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Abstract: Searching for economical and practical solutions to increase any transport substructure’s
protection and stability is critical for ensuring the long-term viability and adequate load-bearing
capacity. Piles are increasingly being used as an economical and environmentally sustainable
solution to enhance the strength of soft subgrade soils on which embankments are raised. As per the
available literature, there are two main strategies used to explain railway embankments’ performance:
experimental approaches and numerical simulations on a broad scale. The purpose of this study
is to examine the state-of-the-art literature on numerical modeling methods adopted to assess the
performance of pile-supported rail embankments subjected to cyclic loading. The paper addresses
the main results from various numerical methods to explain the appropriate mechanisms associated
with the load deformation response. It also presents the key issues and drawbacks of these numerical
methods concerning rail embankment development while outlining the specific shortcomings and
research gaps relevant to enhanced future design and analysis.

Keywords: piled railway embankment; rail track substructure; cyclic loading; geosynthetic reinforce-
ment; numerical simulation; FEM–DEM coupling

1. Introduction

Railways across the globe are experiencing a revival in all areas, including metropoli-
tan rail, high-speed rail, heavy haul, and intermodal freight operations. Owing to the usage
of faster and heavier trains, conventional rail bases, or track substructures composed of
one or more granular stratums overlying the soil subgrade have become rapidly weighed
down. Railways constructed on terrains with adverse geotechnical conditions coupled
with sub-standard substructures need routine maintenance to reach higher construction
standards. Seeking economic and realistic strategies to improve the substructure’s stabil-
ity is crucial for ensuring the rail industry’s long-term sustainability and providing an
adequate capacity to sustain future load increases.

Much attention has been paid in the past to the above-ground track elements such as
rails, rail pads, sleepers or ties, and fasteners [1]. However, numerous studies [2,3] have
indicated that the majority of expenditure on track maintenance is normally spent on track
substructure. The economic analyses of Wheat and Smith [4] based on UK rail systems
found that more than one-third of the overall capital cost on all ballasted rail networks
corresponds to the track substructure. As a consequence of severe ballast deterioration, the
Australian rail sector invests a massive amount on regular track rehabilitation (e.g., over
AUD 12 million per annum in the state of New South Wales alone), and substantial land
development before track construction, where poor and deteriorated base soils (subgrade)
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provide significant challenges [5]. For this reason, numerous research studies have been
conducted to address the challenges of increasing demand for higher performance track
substructure, and thereby to effectively manage the growing need for high-speed commuter
lines as well as higher axle heavy haul railways [6,7].

The track substructure is considered as typically integrated with the geotechnical
properties of a layered system comprising ballast, sub-ballast (including a capping layer),
and structural fill (if required to raise an embankment) over the natural subgrade [8]. On
the one hand, Indraratna and co-workers (e.g., [6,9–22]) gave special attention to selected
components of track substructure, namely, ballast and sub-ballast. On the other hand, the
behavior of railway subgrade or the rail embankment itself has gained less attention, albeit
with their significant influence on the overall maintenance costs [23].

Since railway routes over troublesome subgrades—comprising poor, porous, expan-
sive, as well as collapsible soils posing the threat of excessive or unacceptable deformation
(e.g., [24])—are unavoidable in most real-life situations, efficient methods of soil improve-
ment are necessary to ensure stability (e.g., [25]). A railroad embankment is constantly
subjected to a significant range of axle loads and frequencies (speed) over its operational
period. With the increase in repeated loads throughout the service life, the associated
permanent deformation is inevitable, and the incremental accumulation of plastic strains
over time may lead to unacceptable differential settlement and even the subgrade failure
of the track.

The performance of unbound granular materials depends not only on their current
physical properties but also on their changes that govern the long-term response under
cyclic loading. The performance of these materials is often complicated due to the oc-
currence of both permanent as well as resilient strains and the degradation of particles
under cyclic loading. The resilient response is vital to the load-bearing capacity of the
embankment system, whereas the permanent strain response exemplifies the long-term
efficiency of the embankment. One effect of such a granular composition is that unbound
materials have no intrinsic strength as a continuum when untreated and are unable to
sustain any tension. On the other hand, they can sustain (small) shear stresses [26]. For this
reason, properly understanding the plastic behavior of unbound granular materials and
the adoption of a correct constitutive model for numerical analysis are imperative.

Several researchers have examined the behavior of transport embankments under
static loading [27–29]. However, railway embankments experience a cyclic response caused
by moving axle loads. Various studies (e.g., [30–34]) have pointed out the influence of
cyclic loads on soft soil (subgrade) compressibility and strength characteristics.

Pile-supported embankments have been widely used as a rapid construction method
to reduce differential and total settlements and to enhance the load transfer mechanism
from the soil to the piles over poor subgrade soil conditions [35,36]. This method has
several benefits, including enhanced overall stability (bearing capacity), limited lateral and
vertical deformations, and easy-to-control settlements from a design point of view [37,38].
Britton and Naughton [39] pointed out the benefits of this piled embankment approach
over other techniques including geosynthetic soil reinforcement, stage construction, or
preloading, using lightweight fill, over-excavation, and replacement. According to them,
superstructures can be constructed in a single stage, avoiding extended construction
periods while achieving a substantial reduction in both differential and total settlements.

The use of granular pile-supported embankments (such as stone columns and gravel
piles) has increased nowadays compared to the traditional continuous concrete piles. Each
method has its own advantages and disadvantages. Concrete piles cannot dissipate excess
pore water pressure [40], while granular piles supporting embankments on soft soils can
rapidly dissipate excess pore pressures while transferring load. Furthermore, granular
piles can easily be made continuous and uniform with the base layer of an embankment,
which can be a compacted granular layer consisting of the same granular medium as used
for the piles; hence, this saves much time during construction. Granular piles supporting
embankment can be composed of waste materials from industry such as coal wash, blast
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furnace slag, mines waste rock, and discarded rail ballast, and hence are more economical
than using concrete piles. Moreover, concrete piles do not serve the expectation of a
favorable carbon footprint, while granular piles constructed using waste granulates uphold
significant environmental benefits, including waste recycling and reducing quarrying
of natural aggregates. In particular, granular piles can be constructed with marginal
rockfills mixed with recycled rubber crumbs to act as energy-absorbing supports [41] for
the overlying embankment, reducing vibrations and minimizing damage caused by impact
forces to the infrastructure components. For example, railway ballast and concrete sleepers’
damage due to heavy haul loading can be lessened by introducing granular pile-supported
embankments. However, bulging and lateral movement of granular piles may occur under
heavy loads [42–44], and hence the diameters need to be much larger than those of concrete
piles if the applied live load is very high. The shear strength of granular piles supporting
embankment will be less than that of typical concrete piles [45]. In addition, concrete piles
are often quicker to install in the ground with well-established contractors and continuous
piling methods. Finally, where waste granular aggregates or marginal rockfill is not locally
available, granular piles may not be an attractive option compared to concrete that is
readily available anywhere.

In a piled embankment, the embankment fill tends to settle more in the regions
between piles because of stiffness variation between the piles and the surrounding soil.
However, this downward displacement is restricted owing to shearing mechanisms in the
fill. Due to mobilized shear resistance, the load is partially transferred onto the piles while
the stress imposed on the soft ground is reduced. This load transfer mechanism is known
as soil arching (Figure 1), as initially described by Terzaghi [46]. In a piled rail embankment
(Figure 2), the soil arching phenomenon plays a key role in the efficient load transfer from
the embankment to the piles [47]. Basal geosynthetic reinforcement is also often used, as
it contributes to the load transfer onto the piles by the membrane effect (Figure 3). The
proportion of load transferred onto the piles is usually referred to as efficacy.
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Center, Inc.).

To study piled embankments’ behavior, numerous researchers have developed dif-
ferent model tests (e.g., [27,51–53]). These model experiments have primarily focused on
the arching behavior of the embankment soil. In reality, the load distribution processes are
far more complex than simply soil arching, as shown by various pilot-scale or full-scale
studies (e.g., [54–59]).

Alternatively, the use of modeling approaches is increased over the years to explain
the material performance, especially as computational resources are improved. Modeling
methods build the expertise and resources required for predictions and offer essential
supporting evidence when explaining material performance through empirical approaches.
In addition to the proper understanding and knowledge of the material behavior under
varying circumstances, these techniques can allow substantial financial savings within the
design limits.

Although some scholars have proposed mathematical formulations that are com-
patible with their findings [37,60–62], there is a need for considerable effort to develop
more general models and procedures that are both theoretically sound as well as widely
applicable. Meanwhile, with the growing availability of computing resources, general-
purpose theoretical methods have progressively been substituted by numerical techniques,
of which the finite element approach is one of the most commonly used. The move from
simplistic analytical models brought about changes in precision by substituting them with
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sophisticated numerical simulations capable of evaluating particular corner cases involv-
ing complicated geometries, paving the way for the implementation of more accurate
constitutive models as well as boundary conditions [63].

While most of the studies in the past were mainly focused on static loadings as per the
authors’ knowledge, this paper aims to provide a critical review of the existing literature
to investigate the fundamental principles of the underlying mechanisms and influence of
piles beneath rail embankments under cyclic loading through numerical modeling.

2. Numerical Simulation of Piled Embankments

Numerical simulation or computational modeling of pile-supported rail embankments
principally refers to the methods used to solve a series of algebraic or differential equations
or theoretical models numerically to explain such structures’ performance under dynamic
loading. Computational modeling requires choosing an acceptable series of equations to
approximate the embankment system’s actions under analysis and then solving equations
through suitable numerical procedures as well as verification, validation, and calibration.
There are two major computational approaches to model pile-supported embankments.
They are the continuum approach and discrete element modeling (e.g., [64–66]).

2.1. Effects of Embankment Height and Material Properties

Numerous researchers have conducted multiple computational simulations [28,49,67–71]
to examine the load transfer process in a pile-supported embankment. The numerical in-
vestigation by Han and Gabr [69] assessed the effect of embankment height, pile elastic
modulus, and geosynthetics tensile stiffness on the process of load transfer. The degree
of soil arching was evaluated in terms of the soil arching ratio, ρ (where ρ = 0 represents
complete soil arching and ρ = 1 represents no soil arching). The authors observed that the
soil arching ratio decreases with increasing the embankment fill height, increasing the pile
material’s elastic modulus and decreasing the geosynthetic reinforcement’s tensile stiffness.
Jenck et al. [28] detected that a shearing mechanism effectively controls the transfer of load
onto the piles due to soil arching. Soil arching limits the embankment subsoil settlement by
the load transfer mechanism onto the piles [47]. Jenck et al. [49] demonstrated an efficacy
improvement with the increase of embankment height.

Several design methods use the critical height concept to estimate the magnitude of
arching (Table 1). The critical height is the height from the pile’s cap top to the plane of equal
settlement in the embankment fill [72]. The concept of the plane of equal settlement was
originally proposed by Marston [73], as illustrated in Figure 4. According to Naughton [72],
the arching phenomenon is not predominant if the embankment height is less than the
plane of equal settlement, and geosynthetic reinforcement will carry the applied traffic
loads. However, when the embankment height exceeds the plane of equal settlement,
geosynthetics will only carry the embankment filling load in the yielding zone, and the
residual embankment and traffic loads will be transferred to the pile caps by the process
of arching.

Table 1. Summary of design methods to determine the critical height.

Design Approach Critical Height

Terzaghi [74] 2.5 (s-a)
Carsslon [75] 1.87 (s-a)

Hewlett and Randolph [52] 1.4 (s-a)
BS 8006 [76] 1.4 (s-a)

Horgan and Sarby [77] 1.545 (s-a) to 1.92 (s-a)
Russell et al. [78] H (for ultimate limit state design)

van Eekelen et al. [79] 1.87 (s-a)
Kempfert et al. [80] s/2

Naughton [72] ((s-a)/2) eπ/2 tanφ

Where s: spacing between the piles; a: size of the pile cap; H: embankment height; φ: friction angle of the
embankment fill.
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Low et al. [53] introduced a parameter, the stress reduction ratio (SR), which is the
proportion of the mean vertical stress carried by the reinforcement and the average vertical
stress induced by the embankment fill. Ariyarathne and Liyanapathirana [81] summa-
rized various updated design approaches for geosynthetic-reinforced, pile-supported
embankments (GRPS) considering SR outlined in Table 2. Nevertheless, the arch shape is
inconsistent in these design methods and different approximations and assumptions were
used to derivate the desired design equations. Consequently, several parameters (friction
angle of the embankment fill, elastic modulus of the pile, and support to the foundation
soil) were not considered in these design approaches, which establish the necessity of the
adoption of numerical modeling approaches to incorporate all parameters [81].

Table 2. Design equations to determine the stress reduction ratio, SR (adapted from [81]).

Basic Design Approach Derived Design Equation

Terzaghi [46] SR =
(s2−a2)

4HaKtanφ

(
1− e

(−4Hak tanφ)

(s2−a2)

)
where, K = (1− sinφ)

Guido et al. [82] SR = (s−a)
3√2H

Hewlett and Randolph [52]

Conditions at the crown
SR =

(
1− a

s
)2(KP−1)

(1− s ×2(KP−1)√
2H(2KP−3)

+ (s−a) ×2(KP−1)√
2H(2KP−3)

Conditions at the pile cap
SR = 1(

2KP
(KP+1)

)[
(1− a

s )
(1−KP )−(1− a

s )(1+ a
s KP)

]
+
(

1− a2

s2

)
where, KP = (1+sinφ)

(1−sinφ)

Maximum of these two values should be used in the design

Low et al. [53] SR =
(σs−(tEs/D)

γH

Kempfert et al. [80]
SR = 1

γH

{
λx

1
(
γ +

q
H
)[

H
(

λ1 + h2
gλ2

)−x
+ hg

((
λ1 +

h2
gλ2

4

)−x
−
(

λ1 + h2
gλ2

)−x
)]}

where,
λ1 = 1

8 (sd − d)2; λ2 =
s2

d+2dsd−d2

2s2
d

; hg = sd
2 f or H ≥ sd

2 ; hg = H f or H < sd
2

BS 8006 [83]

For partial arching,

SR = 1
(s2−a2)

[
s2 − a2

(
PC
γH

)]
For full arching,

SR = 1.4
H(s+a)

[
s2 − a2

(
PC
γH

)]
Where s: spacing between piles; a: size of pile cap; H: embankment height; Ko: earth pressure coefficient at rest; KP: passive earth pressure
coefficient; φ: friction angle of embankment fill; σs: vertical stress on the foundation soil midway between piles; t: maximum vertical
displacement of the foundation soil midway between pile caps; Es: elastic modulus of foundation soil; D: depth of foundation soil; ¦Ã: unit
weight of embankment fill; d: pile diameter; hg: arching height; q: surcharge; sd: diagonal pile spacing; PC: vertical stress on the pile.
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Ariyarathne et al. [67] investigated the performance of pile-supported embankment in
two-dimensional (2D) as well as three-dimensional (3D) conditions. They used different
methods of idealization in 2D plain-strain conditions. Among them, the equivalent area
(EA) method provided the closest outcomes to field test results and 3D numerical analysis.

Bhasi and Rajagopal [68] investigated the effect of embankment fill properties, pile
modulus, and geosynthetic stiffness on the time-dependent behavior of piled embankments
using 2D and 3D models. The authors found out that the friction angle of the embankment
fills influences efficacy. To investigate soil arching’s mechanical behavior, Li et al. [70]
simulated the interaction among the pile, embankment fill, and subsoil in their numerical
finite element model (FEM). They concluded that soil arching occurs after differential
settlement since the equal settlement plane’s height is not consistent with that of the critical
arch. Their study also showed that soil arching’s maximum intensity could be determined
by defining the pile spacing.

2.2. Effects of Cyclic Loading Condition
2.2.1. Use of Continuum Approach

Pham and Dias [71] studied the performance of pile-supported embankments under
different cyclic loading conditions considering the 3D numerical approach. They reported
that constitutive models directly influence piled embankments’ performance subjected
to cyclic loading in terms of cumulative settlements and soil arching mechanism. The
embankment and soft soil’s cumulative settlements were particularly significant during
the initial 300 load cycles, whereas the displacement of the pile head was almost negligible
during all cyclic loading (Figure 5). A slight increase in the arching ratio was observed
after 1000 load cycles for the traffic speed (V) of 100 km/h (Figure 6). The authors also
studied the influence of traffic speed on the cumulative settlements, as shown in Figure 7.
The traffic speed was found to have a relevant influence on the permanent settlements at
the embankment crest (Figure 7a). Moreover, the higher the vehicle speed, the faster the
permanent settlement of the soft soil (Figure 7b).
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Nunez et al. [84] compared the monitoring data of an experimental full-scale piled
embankment with several analytical and 3D numerical design approaches and reported
that the considered design approaches overestimated the stress reduction ratio or stress
efficacy. Conversely, the settlement efficacy (based on the ratio of settlement with and
without piles) was an important parameter to determine the pile-supported embankment’s
overall performance.

Meena et al. [47] investigated the performance of piled rail embankments using 2D
plane strain conditions. The authors addressed the impact of train-induced loading and
piles’ arrangement on the stability of the railway embankment. The authors found that the
settlement ratio (δem/δp) decreased with the increase in train speed (Figure 8a). Moreover,
for smaller pile spacing, the soil arching ratio (SAR) decreased with increasing train
speed, whereas for larger pile spacing, the influence of train speed on SAR (σs/γh+q) was
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negligible (Figure 8b). They also reported that the triangularly arranged piles demonstrated
a more effective load transfer mechanism than the traditional square pattern (Figure 9).
According to them, embankment height, pile and embankment modulus, pile spacing, and
friction angle significantly affect the pile-supported railway embankment behavior. They
also observed that plain strain numerical simulations provide inconsistent outcomes with
the existing design approaches as the piled rail embankment consists of a 3D problem.
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Pham et al. [85] used advanced FEM software (ABAQUS) to study geosynthetic-
reinforced piled embankment behavior subjected to cyclic loading by 3D numerical mod-
eling. Their research used the hypo-plasticity concept for the embankment fill and the
modified cam-clay constitutive model for the soft soil to simulate the complex behavior
during load cycles. They reported that the hypoplastic constitutive model provides better
results concerning the embankment fills subjected to cyclic loading. They also stated that
geosynthetics’ presence reduced the cumulative settlements and slowed down the decrease
in arching of the soil. However, the amount of geosynthetic layers did not show any
significant improvement concerning the cumulative settlements as well as soil arching.
According to their study, the cumulative settlement rate showed a decreasing trend with
the increase of load cycle number, and the increased speed of the vehicle culminated in
a faster reduction in soil arching behavior. However, Huang et al. [86] reported that the
3D numerical method, having a simple constitutive model (linear elasticity with perfect
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plasticity) framework for soil, showed a satisfactory prediction of the performance of a
geosynthetic-reinforced pile-supported railway embankment.

Zhuang et al. [87] also studied the load transfer process in geogrid-reinforced pile-
supported embankment subjected to cyclic loading and unloading conditions, focusing
mainly on the evaluation of the settlement of these systems using ABAQUS. Their study
used a linear elasticity with a perfect plasticity concept with the Mohr–Coulomb material
model for the embankment fill; the modified cam-clay model for the soft subsoil; and the
linear elasticity concept for the geogrid, pavement, and piles in the constitutive model to
simulate the complex behavior during load cycles. The authors observed that the maximum
settlement at the embankment base increased by 23–55% under cyclic loading conditions
but slightly rebounded under unloading, compared to the findings under static loading.
Their findings demonstrated that the vertical stress rebound phenomenon occurred during
cyclic loading and unloading. They also reported that this phenomenon was predominant
with the variation of traffic load.

2.2.2. Use of Discrete Element Approach

Alternatively, discrete element modeling (DEM) is a computational approach used for
solving mathematical problems related to the material having discrete characteristics, such
as granular material or many other geomaterials such as soils, rocks, and aggregates [88–90].
While continuum models concentrate on constitutive rules, DEM concentrates on interac-
tion laws [91].

Williams et al. [92] demonstrated that DEM is the simplified form of finite elements.
Gaoxiao et al. [93] and Han et al. [94] used DEM and experimental procedures to analyze
soil arching’s mechanical properties under dynamic loads. They demonstrated that soil
arching failure depends on the loading amplitude and the embankment height—the time
needed for the arching collapse dramatically rose with the embankment’s thickness, while
with the loading amplitude, the possibility of soil arching failure increased.

Numerous researchers have used DEM to analyze the performance of different types
of railway embankments (e.g., [95,96]). Han and Bhandari [97] studied geogrid-reinforced
piled embankment performance subjected to cyclic loading with DEM. They reported
that under cyclic loading conditions, the geogrid minimizes the embankment’s vertical
deformation. In particular, geogrid’s inclusion provided a deformation reduction of about
25% in comparison with the unreinforced embankment while also amplifying the stress
concentration ratio (the ratio between the pile top stress and the stress on the surrounding
soil). The authors also mentioned that geogrid reinforcement is responsible for constant de-
formation after 25 cycles of load, whereas unreinforced embankment deformation showed
an increasing trend with the increase of load cycles. They further identified that cyclic
loading’s influence principally relies upon the embankment height, pile spacing, and
footing dimension.

Han et al. [98] also used DEM to investigate the stresses and deformations in geosynth
etic-reinforced piled embankments. The authors concluded that geogrid in the piled
embankment considerably reduced both the differential and total settlements at the em-
bankment top. According to Lai et al. [99], although geogrid can enhance the performance
of load transfer and improve the stability of soil arching, the existence of geogrid does
not affect the soil’s failure mode arching under the surcharge. Nonetheless, Lai et al. [100]
stated that the inclusion of geosynthetics has a marginal impact on the features and forma-
tion of soil arching if the pile–subsoil relative displacement is the same for both reinforced
and unreinforced situations. The authors also reported that the embankment fill’s friction
coefficient has a marginal impact on soil arching features and formation, even though it
significantly influences the degree of soil arching effect. According to their study, embank-
ment height controls the formation and features of soil arching. Their study also indicated
that the piles’ spacing significantly influences soil arching formation, but not on its features.

Nevertheless, each numerical method has some limitations regarding modeling the
complex behavior of railway embankments subjected to cyclic loading, as discussed below.
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2.3. Comparison of Modeling Approaches

The crucial problem involved in the use of continuum methods for the simulation of
granular substances is the correct formulation of constitutive behavior [101]. Since granular
substance micromechanics can be accurately modeled with discrete methods, an ideal
adaptation of these approaches is required to model discontinuous substances’ flow and
displacements. However, inter-particle friction and cohesion on the microscale are usually
not equivalent to the internal friction angle and cohesion, which can be measured in the
laboratory on the macroscale [102]. Moreover, macroscopic quantities are reliant on the
shape of the particles, internal structure, and individual movement of the particles, which
is a challenging task to model and measure using DEM [103]. Furthermore, a significant
amount of computational time is required to model materials in DEM.

In the case of pile-supported embankments for ballasted rail tracks, Shao et al. [104]
stated that ballast, sub-ballast, embankment, and the pile foundation are all viewed as
a matrix of various material parameters determined from experiments and often treated
as a continuum. Research studies on FEM give a macroscopic view of ballasted railway
tracks’ complex behavior, according to the authors. Nevertheless, the ballast layer generally
consists of a significant number of discrete elements. The ballast particles show a com-
plicated hierarchical activity during the contact and breakage under traffic loading [104].
Consequently, the DEM is suitable for modeling the ballast aggregates as it is an efficient
tool for numerical simulation of discrete particles. In contrast, continuum-based computa-
tional approaches are better suited to analyze the insights of soft soil lateral deformations,
settlements, stresses, and strain rate-dependent behavior at the macroscopic scale [105].
The relationship of ballast with its substructure is an association between granular media
and continuous framework [104].

When piled embankments for transport infrastructure are considered, the most com-
mon loads include gravity, hydrostatic loading (undrained analysis), and the pressure
loads on the embankment, including surcharge loading and traffic loading [106]. Pham [48]
observed that the geosynthetic-reinforced, pile-supported rail embankment system reduces
the embankment and soft soil settlements induced by static loading up to about 5% as
compared to the piled embankment without geosynthetic reinforcement. This researcher
also demonstrated that the hypo-plasticity model simulates the geosynthetic-reinforced
pile-supported embankment’s cyclic response appropriately, as it can address the decrease
of arching effect and the cumulative settlements with the increasing number of load cycles.
However, yielding, strain-hardening, and strain-softening behavior, which are hard to
incorporate in the continuum approach, can be easily accommodated in the DEM using
the fundamental principles of packing density, coefficient of friction between the granular
particles, as well as normal and shear stiffness of the particles [97]. Han and Bhandari [97]
also observed that geosynthetic-reinforced, pile-supported embankment reduces the per-
manent deformation (by about 25%) during cyclic loading as compared to the unreinforced
piled embankment, which is consistent with the results obtained by Pham [48] using the
continuum approach.

Since FEM and DEM simulations are suitable for macroscopic and discrete matters,
respectively, the combination of DEM and FEM can be an effective solution to address
these problems, where FEM is used to model the continuum structure, and DEM is used
for discrete materials [104].

The concept of coupling discrete and continuum methods to study the load-deformation
behavior of pile-supported embankments, track substructure, and pavements has already
been established in various forms in recent times [64,98,104,107–111]. In this coupled mod-
eling approach, a granular layer that is governed by the interaction of discrete aggregates
is usually modeled by the DEM, which is then incorporated into a continuum mechanics
approach such as the FEM to analyze the surrounding soil that has a much larger domain
area. Principally, coupling between the DEM and FEM zones is achieved by (i) applying
the forces acting on the discrete particles as force boundary conditions to the finite element
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grids, and then (ii) treating the finite nodal displacements as velocity boundary conditions
(i.e., displacements) for the discrete particles.

In order to implement the above-mentioned coupling approach, the following three
sequential steps are normally adopted: (i) DEM model is first generated and cycled to bring
the model to initial equilibrium; (ii) a continuum mesh is then created in FEM zone to model
the surrounding soil with its geometry and an appropriate constitutive model; (iii) once
the setup process is completed, the coupled DEM–FEM model begins to execute in both
codes, with contact forces transferred from DEM to FEM, and displacements transferred
from FEM to DEM as boundary conditions via the socket I/O. It is important to note
that cycling in both codes must be synchronized using the same time step (∆t) so that the
same displacements are calculated in both codes at each time step [112], as illustrated in
Figure 10.
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Figure 10. Force–displacement exchange in a coupled discrete element modeling (DEM)–finite
element modeling (FEM) approach through socket I/O connection (modified after [111]).

Indraratna et al. [111] developed a coupled discrete–continuum model to study the
deformation of a single stone column installed in soft ground. In this case, a mathematical
framework was developed to implement the coupling mechanism (i.e., force-displacement
exchange) at the interface. The model was then used to investigate the contact force
distributions, the shear stress contours, and bulging developed in the stone column and
surrounding clay.

Shi et al. [110] applied a coupled DEM–FEM approach to model a multi-layer railway
ballast track subjected to moving wheel loads. This model was validated with both
laboratory and field test data, and the authors concluded that the coupled model can
provide more reliable responses compared to a purely macro-mechanical or continuum
behavior of a ballast layer under a moving load.

Ngo et al. [113] developed an advanced coupled model to study the load-deformation
response of the ballast layer subjected to cyclic train loading. In this study, non-uniform
sizes and irregular ballast shapes were simulated in DEM by connecting a specified number
of spheres clumped together to represent realistic angularity and sizes of ballast aggre-
gates. A series of thin interface elements could then be introduced to facilitate the force–
displacement exchanges. The coupled model was validated by the laboratory test data
and was then used to predict the load–displacement responses of a fully instrumented
rail track in the town of Singleton north of Sydney, where two types of subgrade (e.g.,
soft alluvial foundation and hard concrete bridge deck) were analyzed with acceptable
accuracy compared to measured field data.

Adopting the above-described concepts and numerical advances, Tran et al. [64] very
recently developed a coupled discrete–continuum model to study the load transfer mecha-
nism of a geosynthetic-reinforced piled embankment, capturing the interaction between
granular materials and geotextiles. In summary, the coupled discrete–continuum model is a
promising numerical scheme for modelling pile-supported embankments as it fully utilizes
both numerical approaches with acceptable computational effort and reasonable accuracy.
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Therefore, researchers should pay more attention to DEM and FEM’s coupling to ob-
tain the integrated advantages of continuum and non-continuum-dependent
approaches [111,114,115]. Since the inclusion of geosynthetics can significantly improve
the performance of piled rail embankments, FEM can be used to consider the membrane
and tensile behaviors of geosynthetics [116]. A contact algorithm considering virtual work
principle can be proposed between DEM and FEM to analyze the whole structure’s per-
formance [104]. Rotations coupling can also be introduced in the DEM–FEM method to
minimize the simulated wave reflections [117].

3. Selected Applications in Practice and Challenges Faced

Zheng et al. [118] investigated the performance of two cement-fly ash-gravel pile-
supported railway embankments along the Beijing–Tianjin high-speed railway in China.
The cross-sections of these two embankments are illustrated in Figure 11. In this study,
the proportion of loads borne by soil and piles, settlement, excess pore water pressure,
and lateral displacement were monitored and addressed. The test results revealed that
stress concentration on the piles effectively decreased the excess pore water pressure.
The proportion of the load borne by the soil was limited, and the settlement was thus
significantly reduced. The piles’ compression, penetration of the piles, and the soft soils’
compression below the pile tips controlled the embankment’s settlement characteristics.
Furthermore, the depth of influence of the soft soils’ compression below the pile tips was
found to be equal to the width of the pile’s treated area.
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Figure 11. Schematic view of the embankments’ cross-section: (a) Station 1, (b) Station 2 (from [118],
reprinted by permission of Taylor and Francis Ltd., Abingdon, UK).

Han et al. [119] examined the soil arching behavior in geosynthetic-reinforced piled
embankments of different heights under dynamic load by performing model tests and
numerical simulations following Chinese high-speed railways. According to their analysis,
the dynamic load directly influences the soil arching behavior when the embankment
height is not high enough. They performed the model tests under two different conditions
(without a geogrid and subsoil) to analyze soil arching behavior under dynamic load. The
test system comprised a cylinder, an iron base with a hole, a signal acquisition system,
a vibration exciter, and dynamic soil stress transducers (SSTs), as shown in Figure 12.
Toughened glass was used for the cylinder wall to observe the mechanisms. The authors
observed that when the embankment height exceeded the hole diameter three times, the
dynamic load effects on the soil arching behavior were not predominant. On the other
hand, in numerical analysis (finite element modeling), due to the presence of geogrid,
when the height of the embankment exceeded 1.4 times the spacing of piles, the effect of
dynamic load on the soil arching behavior was negligible, which suggests that the presence
of a geogrid and subsoil will increase the stability of the soil arching during dynamic load.
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Briançon and Simon [120] studied the field performance of a pile-supported embank-
ment with an enlarged pile head and a geosynthetic-reinforced, pile-supported embank-
ment (i.e., an alternative solution to replace the enlarged pile head with geogrids) within the
framework of the new South Europe Atlantic high-speed railway line project (Figure 13).
The instrumentation’s overall accuracy was checked by comparing the measurement data
at identical locations recorded by different sensors. However, these sensors were unable
to provide accurate measurements, mainly because of the difficulties in measuring an
actual construction project. They observed that the performance of both reinforcements
was identical. After consideration of all the parameters, a geosynthetic reinforcement
solution was adopted for the project. This research showed that it is possible to refine a
pre-designed reinforcement solution and verify the feasibility and design approach of the
piling technique using full-scale experimentation.
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embankment (note: LTP and GSY denote load transfer platform and geosynthetic, respectively)
(republished with permission of ICE Publishing, from [120]; permission conveyed through Copyright
Clearance Center, Inc.).

Wheeler et al. [121] evaluated the field performance of helical screw pile-supported
peat railway subgrade located on the CN Rail Lévis subdivision in southeastern Quebec.
The piles were mounted with strain gauges to determine the corresponding axial strains,
piezometers were placed in the peat to monitor static and dynamic pore water pressures
before and after installation of the piles, and track and subgrade displacements were
measured using high-speed cameras before and after installation of the piles. A laboratory-
derived conversion factor was used to convert axial strain to axial load carried by the
piles. Some of the strain gauges were damaged during installation, which affected the
collected pile strain data. Because of the loose peat base on-site, the cameras used to assess
track displacement experienced shaking owing to ground vibrations. A potentiometer
was used to evaluate the track’s dynamic displacement and temperature. However, the
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potentiometer only assessed track displacement data for a few weeks after installation
before malfunctioning due to harsh field conditions. A vibrating wire settlement gauge
was installed at a depth of 1.4 m in the sub-ballast layer. Geophones were mounted on
either side of the instrumented section and used as triggers to capture the dynamic data
when trains approached.

A decrease in both the excess pore pressure and the tie displacement caused by moving
trains was expected after pile installation on the basis of the calculated load borne by the
piles. However, it was difficult to relate the changes in pore pressure to the installation
of the piles due to the post-pile data being from the months with the most significant
seasonal variations. As opposed to the effect of seasonal fluctuations in both static and
dynamic excess pore pressure, the piles’ influence on excess pore-water pressure was not
discernible. Track support system deformations revealed no significant difference between
pre- and post-pile installation. Due to the limited results available, no relationship could
be established between the pile’s orientation and the amount of axial load borne. On the
basis of the monitoring data at this location, it appeared that the expected load transfer
from the ties to the piles by arching within the ballast layer was not accomplished [121].

Wang et al. [122] performed a full-scale model analysis of soil stress variations in
a geosynthetic-reinforced piled railway foundation at varying water levels and loading
cycles. A schematic diagram of this model is illustrated in Figure 14. Four test procedures
were adopted in this study: rising of water level, lowering of water level, and cyclic loading
at high and low water levels. The authors found that when the water level was lowered
and the model was loaded at a low water level, the soil arching effect stayed constant, with
slightly altered dynamic stresses in the railway track bed. Conversely, as the water level
was raised and the loading cycles increased at a high-water level, the soil arching effect
became more noticeable until the dynamic stress concentration ratio’s ultimate value was
achieved. They also observed that the dynamic stress above the water bag or the pile cap
was barely affected by the geogrid due to the minor variance of the geogrid’s transient
deformation during cyclic loading.
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However, field testing may be exceedingly time-consuming, and the expenses asso-
ciated with the installation of equipment, construction, and monitoring of full-scale trial
embankments to determine the efficiency of various strengthening systems are usually too
high to be practically sustainable [123–125].



Sustainability 2021, 13, 2509 17 of 22

4. Research Gaps and Recommendations

As per the available literature, most of the studies on piled embankments for railway
infrastructure have focused on the short-term cyclic loading effects and have not considered
the time-dependent behavior of these embankments under cyclic loading. Although the
system response (e.g., membrane effect in geosynthetic reinforcement and soil arching
behavior) under static loading conditions is currently well known, the long-term cyclic
loading behavior is not fully understood yet. Prediction of long-term differential settlement
of the piled railway subgrade after millions of load cycles is necessary. Nevertheless,
the numerical methods’ prediction accuracy is considerably affected by the constitutive
model of materials and parameters selection. Therefore, there is a need for developing an
advanced model considering the aforementioned issues to make it applicable to all types
of soils.

As existing literature has focused on the effects of triangular and square arrangements
of piles, there is scope for further studies to investigate the effectiveness of load transfer in
pile-supported rail embankments considering different pile arrangements (for example,
hexagonal, circular, and rectangular patterns).

The post-construction settlement is another crucial issue often ignored in past studies,
sometimes difficult to control in several regions of the world, which seriously threatens
high-speed trains’ operation safety. Consequently, the geometry along the track’s length
may deteriorate to an unacceptable degree due to undesirable settlement in the soft soils.
Therefore, an in-depth study on the post-construction effect is needed considering different
geometric sizes and shapes of piles to ensure high-speed trains’ safe and efficient operation.

The railway track’s differential settlement mainly appears in regions of foundation
non-uniformities, transitions between different substructures due to structural differences,
and connections between foundation treatment sections. Since most researchers have
overlooked these vital issues, they should thus be addressed in future studies. Furthermore,
the effect of pile-net structure on low railway embankments in soft soil areas under cyclic
loading is another topic that deserves further investigation.

Most importantly, reducing calculation time with prediction accuracy should be a
prime concern in future studies based on large-scale field trials using advanced user
subroutines in sophisticated numerical models.

5. Conclusions

The traditional ballasted railway track is the earliest type of railway pathway intro-
duced in the world and one of the most commonly used. Superstructure (including rails,
sleepers or ties, rail pads, and fasteners) and substructure (including ballast, sub-ballast,
and subgrade) are the two main components of the ballasted railway lines. Rail routes over
problematic subgrades, comprising soft, porous, expansive, and collapsible soils, have the
potential for undesirable settlement subjected to vertical loads and mobilization of low
load-carrying capacity. During their operation period, the railway embankments typically
face a wide range of cyclic loads. Consequently, special attention has to be given to rail
beds overlying these troublesome soils, which is time-consuming and represents a high
operational cost.

Piles are gradually being used as a cost-effective and environmentally sustainable
alternative to increase the bearing capacity of soft soils underlying rail embankments.
Therefore, a detailed analysis is required to understand the fundamental processes and
effect of pile installation on rail embankments subjected to cyclic loading. However, field
testing is often time-consuming and the construction and monitoring costs of full-scale
trial embankments are generally too high to be practically sustainable.

Numerical approaches such as FEM and DEM have increasingly been used due to
computing technology advancements to predict embankment behavior as per the avail-
able literature. With sufficient computing time, FEM can efficiently model the whole
railway network. FEM is one of the best computational methods for exploring the macro-
scopic behavior of a ballasted railway system. The main challenge involved in using the
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FEM technique is to select a suitable material model to simulate the complex behavior of
the materials.

Alternatively, DEM is used to address the mathematical problems related to discrete
matters. Compared to the FEM, DEM models every particle as an independent body and
depicts granular substances as idealized particle assembly. This method is applicable
for validating experimental procedures for small-scale models. Macroscopic amounts are
dependent on the form of objects, the internal composition, and the individual movement of
the objects, which is a challenging task to model and measure using DEM. Moreover, a large
amount of computational time is required to accomplish the designated task using DEM.

The combination of DEM and FEM can be an effective solution to model pile-supported
railway embankments under cyclic loading. In this coupled model, DEM is used to simu-
late the discrete ballast grains, whereas the FEM is used to simulate the subgrade domain
as a continuum. This coupled approach’s main benefits arise from the combination of the
advantages of both the FEM and DEM and the possibility of simulating the continuum
structure and the discrete materials, as well as the interaction between these components.

Furthermore, an advanced numerical model with user subroutines should be in-
troduced to minimize the calculation time and increase prediction accuracy considering
practical problems in the field.
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