

utilisation

pe
rc

en
ta

ge
 o

f p
re

em
pt

io
ns

 s
av

ed
 o

ve
r

Y
ao

 e
t a

l.

first approach
second approach
third approach
fourth approach

(b) Implicit Deadline Model - 16 tasks

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2

3

4

5

6

7

8

utilisation

pe
rc

en
ta

ge
 o

f p
re

em
pt

io
ns

 s
av

ed
 o

ve
r

Y
ao

 e
t a

l.

first approach
second approach
third approach
fourth approach

(c) Implicit Deadline Model - 4 tasks

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
6

7

8

9

10

11

12

13

14

15

16

utilisation

pe
rc

en
ta

ge
 o

f p
re

em
pt

io
ns

 s
av

ed
 o

ve
r

Y
ao

 e
t a

l.

first approach
second approach
third approach
fourth approach

(d) Implicit Deadline Model - 8 tasks

Figure 3.5: Implicit Deadline Task Model Experimental Results

In Figure 3.5a the results in number of average pre-emptions for task-sets with 16 tasks

are presented showing the state of the art algorithm and our fourth approach. Both lines

display an exponential behaviour, the fourth approach has a brief offset, which implies

greater pre-emption savings as is shown in the following plots. It is generally observable

51

3.2. EVALUATION

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

utilisation

pe
rc

en
ta

ge
 o

f p
re

em
pt

io
ns

 s
av

ed
 o

ve
r

Y
ao

 e
t a

l.

first approach
second approach
third approach
fourth approach

(a) Constrained Deadlines Model - 8 tasks

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

utilisation

pe
rc

en
ta

ge
 o

f p
re

em
pt

io
ns

 s
av

ed
 o

ve
r

Y
ao

 e
t a

l.

first approach
second approach
third approach
fourth approach

(b) Sporadic Model - 8 tasks

Figure 3.6: Constrained and Sporadic Task Model Results for n=8

that the approaches proposed in this work outperform the state of the art in the number of

avoided pre-emptions in particular at higher utilisations as is show in Figures 3.5b to 3.5d.

As the number of tasks increase it can also be observed in Figures 3.5b to 3.5d that the

gains of our approach in comparison to the Yao et al. method become even more evident.

This is tied to the fact that with more tasks there will be more situations where the gains,

in terms of admissible deferral time, allowed by task phasing appear. It is worth noting that

there is a considerable number of pre-emptions that cannot be avoided, the higher priority

jobs that are released while some lower priority workload is executing and that have their

deadline inside the response time of the lower priority workload will always have to pre-

empt it. The displayed data does not make a distinction between unavoidable pre-emptions

and the ones that might possibly be avoided by delaying pre-emptions a bit more in a fea-

sible way. For the implicit deadline case with no sporadicity at the biggest utilisation point

tested when the task-set is composed of 16 tasks, roughly 21% of the total number of pre-

emptions yielded by the state-of-the-art-methods are saved.

3.2.2.2 Constrained Deadlines

By introducing constrained deadlines the off-line assumptions about maximum deferral time

are drastically reduced and hence the opportunities for online phasing exploitation are in-

creased, in particular for lower utilisations. In Figure 3.6a the gains of the four approaches

are compared against the state of the art method. While only the results for the task set with

8 tasks are shown, the other task-set sizes expose similar tendencies.

52

3.3. FLOATING NON-PRE-EMPTIVE SCHEDULABILITY INCREASE

3.2.2.3 Sporadic Behaviour

Similar to the constrained deadlines model, a shift towards gains at lower utilisations can

be observed in Figure 3.6b. This can be explained with the reduced actual workload due to

sporadicity and the increased scope for exploiting online information. Somewhat counter-

intuitively these additional gains are not apparent at very high utilisations. Here only the

results for 8 tasks are depicted, as the other task-set sizes were also exposing similar trends.

3.3 Floating Non-pre-emptive Schedulability Increase

Similarly to the non-pre-emptive region case, it is intuitive to assume that the floating non-

pre-emptive region methodology would itself allow for a schedulability increase with re-

spect to the fully pre-emptive fixed task priority scheduler.

This scheduling policy (floating non-pre-emptive fixed task priority) is inherently non-

predictable. This means that situations where higher priority task request a smaller amount

of workload or where consecutive jobs are release further apart than the minimum inter-

arrival time may constitute situations of higher strain. These worst-case scenarios are com-

plex in their definition with acute formal detail.

In order to motivate this finding a graphical depiction of the previously mention subject

is in order. Consider first the trivial task-set composed of two tasks:

Ci Di Ti

τ1 2 5 5
τ2 5 5 5

Table 3.2: Floating Non-Pre-emptive Increased Schedulability Task-set

It can be observed from analysing the Table 3.2 that each job from task τ1 has its ex-

ecution deferred for a total of 2 time units without missing deadlines. This in turn allows

each job of task τ2 to always complete its execution before its deadline – Refer to Fig-

ure 3.7a for a graphical representation of the schedule. It is also apparent from analysing

the Task-set 3.2 that under fully pre-emptive FTP scheduling task τ2 would be subject to

an interference from task τ1 totalling 4 time units in the worst-case in a window of 7 time

units. Hence the Task-set 3.2 is not schedulable under fully pre-emptive FTP.

Consider in turn the task-set in Table 3.3 which is a slight modification to the task-set in

Table 3.2. In this task-set task τ1 is divided into two other tasks with the same period such

that the sum of worst-case execution times of each new task is equal to the original task in

task-set in Table 3.2. Observe that both tasks τ1 and τ ′1 can still have their jobs deferred for

at most 2 time units and still meet all deadlines. By constructing a scenario where τ ′1 is not

53

3.3. FLOATING NON-PRE-EMPTIVE SCHEDULABILITY INCREASE

released synchronously with task τ1 (as is shown in Figure 3.7b), task τ2 will face a deadline

miss. Note that the task-sets in tables 3.2 and 3.3 have the exact same total utilization.

Ci Di Ti

τ1 1.5 5 5
τ ′1 0.5 5 5
τ2 5 7 7

Table 3.3: Floating Non-Pre-emptive Unschedulable Task-set

τ1

τ2

τ1

τ2

0 52

τ2

τ1 τ1

7 9 t
(a) task-set in Table 3.2 Schedule

τ2

τ1 τ ′1

τ2

τ1 τ ′1

0 2 4 9 t8765

τ1 τ1

τ ′1

τ2 τ2

(b) task-set in Table 3.3 Schedule

Figure 3.7: Task-sets’ Floating Non-Pre-emptive Schedules

The examples provided in this section are constructed in order to show that indeed

the floating non-pre-emptive FTP has a greater schedulability than fully pre-emptive. It is

nevertheless hard to analyse this scheduling policy for task-sets which are not already fully

pre-emptive schedulable. Besides lacking a method to characterize the critical situation

with respect to higher priority job arrivals, scenarios can be drawn where the execution of

some higher priority jobs for less than its WCETS leads to deadline misses of lower priority

tasks. The same holds for sporadic arrival of higher priority jobs.

Facing the mentioned difficulties in the analysis of floating non-pre-emptive scheduling

a similar scheduling policy, termed ready-q locking, is devised which enables the schedul-

ing of task-sets otherwise unschedulable with FTP while still maintaining a low run-time

overhead and allowing the floating non-pre-emptive region scheduling scheme to be em-

ployed.

54

3.4. READY-Q LOCKING CONCEPT

3.4 Ready-Q locking concept

Even though the floating non-pre-emptive regions allows considerably more flexibility than

fixed non-pre-emptive regions it cannot be easily exploited in order to increase the schedu-

lability of fixed task-priority scheduling policy for a sporadic task model.

The possible improvements on the schedulability of task-sets by limiting the interfer-

ence suffered by lower priority tasks is investigated [MPB12] in this section. This is done

by introducing a new task parameter termed ready-queue locking time instant. If a job from

a task has pending workload at its ready-queue locking time instant then the ready queue is

locked, preventing higher priority workload from being inserted into the ready queue and

hence interfering with its execution. As a consequence, the upper bound on the number

of pre-emptions each job might suffer is reduced in comparison to the regular fixed task-

priority policy. A new pre-emption-threshold scheduling policy is provided so that ready-

queue locking can be used together with the aforementioned mechanism. The proposed

methods may straightforwardly be used in conjunction with the floating non-pre-emptive

regions which further helps on the reduction of pre-emptions during workload execution.

The properties of the solutions provided in this work allow for on-line changes in the

task-set, since they only require an update of the relative ready-queue locking time instant of

every task. The complexity of the proposed solutions is much lower than optimal uniproces-

sor scheduling policies. Namely, running the ready-queue locking mechanism has a timing

complexity of O(1) associated to it. This adds to the complexity of sorting the ready queue

in FTP scheduling which is of O(N). These complexity values delineate one of the motiva-

tions for the ready queue locking since these are much better than the complexity of sorting

the ready queue using the EDF policy – O(n× log(n)).

In this section each task is characterized by the four-tuple 〈Ci,Di,Ti,RQLi〉. The first

three parameters maintain the same definition as has been used throughout the document.

The last task parameter (RQLi) states the instant in time, relative to a job release, at which

the job of task τi locks the ready queue if it still has pending workload. While the ready

queue is locked job releases are not inserted into the ready queue. Fully pre-emptive and

floating non-pre-emptive fixed priority scheduling policies are considered. In the fully pre-

emptive case, at every time instant, the job with highest priority in the ready queue is exe-

cuting in the processor, in the later model the pre-emption from the highest priority task in

the ready queue is deferred for the maximum allowed time that still guarantees the task’s

correct temporal behaviour.

The ready-Q locking mechanism is introduced as a means to limit the amount of in-

terference a task may suffer. It enables a job from a task to request that, after a certain

time instant until its current workload completes, no other job is inserted into the ready

queue. By preventing higher priority workload releases after a certain point in time, the

maximum interference a task may suffer is reduced. Each task τi has a ready-Q lock time

55

3.4. READY-Q LOCKING CONCEPT

������
������
������
������
������
������
������

������
������
������
������
������
������
������

τ1

τ2

ready queue locked time interval

RQL2

0

new jobs inserted when redy queue is unlocked

rql2 tt′

T1

Figure 3.8: Ready-Q Locking Example.

instant defined (RQLi). The RQLi time instant is relative to the release of the current job

and RQLi 6 Di. This translates into each job having a rqli absolute time instant for which

rqli 6 di, where di is the absolute deadline of the job. Since a constrained deadline task

model is considered, at any time t there can only be at most one active job from each task

in the system.

In Figure 3.8 an example is provided showing the benefits of the ready-queue locking

mechanism. Consider the following taskset, composed of two tasks in an implicit deadline

task model. The first task has C1 = 4, T1 = 10 and the second task has C2 = 7, T2 = 12.

Assume a situation where these two tasks are synchronously released at a given time instant

t ′, as is displayed in Figure 3.8. In fully pre-emptive fixed priority scheduling task τ2 would

suffer an interference of 6 time units from t ′ to t ′+ T2, which would then leave only 6

time units for task τ2 to execute its workload. Since the ready queue was locked by τ2 at

rql2 = t ′+RQL2 = t ′+6 it is then only subject to 4 time units of interference. Hence task

τ2 is able to complete its workload before the deadline, consequently releasing the lock on

the ready queue.

3.4.1 Ready-Q Lock Implementation Considerations

The scheduler will manage a list of rqli time instants for all active jobs (i.e. all the jobs in

the ready queue at any time instant) from now onwards referred to as rlist. The list has at

most n−1 valid entries at any time. Each element in the rlist is composed by a time instant

and the task to which it belongs.

In Figure 3.9 a depiction of an example rlist evolution over time is shown. At each

relevant time instant an arrow points to the current rlist data structure. The solid black

triangles represent rqli time instants relative to each job depicted in the figure.

56

3.4. READY-Q LOCKING CONCEPT

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

τi

τl

0 t

τj

rqll
rqll rqli rqli

rqll
rqll

rqll

rqli

rqlj

Figure 3.9: rlist List Evolution over Time

In Algorithm 4 a pseudo-code description of the ready-Q locking management mecha-

nism is presented. The mechanism is described as a set of callback procedures for the events

of interest. When a job is dispatched for the first time (i.e. no workload has executed yet)

the scheduler will get the rqli from the task control block and evaluate its insertion into the

rlist. In this situation, it holds true that the job being dispatched is the highest priority job in

the ready queue. It also holds true that there can only be valid entries in the rlist belonging

to jobs of lower or equal priority than the one being dispatched. If this would not hold then

some higher priority jobs would be in the ready queue which implies that the current job

could not be dispatched at this time. As a consequence of this observation, if two tasks τi

and τ j have jobs in the ready queue at some time t and i > j then the response time of the

job from τ j will be smaller than the one from τi.

At time of first dispatch of a job from task τi the scheduler compares rqli with the value

on the top of the list. Two situations may then be observed.

1. rqli is smaller than the value on top of the list, which leads to the insertion of rqli in

the rlist as the top element

2. rqli is greater or equal than the value on top of the list, which leads to rqli being

discarded.

In the Situation 1 there exist no job that will lock the ready queue before rqli and since

the job from task τi may need to lock the queue in order to complete its workload the value

rqli has to be considered. In the later Situation 2 there exists a job from a lower priority task

τl which will lock the ready queue before the job from task τi requires it. If by the time rqli
the job from τi still has pending workload, then the job from τl has pending workload as

well. Which means that at time rqli the ready queue is locked by the job from τl (rqli > rqll).

57

3.4. READY-Q LOCKING CONCEPT

Algorithm 4: Ready Queue Locking Management
on event: release job from task τi:
rqli← release+RQLi
if QueueIsLocked then

τl ← GetTaskLockingReadyQ()
append job from τi to τl list of blocked tasks

on event: first dispatch of job from task τi:
if rqli < rlist[0] then

rlist.push(rqli)

on event: t == rlist[0]:
assign the lock of the ready queue to the task which set rlist[0]
rlist.pop()

on event: terminate execution of τi job:
insert all tasks blocked by τi into the ready queue

The job from τi will then proceed to complete its workload without requiring to lock the

ready queue since a lower priority task conducted that procedure on its behalf. The ready

queue remains locked until the job from τl finishes its execution.

At any time instant t, if rlist is not empty, there exists a timer which will fire at time

t ′ = rlist(0), the time instant at the top of rlist. When the timer fires, all the higher priority

releases that occur after t ′ and before rlist(1) (if such value exists) are inserted into the ready

queue once the job from the task that sets rlist(0) finishes its workload. In the timer event

handler the head of rlist is popped. A task locks the ready queue between the time instant t ′

(at which a timer set by it fires) and a time instant t ′′ when either it completes execution or

the timer set by some other task fires. Any job released in the interval [t ′, t ′′] is inserted into

a separate buffer which stores a pointer to all the tasks which are currently blocked. Once

task τi finishes its workload the scheduler will check whether there were tasks blocked by

task τi, in case there were, these are then moved from the separate queue into the ready

queue with their correct priority.

In an extreme case RQLi could be set to 0. This would constitute effectively non-pre-

emptive scheduling, where once jobs from τi start to execute they would not suffer any

further interference. Which could jeopardize the timing properties of tasks with priority

greater than τi. The value of RQLi has then to be decided upon considering the higher

priority workload timing guarantees; i.e. no higher priority task can miss a deadline due to

a lower priority one. These considerations are developed in the following sections.

When the ready queue is locked, the tasks released in the meantime are inserted into a

separate circular buffer. The task τi that currently holds the ready queue lock has a pointer

for the first task to be released while it held the lock, and another pointer to the last task to

58

3.4. READY-Q LOCKING CONCEPT

be released while it held the lock. Once task τi terminates the tasks in the circular buffer

between the start and the end pointer are inserted into the ready queue. Notice that the

complexity of operating this mechanism is reduced in comparison to EDF.

It is important to stress that all operations on the rlist have O(1) complexity. A ready-

queue lock is only enforced at the release of some higher priority task, and a new element

can only be added to the rlist at the time of the first dispatch of a job. In the same manner

an element in rlist is only removed when the job responsible for its insertion terminates.

3.4.2 Maximum Interference Computation

The computation of the maximum interference a job might suffer in a ready queue locking

framework is presented in this subsection. This computation is carried out on the maximum

busy period of the level-i priority for task τi. The worst-case level-i busy period value

represents the biggest amount of workload from tasks with priority bigger or equal than

i may execute continuously assuming that all the level-i priority tasks are blocked by the

maximum allowed time (B). Let us define Γi as the set of tasks with priority greater or

equal to i. The largest of the level-i busy period occurs when all tasks in Γi are release

synchronously and are blocked by the longest time possible(B) [KBL10].

The worst-case level-h busy period is defined as:

Li(B)
def
= min{t|t− (B+ rbf(Γi, t)) = 0} (3.9)

Let us assume that each task locks the ready queue at time RQLi. A bound on the higher

priority interference is required. This bound consists on all the higher priority releases, prior

to the release of a job from task τi, which have not yet completed at the release time instant

and all of the higher priority releases that occur since the release of τi and RQLi.

Theorem 4. The maximum interference any job from task τi is subject to is generated in the

level-i busy period where the first job of task τi in the busy period is released φ time units

after a synchronous release of all higher priority tasks, where 0 6 φ 6 Li−1(Qi).

Proof. Assume that a synchronous release of all higher priority tasks occurs at time t = 0

and that a release from τi occurs at t = 0 as well. In this scenario the interference the current

job from task τi can suffer is I0. Let us assume now that φ 6= 0. For this case the interference

the job from task τi is I0− φ , provided that the number of higher priority releases in the

interval [0,RQLi] is the same as for the interval [0,RQLi + φ]. In a situation where the

number of higher priority releases in the interval [0,RQLi + φ] is greater than the count

from [0,RQLi], then the interference suffered by the job of task τi is I0−φ +W , where W is

the additional workload released in the interval [RQLi,RQLi +φ] which will interfere with

τi until Di. The φ for which the interference is greater constitutes the worst-case scenario

for a job from task τi.

59

3.4. READY-Q LOCKING CONCEPT

After Li−1(Qi) time units have elapsed since the previous synchronous release of all

higher priority tasks has elapsed, mandatorily an idle time has occurred in the processor.

If for some φ > Li−1 a situation of bigger amount of higher priority workload is generated

then the critical scenario would not start with a synchronous release of all higher priority

workload, which would contradict the first part of the proof. Since higher priority tasks

cannot endure a larger blocking time than Qi then the same value is at most the maximum

admissible blocking time for tasks of priority higher or equal to i. Hence the Theorem is

proven.

In order to find the maximum amount of interference one has then to find the correct

higher priority synchronous release offset φ . The value φ is extracted by looking at the

frame considering all the possible φ values in the interval [0,Li−1(Qi)]

Each frame of the task τi, in the busy period which starts with a synchronous release of

the tasks in the level i−1 priority level, has to be checked for its temporal behaviour. The

deadline is met in qth frame if the slack in the frame is greater or equal to 0. Let us assume

Γi to be the subset of tasks with higher priority that task τi.

Let us define the following variable in order to ease the discussion:

rq
i (φ) = (q−1)×Ti +φ (3.10)

The variable rq
i (φ) encodes the value of the release of the qth job from task τi relative to

an absolute time instant, with a given φ offset.

Definition 6 [job frame]: The time interval between a job release and its deadline is termed

job frame.

All jobs in the level-i busy period have to be checked for deadline violations. In order

to compute the number of jobs in the busy period, a maximum possible blocking for the

level-i has to be considered. The level-i schedule can never be blocked by more than Qi

time units, since the tasks of priority greater than τi could otherwise suffer deadline misses.

On the other hand τi can never be blocked by more than Di−Ci, hence an upper bound on

the number of jobs from τi in the busy period can be obtained considering min(Qi,Di−Ci)

as the workload initially blocking the level-i schedule.

K =

⌈
Li(min(Qi,Di−Ci))

Ti

⌉
(3.11)

The slack in each frame q may be expressed by:

60

3.4. READY-Q LOCKING CONCEPT

β
q
i = min

φ
{max(max

t∈[rq−1
i (φ),rq−1

i (φ)+RQLi]
{t− (rbf(Γi, t)+q×Ci)},

(rq−1
i (φ)+Di)− (rbf*(Γi,r

q−1
i (φ)+RQLi)+q×Ci))} (3.12)

Where

rbf(Γi, t)
def
= ∑

j∈Γi

⌈
t
Tj

⌉
×C j (3.13)

and

rbf*(Γi, t)
def
= ∑

j∈Γi

(⌊
t
Tj

⌋
+1
)
×C j. (3.14)

Notice that equations 3.13 and 3.14 only differ in value in multiples of Tj. The usage

of both request bound function forms is tied to reducing equation display complexity. The

Equation (3.12) is composed by two terms. In the first one the maximum idle time in the

schedule is searched for in the interval between the release of a job from task τi and the

ready queue locking time instant of the said job. In the second term the maximum idle time

for the given frame is searched in the interval between the ready queue locking time instant

of the job and its deadline, but since higher priority jobs released in this interval do not

interfere with task τi it suffices to compute the idle time at the deadline of the job. For a

given φ the maximum idle time is then the maximum value given by the two mentioned

terms. Then for all the possible φ the minimum of the idle times is stored in β
q
i .

Considering all the frames the maximum amount of blocking that a job from task τi can

endure is then defined as:

βi = min
q
{β q

i } (3.15)

A simple depiction of the schedulability condition is provided in Figure 3.10. In this

example the taskset is composed of three tasks. All tasks are implicit deadline tasks with

parameters (Ti,Ci). Task τ1 has (5,1), and τ2, τ3 have (7,2) and (16,4) respectively. It is

implicitly assumed that RQLi = Di to simplify the visualization. The subject of schedu-

lability analysis is in this case τ3. Two frames from τ3 are present in the figure. One can

observe that β 1
3 = 4 and β 2

3 = 8. Since both frames present a non-negative slack value, then

the τ3 is deemed schedulable. Note that the maximum blocking time admissible for τ3 is

then 4 time units. This then implies that the level-3 busy period terminates at time instant

24, hence no more frames from task τ3 require to be checked.

The maximum admissible blocking time for task τi is denoted by βi. The task τi is

schedulable if βi > 0, when task τi is the task with lowest priority in the system. In order

61

3.4. READY-Q LOCKING CONCEPT

t

6

0

4

1st frame 2nd frame

8

5 7 10 14 15 20 21 25 28 30 32
τ1−3 τ1 τ2 τ1 τ2 τ1 τ3 τ3τ1 τ2 τ1 τ2 τ1

Figure 3.10: Schedulability Condition

for the task-set to be schedulable the RQLi values for all the tasks have to be set so that the

higher priority tasks temporal guarantees are still met.

For every qth frame only a subset of the φ ∈ [0,Li−1(Qi)] needs to be checked. The

higher priority workload increment for each frame occurs only at the boundary of the min-

imum inter arrival time of each higher priority task. Since only offsets up to the maximum

busy-level period of the i−1 priority level needs to be checked as has been shown in The-

orem 4, only the set of possible higher priority releases in the interval [0,Li−1(Qi)] need to

be checked. The discrete set of offsets considered are the ones smaller than Li−1(Qi) (as per

Theorem 4) and such that the ready-queue locking rime instant coincides with the arrival of

a new higher priority job. This set is defined as:

Φ
q
i

def
={0}∪

⋃

j∈hp(i)

({⌈
rq−1

i (0)+RQLi

Tj

⌉
, · · · ,

⌊
Li−1(βi)+ rq−1

i (0)+RQLi

Tj

⌋}
×

Tj− (rq−1
i (0)+RQLi)

)
(3.16)

62

3.4. READY-Q LOCKING CONCEPT

tLi−1(βi) + rq−1
i (0) + RQLirq−1

i (0) + RQLi

Figure 3.11: Set of Relevant Offsets for Frame q

In Figure 3.11 the set of relevant offsets for the given frame is graphically represents.

The offsets are intuitively shown as the distance between the higher priority releases in

the
[
rq−1

i (0)+RQLi,Li−1(βi)+ rq−1
i (0)+RQLi

]
interval. Of course φ = 0 still has to be

tested since the sysnchronous release of all the tasks in the level− i priority band might still

generate the critical interference scenario for task τi.

3.4.3 Ready-queue Locking Time Instant

The RQLi value has to be such that τi has enough time to carry out its workload and the

higher priority task are not blocked by more time than it is admissible.

Each task in the system may endure a maximum blocking time without endangering its

timing guarantees [YBB11a]; i.e. all tasks may be blocked by a lower priority task up to a

certain limit without missing any deadline. The task with highest priority in the system can

always sustain a maximum blocking time of β1 = D1−C1.

Let us assume that RQL2 = D2−Q2. A hypothetical release from task τ1 arriving at

time instant RQL2 would see its ready queue insertion delayed by task τ2 by at most Q2

time units. Since, by definition, Q2 6 β1 this job from task τ1 would still meet the deadline.

The concept may be generalized to n tasks by using the following relations:

Qi
def
=

0 , if i = 1

min j∈hp(i)(β j) , if 1 < i 6 n
(3.17)

Equation (3.17) defines the maximum blocking time (Qi) that all task of higher priority

than i may endure without missing a deadline.

Assuming RQLi = Di−Qi ensures then that, after locking the ready queue a job from

task τi can only maintain it blocked by at most Qi time units, hence not jeopardising higher

priority task’s temporal behaviour. Even if a synchronous release of all tasks in the i− 1

63

3.4. READY-Q LOCKING CONCEPT

priority level occurs after a ready-queue lock, at time instant rqli then the queue will not be

locked by more than Qi.

In a scenario where Ci < Qi then RQLi = Di−Ci. Since values are only inserted into

the rlist at time of the first dispatch of a job, it might be the case that the first dispatch of the

job occurs after rqli, and hence the job might suffer more interference than it is admissible.

By setting RQLi = Di−Ci it is ensured that the first dispatch of the job will always occur

before rqli. For each task in the system the RQLi is then set in the following manner:

RQLi = Di−min(Qi,Ci) (3.18)

Theorem 5. The ready-queue locking scheduling policy dominates over fully pre-emptive

fixed task priority.

Proof. The maximum interference (UIi) a task τi is subject to is smaller or equal to the

interference the same task may endure without the ready-queue locking mechanism. This

fact is trivially proved by noting that for the same arrival pattern a job can be interfered

by jobs released in a smaller time interval. Hence all the task-sets scheduled by fully pre-

emptive fixed priority are schedulable with ready-queue locking. Since the UIi may at

times be smaller than the maximum interference, in fully pre-emptive scheduling, there

exist task-sets schedulable by ready-queue locking which fail to be in fully pre-emptive

scheduling.

It is worth noting that setting RQLi = Di−min(Qi,Ci) is not necessarily the optimal

RQLi time instant assignment. This is driven by the fact that an earlier locking will be

possible in many situations, caused by a worst-case response time of a task which is shorter

than RQLi. Even more, the higher priority task τ j which limits Qi, may have a worst-case

phasing such that an earlier RQLi will not lead to a reduction of direct interference and thus

have no negative effect on the higher priority task and a later than worst-case release would

mean more progress for the locking task. However, deriving the optimal RQLi is non-trivial

and beyond the scope of this work.

3.4.4 Ready-q Locking with Pre-emption Threshold

Another adaptation of FTP targeted at reducing the number of pre-emptions is termed pre-

emption threshold. In this framework tasks are characterized by a base priority and a pre-

emption threshold. When tasks are in the ready queue and not executing they conserve

their base priority. When a task commences execution on the processor its priority is in-

creased to its pre-emption threshold value. Effectively, this task can only be pre-empted by

tasks with base priority exceeding its pre-emption threshold value. The initial pre-emption-

threshold assignment algorithm has been presented in [WS99]. The main drawback of the

64

3.4. READY-Q LOCKING CONCEPT

pre-emption-threshold assignment method is that it does not easily allow for a maximum

blocking time per task computation. With this in mind the algorithm is rethought. As op-

posed to the solution proposed in [WS99] the taskset is parsed from the highest priority task

to the lowest priority one.

Let us assume that the pre-emption threshold (πi) of a task τi is:

πi = min(j|Ci 6 min
k∈{ j,··· ,i−1}

βk).

Upon release a job from task τi is inserted into the ready queue (in case the ready queue

is not locked) with priority i. At the time of its first dispatch onto the processor its priority is

elevated to πi. The set Γh
i denotes the set of tasks of higher priority than πi, whereas the set

Γl
i denotes the set of tasks with priority higher than i but lower than or equal to πi. In order to

ensure schedulability of the system, for each task, an initial upper-bound on the maximum

blocking tolerance is provided. Initially βi = min(Di−Ci,Qi), which is the maximum value

that the blocking time could potentially take. The level− i busy period is then parsed and

checked for deadline misses.

Let us first define tq
s as the worst-case time instant for the first dispatch of the qth job

from task τi. This time would be similar to computing the length of the level− i busy period

without considering the qth job from task τi. Where tq
s is the worst-case instant in time when

the qth job of task τi starts to execute considering a blocking of βi time units in the beginning

of the busy period.

tq
s = min{t|t− (βi + rb f (Γi, t)+(q−1)×Ci)> 0} (3.19)

Notice that if tq
s > rq

i (0)+RQLi then the qth job from task τi would miss a deadline

since Di−RQLi 6Ci.

A deadline is missed in the qth frame when there does not exist any idle time instant for

the level− i busy period in the interval [tq
s ,r

q
i (φ)+Di] . This condition may be written in

the following form:

@t ∈ [tq
s ,r

q
i (φ)+RQLi]|t− (βi + rb f (Γh

i , t
q
s)+ rb f (Γl

i, t)+q×Ci)> 0 (3.20)

∧
Di− (βi + rbf*(Γh

i , t
q
s)+ rbf*(Γl

i,r
q
i (φ)+RQLi)+q×Ci)6 0 (3.21)

65

3.4. READY-Q LOCKING CONCEPT

The condition expressed in Equation (3.20) relates to the idle time occurrence in the

interval between the release time of the qth job of task τi and the instant in time at which it

locks the ready queue. The second condition in Equation (3.21) relates to the search of idle

time after the ready-queue is locked by task τi, in an interval where higher priority workload

with higher priority than τi’s pre-emption threshold do not interfere with the execution of

τi.

If both conditions are met simultaneously, then for the given βi a deadline may be missed

in the qth frame of task τi In this case, the βi parameter has to be decreased.

β
−
i

def
= min

(
min
t∈A
{t− (βi + rb f (Γi, t)+(q−1)×Ci)},

min
t∈[tq

s ,r
q
i (φ)+RQLi]

{t− (βi + rb f (Γh
i , t

q
s)+ rb f (Γl

i, t)+q×Ci)},

Di− (βi + rbf*(Γh
i , t

q
s)+ rbf*(Γl

i,r
q
i (φ)+RQLi)+q×Ci)

)
(3.22)

where A is the set of time instants when higher priority releases occur in the time interval

[rq
i (φ), t

q
s]:

A def
={0}∪

⋃

j∈hp(i)

({⌈
rq−1

i (φ)

Tj

⌉
, · · · ,

⌊
tq
s

Tj

⌋}
×Tj

)
(3.23)

In Equation (3.22) there are three terms present. The first one relates to the tq
s value, and

both the second and the third relate to the idle time available in the qth frame of task τi for

the given φ parameter. In the second and third terms the minimum amount of βi reduction

required to compute all the workload in the frame is computed. In the first parameter the

minimum βi decrease which ensures that the tq
s time instant occurs before one higher priority

job is computed. The β decreased computed in the first term aims at decreasing the tq
s such

that the qth job from τi starts earlier potentially suffering smaller interference from tasks of

higher priority which is still lower than the τi pre-emption threshold. The minimum value

between the three parameters is then chosen to be the value of β
−
i for the current algorithm

iteration. Finally the current maximum blocking time allowed by task τi is obtained by :

β
k
i = β

k−1
i −β

− (k−1)
i (3.24)

The iterative nature of the procedure described in Equation (3.24) is patent on the super

scripts usage. These are omitted from the remainder discussion so as to not overload nota-

tions unnecessarily.

66

3.4. READY-Q LOCKING CONCEPT

If the deadline is met for the qth frame with φ = 0, using ready-q locking still requires

all the possible offsets to be tested. As is the case for the ready-q locking mechanism only a

subset of all possible φ values has to be tested, this subset Φ
q
i is defined in Equations 3.23.

When the following condition is met

∀q ∈ {0, · · · ,K},∀φ ∈ [0,Li−1(β)],∃t ∈ [rq
i (0),r

q
i (0)+Di] :

t−βi + rb f (Γh
i , t

q
s)+ rb f (Γl

i, t)+q×Ci > 0 (3.25)

then no deadlines are missed for task τi. Ensuring that the condition is met for all the

tasks in the taskset will ensure the schedulability of the taskset.

Algorithm 5: Pre-emption Threshold Assignment with Ready-q Locking
Input : T

β1 = D1−C1
π1 = 1
for i = {2, · · · ,n} do

πi = min(j|Ci 6 mink∈{ j,··· ,i−1}βk)
Qi = min j∈hp(i){β j}
RQLi = Di−min(Qi,Ci)
βi = min(Di−Ci,Qi)

K =
⌈

Li(βi)
Tj

⌉

for q ∈ {1, · · · ,K} do
for φ ∈Φ

q
i do

tq
s = min{t|t− (βi + rb f (Γh

i , t)+ rb f (Γl
i, t)+(q−1)×Ci)> 0}

while
@t ∈ [tq

s ,r
q
i (φ)+RQLi]|t− (βi + rb f (Γh

i , t
q
s)+ rb f (Γl

i, t)+q×Ci)>
0∧Di− (βi + rbf*(Γh

i , t
q
s)+ rbf*(Γl

i,r
q
i (φ)+RQLi)+q×Ci)6 0 do

β
−
i = min(mint∈A{t− (βi + rb f (Γi, t)+(q−1)×

Ci)},mint∈[tq
s ,r

q
i (φ)+RQLi]

{t− (βi + rb f (Γh
i , t

q
s)+ rb f (Γl

i, t)+q×
Ci)},Di− (βi + rbf*(Γh

i , t
q
s)+ rbf*(Γl

i,r
q
i (φ)+RQLi)+q×Ci))

βi = βi−β
−
i

if βi < 0 then
return UNSCHED

tq
s = min{t|t− (βi + rb f (Γh

i , t)+ rb f (Γl
i, t)+(q−1)×Ci)> 0}

return SCHED

67

3.4. READY-Q LOCKING CONCEPT

The insertion of the rqli value into the rlist data structure is considered at the first dis-

patch of a job, which coincides with the time instant of priority promotion of the job to πi,

hence the priority ordering between jobs with valid entries in the rlist is never changed after

the insertion.

Notice that in a situation where RQLi = Di the provided schedulability test and pre-

emption-threshold assignment technique is still valid for the regular pre-emption-threshold

mechanism [Lam] . Contrary to the method presented in [WS99] which assigns πi the

highest value that ensures schedulability (if such exists), Algorithm 5 assigns πi the smallest

possible value.

Similarly to the Ready-q locking assigning, RQLi = Di−min(Qi,Ci) is not optimal.

Given the RQLi value for each task, the schedulability test provided in Algorithm 5 is

necessary and sufficient.

3.4.5 Pre-emption Upper Bounds

In this section a brief comparison between the pre-emption upper bound guarantees of the

proposed solutions is provided. The value WCRTi denotes the worst-case response time of

task τi. For fully pre-emptive

∑
j∈hp(i)

⌈
WCRTi

Tj

⌉
(3.26)

The simple ready-queue locking scheduling policy ensures that pre-emptions may only

occur in the time interval between release and the locking of the ready-queue. Hence with

ready queue locking the worst-case number of pre-emptions will never be greater than in

the fixed task priority scheduling.

∑
j∈hp(i)

⌈
min(WCRTi,RQLi)

Tj

⌉
(3.27)

The regular pre-emption threshold mechanism ensures that only tasks with higher pri-

ority than the pre-emption threshold priority may in fact pre-empt.

∑
j∈hp(πi)

⌈
WCRTi

Tj

⌉
(3.28)

For the pre-emption threshold with ready queue locking scheduling policy, the pre-

emption upper-bound for each task is guaranteed to be smaller or equal than the value

for any other policy described in this work. In the worst-case scenario a job from task τi

would start execution immediately after release. In this situation assuming it executes for

the worst-case execution time, suffering the worst possible interference it can be at most

68

3.4. READY-Q LOCKING CONCEPT

pre-empted during min(WCRTi,RQLi) time units by the tasks with priority greater than πi.

∑
j∈hp(πi)

⌈
min(WCRTi,RQLi)

Tj

⌉
(3.29)

Obviously with floating non-pre-emptive regions the maximum number of pre-emptions

each job would suffer is upper bounded by:

⌊
Ci

Qi

⌋
(3.30)

As as been shown in [MP11], for small enough values of Qi this bound is worse than the

ones dictated by the higher priority releases. Hence for all the scheduling policies provided

the upper bound on the number of pre-emptions is given by the

min(fully pre-emptive bound,
⌊

Ci

Qi

⌋
)

.

3.4.6 RQL Evaluation

In this section the proposed solutions are evaluated in terms of schedulability performance

against fully pre-emptive fixed task-priority and regular pre-emption threshold.

Both proposed scheduling policies were evaluated with respect to schedulability. In

each model all tasks are generated using the unbiased task-set generator method presented

by Bini (UUniFast) [BB04a]. Tasks are randomly generated for every utilization step in

the set {0.8,0.82,0.85,0.87,0.93,0.95,0.97,0.98}, their maximum execution requirements

(Ci) were uniformly distributed in the interval [20,400]. For every utilization step 1000

tasksets are trialled and checked whether the respective algorithm considers it schedulable.

Task set sizes of 4, 8, and 16 tasks have been explored.

In the second situation constrained deadlines are investigated. The constrained deadline

model was implemented by randomizing the period of the tasks in relation to their deadlines.

For this data run the relative deadlines are constructed in the following manner Di = Ti−S,

where S is a random variable with uniform distribution in the interval [0,0.2× Ti]. The

results of these are put into juxtaposition with the implicit deadlines results in Figures 3.13a

to 3.13c.

The data relative to regular fixed priority is tagged with FP. Pre-emption threshold is

shown with tag PT. The simpler method of ready queue locking is addressed by RQ and the

simple ready queue locking used together with pre-emption threshold is tagged with PTRQ.

69

3.4. READY-Q LOCKING CONCEPT

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98

Ta
sk

se
ts

 S
ch

e
d
u
le

d

Total Utilization

FP
PT

PTRQ
RQ

(a) Implicit Deadlines, 4 tasks

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98

Ta
sk

se
ts

 S
ch

e
d
u
le

d

Total Utilization

FP
PT

PTRQ
RQ

(b) Implicit Deadlines, 8 tasks

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98

Ta
sk

se
ts

 S
ch

e
d
u
le

d

Total Utilization

FP
PT

PTRQ
RQ

(c) Implicit Deadlines, 16 tasks

Figure 3.12: Simulation Results for the Implicit Task Model

70

3.4. READY-Q LOCKING CONCEPT

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98

Ta
sk

se
ts

 S
ch

e
d
u
le

d

Total Utilization

FP
PT

PTRQ
RQ

(a) Constrained Deadlines, 4 tasks

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98

Ta
sk

se
ts

 S
ch

e
d
u
le

d

Total Utilization

FP
PT

PTRQ
RQ

(b) Constrained Deadlines, 8 tasks

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98

Ta
sk

se
ts

 S
ch

e
d
u
le

d

Total Utilization

FP
PT

PTRQ
RQ

(c) Constrained Deadlines, 16 tasks

Figure 3.13: Simulation Results for the Constrained Task Model

71

3.4. READY-Q LOCKING CONCEPT

3.4.7 Discussion

The pattern present in the results is clear. The simple ready-queue locking mechanism

outperforms regular fixed priority as expected. However, it only rarely outperforms pre-

emption threshold and that comparison deteriorates with increasing task set sizes and only

gives it an overall gain for 4 tasks in the constrained deadline case. It is however noteworthy

that there is no clear dominance relationship between PT and ready-queue locking, as some

tasks sets are deemed schedulable with one, but not the other. This lack of dominance

holds both for implicit and constrained deadlines models as well as for the different task set

sizes investigated. The PTRQ solution performs always better than the simple pre-emption-

threshold mechanism or simple reaqdy queue locking. Though again the benefits of PTRQ

dilute with the increase of the taskset size.

72

Chapter 4

Pre-emption Delay Upper-bound for
Limited Pre-emptive Scheduling

As was previously addressed in the initial chapters of this thesis (1 and 2), the pre-emptive

nature of the scheduler gives rise to a phenomenon termed pre-emption delay. This is a

by-product of the methodology for the WCET quantification. The worst-case execution

requirement is assessed assuming execution in isolation (please refer to Chapter 2 for further

detail). Once a pre-emption occurs, the state of the several architectural systems accessed

by the task may be altered. These state changes were not accounted for in the temporal

analysis and have to be upper-bounded in order to guarantees the temporal properties of

each task. In this Chapter, an upper-bound on the pre-emption delay a given task suffers,

when floating non-pre-emptive region scheduling is employed, is presented. The related

theory has been published and presented previously in [MNPP12a, MNPP12b].

This chapter addresses the computation of the pre-emption delay in systems using pre-

emption triggered floating non-pre-emptive regions which was previously not covered in

the literature. In order to perform this computation, the variability of the pre-emption delay

throughout the task execution is modelled by aid of a function fi(t), and an upper-bound

Gi(t) on the pre-emption delay in the task execution referential is also considered.

The first subsection focuses on determining the pre-emption delay function fi(t) of a

task τi, that defines the maximum pre-emption delay should τi be pre-empted t time units

after starting. The determination of fi(t) directly comes from [MNPP12a]. The computation

of fi(t) requires the CRPD when pre-empted at every basic block (BBb) to be known (see

section 4.1). Then the set of basic blocks that may be executed at time t has to be computed

(see section 4.2). Function fi(t) can then be computed as detailed in section 4.2.1. The

concept of extrinsic cache miss, that will be used to tighten the estimation of the CRPD, is

introduced in section 4.3.1.

73

4.1. CRPD ESTIMATION

4.1 CRPD Estimation

The CRPD when pre-empting a task at a given basic block is estimated using the method

proposed by Negi et al in [NMR03]. The method relies on the fixed-point computation, for

every basic block of:

• Reaching Cache States (RCS). The Reaching Cache States at a basic block BBb of a

program, denoted as RCSb, is the set of possible cache states when BBb is reached via

any incoming program path. This notion captures the possible cache content when

the task is pre-empted at BBb.

• Live Cache State (LCS). The LCS at BBb, denoted as LCSb, is the set of memory

blocks that may be referenced in the future in any outgoing program path from BBb.

This notion captures the potential reuse of memory blocks after a pre-emption point

occurring at BBb.

Cache Utility Vectors (CUV) as defined in [NMR03] are then computed, and correspond to

the cache blocks that may be in the cache (in RCS) and may be reused (in LCS).

By definition, the pre-emption delay upper-bound function fi(t) holds the worst-case

pre-emption penalty associated to each progress point t. This penalty value is a function of

the CUV at that particular point and the cache sets used by the pre-empting tasks. In order

not to consider multiple fi(t) functions (distinct functions per higher priority task), just a

single ECS could be assumed for all higher priority tasks. This ECS would be computed

through the union of the ECS sets of all tasks with priority greater than the considered task.

In order not to overload notation, and without loss of generality, the CRPD at BBb is then

simply the delay to reload all the cache blocks in CUVb, without considering cache usage

in the pre-empting task(s) as done by Negi et al. [NMR03] and Altmeyer et al. [AB11].

4.2 Computing Execution Intervals

Computing fi(t) for every task τi, represented by its control-flow graph (see left part of

Figure 4.1), requires the identification of the corresponding time interval during which every

basic block b of τi might execute.

The minimum and maximum execution time of every basic block b, noted respectively

emin
b and emax

b have to be known. The cache analysis method used to classify every memory

access uses the following categories:

• AH (Always Hit) when the access will always result in a hit

• AM (Always Miss) when the access will always result in a miss

74

4.2. COMPUTING EXECUTION INTERVALS

1

3

4

5

2

0

6

1

3

4

5

2

0

6

[15,25]

[20,40]

[10,20]

[20,30]

[0,0]

[15,25]

[35,65]

[30,85]

[0,0] [0,0]

[50,115][0,0]

[15,35] [15,25]

(a). CFG with Execution Time
Intervals per BB Latest Start Offsets per BB

(b). CFG with Computed Earliest and

Figure 4.1: Example of CFG for loop-free code.

• FM (First Miss) the access could neither be classified as hit nor miss the first time it

occurs but will result in cache hits afterwards (this category is used for code inside

loops)

• NC (Not Classified) when no precise categorization can be achieved

Given the classification of every reference, respective values of emin
b and emax

b are easily

generated by considering the lower and higher delays allowed by the category (e.g. hit

delay and miss delay for the category NC). The first iteration of every loop is virtually

unrolled before applying the analysis in order to ease the analysis and still allow for the

limitation of the number of references classified FM and NC.

Then, computing execution intervals on loop-free code requires to know for every basic

block b its earliest and latest start offsets smin
b and smax

b . This can be done by a breadth-first

traversal of the CFG, applying to every traversed basic block b the following formulas:

smin
0 = smax

0 = 0 (4.1)

smin
b = min

x∈pred(b)
(smin

x + emin
x) (4.2)

smax
b = max

x∈pred(b)
(smax

x + emax
x) (4.3)

75

4.3. DETERMINATION OF PRE-EMPTION DELAY UPPER-BOUNDS

with pred(b) the direct predecessor(s) of a basic block b in the CFG, and the task entry basic

block (BB0). In the formulas, emin
x (resp. emax

x) represent the minimum (resp. maximum)

execution time of basic block b; such values can be produced by standard WCET estimation

tools (variations between emin
x and emax

x come for example from memory references that

cannot be determined statically as hitting or missing the cache).

The right part of Figure 4.1 shows for every basic block its earliest and latest start offset

after applying the above formulas. Then, the time interval within which every basic block b

may execute is [smin
b ,smax

b + emax
b].

The method was generalized to code with natural loops and function calls as follows.

A fundamental assumption in the WCET analysis is that there exist definite bounds to the

number of iterations of each loop. Every loop can then be unrolled (i.e. an equivalent

CFG can be derived which does not contain any loop). The computation of execution time

intervals is done on every loop starting from the innermost one, and then considering every

loop as a single node with known earliest and latest start offsets. Similarly, in case of

function calls, each function is analysed for every call context, starting from the leaves in

the acyclic call graph.

4.2.1 Computation of fi(t)

Knowing the possible execution interval [smin
b ,smax

b + emax
b] of every basic block b, the set of

basic blocks that may execute at a time instant t, noted BB(t) =
{
∪{b|smin

b 6t6smax
b +emax

b }BBb

}

is known. For each basic block b in this set, fi(t) can then be computed as follows, with

CRPDb the CRPD paid when pre-empting the task at basic block BBb:

fi(t) = max
∀b∈BB(t)

{CRPDb} (4.4)

4.3 Determination of Pre-emption Delay Upper-bounds

As stated previously, when floating non-pre-emptive region scheduling is employed, a task

will always execute non-pre-emptively for at least Qi time units before a pre-emption occurs,

unless it completes before the end of the non-pre-emptive region.

In the present discussion, the term “progression point“ is employed referring to a spe-

cific instruction in the tasks’ code. Program points are loosely associated to a time value

in the task execution time frame. This means that a program point can have a minimum

access time and a maximum access time but the instant at which it is reached may vary

between jobs. In this framework if pk < pa then the program point pk precedes pa. For

clarity purposes a precedence relation is assumed between any pair of program points.

A naïve thought to upper-bound the cumulative pre-emption delay over a task’s execu-

tion (say τi) might be to select from fi the maximum number of progression points pk (each

76

4.3. DETERMINATION OF PRE-EMPTION DELAY UPPER-BOUNDS

p1

f (t)
P
D

H
yp

ot
h
et
ic
al

R
u
n

p1

p2

p2

p3

Q 2Q 3Q 4Q

Figure 4.2: Comparison between Function fi and the Run-time Pre-emption Delay

distanced from every other by at least Qi time units) such that the sum ∑∀pk
fi(pk) is maxi-

mized. However, the simple example depicted in Figure 4.2 shows that this solution is not

correct. As one can see, on the top plot where fi is depicted, there are at most two points that

may be selected (since no three points could be distanced by at least Qi time units in time).

The bottom plot presents a hypothetical run of task τi, where the run-time pre-emption de-

lay cost is presented. At run-time, since time is spent paying pre-emption delay after each

pre-emption, more points can be selected (see the bottom plot), hence providing a higher

cumulative pre-emption delay.

A pessimistic, but correct, solution to upper-bound the execution time C′i of a task τi

while taking into account all the possible pre-emption delays that τi might suffer during

its execution, is simply to multiply the maximum number of pre-emptions that can occur

during τi’s execution (i.e.,
⌊

Ci
Qi

⌋
, this is discussed in more detail in the previous section)

by the maximum delay of one pre-emption (i.e., maxt∈[0,Ci] fi(t)). Given the increase in

the WCET due to this cumulative overhead, the maximum number of pre-emptions that

can occur eventually increases as well. Therefore, this computation has to be performed

iteratively, in the style of the well-know task response-time computation, i.e., C′(0)i =Ci and

C′(k)i =Ci +

⌊
C′(k−1)

i
Qi

⌋
× max

t∈[0,Ci]
fi(t) (4.5)

The pessimism of this computation comes directly from the fact that it considers a constant

cost for every possible pre-emption, and this constant cost is assumed to be the maximum

possible cost. That is, this approach is not sensitive to the pre-emption cost pattern of

the task. As it was claimed in the abstract, using this additional information (the tasks

77

4.3. DETERMINATION OF PRE-EMPTION DELAY UPPER-BOUNDS

Algorithm 6: Upper-Bound the Pre-emption Delay
Input : fi(): pre-emption delay function of task τi

Qi: length of the non-pre-emptive region
Output: total_delay: cumulative pre-emption delay suffered by τi

1 prog← 0 ;
2 total_delay← 0;
3 delaymax← 0 ;
4 pnext← Qi ;
/* While the next progression is not beyond Ci */

5 while pnext <Ci do
/* Update time, progression and delay */

6 prog← pnext ;
/* Compute the next progression step and the next delay

to account for */
7 p∩←min{px} such that
8 px ∈ [prog(k),prog(k)+Qi]

9 and fi(px) =−px +prog(k)+Qi} ;
10 if p∩ = null then p∩← prog+Qi;
11 pmax← argmaxpx∈[prog,p∩]{ fi(px)};
12 delaymax← fi(pmax);
13 pnext← prog+Qi−delaymax;
14 total_delay← total_delay+delaymax ;

15 return total_delay ;

pre-emption cost pattern) enables us to derive a more accurate upper-bound. This second

technique is described in Algorithm 6, and a detailed explanation is provided below.

Qi

prog +Qi

pmax

prog

D(x, t)

p∩pnext

delaymax

Qi − delaymax

delaymax

Figure 4.3: Algorithm iteration sketch

78

4.3. DETERMINATION OF PRE-EMPTION DELAY UPPER-BOUNDS

Description of Algorithm 6. Initially an explanation of the intuition behind the approach

is provided on Figure 4.3 before presenting the actual algorithm. In Figure 4.3 the grey

curve is the fi function. Suppose that prog is the current progression in the task execution.

Considering the next pre-emption point, the approach is looking for the lower bound on

the progression which will be achieved within the next Qi time units in any pre-emption

scenario. For this, function fi is investigated from the current prog to prog+Qi. On the

ordinate also at length Qi a line D(x, t) is drawn to prog+Qi. The point p∩ where f first

crosses D(x, t) limits the range of values which need to be considered. A pre-emption

past this value would lead to a situation where this point would again be considered in

a subsequent iteration, since then prog would not pass this point in the current iteration.

Within the interval, delaymax is determined. That means in an interval Qi under any pre-

emption scenario at least Qi−delaymax progress in program execution will be achieved. It

is a conservative bound as a later pre-emption means that also the non pre-emptible region

will only start then. This point prog+Qi−delaymax will serve as new starting point.

Returning to the Algorithm 6: Lines 1–4 initialise the variables. The variable prog

records the current progression in the task’s operations while total_delay records the cumu-

lative pre-emption delay accounted for up to the current progression point. As the task τi

executes, it accounts for progressing in its execution (and the variable prog is increased)

and for the pre-emption delay (which updates the variable total_delay). The algorithm is

iterative, and at each iteration the variables delaymax and pnext (lines 3 and 4) are the pre-

emption delay taking place only in the current iteration and the next progression point in τi’s

execution at which the next iteration will start, respectively. Lines 1–4 can be seen as the

first iteration of the algorithm. delaymax is set to 0 and pnext to Qi, because no pre-emption

can occur during the first Qi time units of τi’s execution.

The algorithm starts iterating at line 5, and it iterates as long as the next computed pro-

gression point pnext does not fall beyond τi’s execution boundary. Line 6 shifts the current

progression point of τi to the computed value pnext. Then, lines 12 and 13 compute the next

progression point pnext and the maximum delay that τi could suffer while progressing in its

operations from its current progression point to pnext. Finally, line 14 adds this maximum

delay to the current cumulative delay accounted so far.

In the following Theorem 6, it is proven that the value returned by Algorithm 6 is an

upper-bound on the cumulative pre-emption delay that the given task τi might suffer during

its execution. This implies that the WCET of τi (while taking into account all the possible

pre-emption delays that τi might suffer during its execution) is given by

C′i
def
= Ci + total_delay (4.6)

where total_delay is the value returned by Algorithm 6.

79

4.3. DETERMINATION OF PRE-EMPTION DELAY UPPER-BOUNDS

Theorem 6. Algorithm 6 returns an upper-bound on the pre-emption delay that a given task

τi can suffer during the execution of any of its jobs.

Proof. Algorithm 6 computes the maximum cumulative pre-emption delay iteratively, by

progressing step by step through the execution of the task τi. Hereafter, the notation prog(k)

is employed to denote the progression through τi’s execution at the beginning of the kth

iteration of the algorithm. Similarly, total_delay(k) will be used to denote the cumulative

pre-emption delay that τi has suffered until it reached a progression of prog(k). In this

proof, it is shown that at each iteration k > 0, total_delay(k) provides an upper-bound on the

cumulative pre-emption delay that τi might suffer before reaching a progression of prog(k)

in its execution. The proof is made by induction.

Basic step. Algorithm 6 first considers that τi progresses by Qi time units in its execution

without suffering any pre-emption delay (since it cannot get pre-empted during these first

Qi time units). This first step is devised as the first iteration of the algorithm. That is,

straightforwardly, total_delay(1) = 0 is an upper (and even exact) bound on the cumulative

pre-emption delay that τi may suffer before reaching a progression of Qi time units in its

execution.

Induction step. It is assumed (by induction) that total_delay(k), k > 1, is an upper-bound

on the cumulative pre-emption delay that τi might suffer before reaching a progression of

prog(k) time units in its execution.

During the kth iteration, Algorithm 6 computes prog(k+1) and total_delay(k+1) as fol-

lows:

prog(k+1) = prog(k)+Qi−delaymax (4.7)

total_delay(k+1) = total_delay(k)+delaymax (4.8)

where

delaymax = fi(pmax) (4.9)

pmax = argmax
px∈[prog(k),p∩]

{ fi(px)} (4.10)

p∩ = min{px} such that (4.11)

px ∈ [prog(k),prog(k)+Qi]

and fi(px) =−px +prog(k)+Qi

Equations 4.7 and 4.8 can be interpreted as follows. During the kth iteration, Algorithm 6

assumes that τi executes for Qi time units during which τi progresses by Qi−delaymax units

of time in its execution and suffers from a delay of delaymax; The algorithm assumes that

τi gets pre-empted when its progression reaches pmax given by Equation (4.10). Below

80

4.3. DETERMINATION OF PRE-EMPTION DELAY UPPER-BOUNDS

we show that choosing any other pre-emption point pother 6= pmax would ultimately, when

τi’s execution will be completed, result in a cumulative pre-emption delay lower than the

one returned by Algorithm 6, thus showing that the value returned by Algorithm 6 is an

upper-bound. Only two cases are possible: pother > pnext or pother 6 pnext.

Case 1: pother > pnext. This means that τi progresses in its execution until it reaches

pnext without being pre-empted, i.e., from a progression of prog(k), τi reaches a progression

of pnext by being executed only for (pnext− prog(k)) time units, and with an unchanged

cumulative pre-emption delay of total_delay(k). On the other hand, in the execution scenario

built by Algorithm 6, τi’s execution reaches a progression of prog(k+1) = pnext by being

executed for Qi time units, and with a cumulative pre-emption delay of total_delay(k+1) =

total_delay(k)+delaymax ≥ total_delay(k). In other words, Algorithm 6 manages to progress

slower in τi’s execution while suffering from a greater pre-emption delay. Furthermore,

pother is still a candidate pre-emption point for a further iteration of Algorithm 6.

Case 2. pother 6 pnext. After executing τi for Qi time units, the following facts hold

1. the delay of the pre-emption that occurs when τi’s progression reaches pother has been

totally accounted for (since pother < pnext 6 p∩).

2. the progression of τi in this scenario becomes

progother = prog(k)+Qi− fi(pother)

> prog(k)+Qi− fi(pmax)

> prog(k+1) (4.12)

3. the cumulative pre-emption delay becomes

total_delayother = total_delay(k)+ fi(pother)

6 total_delay(k)+ fi(pmax)

6 total_delay(k+1) (4.13)

Thus, after executing τi for Qi time units Algorithm 6 progressed less in the execution of

τi (Inequality 4.12) while suffering from a higher pre-emption delay (Inequality 4.13). As

a consequence of Cases 1 and 2, it holds at each iteration of Algorithm 6 that choosing to

pre-empt the task when it reaches a progression of pmax ultimately leads to an upper-bound

on its cumulative pre-emption delay.

4.3.1 Extrinsic Cache Miss Function

Until now the pre-emption delay is assumed to be paid immediately following a pre-emption.

By analysing the task code it is possible to extract information on when the pre-emption de-

81

4.3. DETERMINATION OF PRE-EMPTION DELAY UPPER-BOUNDS

lay may be paid. This is captured through the concept of the Extrinsic Cache Misses or

“Miss Function”.

Definition 3 [Extrinsic Cache Miss]: A memory access resulting in a cache miss due to

the prior eviction of the requested cache line by code not belonging to the current task is

termed extrinsic cache miss.

The extrinsic cache miss function Gi(t) is an upper bound on the number of extrinsic

cache misses a task might suffer, multiplied by the maximum time penalty to service a

cache miss, in the interval [0, t]. Gi(t) is then an upper-bound on the pre-emption delay

that might have been paid in the same interval. Using the Gi(t) information it is possible to

provide pre-emption delay estimations in the presented framework for situations where Qi 6
maxt(fi(t)), whereas in the methodology provided in Algorithm 6 this is not possible. This

subsection is devoted to the explanation of the procedure to compute this Gi(t) function.

0
temax

b

10

10× BRT

glocali

Figure 4.4: Example glocal
b Function Where BBb Execution May Generate at Most 10 Ex-

trinsic Cache Misses

Each basic block has a fixed number of memory requests which may lead to extrinsic

cache miss during its execution. For each BBi this number is given by

extrinsic-missb = |RCSb∩genb| (4.14)

Recall that genb is defined as the set of memory blocks accessed during the execution

of BBb and RCSb is the set of memory blocks that may be in the cache while BBb is being

executed. The intersection of both sets at each BBb effectively yields the upper bound on the

number of extrinsic cache misses that may occur while BBb is executed after a pre-emption.

For each BBb a function can then be constructed. This function glocal
b , has the memory

requests that may lead to an extrinsic cache miss in BBb. These requests are assumed to

occur as early as possible and at the maximum rate at which they can occur, as is displayed

in Figure 4.4. This function is defined in the interval [0,emax
b], which is the maximum length

execution time interval for BBb.

Let us define the following constant BRR modeling the block reload rate:

82

4.3. DETERMINATION OF PRE-EMPTION DELAY UPPER-BOUNDS

BRR def
=

THIT +TMISS

THIT

where THIT is the time to serve a cache hit, and TMISS is the time to serve a cache miss.

The constant BRR imposes a restriction on the maximum rate in comparison to progres-

sion that pre-emption delay may be paid. Assuming BRR 6= ∞ ensures that while paying

pre-emption delay progression is still occurring, albeit at a slower pace. Intuitively BRR is

an upper bound on the maximum rate at which cache miss penalties may be generated while

executing the program.

Formally the glocal
b function is defined per basic block as:

glocal
b

def
=

BRR×t , if0 6 t 6 extrisic-missb
BRR

extrisic-missb , if extrisic-missb
BRR < t 6 emax

b

(4.15)

A task-wide glocal function is constructed starting from the first BB1 of the CFG. An

initial function gin
1 is fed into the CFG. Where gin

1 (t) = 0,∀t. The input functions for each

BBb are then merged together with glocal
b as is shown in Figure 4.5

goutj goutk

j k

b ginb glocalb

goutb

ginb

Figure 4.5: gout
b Computation for BBb

The two merge operations used to conduct the computation of the task-wide extrinsic

cache misses function are defined next. Each block outputs a function gout
b . Accordingly

each basic block has one input function gin
b . This input function is a product of the merging

of all the output functions of the BBb parent nodes. The input merging operation is defined

by:

gout
j ⊕gout

k
def
= max

t∈[0,Ci]
(gout

j (t),gout
k (t)) (4.16)

The input function is then merged with the corresponding node-specific glocal
b function

using the merge-at-node operation defined in the following way:

83

4.3. DETERMINATION OF PRE-EMPTION DELAY UPPER-BOUNDS

glocal
b ⊗gin

b
def
=

gin
b (t) , t 6 smin

b

gin
b (t)+glocal

b (t− smin
b) ,smin

b < t <Ci

(4.17)

This assumes the knowledge of the earliest time the node may be accessed (smin
b).

The gout
n where BBn is the last basic block in the CFG (return block) is the task-wide

Gi function. In the case that several return blocks exist then the task-wide Gi function is

obtained by combining the gout
n functions of all the return blocks using the merge-at-edge

operator.

Gi
def
= ⊕

j∈RET
gout

j (4.18)

The procedure described is graphically explained in Figure 4.5. In this figure only one

BBb is portrayed for clarification. The procedure repeats for all the BBb of the CFG.

Theorem 7. The Function Gi(t) is an upper-bound on the extrinsic cache misses occurring

during the execution of task τi at any time t.

Proof. The function gin
1 is an upper bound on the number of extrinsic cache misses for the

time instant 0 since there can occur zero extrinsic cache misses until this time instant. For

each basic block all the memory accesses which may generate an intrinsic cache miss are

considered to occur as early as possible (smin
b), at the maximum possible rate (BRR). Hence

glocal
b is an upper bound on the extrinsic cache misses occurring in BBb. Then, the function

gout
1 is an upper-bound on the number of extrinsic cache misses until the execution of the

task exist BB1. The same function gout
1 is then the gin

b for all the BBb child nodes of BB1.

Since the merge-at-node operation integrates the maximum number of extrinsic cache

misses occurring in BBb at the earliest time that these could occur (smin
b) and at the maximum

rate (BRR) Then it holds true that merge-at-node operation carried out in each of BB1 child

preserves the property that each gout
b is itself an upper-bound on the number of extrinsic

cache misses occurring from the start of task execution until it took the path leading to BBb.

If a node BBb has more than one parent then gin
b is constructed using the merge-at-edge

operator over all the node predecessors output functions (gout
j). Since the merge-at-node

operation takes the maximum value for all the t ∈ [0,Ci] of the parents gout
j output functions

then it holds true that gin
b is still an upper-bound on the extrinsic cache misses that could

occur from the start of task execution until it took the path leading to BBb.

This reasoning holds true for all nodes in the CFG. Lastly to compute the Gi(t) function

the merge-at-edge operator is applied across all the return edges of the CFG. Hence the Gi(t)

function is an upper bound on all the extrinsic cache misses occurring for all the possible

execution paths in task τi

84

4.3. DETERMINATION OF PRE-EMPTION DELAY UPPER-BOUNDS

4.3.2 Pre-emption Delay Computation using Extrinsic Cache-miss Function

For the upper bound computation of pre-emption delay, two functions (fi(t) and Gi(t)) are

considered. The fi(t) function represents an upper bound on the pre-emption delay a task

may face at any point in time, whereas the Gi function yields the upper bound on the amount

of pre-emption delay in the time interval [0, t].

Using the knowledge provided by fi(t) function alone prevents the application of the

method in scenarios where Qi 6 maxt(fi(t)). This was one of the major limitations of the

method presented in the solution provided in Algorithm 6. This constraint is now relaxed

in Algorithm 7. This fact arises from a situation where no progression can be performed

since there is always more pre-emption delay to be paid than the length of the considered

non-pre-emptive execution region.

As previously stated a task will always execute non-pre-emptively for at least Qi time

units before a pre-emption occurs, unless it completes before the end of the non-pre-emptive

region.

Description of the Pre-emption Delay Estimation Algorithm 7. As before for Algo-

rithm 6, the intuition behind the approach on Figure 4.6 is explained before presenting the

actual algorithm. Suppose that prog is the current progression in the task execution. Con-

sidering the next pre-emption point, the approach is looking for the lower bound on the

prog +Qi

pmax

D(x, t)

p∩pnext

delaymax

Qi − delaymax

Qi

fi(t)

Gi(t)− SH

prog
lmax

fi(pmax)

Gi(lmax)− SH

Figure 4.6: Algorithm Iteration Sketch

85

4.3. DETERMINATION OF PRE-EMPTION DELAY UPPER-BOUNDS

Algorithm 7: Upper-Bound the Pre-emption Delay
Input : fi(t): pre-emption delay function of task τi.

Gi(t): extrinsic cache misses function of task τi.
Qi: length of the non-pre-emptive region

Output: total_delay: cumulative pre-emption delay suffered by τi

1 total_delay← 0;
2 delaymax← 0 ;
3 pnext← Qi ;
4 SH← 0 ;
/* While the next progression is not beyond Ci */

5 while pnext <Ci do
/* Update time, progression and delay */

6 prog← pnext ;
/* Compute the next progression step and the next delay

to account for, based on the fi(t) function */
7 p∩←min{px} such that
8 px ∈ [prog,prog+Qi]
9 and fi(px) =−px +prog+Q} ;

10 if p∩ = null then p∩← prog+Qi;
11 pmax← argmaxpx∈[prog,p∩]{ fi(px)};
12 lmax = min((t|Gi(t)−SH =−t +prog+Qi),prog+Qi);
13 if Gi(lmax)−SH 6 fi(pmax) then
14 delaymax← Gi(lmax)−SH;
15 SH = Gi(lmax);
16 else
17 delaymax← fi(pmax);
18 SH = SH + fi(pmax);

19 delaymax←min(fi(pmax),Gi(lmax));
20 pnext← prog+Qi−delaymax;
21 total_delay← total_delay+delaymax ;

22 return total_delay ;

progression which will be achieved within the next Qi time units in any pre-emption sce-

nario. For this, functions fi(t) and Gi(t) are investigated from the current prog to prog+Qi.

On the ordinate also at length Qi a line D(x, t) is drawn to prog+Qi.

Two intersection points with the D(x, t) function are obtained for fi(t) and Gi(t) with an

offset of SH units. The variable SH represents the pre-emption delay currently considered

from the Gi(t) function. It ensures that double accounting of pre-emption delay does not

occur. One is the point p∩ where fi(t) first crosses D(x, t). It limits the range of values

which need to be considered for the fi(t) function as previously stated (Algorithm 6). This

intersecting point limits the pre-emption delay values to be considered since the assuming

the worst-case pre-emption penalty to be paid no further progression past the intersection

86

4.3. DETERMINATION OF PRE-EMPTION DELAY UPPER-BOUNDS

point would be possible.

Within this interval, delaymax is determined. That means in an interval Qi under any

pre-emption scenario at least Qi−delaymax progress in program execution will be achieved.

It is a conservative bound as a later pre-emption means that also the non pre-emptible region

will only start then. This point prog+Qi−delaymax will serve as new starting point.

The second point is lmax. At lmax the function Gi(t)−SH intersects D(x, t). At this point

Gi(lmax)−SH cache misses have occurred in the [prog, lmax] interval. If only considering the

Gi(t) information, a progression of prog+Q−Gi(lmax)−SH would be assumed, where in

fact a comparatively smaller quantity of prog−Gi(lmax)−SH time units is spent reloading

cache content.

Returning to the Algorithm 7: Lines 1–4 initialise the variables. The variable prog

memorizes the current progression in the task’s operations while total_delay records the

cumulative pre-emption delay accounted for up to the current progression. As the task τi

executes, it accounts for progressing in its execution (and the variable prog is increased)

and for the pre-emption delay (which updates the variable total_delay). The algorithm is

iterative, and at each iteration the variables delaymax and pnext (lines 2 and 3) are the pre-

emption delay taking place only in the current iteration and the next progression point in

τi’s execution at which the next iteration will start, respectively. Lastly in line 4 the variable

SH, which represents the offset of the Gi(t) function, is initialised with zero. Lines 1–4 can

be seen as the first iteration of the algorithm. delaymax is set to 0 and pnext to Qi, because no

pre-emption can occur during the first Qi time units of τi’s execution.

The algorithm starts iterating at line 5, and it iterates as long as the next computed

progression point pnext does not fall beyond τi’s execution boundary. Line 6 shifts the

current progression point of τi to the computed value pnext. In lines 7 – 11 the fi(t) pre-

emption delay computation for the current iteration is carried out. Subsequently in lines 11

and 12 the pre-emption delay computation is carried out with the Gi(t) function information.

From line 13 to 19 a decision is carried out on the amount of pre-emption delay to

consider in the current iteration. This value is the minimum between the one estimated with

the Gi(t) function and the fi(t) function, since both functions hold an upper bound on the

pre-emption delay for a given interval.

The next progression point pnext is computed with the knowledge of the maximum delay

that τi could suffer while progressing in its operations from its current progression point to

pnext. Finally, line 21 adds this maximum delay to the current cumulative delay accounted

so far.

In the following Theorem 8, it is proven that the value returned by Algorithm 7 is an

upper-bound on the cumulative pre-emption delay that the given task τi might suffer during

its execution. This implies that the WCET of τi (while taking into account all the possible

87

4.3. DETERMINATION OF PRE-EMPTION DELAY UPPER-BOUNDS

pre-emption delays that τi might suffer during its execution) is computed through Equa-

tion (4.6) where total_delay is the value returned by Algorithm 7.

Theorem 8. Algorithm 7 returns an upper-bound on the pre-emption delay that a given task

τi can suffer during the execution of any of its jobs.

Proof. Algorithm 7 computes the maximum cumulative pre-emption delay iteratively, by

progressing step by step through the execution of the task τi. In this proof, it is shown that at

each iteration k > 0, total_delay(k) actually provides an upper-bound on the cumulative pre-

emption delay that τi might suffer before reaching a progression of prog(k) in its execution.

The proof is made by induction.

Basic step.

Algorithm 7 first considers that τi progresses by Qi time units in its execution without

suffering any pre-emption delay (since it cannot get pre-empted during these first Qi time

units). Similarly to Algorithm 6 this is the first step as the first iteration of the algorithm.

That is, straightforwardly, total_delay(1) = 0 is an upper (and even exact) bound on the

cumulative pre-emption delay that τi may suffer before reaching a progression of Qi time

units in its execution.

Induction step.

It is assumed (by induction) that total_delay(k), k > 1, is an upper-bound on the cumu-

lative pre-emption delay that τi might suffer before reaching a progression of prog(k) time

units in its execution.

During the kth iteration, Algorithm 7 computes prog(k+1) and total_delay(k+1) as fol-

lows:

prog(k+1) = prog(k)+Qi−delaymax (4.19)

total_delay(k+1) = total_delay(k)+delaymax (4.20)

where

delaymax = min(fi(pmax),Gi(lmax)−SH) (4.21)

pmax = argmax
px∈[prog(k),p∩]

{ fi(px)} (4.22)

p∩ = min{px} such that (4.23)

px ∈ [prog(k),prog(k)+Qi]

and px = prog(k)+Qi−min(fi(px),Gi(px)−SH)

lmax = min((t|Gi(t)−SH =−t +prog+Q),prog+Q)

(4.24)

88

4.3. DETERMINATION OF PRE-EMPTION DELAY UPPER-BOUNDS

Equations 4.19 and 4.20 can be interpreted as follows. During the kth iteration, Algorithm 7

assumes that τi executes for Qi time units during which τi progresses by Qi − delaymax

units of time in its execution and incurs a delay of delaymax; The algorithm assumes that

τi gets pre-empted when its progression reaches pmax given by Equation (4.22). Below we

show that choosing any other pre-emption point pother 6= pmax would ultimately1 result in a

cumulative pre-emption delay lower than the one returned by Algorithm 7, thus showing that

the value returned by Algorithm 7 is an upper-bound. Two cases may arise: pother > pnext

or pother 6 pnext.

Case 1: pother > pnext. This means that τi progresses in its execution until it reaches

pnext without being pre-empted, i.e., from a progression of prog(k), τi reaches a progression

of pnext by being executed only for (pnext−prog(k))6 Qi time units, and with an unchanged

cumulative pre-emption delay of total_delay(k). On the other hand, in the execution scenario

built by Algorithm 7, τi’s execution reaches a progression of prog(k+1) = pnext by being

executed for Qi time units, and with a cumulative pre-emption delay of total_delay(k+1) =

total_delay(k)+delaymax > total_delay(k). In other words, Algorithm 7 manages to progress

slower in τi’s execution while suffering from a greater pre-emption delay. Furthermore,

pother is still a candidate pre-emption point for a further iteration of Algorithm 7.

Case 2. pother 6 pnext. After executing τi for Qi time units, the following facts hold

1. the delay of the pre-emption that occurs when τi’s progression reaches pother has been

totally accounted for (since pother < pnext 6 p∩).

2. the progression of τi in this scenario becomes

progother = prog(k)+Qi−min(fi(pother),Gi(pother)−SH)

> prog(k)+Qi−min(fi(pmax),Gi(pmax)−SH)

> prog(k+1) (4.25)

3. the cumulative pre-emption delay becomes

total_delayother = total_delay(k)+min(fi(pother),Gi(pother)−SH)

6 total_delay(k)+min(fi(pmax),Gi(pmax)−SH)

6 total_delay(k+1) (4.26)

Thus, after executing τi for Qi time units Algorithm 7 progressed less in the execution of

τi (Inequality 4.25) while suffering from a higher pre-emption delay (Inequality 4.26). As

a consequence of Cases 1 and 2, it holds at each iteration of Algorithm 7 that choosing to

1when τi’s execution will be completed

89

4.3. DETERMINATION OF PRE-EMPTION DELAY UPPER-BOUNDS

pre-empt the task when it reaches a progression of pmax ultimately leads to an upper-bound

on its cumulative pre-emption delay.

4.3.3 Reducing the pessimism of fi(t)

For computation of the pre-emption delay estimation the obtained fi(t) function is pes-

simistic. The main source of pessimism is the fact that the earliest possible entry time for

each basic block is considered in the function computation. Even though the fi(t) function

is an upper bound on the pre-emption delay that might be paid at any progression point t in

the task a less pessimistic function may be extracted.

In fact if a basic block is accessed earlier than its worst case access time then the exe-

cution is in a situation which will never lead to the WCET. If the task is pre-empted in this

basic block at an earlier time than the worst case access time, the pre-emption delay that has

to be paid is already doubly accounted on the WCET computation.

To exemplify this intuition consider the example provided in Figure 4.1 (page 75). For

the case of BB4, smin
4 = 35, smax

4 = 65 and emax
4 = 20. Lets arbitrate CRPD4 = 5. If this

BB4 is accessed at t = 40, and a pre-emption occurs at t ′ = 45, when the task resumes its

execution at most 7 units of time will be spent regaining cache state. The BB4 exit time

would be t ′′ = 65 whereas the worst case exit time computed statically is smax
4 + emax

4 = 85.

One can then observe that t ′′ < smax
4 + emax

4 . The conclusion follows that: pre-emptions

occurring in BB4 at an earlier time in comparison to the worst-case execution time behaviour

do not necessitate to consider the full worst-case pre-emption delay penalty. Clearly t ′′ is

smaller than the statically computed worst-case exit time and hence it does not make sense

to consider a pre-emption delay of 5 units when the basic block is accessed at time t = 40.

A more thorough definition and explanation of the concept follows.

The optimised fi(t) function is then defined as:

fi(t) = max
b
{ f local

b (t)} (4.27)

The function f local
b (t) is defined for each BBb. It represents the pre-emption delay value

the tasks is subject to when pre-empted in each basic block but refrains from considering the

full pre-emption delay cost when the basic block is accessed earlier than in the worst-case

time access profile.

The function f local
b (t) is formally defined in the following manner:

90

4.3. DETERMINATION OF PRE-EMPTION DELAY UPPER-BOUNDS

f local
b (t) def

=

0 ,0 6 t < max(smax
b −CRPDb,smin

b)

CRPDb× (t− smax
b −CRPDb) ,max(smax

b −CRPDb,smin
b)6 t 6 smax

b

CRPDb ,smax
b < t 6 emax

b

0 , t > emax
b

(4.28)

smin
b

CRPDb

smax
b − crpdb tsmax

b

Figure 4.7: f local
b (t) Graphical Example

Figure 4.7 presents a graphical representation of the f local
b (t) function. From smin

b to

smax
b −CRPDb the value of the function f local

b (t) is zero. In the interval smax
b −CRPDb to

smax
b the function f local

b (t) has a first derivative of one. Lastly, from smax
b to smax

b + emax
b the

function is constant at the CRPDb value.

0 10 20 30 40 50 60 70 80 90 100 110 120 t

fi(t)

Figure 4.8: Task Wide fi(t) Obtention

In Figure 4.8 the procedure to compute the task-wide fi(t) function is graphically por-

trayed. Several f local
b (t) function are displayed with dashed lines. For all the instants in

91

4.3. DETERMINATION OF PRE-EMPTION DELAY UPPER-BOUNDS

time, the maximum value of all the local f local
b (t) is taken as the value of fi(t) .

Lemma 2. Assuming an entry time t1 such that smax
b −CRPDb 6 t1 < smax

b and a pre-emption

occurring at t1, the progression point achieved in a Qi length time window assuming a pre-

emption delay payment of f local
b (t1) is equal to the progression point assuming an entry time

t2 = smax
b .

Proof. f local
b (t1) = t1− (smax

b −CRPDb)

prog1 = Qi− t1 +(smax
b −CRPDb)+ t1

prog2 = Qi−CRPDb+t2
prog1 = prog2 ⇔ Qi− (t1− (smax

b −CRPDb))+ t1 = Qi−CRPDb+t2 ⇔ Qi + smax
b =

Qi + t2.

Since t2 = smax
b the Lemma is proven

There exits a set of possible paths from BB1 to BBb such that for all these possible pro-

gram paths BBb will be accessed at a time instant p′ in the program where p′ ∈ [smin
b ,smax

b].

For all possible paths where the entry time of BBb for which p′ < smax
b then the execution is

earlier in relation to the worst-case execution time by smax
b − p′ time units.

When computing the fi(t) function for each progression point considered the point with

the maximum pre-emption delay is chosen. It is the case that for the paths which diverge

from the worst-case execution time behaviour then paying pre-emption delay in this paths

would just bring them closer to the worst case execution time behaviour.

As long as the progression is sufficiently distanced from the worst-case pattern for BBb

execution then no pre-emption delay has to be considered, since this would lead to a double

accounting of the pre-emption delay.

Consider a situation where smax
b − p′ > CRPDb, if the task would be executing in BBb,

by paying the pre-emption delay of CRPDb would not bring this execution to the worst-case

execution time scenario. In the same way if 0 < smax
b − p′ < CRPDb then paying a portion

of the pre-emption delay payment given by smax
b − p′ would bring the execution exactly into

the worst case scenario. From this point onwards the maximum pre-emption delay for the

basic block should be paid since the progression on BBb is already in a worst-case scenario.

Lemma 3. For all the BBb that a given progression point p might belong to, the pre-emption

delay payment is given maxb
{

max(min(CRPDb−(smax
b − p),CRPDb),0)

}
.

Proof. For a given BBb, and a current actual progression point p, if CRPDb−(smax
b − p)< 0

then for BBb is smax
b − p time units earlier in relation to the worst-case entry time behaviour

for the given block. Paying CRPDb in this instance is not putting it in a worse situation than

the worst-case entry smax
b − p and hence is not leading a optimistic analysis result.

92

4.3. DETERMINATION OF PRE-EMPTION DELAY UPPER-BOUNDS

Theorem 9. The Function fi(t), considering f local
b , provides a safe upper bound on the

pre-emption delay paid during a pre-emption of BBb in a WCET context.

Proof. In Lemma 2 it is shown that any scenario where a basic block is considered to be

accessed between smax
b −CRPDb and smax

b will be treated such that is equivalent of accessing

BBb at time smax
b . Additionally, in Lemma 3 it is proven that BBb arriving before smax

b −
CRPDb the actual progression in the real execution is at least as good as arriving at smax

b .

Hence, using fi(t) provides a safe upper bound for the pre-emption delay to be taken into

account during analysis.

4.3.4 Reducing the pessimism of Gi(t)

Following the same reasoning as in section 4.3.3, the Gi(t) function holds pessimism for

the pre-emption delay computation in a WCET analysis context.

The merge at node operation is then defined as:

glocal
b ⊗gin

b
def
=

gin
b (t) , if t 6 max(smax

b −glocal
i (emax

b),smin
b)

max(gin
b (t)+glocal

b (t−max(smax
b − glocal

i (emax
b),smin

b)))

, if max(smax
b −glocal

b (emax
b),smin

b)< t <Ci

(4.29)

In this way the pre-emption delay is only accounted for when the task execution is in a

path that would lead into the WCET.

Theorem 10. The Function Gi(t) is an upper-bound on the extrinsic cache misses occurring

during the execution of task τi for any time t in a WCET context.

Proof. The redefinition of the merge-at-node operation integrates the glocal
b function only at

the time instant t = max(smax
b −glocal

b (emax
b),smin

b). For all the time instants t ′ < t if the BBb

is executing and generates an extrinsic cache miss then this value was already accounted for

in the WCET analysis since:

t ′+glocal
b (emax

b)+ emax
b < smax

b + emax
b ⇔ t ′+glocal

b (emax
b < smax

b ⇔ t ′ < smax
b −glocal

b (emax
b)

The only change to the computation procedure of Gi(t) lies on the merge-at-node oper-

ation. Hence proving the correctness of the merge-at-node operation redefinition along with

Theorem 7 proves the present theorem.

93

4.4. EXPERIMENTAL EVALUATION

4.4 Experimental Evaluation

In order to experimentally validate both the new pre-emption delay estimation algorithm 7

the fi(t) and glocal(t) function extraction procedures were implemented in Heptane. Results

are also provided for the previous function fi(t) (Algorithm 6).

The framework is trialled on a set of benchmarks available online [NCS+06]. Not all

the benchmark results are presented. From the set of benchmark programs the results for

acquisition task, autopilot task 6, autopilot task 9 and interrupt handler routine are shown.

All the results are given for a direct-mapped instruction cache of 4KB, with a line size

of 32 bytes (8 instructions). The data cache is perfect (i.e. data cache misses are assumed

never to occur). Only results regarding instruction caches are presented at this time since

data caches were not yet addressed theoretically. The analysed code is MIPS code (fixed-

size 4B instructions). The code also works with set-associative caches. There is only one

level of cache, with 1 cycle when the fetched instruction hits the cache, 10 cycles in case of

a miss.

4.4.1 fi(t) functions

A comparative evaluation between the prior fi(t) function extraction procedure and the more

recent one is presented.

As is apparent in all the benchmarks the current method enables a considerable increase

in the amount of information present in the new fi(t) functions. The regular fi(t) (Equa-

tion (4.4)) is always greater than the optimized version (Equation (4.27)). With this new

concepts it is then possible to decrease the level of pessimism present in the analysis of the

pre-emption delay. The major differences are present in the results shown in Figures 4.9b,

4.9c and 4.9d. For these benchmarks, the results of the optimized fi(t) function are lesser

pessimistic than the prior method presented initially in section 4.3.

4.4.2 Pre-emption Delay Estimations

The pre-emption delay estimations are presented in this subsection. Only the improved

version of the fi(t) is used, since it is obvious that the results could never be worse than

using the old version of the function. In all the results present in Figures 4.10a to 4.10d it is

apparent that the results are less pessimistic both for the previous method (which only uses

fi(t) information) and for the new method with the Gi knowledge in comparison to the naïve

state of the art method (Equation (4.5)). The naive state of the art method in Equation 4.5 is

an intuitive upper-bound on the pre-emption delay for the floating non-pre-emptive regions

scheduling. Its results are the curves labeled as “SOTA” in figures 4.10a to 4.10d. The

method using the Gi function information is never worse than the one which relies purely

94

4.4. EXPERIMENTAL EVALUATION

 0

 100

 200

 300

 400

 500

 600

 0 20000 40000 60000 80000 100000 120000 140000 160000

P
re

e
m

p
ti

o
n
 D

e
la

y

Non-preemptive Region Length (Q)

Regular f(t)
Optimized f(t)

(a) Regular fi(t) and Optimized fi(t) Function for Ac-
quisition Task

 0

 10

 20

 30

 40

 50

 60

 0 1000 2000 3000 4000 5000 6000

P
re

e
m

p
ti

o
n
 D

e
la

y

Non-preemptive Region Length (Q)

Regular f(t)
Optimized f(t)

(b) Regular fi(t) and Optimized fi(t) Function for Au-
topilot.t6

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1000 2000 3000 4000 5000 6000 7000 8000

P
re

e
m

p
ti

o
n
 D

e
la

y

Non-preemptive Region Length (Q)

Regular f(t)
Optimized f(t)

(c) Regular fi(t) and Optimized fi(t) Function for Au-
topilot.t9

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000 1200 1400

P
re

e
m

p
ti

o
n
 D

e
la

y

Non-preemptive Region Length (Q)

Regular f(t)
Optimized f(t)

(d) Regular fi(t) and Optimized fi(t) Function for In-
terrupt Handler

Figure 4.9: fi(t) Experimental Results

on the fi(t) function, and enables solutions to be obtained for situations where Qi is lower

than some value of fi(t) as is shown in figures 4.10a to 4.10d.

95

4.4. EXPERIMENTAL EVALUATION

 10

 100

 1000

 10000

 100000

 1e+06

 0 20000 40000 60000 80000 100000 120000 140000 160000

To
ta

l
P
re

e
m

p
ti

o
n
 D

e
la

y

Non-preemptive Region Length (Q)

Algorithm 3
Algorithm 4

SOTA

(a) Pre-emption Delay Estimations Function for Ac-
quisition Task

10

100

1000

10000

100000

0 1000 2000 3000 4000 5000 6000

To
ta

l
P
re

e
m

p
ti

o
n

D
e
la

y

Non-preemptive Region Length (Q)

Algorithm 7
Algorithm 8

SOTA

(b) Pre-emption Delay Estimations Function for Au-
topilot.t6

10

100

1000

10000

100000

1e+06

0 1000 2000 3000 4000 5000 6000 7000 8000

To
ta

l
P
re

e
m

p
ti

o
n

D
e
la

y

Non-preemptive Region Length (Q)

Algorithm 7
Algorithm 8

SOTA

(c) Pre-emption Delay Estimations Function for Au-
topilot.t9

10

100

1000

10000

100000

1e+06

0 200 400 600 800 1000 1200

To
ta

l
P
re

e
m

p
ti

o
n

D
e
la

y

Non-preemptive Region Length (Q)

Algorithm 7
Algorithm 8

SOTA

(d) Pre-emption Delay Estimations Function for Inter-
rupt Handler

Figure 4.10: glocalt Experimental Results

96

Chapter 5

Temporal-isolation Enforcement

Before a safety-critical system can be deployed and marketed, a certification authority must

validate that all the safety-related norms are met. All the components comprising that sys-

tem (the software, the hardware, and the interfaces) are scrutinized to ensure conformance

to safety standards.

To provide the required degree of “sufficient independence” between components of

different SILs, Industry and Academy have always been working in close collaboration,

seeking solutions to (1) render the components of a same SIL as independent and isolated as

possible from the components with different SILs and (2) upper-bound the residual impact

that components of different SILs may have on each other after the segregation step, with

the primary objective of certifying each subset of components at its own SIL.

This chapter presents a novel solution for ensuring the temporal-isolation property in

systems where pre-emptions are subject to non-negligible overheads. In this case a sym-

metric isolation is enforced, i.e. where tasks do not impact each other irrespective of

their individual SIL. A prior version of this framework has been presented in a previous

work [MNP14]. A standard implementation of the symmetric temporal-isolation is by the

usage of servers [AB04], [LKPB06]. These servers provide a certain share of the processing

resource called budget, which is supplied to a task in a recurrent fashion.

While the general concepts of servers have been well explored, the use of implicitly

shared resources, like caches is still an open issue for server-based systems. When a task

executing in a server is pre-empted by a higher priority task, it loses at least partially its set

of useful memory blocks in the caches (working set) and other shared resources. This loss of

working set leads to an additional execution time requirement on resumption of execution,

which either needs to be accounted for in the sizing of the budgets of individual tasks, or

treated through online mechanisms.

Besides easing timing analyses, schedulability analyses, and the certification process,

the main objective of temporal-isolation via servers is also to isolate applications from other

97

5.1. CHAPTER-WISE UPDATE ON SYSTEM MODEL

temporally misbehaving applications and their corresponding effects. This misbehaviour

can come in two distinct flavours. Firstly, in terms of a violation of the WCET assumptions,

secondly in the minimum inter-arrival time assumption made in the analysis step. While the

former has been treated to reasonable extent [LKPB06], the latter is of equal importance.

In this chapter a mechanism which enforces temporal isolation is presented. The devised

solution is able to accommodate both forms of misbehaviour. At the end of the chapter an

experimental evaluation attestss to the efficiency and benefit extracted from the usage of

said mechanism.

5.1 Chapter-wise Update on System Model

When tackling a given problem the simplest possible system model which allows for an

adequate property manipulations is employed. Generally a system model as presented in

section 1.2 offers a robust footing on which to develop and prove theories for real-time sys-

tems. Unfortunately the model presented in section 1.2 relies on a fundamental assumption

which is generally not present in the real world. That of which the task’s assumed properties

at design time are stringently met at runtime. Tasks are written according to a specification.

It is the job of the developer entity to ensure that in fact the WCET is met in the given

platform, that the minimum inter-arrival time is in fact observed (i.e. that under any circum-

stance will a given task request to execute at a greater frequency than anticipated).

As in section 1.2, the workload is modelled by a task-set T = {τ1, . . . ,τn} composed

of n tasks. Each task τi is characterized by the three-tuple 〈Ci,Di,Ti〉 with the following

interpretation: τi generates a potentially infinite sequence of jobs, with the first job released

at any time during the system execution and subsequent jobs released at least Ti time units

apart. Each job released by τi must execute for at most Ci time units within Di time units

from its release. Hence, the parameter Ci is referred to as the “worst-case execution time”,

Di is the relative deadline of the task and Ti is its minimum inter-release time (often called,

its period).

Contrary to the bulk of this document where the three parameters Ci, Di and Ti are

assumed to fully characterize and describe the tasks and its interaction with the system (at

least the interactions which are of interest to this work – duration of resource usage), in this

chapter these parameters solely represent the terms of an agreement between the task and

the system.

This concept reflects an inherent distrust from the system point of view towards the

implementation that embodies each task and the nature of the events that might trigger its

execution – which may in turn be external to the embedded system itself. In order for each

task’s behaviour not to suffer from external misbehaviour the system has to ensure that each

party respects its contract.

98

5.1. CHAPTER-WISE UPDATE ON SYSTEM MODEL

A task τi is said to “behave” if it does not require more system resources than by its

contracted parameters. Otherwise, if any job of τi comes to request more than Ci time units

to complete, or if τi releases two consecutive jobs in a time interval < Ti time units, then τi

is said to be “misbehaving”. The other party – the system – is assumed to never violate its

contracts with any task. The system associates to each task τi a sporadic server Si defined

by the two-tuple 〈Bi,T s
i 〉. The parameter Bi encodes the execution budget that Si provides

to τi in any time window of length T s
i . This budget is consumed as task τi executes and a

task can only execute if its budget is not depleted. The function Bi(t) denotes the remaining

budget in the server Si at every time instant t.

t

Bi

t

τi

0 Ti

Ti

Figure 5.1: Sporadic Server Budget Replenishment

A sporadic server is, at any time instant, in either one of the two following states:

active when there is pending workload from task τi and Bi(t)> 0;

idle when there is no pending workload from task τi or Bi(t) = 0.

The sporadic server budget replenishment mechanics can be described succinctly by the

protocol formulated with the two following rules:

• When the server transits to the Active state at a time t1, a recharging event is set to

occur at time instant t1 +T s
i ;

• when Si transits to the idle state at a time t2, the replenishment amount corresponding

to the last recharging time is set to the amount of capacity consumed by Si in the

interval [t1, t2).

99

5.2. PRE-EMPTION DELAY ACCOUNTING APPROACHES COMPARISON

At the start of the system (t = 0) Si is idle and Bi(t) =Ci. An example of the sporadic

server budget usage and replenishment is provided in Figure 5.1. For sake of simplicity and

clarity of exposure the server replenishment period is arbitrarily assumed to be equal to the

tasks reported period (i.e. T s
i = Ti) hence, Ti is used throughout this chapter as a synonym

for T s
i .

From this point onward, it is assumed that all the task deadlines are met at run-time

as long as every job of each task τi executes within the execution budget granted by Si and

respects its timing parameters Ci and Ti. The framework proposed here ensures that, though

any task τi can misbehave by violating its stated parameters, the other tasks in the system

will never miss their deadlines as long as they behave. Note that it is assumed throughout

this chapter that each server has only a single task associated to it. The server and task terms

are used interchangeably in the remainder of the chapter.

5.2 Pre-emption Delay Accounting Approaches Comparison

In a reservation-based system, as previously stated, each task τi can only execute as long

as Bi(t) is greater than 0. If every job is guaranteed to meet its deadlines, then at each

time t where task τi releases a job, it must hold that Bi(t) is greater than or equal to Ci plus

the maximum pre-emption delay that the job may be subject to during its execution. The

variable δ j,i represents the maximum interference that a task τ j may induce in the execution

time of task τi by pre-empting it. This maximum interference can be computed by using

methods such as the ones presented in [AB09, RM06a, LLH+01].

Given all these δ j,i values, a naive solution to compute the budget Bi of each task τi ∈T

is amenable to be devised. If it is assumed that task τ j releases its jobs exactly Tj time units

apart, then the maximum number of jobs that τ j can release in an interval of time of length

t is given by

n j(t)
def
=

⌈
t
Tj

⌉
(5.1)

Therefore, during the worst-case response time of a task τi denoted by Ri, there are at

most n j(Ri) jobs of task τ j, j < i, that can potentially pre-empt τi (recall that if j < i then

τ j ∈ hp(i)). Since each of these pre-emptions imply an interference of at most δ j,i time units

on the execution of τi, a straightforward way to compute the budget Bi assigned to each task

τi to meet all its deadlines is

Bi
def
= Ci +

i−1

∑
j=1

n j(Ri)×δ j,i (5.2)

For the budget assignment policy defined in Equation (5.2), Equation (5.3) gives an

upper-bound PDmax
bgt (t) on the total CPU time that is reserved in any time interval [0, t] to

100

5.2. PRE-EMPTION DELAY ACCOUNTING APPROACHES COMPARISON

account for all the pre-emption delays.

PDmax
bgt (t)

def
=

n

∑
i=2

(
ni(t)×

i−1

∑
j=1

n j(Ri)×δ j,i

)

=
n

∑
i=2

(
ni(t)×

n

∑
j=1

n j(Ri)×δ j,i

)
(5.3)

as ∀ j > i it holds that δ j,i = 0.

It is worth noticing that Equation (5.2) assigns the budget of task τi by looking at how

many times τi might get pre-empted during the execution of each of its jobs and how much

each such pre-emption may cost. That is, this budget assignment policy implicitly considers

the problem from the point of view of the pre-empted task.

An alternative approach to analyse the maximum pre-emption delay that a task can in-

cur consists in considering the problem from the point of view of the pre-empting task. An

example of such an approach has been presented by Stachulat et al [SSE05]. The authors

defined the multi-set M j,i(t) as the set of all costs δ j,k that tasks τ j may induce in the ex-

ecution requirements of all the tasks τk with a priority between that of τ j and τi, in a time

window of length t. A multi-set is a generalisation of the concept of “set” where the ele-

ments may be replicated (i.e. a multi-set may be for example {x,x,x,y,y} whereas a regular

set consists of a collection of elements such that no element is equal to any other in the same

set). The multi-set M j,i(t) is formally defined at any time t as follow:

M j,i(t)
def
=
(
]i−1

k= j+1]
nk(t)
m=1]

n j(Rk)
`=1 δ j,k

)
]n j(t)

g=1 δ j,i (5.4)

The operator] denotes the union over multi-sets. Let us look at a brief example to differ-

entiate between the multi-set union and the set union. For the multi-set union it holds that

{x,y}]{x,y}= {x,x,y,y} whereas for the set union the outcome is {x,y}∪{x,y}= {x,y}.
Each set M j,i(t) enables the construction of the function ∆ j,i(t), denoting the maximum

pre-emption delay caused by jobs from task τ j on task τi in any time window of length t.

∆ j,i(t)
def
=

q j,i(t)

∑
`=1

`
max(M j,i(t)) (5.5)

where

q j,i(t)
def
=

i−1

∑
k= j

min(nk(t),n j(t)) (5.6)

and the function
`

max(M j,i(t)) returns the `th highest value in the set M j,i(t) – the equation

∆ j,i(t)
def
= ∑

q j,i(t)
`=1

`
max(M j,i(t)) thus represents the sum of the qi, j(t) highest values in M j,i(t).

It is shown below that, considering the pre-emption delay from the perspective of the

101

5.2. PRE-EMPTION DELAY ACCOUNTING APPROACHES COMPARISON

pre-empting task is always less pessimistic than considering the pre-emption delay from the

point of view of the pre-empted task.

Theorem 11. For each task τi ∈T , it holds at any time t that

n

∑
j=1

∆ j,i(t)6 PDmax
bgt (t) (5.7)

Proof. From Equation (5.4) and since ∀ j > i it holds that δ j,i = 0, for all τ j ∈ T the sum

of all elements in M j,i(t) is given by:

∑
e∈M j,i(t)

e =
i

∑
k= j+1

nk(t)

∑
m=1

n j(Rk)

∑
`=1

δ j,k

=
i

∑
k= j+1

nk(t)×n j(Rk)×δ j,k (5.8)

The remainder of the proof is split into two lemmas that will straightforwardly yield Equa-

tion (5.7).

Lemma 4. ∑
n
j=1 ∑e∈M j,i(t) e 6 PDmax

bgt (t)

Proof. From Equation (5.8), it is known that

n

∑
j=1

∑
e∈M j,i(t)

e 6
n

∑
j=1

n

∑
k=2

nk(t)×n j(Rk)×δ j,k

6
n

∑
k=2

nk(t)×
n

∑
j=1

n j(Rk)×δ j,k

{ f rom(5.3)} PDmax
bgt (t)

Lemma 5. ∑
n
j=1 ∑e∈M j,i(t) e > ∑

n
j=1 ∆ j,i(t)

Proof. On the one hand, one can observe from Equation (5.4) that the number of elements

in the multiset M j,i(t) is given by

#M j,i(t) =

(
i−1

∑
k= j+1

nk(t)×n j(Rk)

)
+n j(t) (5.9)

and since n j(Rk)> 1, ∀ j,k ∈ [1,n], it holds that

#M j,i(t)> n j(t)+
i−1

∑
k= j+1

nk(t) (5.10)

102

5.2. PRE-EMPTION DELAY ACCOUNTING APPROACHES COMPARISON

On the other hand, if j = k then

min(nk(t),n j(t)) = min(n j(t),n j(t)) = n j(t)

and thus this Equation (5.6) can be rewritten as:

q j,i(t) = n j(t)+
i−1

∑
k= j+1

min(nk(t),n j(t))

6 n j(t)+
i−1

∑
k= j+1

nk(t) (5.11)

By combining Equations (5.10) and (5.11), it thus holds ∀ j, i ∈ [1,n] that

q j,i(t) 6 #M j,i(t) (5.12)

Remember that ∑
q j,i(t)
`=1

`
max(M j,i(t)) represents the sum of the qi, j(t) highest values in

M j,i(t). From Inequality (5.12) and by definition of the function
`

max(M j,i(t)), it can be

concluded that ∀t > 0 and for all τi,τ j ∈T :

∑
e∈M j,i(t)

e >
qi, j(t)

∑
`=1

`
max(M j,i(t)) (5.13)

By summing Inequality (5.13) over all j ∈ [1,n], then

n

∑
j=1

∑
e∈M j,i(t)

e >
n

∑
j=1

qi, j(t)

∑
`=1

`
max(M j,i(t))

>
n

∑
j=1

∆ j,i(t)

Hence the lemma follows.

Finally, by combining Lemmas 4 and 5 it is easy to see that

n

∑
j=1

∆ j,i(t)6 PDmax
bgt (t)

103

5.3. PROPOSED BUDGET AUGMENTATION FRAMEWORK

5.3 Proposed Budget Augmentation Framework

5.3.1 Temporal-isolation Framework Description

Since a task may incur some delay due to a pre-emption, it is straightforward that an exe-

cution budget of Bi =Ci may be insufficient for the task τi to complete if it gets pre-empted

during its execution. On the other hand, the budget assignment policy defined by Equa-

tion (5.2) has been shown to be (potentially) pessimistic. Hence, a run-time mechanism

where every pre-empting task has to pay for the damage that it causes to the schedule is

proposed. According to Theorem 11, accounting for the pre-emption delay from the point

of view of the pre-empting task enables a reduction on the over-provisioning of system re-

sources. Formally, the execution budget Bi of each task τi is initially set to Ci and refilled

according to the sporadic server definition. Then, each time a task τi resumes its execution

after being pre-empted by other task(s), the remaining budget Bi(t) of its associated server

Si is increased by ∑τ j∈H(i) δ j,i(t) (where H(i) denotes the set of tasks that pre-empted τi) to

compensate for the potential extra execution requirement that τi may incur.

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�
�

t

B4

t

τ4

τ3

τ2

τ1

δ2,4 δ1,4 + δ3,4

Figure 5.2: Budget Augmentation Example

An example of the described framework is presented in Figure 5.2. In that example the

task set contains 4 tasks. Task τ4 is first pre-empted by a job from τ2. When τ4 resumes

execution at time t1, immediately after τ2 terminates, its remaining budget B4(t1) is incre-

mented by δ2,4 units. Then, two jobs of τ1 pre-empt both τ3 and (indirectly) τ4. Each time

τ3 resumes its execution at the return from the pre-emption (at time t2 and t3), the execution

budget B3(t2) and B3(t3) is incremented by δ1,3. Finally, when τ3 terminates its workload

104

5.3. PROPOSED BUDGET AUGMENTATION FRAMEWORK

and τ4 resumes at time t4, B4(t4) is incremented by δ1,4 + δ3,4 as both τ1 and τ3 may have

evicted some of its cached data; hence forcing τ4 to reload it from the memory.

5.3.2 Temporal-isolation Schedulability Analysis

When the pre-emption delay is assumed to be zero (i.e., when the cache subsystem is parti-

tioned for example), the authors of [LSD89a] proposed the following schedulability test to

check at design-time, whether all the task deadlines are met at run-time.

Schedulability Test 1 (From [LSD89a]). A task set T is schedulable if, ∀τi ∈ T , ∃t ∈
(0,Di] such that

Ci +
i−1

∑
j=1

rbf(S j, t)6 t (5.14)

where

rbf(S j, t)
def
=

(⌊
t

T s
j

⌋
+1

)
×B j (5.15)

Theorem 12 (from [SSL89]). A periodic task-set that is schedulable with a task τi, is also

schedulable if τi is replaced by a sporadic server with the same period and execution time

Proof. According to the sporadic server protocol, every budget amount consumed by task

τi starting at time instant t, is only replenished at t +Ti. The value Bi =Ci assuming direct

relationship between the task τi WCET and the corresponding server budget. The budget Bi

can be consumed in the first instance in any conceivable fragmentation patters with initial

active transitions at time instants {t1, t2, · · · , tk} and corresponding execution requirements

{`1, `2, · · · , `k}. By definition ∑
k
g=1 `h 6 Ci. Let us define an arrival curve modeling the

worst-case workload request by a sporadic server assuming a several active transition events

in the first interval [0,Ti] and consecutive requests at the maximum possible rate in the

future. A function upper-bounding the execution requirements for any t can be constructed

as:

rb f `i
chunk =

(⌈
t− t`

Ti

⌉)

0
×H`

Straightforwardly the relation rb f (τi, t)> ∑
k
`=1 rb f `i

chunk is obtained.

By generalizing the fragmented situation from the first period to multiple ones it the ex-

ecution requirement considered for the sporadic task is always greater or equal to the worst-

case budget consumption by the server associated to τi for any possible interval length.

Hence the Lemma follows.

The correctness of the schedulability test 1 comes as a direct consequence of the Theo-

rem 12 as the presented test is the one for a task-set composed of periodic tasks [LSD89a].

105

5.4. PROPOSED BUDGET DONATION FRAMEWORK

As introduced earlier, if every task τi augments its budget for δ j,i time units after being

pre-empted by a task τ j, then an upper bound on the total budget augmentation in any time

window of length t is given by ∑
i−1
j=1 ∆ j,i(t).

It can be shown that in any given time window of length t, an upper-bound on the

number of execution resumptions in a schedule is given by q1,i(t) since according to its

definition the maximum possible number of job releases of tasks with priority greater than

i, in an interval [0, t], is accounted for. Therefore, assuming that performing each execution

of the budget augmentation consumes Fcost units of time, the time-penalty attached to the

implementation of the proposed framework has an upper bound of

delay(t) = q1,i(t)×Fcost (5.16)

Integrating these quantities into Schedulability Test 1 yields the following test:

Schedulability Test 2. A task set T is schedulable if, ∀τi ∈T , ∃t ∈ (0,Di] such that

Ci +delay(t)+
i−1

∑
j=1

[rbf(S j, t)+∆ j,i(t)]6 t (5.17)

Correctness of Schedulability Test 2. Function (5.6) upper-bounds the number of times that

jobs from task τ j may pre-empt jobs of priority lower than τ j and higher or equal than τi

in a window of length t. Function (5.5) (∆ j,i(t)) is the summation over the q j,i(t) largest

values in the multi-set M j,i(t). The function ∆ j,i(t) is then an upper-bound on the amount of

pre-emption delay compensation that can be extracted from task τ j from any task of priority

lower than τ j and higher or equal than τi in a window of length t. Thus ∑
i−1
j=1 ∆ j,i(t) is an

upper-bound on the pre-emption delay compensation budget used by tasks of priority higher

or equal than τi for any time t. As a consequence and by the correctness of schedulability

test 1, the correctness of this schedulability test is proven.

According to Schedulability Test 2 and as a consequence of Theorem 11, assuming

delay(t) = 0 then the proposed framework enables a higher schedulability than considering

the budget Bi of each server Si to be equal to Ci plus the maximum pre-emption delay that

any job of τi may be potentially subject to (see Equation (5.2)). However, in a scenario

where delay(t) is non-negligible the dominance relation does no longer hold.

5.4 Proposed Budget Donation Framework

The framework presented above is a combination of a reservation-based mechanism (budget

initially assigned to each task) and a budget augmentation policy (budget inflated at return

from pre-emption). This combination ensures that the temporal-isolation property is always

106

5.4. PROPOSED BUDGET DONATION FRAMEWORK

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

τ1

τ2

t

τ1

τ2

t

T1 T1

Figure 5.3: Excessive Pre-emption Delay Due to Minimum Interarrival Time Violation

met as long as none of the tasks violates its minimum inter-arrival constraint, i.e., as long

as none of them release two consecutive jobs in a time interval shorter than its pre-defined

period Ti. This condition of not violating the minimum inter-arrival constraint is implicitly

assumed by Equations (5.5) and (5.6), in which the upper-bound on the pre-emption delay

interference inherently relies on the number of jobs released by every task in a given time

window.

If any task violates its minimum inter-arrival time constraint, the temporal-isolation

property no longer holds. An example of this is depicted in Figure 5.3. On the left-hand side

of the picture, task τ1 releases a single job in a time interval of length T1. This job executes

for C1 time units and task τ2 suffers only from one pre-emption, leading to an increase of

δ1,2 on its execution requirement. In the right-hand side of the picture, τ1 releases more

than one job in the same time interval of length T1 and τ2 now suffers from 2 pre-emptions,

leading to an increase of 2× δ1,2 on its execution requirement. In the latter scenario, task

τ2 augments its budget accordingly but may face a deadline miss, or a lower priority tasks

may be subject to more interference than what was accounted for in the schedulability test.

In order to avoid this issue, a second server Yi is associated to each task τi. This server

Yi has parameters 〈Zi,TY
i 〉 – Zi is the budget and TY

i is the replenishment period. Unlike the

server Si, the budget Zi is not consumed while τi is running. The purpose of this second

server Yi is to “pay” for the damage caused by τi in the system when τi pre-empts another

task. That is, each task τ j, when it is pre-empted by τi, obtains a budget donations by

transferring some execution budget from the server Yi to its execution budget B j. These

budgets Yi impose a new condition to their associated task τi in order to accommodate for

the minimum inter-arrival misbehaviour: task τi is allowed to pre-empt only if there is

sufficient budget in Yi. In this way the pre-emption delay that τi may cause in the schedule

is tightly monitored.

The replenishment condition for server Yi is defined as follows:

Server Yi replenishment rule: At a time instant t ′, when task τi pre-empts some lower

107

5.4. PROPOSED BUDGET DONATION FRAMEWORK

priority workload, a replenishment event is set for Yi to occur at time instant t ′+TY
i . The

amount of budget replenished to server Yi at the t ′+TY
i event is equal to the quantity reserved

to pay the maximum pre-emption delay penalty associated to a single pre-emption.

This replenishment mechanism is in accordance with the sporadic server replenishment

rules [SSL89] and hence the server Yi is a sporadic server.

These two parameters Zi and TY
i are set by the system designer and the question of how

to define them will be discussed later. For now, bear in mind that these two parameters are

given for each task τi ∈T .

The purpose of each server Yi is to ensure that new jobs of a task τi can only be released

as long as the maximum pre-emption delay that τi can induce in the schedule (according to

the schedulability test) is available in Yi. To effectively implement this solution, the bud-

get augmentation mechanism presented in the previous section is reformulated as a budget

transfer mechanism. The main concept remains simple:

1. To release a new job (say at time t), a task τ j is required to have at least Pmax
j time

units in its budget Z j(t). This quantity Pmax
j is the maximum delay that τ j can cause

on the lower priority tasks by pre-empting them. It is straightforwardly defined as

Pmax
j

def
=

n

∑
k= j+1

δ j,k (5.18)

If Zi(t)< Pmax
j then τ j is not authorized to release a new job at time t and must wait

until the earliest time instant t ′ > t when Z j(t ′)> Pmax
j .

2. Unlike the budget augmentation protocol proposed in the previous section, each time

a task τi resumes its execution (say at time t) after being pre-empted (let H(i) denote

the set of tasks that pre-empted τi), τi does not experience its execution budget Bi(t)

being simply augmented by ∑τ j∈H(i) δ j,i time units, with ∑τ j∈H(i) δ j,i coming from

thin air. Instead, δ j,i(t) time units are transferred from the budget Z j(t) of each task

τ j ∈ H(i) to its execution budget Bi(t).

It is important to stress that this framework is explained by considering two distinct

servers to ease explanation and to allow for more flexibility in order to have different re-

plenishment periods for the execution and pre-emption delay donation server. Nevertheless,

if there is not sufficient budget in the pre-emption compensation server and there is suffi-

cient budget on the execution server then the required budget on the execution server has

to be transferred to the pre-emption delay server. This prevents the generation of unwanted

blocking scenarios.

Informally speaking, the underlying concept behind this budget transfer protocol can be

summarized as follows: “a task τi is allowed to pre-empt only if it can pay for the maximum

108

5.4. PROPOSED BUDGET DONATION FRAMEWORK

damage that it may cause to all the tasks that it may pre-empt”. If the task τi can pay the

required amount of time units, i.e., τi has a provably sufficient amount of time units saved

in its budget Zi(t), then it can release its new job and the pre-empted tasks will claim their

due pre-emption delay compensation when they will eventually resume their execution.

This simple concept makes the framework safe. Rather than a formal proof, a set of

arguments to substantiate the claim is provided. Suppose that a task τi starts misbehaving by

frenetically releasing jobs that execute for an arbitrarily short time; hence clearly violating

its minimum inter-arrival constraint.

1. From the point of view of a higher priority task (say, τ j): each job of τ j can pre-empt

at most one job from τi and before releasing each of its jobs, τ j makes sure that there

is enough provision in its budget Yj to compensate for the damage caused to the lower

priority tasks, including τi.

2. From the point of view of the misbehaving task τi: this task will keep on generating

jobs until its budget Zi(t) is depleted. For each job released, the framework ensures

that the job can actually pay for the damage caused to the lower priority tasks. Re-

garding the higher priority tasks, each job of τi may be pre-empted and request some

extra time units upon resumption of its execution. However, this extra budget re-

quested has been accounted for when the higher priority jobs were allowed to be

released – as mentioned in 1).

3. From the point of view of a lower priority task (say, τk): each job of τk may be pre-

empted multiple times by the abnormal job release pattern of τi. However, upon each

resumption of execution, τk will be compensated for the delay incurred by receiving

some extra time units from the budget Zi(t) of the misbehaving task – as guaranteed

in 2).

As seen, the sole purpose of each server Yi, ∀i∈ [1,n] is to control the pre-emption delay

that the task τi induces on the schedule. Since the upper-bound on the pre-emption delay

related interference is now dictated by these servers, Schedulability Test 2 presented in the

previous section can be rewritten as:

Schedulability Test 3. A task set T is schedulable if, ∀τi ∈T , ∃t ∈ (0,Di] such that

Ci +delay(t)+
i−1

∑
j=1

[rbf(S j, t)+ rbf(Yj, t)]6 t (5.19)

Correctness of Schedulability Test 3. The replenishment mechanism of server Yi is in ac-

cordance with the sporadic server replenishment rules. As a consequence of this fact and

according to the Theorem 12 the maximum amount of budget consumed in any interval of

109

5.5. LIMITING THE PRE-EMPTION INDUCED BUDGET AUGMENTATION FOR
MISBEHAVING TASKS

length TY
i is Zi. This means that rbf(Yj, t) is an upper-bound on the budget used for ex-

ecution by any task that was pre-empted by task τ j and got the due compensation in any

interval of length t. By this reasoning and the correctness of schedulability tests 1 and 2 the

correctness of this schedulability test is thus proven.

The choice of the parameters of each Yj server is left at the criteria of the system de-

signer. However, in a given period Ti any task τi will require at least the execution of one

job. As a consequence the budget Zi of Yi must necessarily be greater than or equal to Pmax
i .

The simpler approach would be to define each server Yi as 〈Zi = Pmax
i ,TY

i = Ti〉 as Yi would

have enough budget to compensate for all the interference that τi may cause in the schedule,

assuming that the minimum inter-arrival constraint is not violated. However, the system

designer may prefer TY
i > T S

i to provide more flexibility in case the task τi is expected to

violate its minimum inter-arrival constraint, or even to accommodate intended bursty arrival

of requests.

As a last note it is important to state the advantage of this framework with respect to

a simple mechanism imposing a limitation on the number of jobs a task may release in a

given time window. With this framework the number of jobs that a task may release without

breaking the temporal-isolation guarantees is variable (and always greater than the worst-

case that had to be considered if a static number of jobs had to be enforced) since this

depends on the number of lower priority jobs that it has actually pre-empted so far. This

allows for a more dynamic system with overall better responsiveness.

5.5 Limiting the Pre-emption Induced Budget Augmentation for
Misbehaving Tasks

Suppose that a task τi misbehaves by violating its minimum inter-arrival constraint, i.e.,

it releases more than one job in a time interval < Ti, and one of its jobs gets pre-empted

by a higher priority task, it is meaningful to consider whether task τi should get a pre-

emption delay compensation when it will eventually resume its execution. In fact, it might

be preferable not to transfer extra time units to its budget Bi until it returns to a state where

it is respecting its contract parameters.

For this choice of design, Schedulability Test 3 becomes:

Schedulability Test 4. A task set T is schedulable if, ∀τi ∈T , ∃t ∈ [0,Di] such that

Ci +delay(t)+
i−1

∑
j=1

rbf(S j, t)+
i−1

∑
j=1

min

rbf(Yj, t),

q′j,i(t)

∑
`=1

`
max(M j,i(t))

6 t

110

5.6. IMPLEMENTATION ISSUES

��
��
��

��
��
��

�
�
�
�

��
��
��
��

t

τ4

τ3

τ2

τ1

t

Z1

H1

δ2,4

t

δ1,4 + δ3,4

B4

Pmax
1 =

∑4
k=2 δ1,k

δ1,3

δ1,4

Figure 5.4: Budget Augmentation Example

where

q′j,i(t)
def
=

i−1

∑
k= j

nk(t)

since the tasks are not eligible for pre-emption delay compensation when they don not

meet the minimum interarrival requirements, the maximum pre-emption delay related inter-

ference in the schedule is still upper-bounded by the analysis presented in Equation (5.5).

5.6 Implementation Issues

An efficient implementation is key for a useful approach to server-based scheduling. The

general principle pursued is that the pre-emption delay repayment budget is only granted

when an actual pre-emption occurs and is only transferred on resumption of execution.

111

5.6. IMPLEMENTATION ISSUES

δ1,2 δ1,3 δ1,nδ2,3 δn−1,n

Figure 5.5: Pre-emption Delay Compensation Array

As a first step the pre-emption delay repayment budget values δi, j are arranged in a

linear pre-emption delay array (Figure 5.5).

A second data structure employed to assist on the management of the temporal isolation

framework is termed the pre-emption queue. This queue trivially maintains a depiction of

the pre-emption order. When a task is first dispatched to execute upon the processor and

hence pre-empts a previously running task then this task is inserted into the pre-emption

queue. When a task terminates its execution it is removed from the queue.

As a third element, each task τi’s control block has two bitfields (outb f (τi) and inb f (τi))

of length n. The “in” bitfield contains the information about which tasks have to compensate

τi and the “out” bitfield conserve the information about the tasks which have to compensate

tasks which were pre-empted by τi. The mechanism utilizing this information is described

in Algorithm 8. At the moment of job release from τi, the “out” bitfield is initialized with

only the bit relative to τi set (i.e. outb f (τi) = 0x1 << (i−1)).

When a job τ j terminates its execution at time t, it holds true that τ j is the head of the pre-

emption queue. At this time instant the task immediately preceding τ j in the pre-emption

queue (τi) has its “in” bitfield assigned in the following way: inb f (τi) = inb f (τi)∨outb f (τ j).

Scheduling decisions are only taken after this procedure terminates. After this operation it

is not necessarily true that τi will become the head of the pre-emption queue and execute on

the processor.

When a job from τi resumes execution, after a pre-emption, the scheduler examines

the “in” bitfield inb f (τi). The “in” bitfield holds the information on which tasks have pre-

empted τi since the last time instant at which it was executing. The budget from server Si

is then accordingly augmented. If the considered framework is the one ensuring temporal-

isolation with respect to minimum inter-arrival time misbehaving the corresponding pre-

emption delay donations are deduced from the pre-emption delay donation servers of the

tasks which have pre-empted τi.

After the budget of the task is duly augmented, the “out” bitfield is logically ORed with

the “in” bitfield (i.e. outb f (τi) = inb f (τi)∨ outb f (τ j). Immediately after this step the “in”

bitfield is reset (inb f (τi) =0x0). These three procedures need to be carried out atomically.

Let us use a different schedule example to better visualize the bitfield related operations.

In Figure 5.6 an example of the bit-field evolution as a response to a given set of events is

presented. There are 9 events present. When a task has no active job in the system its bit

112

5.7. EXAMPLE OF FRAMEWORK USAGE WITH CRPD

0001

0010

0100

1000

0000

0010

0100

1000

0000

0000

0100

1000

0000

0000

0110

1000

0001

0000

0110

1000

0000

0010

0111

1000

0000

0000

0111

1000

0000

0000

0000

1111

0000

0000

0000

1000

outbf (τ1)
outbf (τ2)
outbf (τ3)
outbf (τ4)

τ4

τ3

τ2

τ1

t

t2 t3 t4 t5 t6 t7 t8 t9t1

inbf (τ3) = 0001
inbf (τ2) = 0000

Figure 5.6: Bit Field Snapshots of Relevance

field is by default 0. At events 1–3, tasks τ1 to τ3 release jobs, consequently their bit fields

are set to their respective index. At time t4, the first job of task τ2 finishes its execution. At

this time instant, and since τ2 is the prior pre-emption queue head and τ3 is the task after the

queue head, the bit field from task the inb f (τ3) = inb f (τ3)∨outb f (τ2). After this operation

is performed inb f (τ2) = 0. At t5 and t6 jobs from τ1 and τ2 are released correspondingly.

At each event the corresponding bitfield is set accordingly. The job from task τ1 terminates

at t7. At this time instant, the “out” bitfield of task τ1 is passed onto the subsequent task in

the pre-emption queue (τ3). Hence inb f (τ3) = inb f (τ3)∨ outb f (τ1) Since τ2 was not in the

ready queue the “out” bitfield from τ1 does not get passed to its “in” bitfield.

The algorithm describing the bitfield inspection and budget augmentation is presented

in Algorithm 8. Notice that in the scenario where minimum inter-arrival times cannot be

relied upon, after the budget is augmented (line 6), the same value has to be decreased from

the Yindex server of the pre-empting task. In the same framework it is then necessary to set

up a replenishment event for server Yindex, Tindex units after the execution resumption (line

7). At this replenishment event Zindex is set to be replenished by δ [array_index] units. The

variable offseti is an offset with respect to the base of the δ array, where the first element

pre-emption delay compensation value (δ1,i) from task τi is stored (Figure 5.5).

5.7 Example of Framework Usage with CRPD

The previously described theory may be exploited in order to ensure temporal-isolation with

respect to any subsystem holding state concurrently accessed by tasks in the system. In this

113

5.7. EXAMPLE OF FRAMEWORK USAGE WITH CRPD

Algorithm 8: Pre-emption Delay Augmentation Algorithm

τi execution resumption after pre-emption: index = 0;
while index < i do

if inb f (τi)& 0x1 then
array_index = offseti+ index;
Bi+= δ [array_index];
Yindex−= δ [array_index];
Set_replenishment_event(τindex,δ [array_index])

inb f (τi) = inb f (τi)>> 1;
index++;

inb f (τi) = 0x0

section a description on how temporal-isolation is ensured, when caches are present in the

execution platform by usage of the presented framework, is provided.

At each program point a task has a set of useful memory blocks (UCB) in cache. These

memory blocks were loaded into the cache at some prior program point and will be reused

in the future. Each program point p of task τk has an associated UCB set denoted as

UCBp
k [AB09]. Additionally, the set of cache lines accessed during the execution of task τ j

(ECB j) [AB09] may be constructed.

The maximum CRPD which a pre-emption by task τ j may induce in task τk is then

defined as [AB09]:

δ j,k
def
= BRT ×max

p

{∣∣∣UCBp
k

⋂
ECB j

∣∣∣
}

(5.20)

BRT is a constant, denoting the worst case latency for a cache miss to be served.

5.7.1 Temporal-isolation Assumptions

In order to ensure full temporal-isolation with the used pre-emption delay estimation mech-

anisms, when using information from the pre-empting tasks to compute the δ j,i, it is manda-

tory to ensure that the ECB sets of each pre-empting task are met at run-time, as it is as-

sumed that a task can execute for longer than expected, which implies that it might in turn

also use a larger cache footprint.

Both instruction and data cache footprints have to be relied upon. In order to ensure the

worst-case cache footprint, it suffices to ensure that each task only accesses the basic blocks

assumed in the static analysis. This can be easily achieved with the work by Martín Abadi

et al. [ABEL09], where each jump instruction is guarded against jumps into illegal memory

locations. Since at run-time, all the possible basic blocks accessed are the exact same as the

ones assumed in the static analysis the instruction cache ECB set is never violated. When

114

5.7. EXAMPLE OF FRAMEWORK USAGE WITH CRPD

using [ABEL09], all the jump targets in the code are statically defined, i.e. jump to function

pointers in the code are not allowed.

In the case of data caches, since the basic blocks accessed at run-time are enforced,

it is sufficient to ensure that no dynamic memory is used, which is generally the case in

real-time workload. Another assumption is that any access to an array is guarded against

accesses outside of the array bounds. As a last assumption, recursive calls are forbidden in

order to ensure that the stack footprint is known offline.

If the ECB set of any task cannot be relied upon, it is always safe to consider that the

maximum pre-emption delay induced in task τk when pre-empted by any task τ j is the time

to reload the entire UCBk set:

∀ j : δ j,k = BRT ×|UCBk| . (5.21)

5.7.2 Experimental Results

In order to assess the validity of the contribution a set of experiments was conducted.

The schedulability guarantees from the proposed framework is trialled against the scenario

where the maximum pre-emption delay is integrated into the budget of the execution server.

Results for the same task sets are also displayed for a schedulability test oblivious of pre-

emption delay. As in previous chapters, all tasks are generated using the unbiased task set

generator method presented by Bini (UUniFast) [BB04a].

Task systems are generated for every utilization step in the set {0.75,0.8,0.85,0.9,0.95}
in a random fashion, their maximum execution requirements (Ci) were uniformly distributed

in the interval [20,400]. Knowing Ci and the task utilization Ui, Ti is obtained. At each

utilization step 1000 task sets are trialled and checked whether the respective algorithm

considers it schedulable. Task set sizes of 4, 8, and 16 tasks have been explored. The

relative deadline of tasks is equal to the minimum inter-arrival time (Di = Ti).

When each task is randomly generated pre-emption delay cost is obtained for each task

pair in the task-set. The cache considered is composed of 10 cache lines. For each task a

set of useful cache lines is computed, the usage of each cache line follows a uniform distri-

bution. Similarly for each task a set of cache lines which are accessed during its execution

is computed. The cardinality of interception of the useful set of τi with the accessed set of

τ j upper-bounds the maximum number of cache lines that τi has to re-fetch has a result of a

pre-emption by τ j.

The servers Si have been attributed parameters Bi = Ci and T S
i = Ti. For the situation

where the pre-emption delay server Yj is put to use, its parameters are Z j = ∑ j<k δ j,k and

TY
j = Tj.

The results are depicted in Figures 5.7a to 5.7c. In the plots the scenario where the

pre-emption delay is incorporated into the task execution budget is displayed is presented

115

5.7. EXAMPLE OF FRAMEWORK USAGE WITH CRPD

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96

Ta
sk

se
ts

 S
ch

e
d
u
le

d

Total Utilization

Preempting
Preempted

No preemption delay
Preemption Delay Server

(a) 4 tasks

 0

 200

 400

 600

 800

 1000

 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96

Ta
sk

se
ts

 S
ch

e
d
u
le

d

Total Utilization

Preempting
Preempted

No preemption delay
Preemption Delay Server

(b) 8 tasks

 0

 200

 400

 600

 800

 1000

 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96

Ta
sk

se
ts

 S
ch

e
d
u
le

d

Total Utilization

Preempting
Preempted

No preemption delay
Preemption Delay Server

(c) 16 tasks

Figure 5.7: Schedulability Comparison With CRPD

116

5.8. TEMPORAL-ISOLATION FRAMEWORK CONSIDERATIONS

by the green line with “x” points. The presented framework for well-behaving minimum

inter-arrival times is represented by the red line with “+” points. The purple line with square

points represents the framework performance for situations where the minimum inter-arrival

times cannot be trusted. Finally the blue line with “star” points displays the results for fixed

task priority schedulability test disregarding pre-emption delay.

From the displayed results it is apparent that the schedulability achieved with the pro-

posed framework is generally significantly higher than the one enabled by the simpler ver-

sion considering the pre-emption delay as part of the execution budget. When the minimum

inter-arrival times cannot be relied upon the schedulability degrades. It is important to

note that the proposed framework ensures temporal-isolation and there exists no other solu-

tion apart from this one which ensures the temporal-isolation property for the given system

model. Furthermore, when the number of tasks is small, the framework which provides

the stronger guarantees appears to have on average a higher scheduling performance. The

schedulability reduction attached to the framework for misbehaving tasks with respect to

the minimum inter-arrival time is the price to pay for the added guarantees.

5.8 Temporal-isolation Framework Considerations

Reservation-based systems are one fundamental way to enforce temporal-isolation in safety

critical real-time systems. It is shown in this chapter that, when pre-emption delay is present

in the system, the prior state of the art temporal-isolation mechanisms induce pessimism in

the analysis and in the budget allocation procedures. This inherent limitation is one of

the fundamental motivators for the presented run-time budget augmentation mechanism.

This framework enables a provably reduction on the budget over-provisioning in platforms

with non-negligible pre-emption delay overheads. For a more realistic model in which the

minimum inter-arrival time of tasks cannot be relied upon, there existed no prior result

in the literature ensuring temporal-isolation (for systems where pre-emption delay is non-

negligible). A second framework which relies on budget transfers between pre-empting and

pre-empted tasks effectively enforces the temporal-isolation property in such a considerably

challenging system model (where execution requirements and minimum inter-arrival times

cannot be trusted upon).

117

5.8. TEMPORAL-ISOLATION FRAMEWORK CONSIDERATIONS

118

Chapter 6

Multi-processor Limited Pre-emptive
Theory

As multicores are currently a mainstream computing apparatus, and will remain so in the

foreseeable future, some COTS platforms are being increasingly adopted as target platforms

in the embedded domain. In time it is expected that these will be used in the high criticality

embedded world. It is thus important to study the scheduling theory that would govern the

operation of such systems.

Current real-time operating systems provide supports symmetric multiprocessor schedul-

ing. A number of global scheduling policy types exist. These can be categorized into distinct

classes with respect to where tasks and their constituent jobs are allowed to execute [DB11].

One extreme is the fully partitioned scheduling. Tasks are statically allocated to one pro-

cessor, its workload can then only execute on the same single processor. On the other end

of the spectrum lies the global scheduling where there is no a-priori restriction on which

processor the workload of any task will execute. Both fully partitioned and global fixed

task priority scheduling policies are provided out of the box in popular real-time operating

systems [Win].

A shortcoming of the literature on the schedulability assessment for global multicore

scheduling is that the workload is assumed not to incur additional overheads when pre-

emptions and migrations happen. The cost of pre-emptions and especially migrations be-

tween cores that do not share cache have been shown to be quite significant [BBA10]. As

in fully pre-emptive disciplines for single core it is difficult to quantify the number of pre-

emptions a given task is subject to. Moreover in multicore when a pre-emption occurs a

subsequent migration may take place. It is then beneficial to quantify these events and,

if possible, avoid these effects when these prove unnecessary for correct system temporal

behaviour. With this intent in mind the theory of limited pre-emptive scheduling is de-

vised for symmetric multicores. The model presented allows for the accurate definition of a

119

6.1. GLOBAL FIXED TASK PRIORITY RESPONSE TIME ANALYSIS

limited set of points where a given task may be pre-empted, hence allowing for reduced pes-

simism when analysing the effect of pre-emptions and migrations. The work presented in

this Chapter largely follows what has already been presented in [MNP+13] and [DBM+13]

but extends it as well in what respects to pre-emption delay integration into the analysis and

on schedulability assessment of the ADS policy.

6.1 Global Fixed Task Priority Response Time Analysis

In this chapter the limited pre-emptive global scheduling theory is defined. The schedula-

bility test is presented with three approaches to estimate the blocking from lower or equal

priority non-pre-emptive regions. The new scheduling policy is shown to ensure that a job

can be blocked by lower priority workload only before its first dispatch. This compares

favourably with the scheduling policy termed RDS which is subject to multiple instances of

blocking throughout the execution of a given job. The presented scheduling policy (ADS)

dominates global fully pre-emptive fixed task priority and fully non-pre-emptive scheduling

with respect to schedulability. As final contributions the blocking estimation mechanisms

are compared against each other. Finally, the ADS policy is shown to drastically reduce

the number of pre-emptions occurring in the schedule when compared to global fully pre-

emptive scheduling.

0

Cj

Cj Tj Tj + Cj 2Tj + Cj2Tj

WNC(τj, t)

WCI(τj, t)

Tj + Cj −Rj 2Tj + Cj −Rj

2Cj

3Cj

Figure 6.1: Functions W NC(τ j, t) and W CI(τ j, t) depiction for a given task τ j

In global fully pre-emptive fixed priority scheduling, if a task τ j has no pending work-

load at the beginning of an interval, an upper bound on the workload which it may execute

in an interval of length t is given by [GSYY09]:

W NC
j (t) =

⌊
t
Tj

⌋
×C j +min(t mod Tj,C j) (6.1)

120

6.1. GLOBAL FIXED TASK PRIORITY RESPONSE TIME ANALYSIS

In (6.1) a release of a job from task τ j is assumed to occur at time instant 0 and subsequent

releases occur at the minimum inter-arrival time, in fact leading to a worst-case amount of

workload released in an interval of length t when no carry-in is present.

Similarly, if the same task τ j might have some pending workload released before the

beginning of the interval, a conservative upper-bound on the workload it may execute in an

interval of length t is given by [GSYY09]:

W CI
j (t) =

⌊
max(t−C j,0)

Tj

⌋
×C j +C j +min

(
[[t−C j]0 mod Tj− (Tj−R j)]0 ,C j

)
(6.2)

In Equation (6.2) a job of task τ j is assumed to be released before the start of the interval and

that it will execute the bulk of the workload after the interval starts. The upper-bound present

in Equation (6.2) assumes that the carry-in job from task τ j was subject, since its release

at time instant −RUB
j −C j until the beginning of the interval, to the worst-case scenario

such that this job has not executed any workload yet. The execution of the workload will

terminate R j time units after the job was released. Subsequent jobs are released with the

minimum inter-arrival separation. The second job is then released at time instant Tj−R j +

C j. This constitutes a conservative estimation of the workload a task τ j executes in a given

time interval of length t if there exists some pending workload released at some point before

the beginning of the interval.

For the same task τ j Equation (6.2) is an upper-bound on Equation (6.1), this can be

observed from the graphical representation of both functions presented in Figure 6.1. The

difference between the upper-bound considering a carry-in scenario and one where no carry-

in is considered yields the following non-negative quantity:

W diff
j (t) =W CI

j (t)−W NC
j (t) (6.3)

In [GSYY09] it is shown that a conservative upper-bound on the amount of higher priority

workload which will execute during the response time of a job from task τi is constructed

by assuming that some m− 1 higher priority tasks have pending workload at the time of

τi’s job release and that a synchronous release of jobs from the remaining higher priority

tasks occurs at the same instant as τi’s job release. Writing this upper-bound in more formal

terms yields:

Ωi(t)
def
=

(
m−1

∑
l=1

`
max

τ j∈hp(i)
W diff

j (t)

)
+ ∑

τ j∈hp(i)
W NC

j (t) (6.4)

Where max`τh∈τ1,··· ,τi−1
returns the `th greatest function value along the higher priority task’s

workload dimension. In a situation where no higher priority task has carry-in workload

at the beginning of the time interval, a sum over all the W NC(τ j, t) functions of tasks of

121

6.1. GLOBAL FIXED TASK PRIORITY RESPONSE TIME ANALYSIS

higher priority than τi would yield an upper-bound on the higher priority workload that

would execute in the time interval of length t. Since it is known that in the worst-case some

m− 1 tasks present carry-in workload at the beginning of the interval, then this additional

workload will never exceed the difference between the maximum workload in a no carry-in

situation and the carry-in situation. By choosing the m− 1 higher priority tasks which for

a given interval length display the biggest difference between the no carry-in and carry-

in situation and by summing these differences over all functions of no carry-in an upper-

bound on the workload which higher priority tasks may execute in the interval of length t is

obtained.

In [Bak03] Baker showed that in a multi-core platform composed of m identical cores,

a unit of higher priority workload can interfere with the execution of task τi by at most
1
m time units. Consider that some task τ j is executing on one processor during one time

unit. By executing on this processor it will not prevent τi from getting hold of some other

processing entity as there exist m−1 others in the platform. In order for τi to be prevented

from executing, the m processors need to be busy. In order for m cores to be busy for

one time unit then m time units of higher priority workload need to execute on the overall

platform. Combining (6.4) and this fact enables the statement of the upper-bound on the

overall interference a task τi is subject to in a time interval of length t. This is written as:

Ii(t) =
Ωi(t)

m
(6.5)

When considering the fully pre-emptive global fixed task priority scheduling policy, by

exploiting the upper-bound on the interference by higher priority workload, the following

sufficient schedulability test is devised:

∀τi ∈T ,∃t ∈ [0,Di] : Ii(t)+Ci 6 t (6.6)

A task-set is said to be schedulable if for all task τi ∈ T the condition in (6.6) holds.

The schedulability test presented in (6.6) is a sufficient test. This means that some task-sets

may indeed manage to meet all the deadlines even if for some tasks the condition in (6.6) is

not met. Nevertheless if the condition is met for all the tasks in the taskset then the timing

requirements of all the tasks are guaranteed to be met at run-time.

Similarly to the single processor case this condition need not be tested for all of the

values in the continuous interval [0,Di] but rather for a finite number of time instants. Both

functions W NC
j (t) and W CI

j (t) are piecewise linear functions, i.e. they may be defined as a

set of linear functions in distinct time intervals. As a consequence of this, the Ωi(t) function

itself may be defined as a set of linear functions in distinct time intervals as well. Hence

the relation t− Ii(t) is maximized in the [0,Di] interval for some value t ∈ Γi. The set Γi

encloses the Γ′i set of points where the first derivative of the function Ωi(t) changes in value

122

6.1. GLOBAL FIXED TASK PRIORITY RESPONSE TIME ANALYSIS

and the time instant of the deadline Di of τi. The Γ′i∪{Di} set of points contains the points

of interest when trying to maximize the value of t− Ii(t).

Let us now focus on the derivation of the set Γi containing the points where the condition

has to be tested.

Tj + 2Cj −Rj

Tj
Tj + Cj −Rj

Tj + Cj
0 0

Tj + Cj −Rj

Tj Tj + Cj

Cj

0

Cj

2Cj

0

2Cj

Cj

Cj

WNC(τj, t)

WCI(τj, t)

Tj + 2Cj −Rj

W diff(τj, t) W diff(τj, t)

Figure 6.2: Functions W diff(τ j, t) depiction for two distinct relations between C j and R j

The difference between Ωi(t) and the supply line is maximized at some points where the

Ωi(t) first derivative changes value. The Ωi(t) function has increases in its first derivative

at specific points which are related to scenarios here described.

Since the Ωi(t) function is a sum of two functions for each higher priority task, the

changes in the Ωi(t) function first derivative can only occur at any t where either the first

derivative of W diff(τh, t) or W NC(τh, t) changes or if both change.

1. first derivative increase of W NC(τ j, t):

occurs at every k×Tj (this can be observed in Figure 6.1)

Γ
1
i

def
=

⋃

j∈{1,··· ,i−1}

{
k×Tj|k ∈ N,0 6 k 6 t

Tj

}

2. first derivative increase of W diff(τ j, t):

occurs at every k×Tj +C j−R j (this can be observed in figures 6.1 and 6.2)

123

6.1. GLOBAL FIXED TASK PRIORITY RESPONSE TIME ANALYSIS

3c

0

Cj

W diff(τj, t)

MDl MDk

3a
3b

Figure 6.3: Intersection Points Between the W diff(τ j, t) Functions of Distinct Higher Priority
Tasks

Γ
2
i

def
=

⋃

j∈{1,··· ,i−1}

{
k×Tj +C j−R j|k ∈ N,0 6 k 6 t +R j−C j

Tj

}
(6.7)

3. When there is a change in the set of m− 1 W diff(τ j, t) functions with greatest value.

Three distinct situations have to be considered. These distinct typology of occur-

rences can be observed in Figure 6.3 where the three situations are marked accord-

ingly:

(a) When “upward segment” of one W diff(τ j, t) “intersects a plateau” of another

W diff(τk, t) function

(b) When “downward segment” of one W diff(τ j, t) “intersects a plateau” of another

W diff(τk, t) function

(c) When “upward segment” of one W diff(τ j, t) “intersects” with a “downward seg-

ment” of another W diff(τk, t) function

Let us define the following variable MD j =min{C j,R j−C j}which represents the maxi-

mum value of the function W diff(τ j, t) for any time instant t. The upward segments of

W diff(τ j, t) start at every k×Tj +C j−R j and terminate at k×Tj +C j−R j +MD j. Whereas

a downward segment starts at every k×Tj +C j−MD j and terminate at k×Tj +C j.

In a time window of length t, a task τ j has at most K j =
⌊

t+R j−C j
Tj

⌋
upward segments of

function W diff(τ j, t) since for each k 6 t−C j+R j
Tj

one upward segment starts inside the time

interval of length t. For the case 3a it suffices to check for each k 6 K j, k×Tj +C j−R j +

max(MDh,MD j) and for each remainder higher priority task τh. Only MDh units after its

beginning can an upward segment of task τ j intersect a plateau of another task τh. In case

the maximum value of W diff(τh, t) is greater than the maximum value of W diff(τ j, t) then an

124

6.1. GLOBAL FIXED TASK PRIORITY RESPONSE TIME ANALYSIS

upward segment from τk will never intersect the plateau of τh.

Γ
3a
i

def
=

⋃

j∈{1,··· ,i−1}

⋃

h∈{1,··· ,i−1}\ j

{
k×Tj +C j−R j +max(MDh,MD j)| k ∈ N,0 6 k 6 K j

}

(6.8)

In a time window of length t, a task τ j has at most L j =
⌊

t−C j+MD j
Tj

⌋
downward segments

of function W diff(τl, t) since for any l 6 t−C j+MD j
Tj

a downward segment of τ j starts in a

time interval of length t. For the case 3b it is enough to check the condition for all l 6 L j,

l×Tj−C j−max(MDh,MD j) and for each remainder higher priority task τh. If a downward

segment from task τ j intersects a plateau from task τh then the intersection occurs at l×Tj+

C j−MDh, i.e. MDh time units before the downward segment from τ j ends. If the plateau

of τh is greater than the plateau from τ j this intersection never occurs.

Γ
3b
i

def
=

⋃

j∈{1,··· ,i−1}

⋃

h∈{1,··· ,i−1}\ j

{
l×Tj +C j−max(MDh,MD j)|l ∈ N,0 6 l 6 L j

}
(6.9)

The third case 3c proves slightly more complex. For each of the K j downward segments

from τ j, the possible upward segments of task τh with which it intersects need to be found.

An intersection between an upward segment from τh and a downward segment from τ j

occurs at midpoint between the start of the upward segment and the end of the downward

segment. Again, a downward segment from τ j terminates at k×Tj +C j. This downward

segment can only intersect with the upward segment from τh which started before time

instant k×Tj +C j. The later upward segment from τh then starts at time instant

⌊
k×Tj +C j−Ch +Rh

Th

⌋
×Th +Ch−Rh (6.10)

The set Γ3c
i is then defined as:

Γ
3c
i

def
=

⋃

j∈{1,··· ,i−1}

⋃

j∈{1,··· ,i−1}\ j

⌊
k×Tj+C j−Ch+Rh

Th

⌋
×Th +Ch−Rh + k×Tj +C j

2
|k ∈ N,0 6 k 6 K j

 (6.11)

The set Γi is finally constructed by applying the union set operation over all the previ-

ously described sets:

Γi
def
= Γ

1
i ∪Γ

2
i ∪Γ

3a
i ∪Γ

3b
i ∪Γ

3c
i ∪{Di} (6.12)

125

6.2. GFTP LIMITED PRE-EMPTIVE SCHEDULING POLICIES

When the schedulability condition is tested over a discrete set of points the response

time computation can still be efficiently carried out:

t1 = min{t ∈ Γi|Ii(t)+Ci 6 t} (6.13)

t2 = max{t ∈ Γi|t < t1} (6.14)

RUB
i = t1 +

Ii(t1)+Ci− t1
1− Ii(t2)−Ii(t1)

t2−t1

(6.15)

The quantity RUB
i ∈ (t2, t1] is the intersection between the line segment

I(t) =
I(t1)− I(t2)

t1− t2
× t + I(t1)−

I(t1)− I(t2)
t1− t2

× t1 (6.16)

defined ∀t ∈ (t2, t1] and the supply line f (t) = t.

The formulation of the sufficient schedulability condition presented in this work is

equivalent to the one in [GSYY09].

6.2 GFTP Limited Pre-emptive Scheduling Policies

In a multi-core platform global fixed task priority fully pre-emptive scheduling discipline

may be informally described as a policy where at any time t the m highest priority tasks

with available workload execute on the m processors comprising the platform.

When tasks are composed of both pre-emptible and non-pre-emptible workload then

more complex protocols may be devised reflecting the more complex nature of the work-

load. In this work two scheduling policies are considered:

1. Regular Deferred Scheduling (RDS): At any point in time, the pre-emptible jobs ex-

ecuting on any processor are eligible for being pre-empted by a higher priority job;

2. Adapted Deferred Scheduling (ADS): At any point in time a pre-emption can only

occur if the lowest priority running job is pre-emptible, in which case the lowest

priority running job is pre-empted from the processor on which it runs and the highest

priority waiting job is dispatched onto the same processor.

Bear in mind that these are only two generalisations of the regular fully pre-emptive

scheduling discipline. The RDS policy is the straightforward derivation of the fully pre-

emptive scheduler whereas the ADS is an adaptation which enables some interesting prop-

erties with respect to lower priority interference to be achieved.

In the RDS policy, a higher priority job from τi might suffer interference from lower

priority non-pre-emptive regions more than once after τi has commenced execution. A

situation where said priority inversion occurs after the start of τi execution may be observed

126

6.2. GFTP LIMITED PRE-EMPTIVE SCHEDULING POLICIES

t

π2

π1

π2

π1

τi

RDS Schedule

τi

HP release
ADS Schedule

HP release

HP

LP

HPLP

t

Figure 6.4: Possible Priority Inversion After a Job From τi Commences Execution in RDS

in the top schedule displayed in Figure 6.4. In Figure 6.4 the crosses represent fixed pre-

emption points. The bottom schedule in the same picture displays the ADS schedule for

the specific workload pattern. In this case, before τi is pre-empted, all other lower priority

workload has to be pre-empted first from the platform. A task can only be pre-empted if it

is the task currently running upon some processor such that it has the lowest priority among

all tasks currently executing in the system.

Once a task starts to execute its last non-pre-emptive region it ceases to suffer interfer-

ence, as a consequence it is only subject to interference during the execution of the first

Ci−Qi units of workload. The schedulability test then becomes:

∃t ∈ [0,Di−Qi] : t− 1
m
×
(

WAdi f f
i (t)+ ∑

τ j∈hp(i)
W NC

j (t)+ANC
i (t)

)
− (Ci−Qi)> 0

(6.17)

The corresponding upper-bound on the response time of a given task τi can thus be com-

puted as:

RUB
i =min

{
t|t− 1

m
×
(

WAdi f f
i (t)+ ∑

τ j∈hp(i)
W NC

j (t)+ANC
i (t)

)
− (Ci−Qi)> 0

}
+Qi

(6.18)

127

6.3. RDS LOWER PRIORITY INTERFERENCE

Similarly to the fully pre-emptive scenario, the term ∑τ j∈hp(i)W NC
j (t) upper-bounds the

maximum interference that higher priority workload may induce on τi when no higher prior-

ity carry-in exists. The ANC
i (t) function characterizes the maximum amount of interference

due to lower priority workload released inside the interval of interest, which may exhibit

non-pre-emptive regions and hence prevent higher priority workload from executing on the

processors. The function WAdi f f
i (t) encapsulates the maximum interference contribution

from carry-in workload. This is workload which was released before or immediately before

the beginning of the interval of interest and which will be executed inside the interval of

interest.

Similarly to the fully pre-emptive GFTP sufficient test [GSYY09], where only m− 1

higher priority tasks with carry-in workload are considered, in the limited pre-emptive

scheduling policies at most m− 1 higher priority tasks are considered to have carry-in (al-

though the worst-case response time of higher priority tasks may be higher in the limited

pre-emptive scenario).

In the case of non-pre-emptive regions there might exist at most m lower priority tasks

which were executing immediately before the start of the interval of interest. If some core is

executing lower priority workload then this implies that this core cannot be executing higher

priority carry-in in the beginning of the interval of interest. As a consequence then, if there

are k lower priority tasks executing non-pre-emptively in the beginning of the interval of

interest, then there can be at most m− k higher priority tasks with carry-in. The maximum

additional workload due to the k lower or equal priority tasks executing in the beginning of

the interval of interest is denoted by Ak
i . The computation of an upper-bound of Ak

i given

a set of lower or equal priority non-pre-emptive regions is the subject of the subsequent

sections.

The WAdi f f
i (t) function is defined as follows:

WAdi f f
i (t) def

= max
k∈{1,··· ,m}

{
Ak

i +
m−k

∑
l=1

`
max

τh∈τ1,··· ,τi−1
W diff(τh, t)

}
(6.19)

6.3 RDS Lower Priority Interference

The RDS policy’s sufficient schedulability test was previously published in [DBM+13]. In

the RDS policy the function ANC
i (t) can be constructed by considering that each non-pre-

emptive region of any task with priority lower than τi may indeed interfere with τi execution.

A lower priority non-pre-emptive region, from task τ`, may commence immediately before

the release of a higher priority task τ j. If task τi happens to be executing pre-emptively or if

it happens that the release of τ j coincides with a pre-emption point, τi is pre-empted by τ j.

In this case τi is indeed being interfered by τ` which is of lower priority. This situation can

occur for any non-pre-emptive region of a lower priority task. Hence an upper-bound on the

128

6.4. ADS LOWER PRIORITY INTERFERENCE

interference by lower priority workload can be written by resorting to Equation (6.20) and

Equation (6.21).

ANC
i (t) =
n

∑
j=i+1

⌊
max(t−C j,0)

Tj

⌋
×Cv j +min

(
[[t−Cv j]0 mod Tj− (Tj−R j)]0 ,Cv j

)
(6.20)

Ak
i (t) =

n

∑
j=i

Cv j (6.21)

In equations (6.20) and (6.21) the the quantity Cv j is equal to the maximum amount of

time that jobs from task τ j execute non-pre-emptively.

Equation (6.21) models the non-pre-emptive workload that might be released prior to

the interval of interest and execute inside it. In turn the Equation (6.20) models the non-pre-

emptive lower priority workload which can be released inside the interval of interest and

execute inside the same interval.

In order to evaluate the schedulability increase obtained with RDS only a single last

non-pre-emptive region is considered per task. Considering multiple last non-pre-emptive

regions would virtually not aid on increasing the schedulability since only the last region

manages to postpone effectively interfering workload and having more than one non-pre-

emptive region would lead to a heavier share of lower priority workload being considered

as interfering with the higher priority tasks.

6.4 ADS Lower Priority Interference

In the ADS policy ANC
i (t) = 0. Lower priority tasks may execute on other processors while

τi is executing, but higher priority workload will only be able to pre-empt τi when τi is the

lowest priority task executing on any processor. As a consequence of this, lower priority

workload can only interfere with τi execution if they are currently executing once τi is

released. This is the key difference between ADS and regular fixed priority scheduling with

deferred pre-emption (RDS).

Contrary to the single processor limited pre-emptive theory, where multiple jobs from

τi in a level− i busy period need to be checked for the temporal correctness, this is not

the case in the presented schedulability condition ((6.17)). As a consequence, when m = 1

the analysis provided is still safe albeit pessimistic as the provided test is sufficient but not

necessary, whereas the test available in the literature for single processor is both necessary

and sufficient [BLV07b, BLV09].

129

6.5. FIXED TASK PRIORITY LIMITED PRE-EMPTIVE SCHEDULABILITY TEST

Theorem 13 (Correctness of the Schedulability Condition (6.17)). Let us assume that the

term Ak
i (t), in (6.19) , gives an upper-bound on the workload generated by all the jobs

from tasks with priority lower than or equal to i, released before time t and executed non-

pre-emptively on k processors (the upper-bound computation is the subject of later sect).

If (6.17) is satisfied for all task τi then the task-set is schedulable.

Proof. For a given k ∈ [1,m], the equation in the brackets of (6.19) gives an upper-bound on

the carry-in workload at time t, where (i) k processors execute non-pre-emptive workload

coming from k lower or equal priority jobs released before time t, and (ii) m− k processors

execute pre-emptive workload coming from m− k higher priority jobs released before time

t.

Therefore, WAdi f f
i (t) as defined in Equation (6.19), which takes the max for all k, is an

upper-bound on the carry-in workload at time t. From the definitions of W NC
j (t) and since

ANC
i (t) = 0, it holds for a given time-instant t that the sum WADIFF

i (t)+∑τ j∈hp(i)W NC
j (t)

gives an upper-bound on the total workload at time t (including both carry-in and non carry-

in workload from lower- and higher-priority tasks). The correctness of the condition given

by Inequality (6.17) immediately follows from the meaning of this sum, i.e., if the condition

is satisfied for a given t, then it means that any job from task τi will always be able to execute

for at least Ci−Qi+ε time units within Di−Qi time units from its release. Given that every

job of τi will get the highest priority after executing for Ci−Qi + ε time units, it implies

that all jobs of τi will have to execute its (at most) Qi remaining time units within the last

Qi time units to their respective deadline, which they will always do.

In order to assess the schedulability of τi it is important to quantify Ak
i where k ∈

{1, · · · ,m}. The derivation of upper-bounds for Ak
i is the subject of the subsequent section.

6.5 Fixed Task Priority Limited Pre-emptive Schedulability Test

Having a characterization of the lower priority interference that each higher priority task is

subject to, enables the derivation of a sufficient schedulability condition.

The task-set is deemed schedulable for a given set of last non-pre-emptive region for all

the task τi ∈T if:

∀τi ∈T ,∀k ∈ {1, · · · ,m},β k
i (Qi)> Ak

i (6.22)

where

β
k
i (Qi)

def
= max

t∈[0,Di−Qi]

{
m× t− ∑

τ j∈hp(i)
W NC

j (t)−m× (Ci−Qi)−
m−k

∑
l=1

`
max

τh∈τ1,··· ,τi−1
W diff(τh, t)

}

(6.23)

130

6.6. MAXIMUM INTERFERENCE FROM LOWER OR EQUAL PRIORITY
NON-PRE-EMPTIVE REGIONS IN ADS

The computation of the Function (6.23) can be performed by analyzing the limited set

of time instants Γi described previously.

Fk
i (t) = max

{t ′∈Γi∪{t}|t ′6t}

{
m× t ′− ∑

τ j∈hp(i)
W NC

j (t ′)−m×Ci−
m−k

∑
l=1

`
max

τh∈τ1,··· ,τi−1
W diff(τh, t ′)

}

(6.24)

Equation (6.23) may then be rewritten as:

β
k
i (Qi) = Fk

i (Di−Qi)+Qi×m (6.25)

6.6 Maximum Interference from Lower or Equal Priority Non-
Pre-emptive Regions in ADS

τl

τa

τd

τs

6 Ca

6 Cs

6 Cd

m
co
re
s

Figure 6.5: Maximum Interference Function Due to m Non-pre-emptive Regions of Lower
or Equal Priority Tasks

The ADS scheduling policy considered in this section dictates that a task can only be

dispatched to run on one of the m cores, at a time instant t, when either a core is idle or a

pre-emption point of the lowest priority task running on any m processors has been reached.

The task which is pre-empted is then the lowest priority task running on any of the cores at

time t.

The worst-case interference pattern generated by the lower or equal priority non-pre-

emptive region execution is represented in Figure 6.5 for a platform where m = 4. In

Figure 6.5 the crosses represent fixed pre-emption points. In a scenario where m proces-

sors are executing lower or equal priority workload and several higher priority releases

131

6.6. MAXIMUM INTERFERENCE FROM LOWER OR EQUAL PRIORITY
NON-PRE-EMPTIVE REGIONS IN ADS

occur, the first task to be pre-empted is τl which is of lower priority than the remainder

(τl ≺ τa ≺ τs ≺ τd) at time tl when a pre-emption point from τl is reached. In the worst

case scenario task τa enters a non-pre-emptive region at time tl−ε and its next pre-emption

point is reached at tl + ε +Qa. Subsequently in the worst-case situation τs has entered a

non-pre-emptive region just before the pre-emption point of τa was reached.

Let us assume the total ordered set L Qi = {Qn, · · · ,Qi} where, if d > l then Qd � Ql .

Each element of the L Qi set represents the length of the non-pre-emptive region of task

with priority equal or lower than τi, the priority ordering among tasks is represented by the

total ordering of the elements of the set.

Given a subset S Qi of L Qi with k elements one can compute the Ak
i area accurately,

this is achieved in Algorithm 9. Algorithm 9 places non-pre-emptive regions in S Qi in

Algorithm 9: Low Priority Interference Computation from a S Qi subset of k Lower
or Equal Priority Non-pre-emptive Regions

Input : S Qi, i,k
Output: Ak

i
A = 0
span = 0
for y ∈ {k, · · · ,1} do

if Cy 6 span+Qy then
if Cy > span then

span =Cy

A = A+Cy

else
A = A+ span+Qy

span = span+Qy

return Ak
i

priority order. The first element Q1 is the lowest priority element in S Qi (observe that in

case the subscript ` in Q` references the `th element in the totally ordered set S Qi), in the

worst case its pre-emption point will be reached at t1 = Q1. At the end of the first iteration

the variable span is equal to Q1. The span variable keeps track of the rightmost pre-emption

point from all the tasks when these are placed in priority ordering in order to construct the

maximum Ak
i from the set of S Qi values. Some task τs may not have enough Cs such that

its pre-emption point would be placed at span+Qs, in which case the span variable either

remains constant if Cs < span, or span =Cs otherwise.

Algorithm 9 takes as input a set of k tasks with lower or equal priority than τi and returns

the exact worst-case interference from these k tasks on task τi – as a result, Algorithm 9 can

be used to derive the exact worst-case interference from the lower priority tasks on any task

τi. However, doing so would require to enumerate all possible subsets of k tasks out of the

132

6.6. MAXIMUM INTERFERENCE FROM LOWER OR EQUAL PRIORITY
NON-PRE-EMPTIVE REGIONS IN ADS

set of all the tasks with a lower or equal priority than τi and the computation of the exact

interference would be of exponential complexity.

As a compromise between accuracy and computation time, three methods are proposed

to derive an upper-bound on the worst-case lower priority interference. The first one is

the simplest (the least accurate and fastest) as it factors neither the task priorities, nor the

WCET constraints in the computation and considers the maximum non-pre-emptive region

length from all lower priority non-pre-emptive regions.

ADS Blocking Estimation 1.

The most straightforward method relies on considering the largest lower priority non-

pre-emptive region and constructing the Ak
i area with it in conjunction with at most a single

instance of the non-pre-emptive region of task τi so as to encompass the self-pushing effect.

This bound is stated in (6.26).

Ak
i 6

k
2
× (k+1)×max{L Qi} (6.26)

ADS Blocking Estimation 2.

The second method is slightly more complex, it considers a variety of last non-pre-

emptive regions present in S Qi. The largest interference is obtained when the largest

element of L Qi is accounted for k times (assuming the lowest priority for this task), the

second largest is added up k− 1 times (assuming the second lowest priority for this task),

etc., until the kth largest element which is only considered once. This upper-bound is stated

in (6.27).

Ak
i 6

k

∑
j=1

Qmax
j × (k− j+1) (6.27)

where Qmax
j denotes the jth largest element in the set L Qi.

ADS Blocking Estimation 3.

By taking the priority ordering among the lower or equal priority tasks into account,

it is possible to construct a less pessimistic upper-bound on the Ak
i quantity. The problem

can be formulated as follows: Find k L Qi element indexes {x1,x2, . . . ,xk} such that for all

j ∈ [1,k]: x j ∈ [1,n− i], τx j ≺ τx j+1 and the Function (6.28) is maximized

F =
k

∑
j=1

Qx j × (k− j+1) (6.28)

Henceforth a method providing a solution for this problem is presented in Algorithm 10.

Firstly, consider the following problem reformulation which will introduce notation re-

quired for the Algorithm description and allow for its explanation.

133

6.6. MAXIMUM INTERFERENCE FROM LOWER OR EQUAL PRIORITY
NON-PRE-EMPTIVE REGIONS IN ADS

Problem 1: Given a set of non-negative values {Q1,Q2, . . . ,Qn−i+1} ordered by task prior-

ity (note that these subscripts relate to the position of the element in the totally ordered

set, higher priority is associated to higher set index value) and a non-negative integer

k 6 n− i+ 1, a table T was constructed with k rows and n− i+ 1 columns such that the

value vy,z of the cell in row y and column z is set to vy,z = (k−y+1)×Qz (rows are indexed

from 1 to k and columns from 1 to n− i+1). The problem consists of finding S for which

there exists {x1,x2, . . . ,xk} such that each x j, 1 ≤ x j ≤ n− i+ 1, denotes the index of a

column and it holds that

1. x j < xk, ∀ 1≤ j < k, and

2. S = ∑
k
y=1 vy,x j is maximum

The solution for this problem can be visualized as finding a path from the level k to level

1 in the network present in Figure 6.6. at each chosen node only nodes to the left can be

taken as admissible entries into the path.

Level k−1

Level 1

Level k

(k − 1).Qn−1 (k − 1).Qn−2 (k − 1).Qk−1

Qn−k

k.Qn−1k.Qn

Q1

k.Qk

Qn−k+1

Figure 6.6: Depiction of the solution provided for Problem 1

It is easy to see that a solution S to problem 1 is also a maximum value for the sum of

(6.28), and thus an upper-bound on Ak
i .

Lemma 6. S = v′k,n−i+1 is a solution to problem 1.

Proof. The proof is obtained by (double) induction, first on y (row index) and then on z

(column index). It is shown for all y and z, with 1≤ y≤ k and 1≤ z≤ n− i+1, that S = v′y,z
is the maximum value of the sum ∑

y
`=1 v`,x` , assuming that the k variables x1,x2, . . .xk are

such that x` ∈ [1,z], ∀`.
base case: y = 1 and z = 1.

The case is straightforward: v′1,1 = v1,1 and thus S = v′1,1 is the maximum value of the

sum ∑
y
`=1 v`,x` where there is only a single variable x1 and x1 = 1 is the only choice.

134

6.6. MAXIMUM INTERFERENCE FROM LOWER OR EQUAL PRIORITY
NON-PRE-EMPTIVE REGIONS IN ADS

Algorithm 10: Algorithm to Compute S
The idea is to construct another table T ′ based on T as follows:

1. As T , the table T ′ has k rows and n− i+1 columns.

2. v′1,1 = v1,1

3. For the other cells v′1,z of the first row, with z = 2, . . . ,n− i+1,
v′1,z = max(v1,z,v′1,z−1)

4. For each row y = 2, . . . ,k:

(a) Set v′y,y = vy,y + v′y−1,y−1

(b) The other cells v′y,z of the yth row, with z = y+1, . . . ,n− i− k+ y+1,
v′y,z = max(vy,z + v′y−1,z−1,v

′
y,z−1).

Finally, S = v′k,n−i+1

Inductive step on z: y = 1 and 1 < z≤ n− i+1.

By the induction, it is assumed that for y = 1 and for all p ∈ [1,z− 1], S = v′1,p is the

maximum value of the sum ∑
y
`=1 v`,x` where there is a single variable x1 and x1 is chosen

within [1, p].

By construction, ∀z = 2, . . . ,n− i+1, the value v′1,z is defined as v′1,z = max(v1,z,v′1,z−1)

and thus either S = v′1,z is equal to v′1,z−1 (the maximum previously recorded and x1 is chosen

within [1,z−1]) or it is equal to v1,z, in which case S = v1,z is the maximum and x1 = z leads

to the maximum sum ∑
1
`=1 v`,x` (= S).

Inductive step on y, base case on z: 1 < y≤ k and z = y.

The value v′`,` is defined as v′z,z = vz,z + v′z−1,z−1 = ∑
z
`=1 vz,z. Since x` < x`+1 for all

1 ≤ ` < y, the only choice for the y variables x1,x2, . . .xy is to have x` = ` for all ` ∈ [1,y].

Therefore, S = v′z,z is the maximum value of the sum ∑
z
`=1 v`,`.

Inductive step on y and z: 1 < y≤ k and 1 < z≤ n− i+1.

By the induction, it is assumed that for all r ∈ [1,y−1] and for all p ∈ [1,z−1], S = v′r,p
is the maximum value of the ∑

r
`=1 v`,x` where the variables x1,x2, . . . ,xr are chosen within

[1, p].

By definition, the maximum value of the sum ∑
y
`=1 v`,x` assuming that the y variables

x1,x2, . . . ,xy are chosen within [1,z], is equal to the maximum between

1. the maximum value of the sum ∑
y
`=1 v`,x` assuming that the y variables x1,x2, . . . ,xy

are chosen within [1,z−1], and

2. the maximum value of ∑
y−1
`=1 v`,x` assuming that the y−1 variables x1,x2, . . . ,xy−1 are

chosen within [1,z−1] and xy = z.

135

6.7. SYSTEM PREDICTABILITY WITH FIXED NON-PRE-EMPTIVE REGIONS

This is reflected at step (4b) where v′y,z is set to the maximum of both.

It is thus true that v′y,z holds the maximum value of the sum ∑
y
`=1 v`,x` assuming that the

variables x1,x2, . . . ,xy are chosen within [1,z]. As the result holds for y = k and z = n− i+1

then S = v′k,n−i+1 is a solution to problem 1.

Algorithm 10 tests at most (n− i−k+1) ·k different scenarios since it traverses at most

n− i− k+ 1 elements k times, which compares favourably with the brute force approach

which would test the
(n

k

)
different legal scenarios.

So far the Ak
i area has been upper-bounded by only taking into consideration the priority

ordering between the non-pre-emptive regions of lower or equal priority tasks. It might be

the case in fact that the worst-case execution time of the lower or equal priority tasks does

not enable the result obtained with Algorithm 10 ever to occur in practice.

In the worst-case the blocking area cannot exceed the sum of the k largest lower or equal

priority task WCET:

Ak
i 6

k

∑
j=1

j
max

`∈lep(i)
C` (6.29)

6.7 System Predictability with Fixed Non-pre-emptive Regions

Let us consider a scenario where the priority ordering among tasks is provided a-priori. The

goal is to compute a set of non-pre-emptive regions for each task such that the number of

pre-emptions observed in a schedule is reduced. A first approach to solving this problem

is presented in Algorithm 11. The task-set is parsed starting from the lowest priority task

τn. At each priority level i, the set of minimum Qk
i values which render the m schedulability

constraints (6.22) are found. From these m values the largest one is chosen. Since the β k
i (Qi)

functions are monotonically non-decreasing, if Qk′
i > Qk

i and β k
i (Q

k
i) = Ak

i then β k
i (Q

k′
i) >

Ak
i . Hence choosing the maximum Qk

i out of all the m minimum values which make the m

inequalities true will still ensure the attainment of the schedulability condition. If, for any

of the m schedulability conditions there exists no Qi quantity for which β k
i (Qi) = Ak

i then

the task-set is deemed unschedulable.

Algorithm 11: Minimum Last Non-pre-emptive Region Length (Qi) Assignment

for i ∈ {n, · · · ,1} do
for k ∈ {1, · · · ,m} do

if ∃{Qi|β k
i (Qi) = Ak

i } then
Qk

i = {Qi|β k
i (Qi) = Ak

i }
else

return UNSCHED

Qi = max16k6m{Qk
i }

return SCHED

136

6.7. SYSTEM PREDICTABILITY WITH FIXED NON-PRE-EMPTIVE REGIONS

Lemma 7 (Minimum Non-pre-emptive Region Assignment). Algorithm 11 provides the

minimum set of Qi values ∀τi ∈ T such that the task-set is schedulable under ADS with a

given priority assignment

Proof. Proof by induction. For task τn the quantity Qn computed by Algorithm 11 is the

smallest last non-pre-emptive region length such that task τn is schedulable. As a conse-

quence, the blocking that τn induces on the higher priority task is the minimum possible

such that τn is schedulable.

Inductive step: Algorithm 11 yields the minimum last non-pre-emptive region length

for a task τi,1 6 i 6 n such that τi is schedulable. As a consequence of this the set of task

{τi, · · · ,τn} induces the lowest possible worst-case blocking to the higher priority workload

such that those tasks are schedulable.

If for the same priority assignment any value Q′i ∈ {Q′i, · · · ,Q′n} it would happen that

Q′i < Qi, then task τi would be unschedulable as a consequence.

Theorem 14. The ADS policy dominates the fully pre-emptive and fully non-pre-emptive

global fixed task priority with respect to schedulability

Proof. This result is easily proven by observing that according to Lemma 7 the Q vec-

tor outcome of Algorithm 11 is the smallest such that the taskset is schedulable. As a

consequence, if T is schedulable under fully pre-emptive global fixed task priority the

set Q resulting from Algorithm 11 is such that ∀Qi ∈ {Q1, · · · ,Qn} : Qi = 0. Otherwise

if T is not schedulable with fully pre-emptive global fixed task priority but it is with

ADS then ∃Qi ∈ Q : Qi > 0. Similarly if a task is only schedulable with fully non-pre-

emptive the Q vector produced by algorithm 11 would be such that each Qi = Ci. Since

Ak
i 6 ∑

k
j=1 max j

`∈l p(i)Cl the maximum blocking lower priority tasks induce in ADS can in

the worst-case be equal to that of fully non-pre-emptive and never greater. In a situation

where ∀i,Qi =Ci the ADS policy is equivalent to the fully non-pre-emptive policy (i.e. the

schedules produced are identical).

Having the mechanism to produce the minimum set of Q values which ensures the

schedulability of the task-set in ADS the next step is to compute a set of non-pre-emptive

regions where at least some of its constituents are larger than the corresponding components

of the minimum vector but never smaller. Having larger Qi potentially leads to a smaller

number of pre-emptions in the actual schedule as will be showcased in the Experimental

Section.

Algorithm 12 takes as input the minimum Q vector ensuring schedulability. Contrary

to the minimum Q vector computation procedure, now a top down approach in used (i.e.

starting from the highest priority to the lowest). The resulting Q′ vector has all its elements

larger or equal to the minimum Qi vector since by definition this is the smallest possible

137

6.8. EXPERIMENTAL SECTION FOR AN OVERHEAD-FREE PLATFORM MODEL

Algorithm 12: Last Non-pre-emptive Region Length (Qi) Assignment

for i ∈ {1, · · · ,n} do
for k ∈ {1, · · · ,m} do

Qk
i = max{Q|∀ j ∈ hep(i),β k

j (Qi)> Ak
j}

Qi = min16k6m{Qk
i }

ensuring schedulability. At each priority level the maximum Qi quantity is assigned which

still preserves the schedulability of higher priority tasks. It is considered that any remainder

lower or equal priority task τ` has a Q` equal to the maximum between any Q j where

j ∈ hep(i) and the minimum Q` which renders τ` schedulable. This is due to the plausible

scenario where a tasks with lower priority than τi processed in further iterations requesting

a greater value than its minimum Q`. Since at the given iteration the algorithm does not

have information about future developments and in order to reduce complexity the future

requests of lower priority tasks are limited to the values known to the algorithm in the

current iteration. These are the set of minimum last non-pre-emptive region lengths ensuring

the schedulability of each lower priority task and the set of assigned higher priority task last

non-pre-emptive regions.

6.8 Experimental Section for an Overhead-free Platform Model

In this chapter the theory for limited pre-emptive global fixed task priority scheduling is

presented. In order to assess the performance of this scheduling discipline firstly the relative

performance of the three methods of estimating the blocking induced by lower or equal

priority workload are examined.

6.8.1 Blocking Estimation

A total of 100 sets are generated, with n Q elements. These sets are intended to represent

the last non-pre-emptive regions from all tasks in a given taskset. Each last non-pre-emptive

region length is a randomly generated value in the range [0,300]. The quantity Ak
1 to Ak

n−k is

upper-bounded for each of these Q sets using the three methods described previously. The

estimations are performed for each generated set of Q values starting with priority 1 (i.e.

computing Ak
1) until priority level n− k (Ak

n−k). The average last non-pre-emptive region

length (Qi) is computed over the 100 task-sets for each priority level i using each of the

three methods. The results are presented in Figure 6.7.

From the results in Figure 6.7 it is clear that the third estimation mechanism outperforms

the first two as expected. The first one is the crudest approximation, its estimations tend

to be much more pessimistic than the other two. Whereas the second one, albeit simple

138

6.8. EXPERIMENTAL SECTION FOR AN OVERHEAD-FREE PLATFORM MODEL

0 10 20 30 40 50 60 70 80
6

7

8

9

10

x 10
5

11

Priority Level

Blocking Estimation 1
Blocking Estimation 2
Blocking Estimation 3

B
lo

ck
in

g
 A

re
a
 E

st
im

a
te

d

Figure 6.7: Blocking Estimations (k=8,n=88).

enough, provides results that are similar to the third and most complex of the three. As the

priority level decreases (i.e. task index increases) the estimations tend to decrease since any

subset of k values will necessarily be smaller than or equal to any in a larger set. The two

latter methods tend to decrease their estimation faster as the priority level increases since the

number of values to chose from decreases whereas the first method, by basing its estimation

on the maximum value present in the set will not reduce its estimation as steeply.

6.8.2 Pre-emptions in Simulated Schedules

In order to assess the performance of the ADS scheduling policy with respect to the ob-

served pre-emptions in a given schedule a simulator was created. Task-sets are randomly

generated and the schedule produced by fully pre-emptive global fixed task priority and

ADS is generated. In the simulated schedules the number of direct pre-emptions is ex-

tracted. Each task-set is randomly generated where Utot is the target total utilization. The

individual task utilizations 0 < ui 6 1 are obtained through the random fixed sum algorithm

[ESD10] which provides uniformly distributed task-sets with total utilization in excess of 1.

The execution requirement of each task Ci is a uniformly distributed random variable in the

interval [100,500]. The relative deadlines of the tasks are computed then as Di =
Ci
ui

. The

period of each task Ti is equal to the relative deadline (Ti = Di).

The priority assigned to the tasks is the same for both fully pre-emptive and ADS sim-

ulations. The heuristic employed to assign priorities is DkC [DB09]. The schedules are

simulated for platforms comprising m cores. In Figures 6.8 and 6.9 m = 2. Whereas Fig-

ures 6.10 6.11 relate to simulations on four processors. The simulations are run for 5000000

139

6.8. EXPERIMENTAL SECTION FOR AN OVERHEAD-FREE PLATFORM MODEL

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2x 10
4

Utot

N
um

be
r

of
 P

re
em

pt
io

ns

fully preemptive
ADS

Figure 6.8: Observed Pre-emptions in Simulated Schedules, m=2,n=20

time units. The total utilizations of the taskset are varied from 0.1 to m with steps of 0.1

units. At each utilization level 100 random task-sets are generated and their schedules sim-

ulated.

Since ADS is compared against the global fully pre-emptive fixed task priority only

task-sets which are schedulable by the latter are considered. As a consequence, while com-

puting the last non-pre-emptive regions for each task with Algorithm 12 the minimum Q

vector considered is one where all elements are zero. Since the performance of the blocking

estimation 1 is the most modest, this was put to use in order to get a sense of the worst-

case performance of ADS and to show that even in those circumstances it compares quite

favourably against the fully pre-emptive scheduler with respect to run-time pre-emptions.

From the presented results it is apparent that a large number of the pre-emptions are

removed from the actual schedule. From figures 6.8 to 6.11 it is obvious that the number

of pre-emptions in ADS tends to decrease with increases in n. This is due to the spread of

the available utilization among constituents of the task-set. Consequently tasks will tend

to have moderately similar deadlines and execution requirements. This is beneficial for

obtaining larger admissible non-pre-emptive regions when compared to the execution time.

The number of pre-emptions in both scheduling policies increase with the total utilization

of the task-set, still the pre-emption increase in fully pre-emptive tends to be steeper than

in the ADS schedule. Since the processors tend to be occupied for larger time intervals it is

more likely that newly released jobs will induce a pre-emption.

As the number of processors increase the relative benefits of the ADS policy suffer a

mild degradation (comparison between m=4 and m=2). This is due to the poor performance

of the blocking estimation mechanism put to use in this simulation effort (ADS estimation

1) as it will severely over-estimate the actual worst-case blocking time tasks will be subject

140

6.8. EXPERIMENTAL SECTION FOR AN OVERHEAD-FREE PLATFORM MODEL

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5x 10
4

Utot

N
um

be
r

of
 P

re
em

pt
io

ns

fully preemptive
ADS

Figure 6.9: Observed Pre-emptions in Simulated Schedules, m=2,n=32

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5x 10
4

Utot

N
um

be
r

of
 P

re
em

pt
io

ns

fully preemptive
ADS

Figure 6.10: Observed Pre-emptions in Simulated Schedules, m=4,n=32

141

6.8. EXPERIMENTAL SECTION FOR AN OVERHEAD-FREE PLATFORM MODEL

1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5x 10
4

Utot

N
um

be
r

of
 P

re
em

pt
io

ns

fully preemptive
ADS

Figure 6.11: Observed Pre-emptions in Simulated Schedules, m=4,n=64

to and as a consequence will lead to smaller non-pre-emptive region lengths. This induces

more pre-emptions points in the tasks and hence more possibilities for pre-emptions to

occur. To be noted that the blocking estimation 1 and estimation 2 in this case would yield

similar results since by taking a top down approach and by assuming that the lower priority

non-pre-emptive regions would be equal to Qi, the Ak
i estimate is the same for both methods

as there would exist only a single distinct non-pre-emptive region length value which would

be mandatorily the maximum. Another shortcoming general to all the approximate blocking

estimation mechanisms presented in this work is that these do not take into account the

maximum execution requirement of the lower or equal priority tasks. As m increases so

does the pessimism involved in the estimation step since the stair-case pattern of blocking

is subject to cruder overestimations as the number of steps increases.

6.8.3 Schedulability assessment of RDS vs. ADS

This section gathers experimental data comparing the schedulability performance of the

RDS against the ADS policy. The experimental results were extracted using DkC [DB09]

priority ordering. Task-sets are generated using the random fixed sum algorithm [ESD10]

providing uniformly distributed task-sets with total utilization in excess of 1. The variable

m denotes the number of cores and n the total number of tasks. Results are presented for the

following platform configuration pairs ({m,n}): {2,10}, {2,20}, {4,20} and {4,40}. The

results are obtained considering total utilizations ranging from Utot =
m
16 until Utot = m− m

16

with a stepping of m
16 between consecutive points. For each utilization point 1000 task-sets

are generated and the schedulability of these is assessed using the ADS, RDS and fully

pre-emptive schedulability tests. The response time of each task is computed, starting from

142

6.8. EXPERIMENTAL SECTION FOR AN OVERHEAD-FREE PLATFORM MODEL

the lowest priority. For each task τi which are not schedulable with Qi = 0, the smallest

possible last non-pre-emptive region ensuring schedulability is computed (if one exists).

The label ADS refers to the method presented in [DBM+13] with a single last non-pre-

emptive region (i.e. all tasks have at most one non-pre-emptive region, the remainder of the

workload executes pre-emptively).

Figure 6.12: Results for m=2 and n=10 with Ti ∈ [400,40000]

The figures 6.12 to 6.15 relate to scenarios where the execution time of the tasks varies

between 40 and 40000. As previously observed in [MNP+13], ADS appears not to behave

well with increases on the number of processors. This is due to the inherent pessimism

taken when upper-bounding the worst-case blocking suffered in ADS. It grows larger with

the number of available cores. Increasing the number of tasks also makes the schedulability

of ADS deteriorate in comparison to RDS. The RDS scheduling policy seems to provide

a better overall performance in comparison to ADS, in scenarios where the pre-emption

delay is negligible. Nevertheless it is apparent that no domination relation exists between

the two (ADS and RDS). As expected the fully pre-emtive scenario performs not as well as

the limited pre-emptive strategies.

143

6.8. EXPERIMENTAL SECTION FOR AN OVERHEAD-FREE PLATFORM MODEL

Figure 6.13: Results for m=2 and n=20 with Ti ∈ [400,40000]

Figure 6.14: Results for m=4 and n=20 with Ti ∈ [400,40000]

144

6.8. EXPERIMENTAL SECTION FOR AN OVERHEAD-FREE PLATFORM MODEL

Figure 6.15: Results for m=4 and n=40 with Ti ∈ [400,40000]

145

6.9. ACCOUNTING FOR PRE-EMPTION DELAY IN THE GLOBAL SCHEDULE

6.9 Accounting for Pre-emption Delay in the Global Schedule

The limited pre-emptive theory is of little interest if the actual pre-emption delay is not

integrated into the schedulability analysis. In this section bound on the additional workload

due to the pre-emptive behaviour are obtained for both fully pre-emptive and the limited

pre-emptive models.

6.9.1 Pre-emption and Migration Delay Bound for Fully Pre-emptive GFTP

In multiprocessor, alongside pre-emptions, migrations can additionally. A pre-emption may

originate a migration (in case these are allowed by the scheduler) if the pre-empted workload

commences to execute on another processor. When a task migrates a similar phenomenon

to cache pollution from pre-empting tasks occurs as the cache of the processor the task

migrated to will hypothetically not hold any of the memory lines the migrated task will

reference when executing. This delay is generally termed by CPMD (Cache related pre-

emption and migration delay).

An upper-bound on the pre-emption delay generated in the level-i fully pre-emptive

GFTP schedule can be derived by considering that:

• each higher priority task released can induce at most one pre-emption or migration

• when a job from task τ j induces a pre-emption or migration on a jobs of tasks τk

where k > j:

1. if the pre-emption delay is suffered by some task τk (j < k < i) then the overhead

is trivially treated as higher priority workload

2. if τi suffers the pre-emption then two scenarios might occur:

(a) the pre-emption delay is paid while other higher priority workload is ex-

ecuting on the other cores. In this situation the additional workload con-

stituted by the pre-emption delay is indistinguishable from another higher

priority workload and hence can be considered to have an equal interfer-

ence contribution (divide the workload by m).

(b) the pre-emption delay is paid when at least one of the remainder cores is

idle on work of priority level-i. In this scenario it might seems as the in-

terference contribution by CPMD units the pre-emption delay exceeds the
CPMD

m , as there is no simultaneous contribution from higher priority work-

load which is not directly interfeering with τi execution. Nevertheless note

that in order for a first pre-emption to occur m prior higher priority job re-

leases had to occur. Subsequent pre-emption occur if some k higher priority

jobs terminate their execution allowing τi to regain access to one proces-

sor. Subsequently another k higher priority tasks have to be released for

146

6.9. ACCOUNTING FOR PRE-EMPTION DELAY IN THE GLOBAL SCHEDULE

the next pre-emption to occur. If all higher priority tasks are assumed to

virtually generate the worst-case pre-emption penalty a safe pre-emption

delay upper-bound is obtained since even if the pre-emption delay is actu-

ally being paid while other processors are idle on level-i workload at least

m−1 virtual CPMD compensations were considered in the analysis to fully

accommodate the interference suffered by task τi.

From the aforementioned set of assumptions a function quantifying the level-i schedule

pre-emption and migration delay is stated in Equation (6.30) as was derived by Devi [Dev06].

We have to consider that m− 1 higher priority tasks were already executing and were pre-

empted hence we consider the m−1 largest migration delay penalties to interfere with the

execution of τi.

PDFP(t, i) =

(
m−1

∑
k=1

k
max

h∈{1,··· ,i−1}
CPMDh

)
+

i−1

∑
j=1

⌊
t
Tj

⌋
· max

k∈{ j+1,··· ,i}
{CPMDk} (6.30)

6.9.2 Pre-emption and Migration Delay Bound for ADS GFTP

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

CPMDn
i

Qi

Ln
i

Qi

CPMD2
i

Qi

L2
iL1

i

Figure 6.16: Execution model

In the limited pre-emptive schedule with multiple non-pre-emptive regions each job

is composed of a set of non-pre-emptive regions delimited by pre-emption points. As is

depicted in the Figure 6.16 each non pre-emptive region has a length at run-time which

cannot exceed Qi time units. In order to achieve this, the maximum distance for execution

in isolation between the two pre-emption points delimiting the kth non-pre-emptive region

is Lk
i = Qi−CPMDk

i . Where CPMDk
i denotes the maximum pre-emption/migration delay

that can be paid during the execution of the kth non-pre-emptive region.

Without loss of generality we simplify the model by stating that CPMD1
i = 0 and ∀k ∈

{2, · · · ,n− 1} then CPMDk
i = CPMDk+1

i . As a consequence of this, L1
i = Qi and ∀k ∈

{2, · · · ,n−2} we have that Lk
i = Lk+1

i . As for the last non-pre-emptive region we have that

Ln
i =Ci−NADS

i ·L2
i .

Since, in the ADS framework, each task can only be pre-empted at a non-pre-emptive

region boundary, a job from task τi, with an isolation WCET of Ci, can be pre-empted at

147

6.9. ACCOUNTING FOR PRE-EMPTION DELAY IN THE GLOBAL SCHEDULE

most:

NADS
i =

⌊
Ci−Qi

Qi−CPMDi

⌋
+2 (6.31)

PDADS(t, i) =
m−1

∑
k=1

k
max

h∈{1,··· ,i−1}
CPMDh +

i−1

∑
j=1

⌊
t
Tj

⌋
·NADS

i ·CPMD j (6.32)

6.9.3 Pre-emption and Migration Delay Bound for RDS (Last Region only)
GFTP

In this model, each job from a task τi executes the initial Ci−Qi units of work in a pre-

emptive manner. It also holds true that any higher priority job release can induce at most

one pre-emption or migration. Hence the RDS last region only model has the same pre-

emptive bound defined in Eq. (6.30) where only the initial Ci−Qi units of workload are

eligible to be pre-empted.

6.9.4 Pre-emption and Migration Delay Bound for RDS (Multiple Non-pre-
emptive Regions) GFTP

In a similar fashion as for the ADS schedule each task can only be pre-empted at a non-pre-

emptive region boundary, hence the upper-bound stated in equation (6.32) is itself a bound

on the pre-emptions delay generated in the level-i RDS schedule.

Contrary to fully pre-emptive and ADS, in the RDS with multiple non-pre-emptive re-

gions, each job release may potentially induce m pre-emptions. This effect is depicted in

Figure 6.17. In this picture the following task index relationship exists j < k < l < d, i.e. τ j

has the highest priority and τd has the lowest.

���
���
���
���
���

���
���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

t

τk

τl

τd τl

τk

τj τd

release τj

π1

π2

π3

Figure 6.17: depiction of a m pre-emption chain triggered by a single job release

148

6.10. SCHEDULABILITY ASSESSMENT OF ADS VS. FULLY PRE-EMPTIVE WITH
CPMD

In accordance with this observation then the fully pre-emptive pre-emption and migra-

tion delay, unlike for ADS, is not an upper-bound on the pre-emption delay occurring in the

RDS schedule with multiple non-pre-emptive regions.

All pre-emption delay functions are trivially integrated into the previously defined work-

load functions. The remainder of the schedulability tests remain unchanged.

6.10 Schedulability Assessment of ADS vs. Fully Pre-emptive
with CPMD

In this section the performance of ADS is compared to the one of Fully Pre-emptive for

platforms where the CPMD is non-negligible.

Task-sets are generated using the random fixed sum algorithm [ESD10] providing uni-

formly distributed task-sets with total utilization in excess of 1. The variable m denotes the

number of cores and n the total number of tasks. Results are presented for the following

platform configuration pairs ({m,n}): {2,10}, {2,20} and {3,15}. The results are obtained

considering total utilizations ranging from Utot = 1 until Utot = m−0.1 with a stepping of

0.1 between consecutive points. For each utilization point 1000 task-sets are generated and

the schedulability of these is assessed using the ADS, RDS and fully pre-emptive schedula-

bility tests. The response time of each task is computed, starting from the lowest priority.

The experimental set-up is similar to the one employed in section 6.8.3. As an addition

to the previous model a CPMDi cost is randomly generated for each task τi in the interval

[0,40]. This constitutes a single pre-emption cost. Every time a job from task τi is pre-

empted it will incur on an execution time increase of CPMDi.

Since the higher priority interference is a function of the number of pre-emptions points

each higher priority task has then the assignment of last non-pre-emptive regions is drawn

from higher priorities downwards.

6.10.1 Discussion of Pre-emption Delay Results

The results comparing schedulability achieved in platforms with non-negligible pre-emption

delay comparing the ADS policy with fully pre-emptive are displayed in figures 6.18 to

6.20. Here it is apparent that the limited pre-emptive scheduling policy ADS has a much

better schedulability performance when compared to the fully pre-emptive mechanisms.

In fact when compared to the results obtained in prior sections (figures 6.12 to 6.15) it is

trivial to see that the relative gains presented by the ADS strategy dramatically increases

when pre-emption delay is considered. As the task-set size increases so does the relative

gain provided by the ADS strategy since in the fully pre-emptive scheduling there will be

more higher priority releases and hence an increase in the estimation of pre-emptions and

149

6.10. SCHEDULABILITY ASSESSMENT OF ADS VS. FULLY PRE-EMPTIVE WITH
CPMD

Figure 6.18: Results for m=2 and n=10 with Ti ∈ [400,40000] and CPMD value per Pre-
emption as a random variable in the interval [0,40]

migrations. The schedulability results for fully pre-emptive are taken as a proxy of those of

the RDS policy with a single final non-pre-emptive region. This mode is subject to largely

the same pre-emption delay penalty as fully-pre-emptive. Moreover the multiple non-pre-

emptive region RDS is ignored as this will have a pre-emption delay function which is the

same as the ADS policy but a schedulability which resembles fully non-pre-emptive since

all lower priority non-pre-emptive regions are assumed to interfere with the execution of

higher priority tasks.

150

6.11. GLOBAL FLOATING NON-PRE-EMPTIVE SCHEDULING

Figure 6.19: Results for m=2 and n=20 with Ti ∈ [400,40000] and CPMD value per Pre-
emption as a random variable in the interval [0,40]

6.11 Global Floating Non-pre-emptive Scheduling

Contrary to the fixed non-pre-emptive regions (as stated in previous chapters) the non-pre-

emptive regions can be commanded by the scheduler and not rely on pre-specified pre-

emption points. In the single processor case the floating non-pre-emptive region scenario

is quite simple in nature due to the fact that m = 1. When there is only one task executing

at the time of a higher priority release it is straightforward to assume that the pre-emption

will be delayed as much as the higher priority schedule can accommodate before a deadline

miss occurs in the future.

In the global multiprocessor scenario this decision is not so trivial. This stems from the

fact that multiple tasks of lower priority than the current release may be executing on each

processor. The question is then, how many different protocols can be derived and which

desirable properties can be inferred from these?

For each task τi a maximum allowed lower priority blocking term can be straightfor-

wardly derived from the sufficient schedulability condition. The sufficient schedulability

equation for fully pre-emptive scheduling is presented in Equation (6.6). A sufficient block-

ing tolerance for any task τ j is a quantity β j, similarly to the single core scenario, such that

the following relationship is held:

∀τ j ∈T ,∃β j, t ∈ [0,D j] : I j(t)+Ci +β j = t (6.33)

151

6.11. GLOBAL FLOATING NON-PRE-EMPTIVE SCHEDULING

Figure 6.20: Results for m=3 and n=15 with Ti ∈ [400,40000] and CPMD value per Pre-
emption as a random variable in the interval [0,40]

In the scenario where the condition present in Equation (6.33) is met all tasks are fully

pre-emptively schedulable and can endure an additional interference from β j units of lower

priority workload without jeopardizing their deadlines in any conceivable scenario.

It is important to realize that several protocols can be devised for the floating non-pre-

emptive region in global multicore scheduling by exploiting variable degrees of information

available at run-time and a variable degree of dynamism in the choices to be taken. Only

a sub-set of these – composed of the ones which are deemed most relevant – is presented

here. Also, only static methods are presented in order to ease access by the reader.

In the following discussion, in order to ease clarity of exposure and similarly to the

single-core situation the variable NPLi denotes the length of each non-pre-emptive region

of task τi.

The simplest of these protocols is a direct adaptation of the single processor one:

Floating NP Protocol 1: After any task τ j releases a job, in case there exists a job from

any task τi where i > j and τi is the lowest priority task in execution then a non-pre-emptive

region commences in all m processors with a duration of NPLi . Any number of additional

tasks may release jobs during the interval where the non-pre-emptive region is occurring.

When the non-pre-emptive region interval elapses the m highest priority jobs in the ready

queue are dispatched onto the processors.

152

6.11. GLOBAL FLOATING NON-PRE-EMPTIVE SCHEDULING

In order to guarantee the safety of this protocol the following condition has to be re-

spected when deciding on the non-pre-emptive region length to assign tasks:

NPLi 6
min1<k<i{βk}

m
(6.34)

The second protocol may also be portrayed as a derivation of the single processor float-

ing non-pre-emptive region model for the global scheduler.

Floating NP Protocol 2: Each lower priority task τi executing upon a processor, whenever

a higher priority release occurs – provided it is not currently executing non-pre-emptively–

commences to execute non-pre-emptively for a predefined non-pre-emptive region length

NPLi.

This length is defined in a manner such that higher priority tasks can never suffer an

interference which would jeopardize their deadlines’ attainment. Consider the set NPL(a,k)

to denote the set of non-pre-emptive region lengths {NPLa,NPLa+1, · · · ,NPLk−1,NPLk}.
The following set of conditions are sufficient to ensure that all higher priority tasks

meet their deadlines in protocol 2 for any possible set of non-pre-emptive region length

which respects the posed conditions.

∀k ∈ {1, · · · ,n},βk >
m

∑
k=1

k
max{NPL(k,n)} (6.35)

These conditions are overall more flexible with respect to the choice of non-pre-emptive

regions which are admissible to be chosen in comparison to the Condition (6.34). Still the

simple solution for the assignment defined as NPLi =
min1<k<i{βk}

m respects both conditions

(6.34) and (6.35) and hence can be employed with both mechanisms.

In a situation where the non-pre-emptive region length is not monotonically decreasing

with decrease in priority an additional term has to be considered when computing the in-

terference each task can suffer. In fact each task is then subject to an upper-bound on its

interference due to lower priority tasks (LP) which can be quantified as:

LP =

⌊
Ci

NPLi

⌋
×

m−1

∑
k=1

k
max
i<`6n

{NPLi−NPL`} (6.36)

As far as the design-time guarantees are concerned, the Protocol 1 only ensures that

each task τi can execute non-pre-emptively for a time interval which is of at least NPLn

time units. The off-line guarantees offered by Protocol 2 are better in the sense that each

task τi is guaranteed to execute non-pre-emptively for NPLi consecutive time units.

Other mechanisms can be devised to exploit additional run-time knowledge in the same

light as what is exposed in Chapter 3.1 these are not studied for the multiprocessor.

153

6.12. SCHEDULABILITY INCREASE FOR FIXED NON-PRE-EMPTIVE GEDF

6.12 Schedulability Increase for Fixed Non-pre-emptive GEDF

So far the limited pre-emptive scheduling has been solely discussed in the context of Global

Fixed Task Priority disciplines. It can nevertheless be applied to Global EDF. The question

remains whether there exists a schedulability gain when comparing fully pre-emptive to the

limited pre-emptive model. In the single processor case – as a consequence of the optimality

of EDF when scheduling constrained deadlines task-sets – the limited pre-emptive model

does not yield an increased schedulability gain [YBB11b].

A simple example task-set present in table 6.1 suffices when showing that indeed the

fixed non-pre-emptive model allows for a schedulability increase in the GEDF scenario.

Ci Di Ti

τ1 2 5 5
τ2 2 5 5
τ3 8 11 ∞

Table 6.1: GEDF example task-set

Consider a platform composed of two processors (m=2)

First consider the case for the schedulability of tasks τ1 and τ2, a constructed worst-

case scenario for these tasks is displayed in Figure 6.21a. In this initial case there exists

a job of τ3 which has a deadline at time instant 5 and as a consequence was released at

t =−6. By absurdity, since one is solely focusing on the schedulability of tasks τ1 and τ2,

consider that this job of task τ3 suffered sufficient interference such that at t = 0 it still has a

remaining workload of 5 time units which it completes by its absolute deadline. In this case

(Figure 6.21a) task τ2 is suffers an interference of 2 time units and terminates its workload

at t = 4 long ahead of its deadline. Note that τ1 and τ2 are interchangeable since these have

the same workload requests and relative periods and deadlines. Since both τ1 or τ2 cannot ,

in any other conceivable situation, suffer more interference when scheduled by GEDF than

in this contrive example the logical conclusion that both (τ1 and τ2) will always meet their

deadlines is derived.

Consider now the scenario depicted in Figure 6.21b. In this distinct scenario the schedu-

lability of τ3 is investigated. In this scenario we observe a synchronous release situation

which leads to τ3 suffering a total interference of 4 time units, this will lead to a deadline

miss at t = 11. Nevertheless it is apparent that if task τ3 would execute in a non-pre-emptive

manner it would always be able to commence execution never later than 2 units since its

release. Since once it would start to execute it would do so until completion it would ter-

minate its computation at least 2 time units before its deadline. Bear in mind that the full

non-pre-emptive nature of task τ3 is in fact a particular case of the limited pre-emptive sce-

nario. With this simple toy example the effective domination between Limited Pre-emptive

154

6.12. SCHEDULABILITY INCREASE FOR FIXED NON-PRE-EMPTIVE GEDF

τ1

τ2

τ1 τ2

τ2

τ3

τ1

π2

π1

0 5 t2

τ3

(a) Fixed Non-pre-emptive GEDF

τ2

τ3

τ1

τ1

τ2

τ1

τ2 τ3

τ1

τ2 τ2

τ1 τ1

τ2π2

π1

0 5 t

τ3 τ3

10 112 7

(b) Fully Pre-emptive

Figure 6.21: GEDF Example Schedules.

GEDF and GEDF is established. This means that there are task-sets for which a valid lim-

ited pre-emptive GEDF schedule exists whereas GEDF itself fails to schedule the task-set.

Showing this relationship for very particular and concrete examples gives an indication

that a LPGEDF analysis could be derived such that it would dominate the regular GEDF

sufficient test. This work follows mainly on the lines of what has been previously described

for Limited Pre-emptive GFTP.

Both the GFTP and GEDF schedulability test rely on the consideration of the set of

tasks which may interfere with the one under analysis and the creation of upper-bounds on

the interference these tasks can exert.

The schedulability test for global EDF is constructed by considering the general bound

155

6.12. SCHEDULABILITY INCREASE FOR FIXED NON-PRE-EMPTIVE GEDF

per higher priority task considered in Equation (6.2) in conjunction with another bound on

the workload specific to the EDF priority ordering (Eq (6.37))

W NC−EDF
j (t) = max

(
0,
(⌊

t−D j

Tj

⌋
+1
)
×C j

)
(6.37)

The WAdi f f−EDF
i (t) function is defined as follows:

WAdi f f−EDF
i (t) def

= max
k∈{1,··· ,m}

{
WCI

j (t)−W NC−EDF
j (t)

}
(6.38)

Following what is derived by Baruah in [Bar07] a task-set T is deemed schedulable on

fully pre-emptive GEDF if the following condition holds:

∀τi ∈T ,∀L ∈ [0,Li
UB] :

L+Di−
1
m
×
(

WAdi f f−EDF
i (L+Di)+ ∑

τ j∈T
W NC−EDF

j (L+Di)−Ci

)
+Ci > 0 (6.39)

where LUB is defined as [Bar07] :

Li
UB =

∑k∈{1,··· ,m}maxk
j∈{1,··· ,n}C j−Di× (m−U(T))+∑ j∈{1,··· ,n}(Tj−D j)×U j +m×Ci

m−U(T)
(6.40)

Following the observation that with limited pre-emptive scheduling each job cannot be

pre-empted once it commences executing its final non-pre-emptive region then the schdula-

bility test for the fixed non pre-emptive region model becomes:

∀τi ∈T ,∀L ∈ [0,Li
UB] : L+Di−Qi−

1
m
×

(
WAdi f f−EDF

i (L+Di)+ ∑
τ j∈T

W NC−EDF
j (L+Di)−Ci

)
+Ci−Qi > 0 (6.41)

Consequently, for each task, a lower bound on the maximum allowed deferral time

without jeopardizing the deadline obtention is written in a similar fashion to the GFTP:

β
EDF
i

def
= min

L∈[0,LUB]

{
B|L+Di−Qi−B− 1

m
×

(
WAdi f f−EDF

i (L+Di)+ ∑
τ j∈T

W NC−EDF
j (L+Di)−Ci

)
+Ci−Qi = 0

}
(6.42)

156

Chapter 7

Summary and Future Directions

Most of the computational mechanisms controlling physical processes must adapt to the

timing constraints governing their dynamics. Characterizing the temporal properties of

these computational processes is detrimental to ensure their fitness its purpose. By resorting

to simplified models of the hardware platform and of the software these temporal details can

be formally studied and propertied obtained and proven safe. This thesis borrows several

widely employed models in the real-time community, namely the workload executing on

each platform is described as a recurrent execution demand with a given worst-case quan-

tity which is requested with a minimum temporal separation between consecutive instances.

The hardware model is one where each task can only execute on one processor at a time and

once a pre-emption occurs there can exist a potential pre-emption delay once the pre-empted

task resumes execution.

By using these common models this thesis proposes novel contributions to the real-time

are in four main areas.

Thesis Contributions:

• Single Processor Limited Pre-emptive Theory Extension:

The static nature of the state of the art considering the limited pre-emptive model

was extended. This allowed for a considerable reduction on the observed number of

pre-emptions. Moreover a smaller upper-bound on the number of pre-emptions each

task is subject to is provided (comparing the run-time extension against the static

version of the limited pre-emptive scheduling). The run-time extension is only appli-

cable to the floating non-pre-emptive model, naturally, as the fixed non-pre-emptive

model relies on pre-specified pre-emption points which are not amenable to straight-

forward run-time changes. Similarly to the proven schedulability increase enabled

by the fixed non-pre-emptive regions a similar behaviour was sought for the floating

model. In this thesis it is shown that even though the floating non-pre-emptive model

does dominate the fully pre-emptive fixed task priority from the schedulability point

157

of view, it is hard to analyse and a critical instant is currently unknown. In this thesis a

similar mechanism was devised where a given task would lock the ready-queue after

a pre-specified time length if it still has remaining workload to execute. This prevents

it from being interfered upon by any task which was released after this particular

time instant. The provided methodology to assign the ready-queue locking interval

is not optimal. For some task-sets currently deemed unschedulable there exists RQLi

assignments which would indeed schedule these. The Ready-queue locking mecha-

nism was further integrated with the pre-emption threshold in order to further extend

the schedulability and gain heighten reduction on the pre-emption count.

• Pre-emption Delay Estimation for the Floating Non Pre-emptive Region Model:
The usage of the floating non-pre-emptive region model in the state of the art works

so far only allowed for a reduction on the number of pre-emptions quantified at

design time. Generally in the real-time literature the maximum pre-emption delay

penalty existing in any execution point of a task is considered, conservatively, to be

the penalty suffered for every pre-emption. Generally it is expected that the pre-

emption cost will vary and in ideal cases the large pre-emption cost value will be

significantly different from the more average pre-emption cost observable in through

the tasks’ code. In this thesis a method to model the variable pre-emption cost as a

function of the task progression is presented. An algorithm taking this information

as input is presented to derive a lesser pessimistic pre-emption delay for the float-

ing non-pre-emptive region model. This algorithm is extended incorporating another

function which models the cumulative number of intrinsic cache misses. Tasks most

likely have many possible executions paths. Different paths might have different pre-

emption delay values. In turn some of the paths which are not part of the critical path

can have their slack to the critical path exploited when considering the pre-emption

delay of the task. Paths with high associated pre-emption delay penalties and large

intrinsic cache misses count can have their function reduced taking into account the

slack of these path to the critical one. By considering these altered function a still

safe pre-emption delay estimation is obtained with a most of the times significant

reduction on the analysis pessimism.

• Ensuring Temporal Isolation in Platforms with Non-negligible Pre-emption Over-
heads: Temporal isolation is more often than not overlooked in the real-time theory.

This is partly due to the fact that for a large part there is ample support for this guar-

antee in platforms where the pre-emption delay is inexistent or largely negligible.

Another aspect of this is that generally works that take pre-emption delay into con-

sideration are solely trying to address this issue and its quantification in particular.

When other issues are the subject of study the pre-emption delay is generally absent

158

7.1. FUTURE DIRECTIONS

from the system model. This thesis proves that temporal isolation to in some cases

is no longer ensured in platforms where the pre-emption delay exists in a significant

form. It is nevertheless proven as well that the proposed mechanisms allow for gen-

erally lower resource expenditure – in terms of allocated budgets – when only the

declared execution times of tasks cannot be trusted upon.

• Derivation of the Limited Pre-emptive Theory for Global Multiprocessor Schedul-
ing:

The state of the art in for limited pre-emptive was mainly focused on single core

scheduling. Some works existed regarding non-pre-emptive scheduling of tasks in

multiprocessor global scheduling. This thesis nevertheless constitutes the first deriva-

tion of the limited pre-emptive theory for global multiprocessor scheduling algo-

rithms. On the derivation of the fixed non-pre-emptive region model two possible

protocols were investigated and compared against. The floating non-pre-emptive re-

gion model theory is itself addressed as well. Even though most of the work was

carried out assuming fixed global task priority schedulers it is shown that the limited

pre-emptive scheduling mechanism allows for a schedulability increase in the GEDF

case. Experimental results were obtained in order to assess whether the same pat-

terns observed for single core would translate into global scheduling with respect to

schedulability and overall estimation of pre-emptions.

Thesis– Limited pre-emptive schedulers allow for significantly reducing pessimism in
the pre-emption delay accounting in single-core and for enhanced schedulability

when employing global fixed task priority schedulers

Throughout this document, apart from the accessory section on temporal isolation, this

thesis has been proven in a specific theoretical model. Real platforms are much more com-

plex than the models employed. It is plausible that this theoretical advantage is not directly

translatable into system design as some mechanism overheads may degrade the performance

of the limited pre-emptive framework construction. For sake of completeness it is worth

noting that, in the theoretical model average case behaviour, the limited pre-emptive sched-

ule may be subject to higher pre-emption delay though this can never be the case in the

worst-case estimations.

7.1 Future Directions

Single-core Run-time Proofs-of-concept: Similarly to many other works in the real-time

community, this thesis entails a more theoretical approach to the previously discussed sub-

jects. Real-time as a study area exists with the purpose of providing practitioners a relevant

159

7.1. FUTURE DIRECTIONS

guidance in their systems building problems, particularly in what concerns to the timing

issues. The work carried out in the course of this thesis has itself the intent of being prac-

tically viable. As such it is worth to trial whether the proposed run-time extensions to the

floating non-pre-emptive region scheduling has a real benefit when comparing the imple-

mentation overhead of the policy. The additional resources spent taking the decisions may

lead to inefficiencies in the system and lead to actual shorter executions from the pre-empted

tasks. The mechanism itself also relies on a interrupt routine to be run which might itself –

if care is not taken while implementing it – pollute the cache in a significant way and hence

increase the pre-emption delay it is trying to mitigate. In par with this run-time extension

although not to the same level the ready-queue locking mechanism should also be imple-

mented as an actual real-time scheduling policy in order to assess its run-time overhead in

comparison to single-core EDF as its main goal is to increase schedulability so that the sys-

tem designer does not have to resort to single core EDF which is known to present a high

run-time overhead for particular task-sets.

Limited Pre-emptive Model Pre-emption Delay Computation: Every literature on the

limited pre-emptive model whether quantifying the number of pre-emptions or quantifying

the actual pre-emption delay does it so per task. The outcome of every work – this thesis is

no exception – is a bound on the number of times each task can be pre-empted. In certain

scenarios the overall bounds for the pre-emption delay in the entire schedule obtained might

be more pessimistic than the outcome of the trivial fully pre-emptive mechanisms. This

scenario can manifest itself when the length of the non-pre-emptive regions is small when

compared to the total length of the task. The theory that exploits the additional knowledge

provided by the limited pre-emptive theory and derives tight schedule-wise pre-emption

estimations demands further study. Thus far it not clear which form this solution would

take even from a high level perspective. In the case of the fully pre-emptive scenario it

is now well accepted that quantifying the pre-emptions form the point of view of the pre-

empting tasks rather than a per task bound leads to much better results as many pre-emptions

are not multiply accounted. This is likely to be the same case in the limited pre-emptive

methodology.

Temporal Isolation in Multicores: The work presented in this thesis pertaining to the

temporal isolation has been derived considering purely single core scenarios. Most of the

works derived for single-core platforms can generally be directly ported to multicore de-

vices provided that fully partitioned scheduling is employed. This tenet is not applicable

to the temporal isolation property since the interference that concurrent tasks – executing

on distinct processors – reciprocally induce, occurs on shared architectural devices which

are different in nature from the ones existing in the singlecore. In a multicore platform

160

7.1. FUTURE DIRECTIONS

not only the tasks would share the usage of architectural features such as the cache, these

would also access memory controllers and other mechanisms alike. Even if some trivial

solutions could be devised whether for the fully partitioned and for the global cases with

respect to the memory controller concurrent access – for instance setting up budgets for the

memory access – these lead to heavy resource usage. These solutions do not mitigate the

contention in the shared resources but rather just police it. It is common for the schedula-

bility assuming the worst-case scenario to become inferior when compared to single-core

execution. Further work is then required to ensure that workload can indeed execute effi-

ciently in a multi-processor platform while still ensuring a sufficient degree of separation

between workloads running concurrently on different cores.

Multiprocessor Limited Pre-emptive Practice: As for the single processor works pre-

sented in this thesis, the limited pre-emptive work suffers from lack of a real platform im-

plementation which enables its fitness as a scheduling solution to be tested. Moreover, it is

widely accepted that the nature of the global scheduling algorithms considered (GFTP and

GEDF) is such that very little information about the worst-case run-time events is known

at design time (i.e. number of pre-emptions and migrations). In this way the limited pre-

emptive theory helps the system designer in that it allows for a considerable more amount

of information to be used in the temporal analysis. Nevertheless more effort should be

taken in order to assess whether the scheduling policies could be slightly changed in order

to tight the maximum considered number of migrations. As of the current state of the work

all pre-emptions are considered to induce a migration. The presented theory also lacks

an integration of the bus contention which tasks are faced with. The limited pre-emptive

model, namely the fixed non-pre-emptive kind, may prove a valuable framework in which

bus requests are clamped together in order to provide more determinism on their temporal

occurrence and hence lending more information for the intra-core interference arising from

the system execution.

161

7.1. FUTURE DIRECTIONS

162

References

[AB04] Luca Abeni and Giorgio Buttazzo. Resource reservation in dynamic real-time
systems. Journal on Real-Time Systems, 27, 2004.

[AB09] Sebastian Altmeyer and Claire Burguiere. A new notion of useful cache block
to improve the bounds of cache-related preemption delay. In ECRTS, 2009.

[AB11] Sebastian Altmeyer and Claire Maiza Burguière. Cache-related preemption
delay via useful cache blocks: Survey and redefinition. Journal of Systems
Architecture, 2011.

[ABEL09] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow
integrity principles, implementations, and applications. ACM Transactions
on Information System Security, 13(1), 2009.

[AMR10] Sebastian Altmeyer, Claire Maiza, and Jan Reineke. Resilience analysis:
tightening the crpd bound for set-associative caches. In LCTES, 2010.

[Bak03] Theodore Baker. Multiprocessor edf and deadline monotonic schedulability
analysis. In RTSS, 2003.

[Bar05] Sanjoy Baruah. The limited-preemption uniprocessor scheduling of sporadic
task systems. In ECRTS, 2005.

[Bar07] Sanjoy Baruah. Techniques for multiprocessor global schedulability analysis.
In RTSS, 2007.

[BB04a] Enrico Bini and Giorgio Buttazzo. Biasing effects in schedulability measures.
In ECRTS, 2004.

[BB04b] Enrico Bini and Giorgio Buttazzo. Schedulability analysis of periodic fixed
priority systems. Transactions on Computers, 2004.

[BB10] M. Bertogna and S. Baruah. Limited preemption edf scheduling of sporadic
task systems. Transactions on Industrial Informatics, 2010.

[BBA10] Andrea Bastoni, Björn Brandenburg, and James Anderson. Cache-related
preemption and migration delays: Empirical approximation and impact on
schedulability. In OSPERT 2010, Jun 2010.

[BBM+10] M. Bertogna, G. Buttazzo, M. Marinoni, Gang Yao, F. Esposito, and M. Cac-
camo. Preemption points placement for sporadic task sets. In ECRTS, 2010.

163

REFERENCES

[BCSM08] B.D. Bui, M. Caccamo, Lui Sha, and J. Martinez. Impact of cache partitioning
on multi-tasking real time embedded systems. In RTCSA, 2008.

[BDM09] G. Blake, R.G. Dreslinski, and T. Mudge. A survey of multicore processors.
IEEE Signal Processing Magazine, 2009.

[Bet10] Adam Betts. Hybrid Measurement-Based WCET Analysis using Instrumen-
tation Point Graphs. PhD thesis, University of York, 2010.

[BLV07a] R.J. Bril, J.J. Lukkien, and W.F.J. Verhaegh. Worst-case response time anal-
ysis of real-time tasks under fixed-priority scheduling with deferred preemp-
tion revisited. In ECRTS, 2007.

[BLV07b] R.J. Bril, J.J. Lukkien, and W.F.J. Verhaegh. Worst-case response time anal-
ysis of real-time tasks under fixed-priority scheduling with deferred preemp-
tion revisited. In ECRTS, 2007.

[BLV09] R.J. Bril, J.J. Lukkien, and W.F.J. Verhaegh. Worst-case response time anal-
ysis of real-time tasks under fixed-priority scheduling with deferred preemp-
tion. Journal of Real-Time Systems, 2009.

[BMSO+96] J.V. Busquets-Mataix, J.J. Serrano, R. Ors, P. Gil, and A. Wellings. Adding
instruction cache effect to schedulability analysis of preemptive real-time sys-
tems. In RTSS, 1996.

[Bur95] Alan Burns. Preemptive priority-based scheduling: an appropriate engineer-
ing approach. In Advances in real-time systems. 1995.

[BXM+11] Marko Bertogna, Orges Xhani, Mauro Marinoni, Francesco Esposito, and
Giorgio Buttazzo. Optimal selection of preemption points to minimize pre-
emption overhead. In ECRTS, 2011.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation of
fixpoints. In SIGACT-SIGPLAN, 1977.

[CP01] A. Colin and I. Puaut. Worst-case execution time analysis of the rtems real-
time operating system. In ECRTS, 2001.

[DB09] Robert I. Davis and Alan Burns. Priority assignment for global fixed priority
pre-emptive scheduling in multiprocessor real-time systems. In RTSS, 2009.

[DB11] Robert I. Davis and Alan Burns. A survey of hard real-time scheduling
for multiprocessor systems. ACM Computing Survey, 43(4):35:1–35:44, Oct
2011.

[DBM+13] Rob Davis, Alan Burns, José Marinho, Vincent Nélis, Stefan M. Petters, and
Marko Bertogna. Global fixed priority scheduling with deferred pre-emption.
RTCSA, 2013.

[DD10] M. Destelle and J.-L. Dufour. Deterministic scheduling reconciles cache with
preemption for wcet estimation. In ECRTS, 2010.

164

REFERENCES

[Dev06] UmaMaheswari Devi. Soft Real-Time Scheduling on Multiprocessors. PhD
thesis, University of North Carolina at Chapel Hill, 2006.

[DFP01] Radu Dobrin, Gerhard Fohler, and Peter Puschner. Translating off-line sched-
ules into task attributes for fixed priority scheduling. RTSS, 2001.

[DL97] Z. Deng and J.W.-S. Liu. Scheduling real-time applications in an open envi-
ronment. In RTSS, 1997.

[DTB93] R.I. Davis, K.W. Tindell, and A. Burns. Scheduling slack time in fixed priority
pre-emptive systems. In RTSS, 1993.

[EEKS06] Stijn Eyerman, Lieven Eeckhout, Tejas Karkhanis, and James E. Smith. A
performance counter architecture for computing accurate cpi components.
Operating Systems Review, 2006.

[ESD10] Paul Emberson, Roger Stafford, and Robert I. Davis. Techniques for the
synthesis of multiprocessor tasksets. In WATER, 2010.

[GMR00] Laurent Georges, Paul Muhlethaler, and Nicolas Rivierre. A few results on
non-preemptive real time scheduling. Research Report RR-3926, INRIA,
2000.

[GSYY09] Nan Guan, Martin Stigge, Wang Yi, and Ge Yu. New response time bounds
for fixed priority multiprocessor scheduling. In RTSS, 2009.

[JCR07] Lei Ju, S. Chakraborty, and A. Roychoudhury. Accounting for cache-related
preemption delay in dynamic priority schedulability analysis. In DATE, 2007.

[KBL10] U. Keskin, R.J. Bril, and J.J. Lukkien. Exact response-time analysis for fixed-
priority preemption-threshold scheduling. In ETFA, 2010.

[Lam] W. Lamie. Preemption threshold. Technical report. Available online:
http://rtos.com/articles/18833.

[LB05] C. Lin and S.A. Brandt. Improving soft real-time performance through better
slack reclaiming. In RTSS, 2005.

[LHS+98] Chang-Gun Lee, Joosun Hahn, Yang-Min Seo, Sang Lyul Min, Rhan Ha,
Seongsoo Hong, Chang Yun Park, Minsuk Lee, and Chong Sang Kim. Analy-
sis of cache-related preemption delay in fixed-priority preemptive scheduling.
Transactions on Computers, 1998.

[LKPB06] Caixue Lin, Tim Kaldewey, Anna Povzner, and Scott A. Brandt. Diverse soft
real-time processing in an integrated system. In RTSS, 2006.

[LL73] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. Journal of the ACM, 1973.

[LLH+01] Chang-Gun Lee, Kwangpo Lee, Joosun Hahn, Yang-Min Seo, Sang Lyul Min,
Rhan Ha, Seongsoo Hong, Chang Yun Park, Minsuk Lee, and Chong Sang
Kim. Bounding cache-related preemption delay for real-time systems. Trans-
actions on Software Engineering, 2001.

165

REFERENCES

[LRT92] J.P. Lehoczky and S. Ramos-Thuel. An optimal algorithm for scheduling
soft-aperiodic tasks in fixed-priority preemptive systems. In RTSS, 1992.

[LSD89a] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm:
exact characterization and average case behavior. In RTSS, 1989.

[LSD89b] John Lehoczky, Lui Sha, and Y. Ding. The rate monotonic scheduling algo-
rithm: Exact characterization and average case behavior. In RTSS, 1989.

[McK04] Sally A. McKee. Reflections on the memory wall. In CCF, 2004.

[MNP+13] José Marinho, Vincent Nélis, Stefan M. Petters, Marko Bertogna, and Rob
Davis. Limited pre-emptive global fixed task priority. RTSS, 2013.

[MNP14] José Marinho, Vincent Nélis, and Stefan M. Petters. Temporal isolation with
preemption delay accounting. ETFA, 2014.

[MNPP12a] José Marinho, Vincent Nélis, Stefan M. Petters, and Isabelle Puaut. Preemp-
tion delay analysis for floating non-preemptive region scheduling. In DATE,
2012.

[MNPP12b] José Marinho, Vincent Nélis, Stefan Markus Petters, and Isabelle Puaut. An
improved preemption delay upper bound for floating non-preemptive region.
In SIES, 2012.

[MP10] José Marinho and Stefan Markus Petters. Runtime crpd management for rate-
based scheduling. In WARM, CPSWeek, 2010.

[MP11] J. Marinho and Stefan M. Petters. Job phasing aware preemption deferral. In
EUC, 2011.

[MPB12] José Manuel Marinho, Stefan M. Petters, and Marko Bertogna. Extending
fixed task-priority schedulability by interference limitation. In RTNS, 2012.

[MRNP11] José Marinho, Gurulingesh Raravi, Vincent Nélis, and Stefan Markus Petters.
Partitioned scheduling of multimode systems on multiprocessor platforms:
when to do the mode transition? In RTSOPS, 2011.

[NAMP11] Vincent Nélis, Bjorn Andersson, José Marinho, and Stefan Markus Petters.
Global-edf scheduling of multimode real-time systems considering mode in-
dependent tasks. In ECRTS, 2011.

[NCS+06] Fadia Nemer, Hugues Cassé, Pascal Sainrat, Jean-Paul Bahsoun, and Mari-
anne De Michiel. Papabench: a free real-time benchmark. In WCET, 2006.

[NMR03] Hemendra Singh Negi, Tulika Mitra, and Abhik Roychoudhury. Accurate
estimation of cache-related preemption delay. In CODES+ISSS, 2003.

[NP08] L. Nogueira and L.M. Pinho. Shared resources and precedence constraints
with capacity sharing and stealing. In IPDPS, 2008.

[OY98] Sung-Heun Oh and Seung-Min Yang. A modified least-laxity-first scheduling
algorithm for real-time tasks. In RTCSA, 1998.

166

REFERENCES

[PF01] Stefan M. Petters and Georg Färber. Scheduling analysis with respect to hard-
ware related preemption delay. In WCET, 2001.

[RGBW07] Jan Reineke, Daniel Grund, Christoph Berg, and Reinhard Wilhelm. Tim-
ing predictability of cache replacement policies. Real-Time Systems Journal,
2007.

[RM06a] Harini Ramaprasad and Frank Mueller. Bounding preemption delay within
data cache reference patterns for real-time tasks. In RTAS, 2006.

[RM06b] Harini Ramaprasad and Frank Mueller. Tightening the bounds on feasible
preemption points. In RTSS, 2006.

[SE04] Jan Staschulat and Rolf Ernst. Multiple process execution in cache related
preemption delay analysis. In EMSOFT, 2004.

[SKKC00] Youngsoo Shin, Daehong Kim, Daehong Kimü, and Kiyoung Choi.
Schedulability-driven performance analysis of multiple mode embedded real-
time systems, 2000.

[SSE05] J. Staschulat, S. Schliecker, and R. Ernst. Scheduling analysis of real-time
systems with precise modeling of cache related preemption delay. In ECRTS,
2005.

[SSL89] Brinkley Sprunt, Lui Sha, and John Lehoczky. Aperiodic task scheduling for
hard-real-time systems. Journal on Real-Time Systems, 1989.

[SW00] M. Saksena and Yun Wang. Scalable real-time system design using preemp-
tion thresholds. In RTSS, 2000.

[TM07] Yudong Tan and Vincent Mooney. Timing analysis for preemptive multitask-
ing real-time systems with caches. Transactions on Embedded Computing
Systems, 2007.

[WA12] Jack Whitham and Neil Audsley. Explicit reservation of local memory in a
predictable, preemptive multitasking real-time system. In RTAS, 2012.

[WEE+08] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti,
Stephan Thesing, David Whalley, Guillem Bernat, Christian Ferdinand, Rein-
hold Heckmann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter Puschner,
Jan Staschulat, and Per Stenström. The worst-case execution-time problem-
overview of methods and survey of tools. Transactions on Embedded Com-
puting Systems, 2008.

[Win] Wind River. VxWorks Platforms. http://www.windriver.com/products/
product-notes/PN_VE_6_9_Platform_0311.pdf.

[WS99] Yun Wang and M. Saksena. Scheduling fixed-priority tasks with preemption
threshold. In RTCSA, 1999.

167

REFERENCES

[YBB09] Gang Yao, Giorgio Buttazzo, and Marko Bertogna. Bounding the maximum
length of non-preemptive regions under fixed priority scheduling. RTCSA,
2009.

[YBB10] Gang Yao, G. Buttazzo, and M. Bertogna. Comparative evaluation of limited
preemptive methods. In ETFA, 2010.

[YBB11a] Gang Yao, Giorgio Buttazzo, and Marko Bertogna. Feasibility analysis un-
der fixed priority scheduling with limited preemptions. Journal Real-Time
Systems, 2011.

[YBB11b] Gang Yao, Giorgio Buttazzo, and Marko Bertogna. Feasibility analysis un-
der fixed priority scheduling with limited preemptions. Journal of Real-Time
Systems, 2011.

168

	Front Page
	Abstract
	Acknowledgements
	Conteúdo
	Lista de Figuras
	Lista de Tabelas
	1 Introduction
	1.1 Real-world Timing Requirements
	1.2 System Model
	1.3 Schedulers
	1.4 Background on Caches
	1.5 Thesis Organization

	2 Related Work
	2.1 WCET Upper-bound Computation
	2.1.1 Measurement Based
	2.1.2 Static Analysis

	2.2 Pre-emption Delay Estimation
	2.3 Pre-emption Delay Integration with Schedulability Assessment
	2.4 Limited Pre-emptive Scheduling
	2.4.1 Floating Non-pre-emptive Regions
	2.4.2 Fixed Non-pre-emptive Regions

	2.5 Temporal Isolation Enforcement

	3 Extensions to the Limited Pre-emptive Model
	3.1 On-line FTP Floating Non-Pre-emptive Region Extension
	3.1.1 Admissible Pre-emption Deferral
	3.1.2 Practical Usage of Equation (3.3)
	3.1.3 Sufficient Schedulability Condition for Proposed Framework
	3.1.4 Admissible Deferral Approximation
	3.1.5 Implementation Overhead
	3.1.6 Tighter Bound on the Number of Pre-emptions

	3.2 Evaluation
	3.2.1 Discussion
	3.2.2 Simulations

	3.3 Floating Non-pre-emptive Schedulability Increase
	3.4 Ready-Q locking concept
	3.4.1 Ready-Q Lock Implementation Considerations
	3.4.2 Maximum Interference Computation
	3.4.3 Ready-queue Locking Time Instant
	3.4.4 Ready-q Locking with Pre-emption Threshold
	3.4.5 Pre-emption Upper Bounds
	3.4.6 RQL Evaluation
	3.4.7 Discussion

	4 Pre-emption Delay Upper-bound for Limited Pre-emptive Scheduling
	4.1 CRPD Estimation
	4.2 Computing Execution Intervals
	4.2.1 Computation of fi(t)

	4.3 Determination of Pre-emption Delay Upper-bounds
	4.3.1 Extrinsic Cache Miss Function
	4.3.2 Pre-emption Delay Computation using Extrinsic Cache-miss Function
	4.3.3 Reducing the pessimism of fi(t)
	4.3.4 Reducing the pessimism of Gi(t)

	4.4 Experimental Evaluation
	4.4.1 fi(t) functions
	4.4.2 Pre-emption Delay Estimations

	5 Temporal-isolation Enforcement
	5.1 Chapter-wise Update on System Model
	5.2 Pre-emption Delay Accounting Approaches Comparison
	5.3 Proposed Budget Augmentation Framework
	5.3.1 Temporal-isolation Framework Description
	5.3.2 Temporal-isolation Schedulability Analysis

	5.4 Proposed Budget Donation Framework
	5.5 Limiting the Pre-emption Induced Budget Augmentation for Misbehaving Tasks
	5.6 Implementation Issues
	5.7 Example of Framework Usage with CRPD
	5.7.1 Temporal-isolation Assumptions
	5.7.2 Experimental Results

	5.8 Temporal-isolation Framework Considerations

	6 Multi-processor Limited Pre-emptive Theory
	6.1 Global Fixed Task Priority Response Time Analysis
	6.2 GFTP Limited Pre-emptive Scheduling Policies
	6.3 RDS Lower Priority Interference
	6.4 ADS Lower Priority Interference
	6.5 Fixed Task Priority Limited Pre-emptive Schedulability Test
	6.6 Maximum Interference from Lower or Equal Priority Non-Pre-emptive Regions in ADS
	6.7 System Predictability with Fixed Non-pre-emptive Regions
	6.8 Experimental Section for an Overhead-free Platform Model
	6.8.1 Blocking Estimation
	6.8.2 Pre-emptions in Simulated Schedules
	6.8.3 Schedulability assessment of RDS vs. ADS

	6.9 Accounting for Pre-emption Delay in the Global Schedule
	6.9.1 Pre-emption and Migration Delay Bound for Fully Pre-emptive GFTP
	6.9.2 Pre-emption and Migration Delay Bound for ADS GFTP
	6.9.3 Pre-emption and Migration Delay Bound for RDS (Last Region only) GFTP
	6.9.4 Pre-emption and Migration Delay Bound for RDS (Multiple Non-pre-emptive Regions) GFTP

	6.10 Schedulability Assessment of ADS vs. Fully Pre-emptive with CPMD
	6.10.1 Discussion of Pre-emption Delay Results

	6.11 Global Floating Non-pre-emptive Scheduling
	6.12 Schedulability Increase for Fixed Non-pre-emptive GEDF

	7 Summary and Future Directions
	7.1 Future Directions

	References

