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Abstract. Let M be a surface and R : M → M an area-preserving C∞ diffeomorphism which is an involution and whose set of fixed
points is a submanifold with dimension one. We will prove that C1 generically either an area-preserving R-reversible diffeomorphism is
Anosov or, for µ-almost every x ∈ M, the Lyapunov exponents at x vanish or else the orbit of x belongs to a compact hyperbolic set with
empty interior. We will also describe a non-empty C1-open subset of area-preserving R-reversible diffeomorphisms where C1 generically
each map is either Anosov or its Lyapunov exponents vanish almost everywhere.
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1. Introduction

Let M be a C∞ compact, connected, Riemannian two-dimensional manifold without boundary and µ its normalized
Lebesgue measure. Denote by Diff r

µ (M) the set of Cr-diffeomorphisms of M which preserve µ endowed with the
Cr-topology (r ∈ N ∪ {∞}). A diffeomorphism f : M → M is said to be Anosov if M is a hyperbolic set for f . In
[45], it was proved that a generic µ preserving diffeomorphism is either Anosov or the set of elliptic periodic points
is dense in the surface. More recently [37, 38, 9], another C1-generic dichotomy in this setting has been established.
For f ∈ Diff 1

µ (M) and Lebesgue almost every x ∈ M, the upper Lyapunov exponent at x is given by

λ+( f , x) = lim
n→+∞

log ‖D f n
x ‖

1/n.

The main theorem of [9] states that in a C1-residual subset of Diff1
µ(M) each element is either Anosov or has zero

upper Lyapunov exponent at Lebesgue almost every point.
In this paper we address a similar question within the subspace of Diff1

µ(M) which exhibits some symmetry. More
precisely, given a diffeomorphism R ∈ Diff ∞µ (M) such that R = R−1, denote by Diff 1

µ,R(M) the subset of maps
f ∈ Diff 1

µ (M), called R-reversible, such that R conjugates f and f −1, that is,

R ◦ f = f −1 ◦ R.

The spaces Diff 1(M), Diff 1
µ (M) and Diff 1

µ,R(M) are Baire [29, 19] and an extension of [11, Theorem 7] allows one to
deduce that there is a residual subset C of Diff 1

µ,R(M) such that f ∈ C if and only if it is a continuity point of the (upper
semi-continuous) map

h ∈ Diff 1
µ,R(M) 7→

∫
M
λ+(h, x) dµ

and so, for almost every x ∈ M, either λ+( f , x) = 0 or the orbit of x by f has a dominated splitting. Roughly speaking,
the method used in [11] depends on the construction of Kakutani towers on regions far away from hyperbolicity; we
will uncover the quite involved machinery behind this argument in Section 8. To prevent the coexistence of both
behaviors in substantial sets of M, that is, to ensure that either hyperbolicity occurs on the whole manifold (so the
diffeomorphism is Anosov) or λ+( f , x) = 0 Lebesgue almost everywhere, those towers had to be built at a full measure
subset of M. This dichotomy was obtained in [9] for surfaces and area-preserving diffeomorphisms, assisted by the
density of C2 diffeomorphisms in Diff 1

µ (M) proved in [55], and the fact that for a C2 area-preserving diffeomorphism
any uniformly hyperbolic set has zero Lebesgue measure, unless it coincides with M; see [11, Theorem 15] for details.
However, for the time being, no such density is known in the setting of reversible conservative dynamics. To deal with
positive Lebesgue measure hyperbolic sets, we adjusted the result of [55] and the reasoning of [9] to the presence of
reversibility.
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Given an involution R ∈ Diff ∞µ (M) such that

Fix (R) = {x ∈ M : R(x) = x}

is a submanifold of M with dimension equal to 1, consider the non-empty open set

WR =
{
f ∈ Diff 1

µ,R(M) : f (x) , R(x), for all x ∈ M
}
.

As Section 6 will inform, if f ∈ WR, then it may be C1- approximated by a diffeomorphism g ∈ Diff 2
µ,R(M), for

which any compact hyperbolic set is M or has zero measure. With due regard to these constraints, we will prove the
following generic characterization.

Theorem A. There exists a C1-residual RR ⊂ WR whose diffeomorphisms are either Anosov or their Lyapunov
exponents vanish Lebesgue almost everywhere.

As the torus T2 = R2/Z2 is the only surface that may support an Anosov diffeomorphism [22, 39], we may add
that:

Corollary 1. If M , T2, then a C1 generic f ∈ WR has zero Lyapunov exponents at Lebesgue almost every point.

The set WR deserves a further comment. If f ∈ WR, then the involution R ◦ f has no fixed points since

(R ◦ f )(x) = x ⇔ R(R ◦ f )(x) = R(x) ⇔ f (x) = R(x)

so WR , ∅ only on manifolds that support fixed point free involutions; [18, 27] contains more information on necessary
and sufficient conditions on the manifold for the existence of those involutions. For instance, consider the 2-sphere S2,
the antipodal map A : S2 → S2 and the rotation R : S2 → S2 of angle π around the north-south axis of S2. Then both
A and R are involutions of Diff 1

µ (S2), A is fixed point free and the diffeomorphism f = R ◦ A belongs to Diff 1
µ,R(S2)

since
R ◦ f = R ◦ (R ◦ A) = A = f −1 ◦ R.

Moreover, R ◦ f = A has no fixed points, so f ∈ WR.
As we will see in Section 7, a compact hyperbolic set for f ∈ Diff 1

µ,R(M) is equal to M or has empty interior. Thus,
without the assumption on the common images of f and R that defines the set WR, we have:

Theorem B. There exists a C1-residual RR ⊂ Diff 1
µ,R(M) such that, if f ∈ RR, then either f is Anosov or, for µ-almost

every x ∈ M, the Lyapunov exponents at x vanish or else the orbit of x belongs to a compact hyperbolic set with empty
interior.

2. Framework

A substantial amount of information about the geometry of the stable/unstable manifolds may be obtained from
the presence of non-zero Lyapunov exponents and the existence of a dominated splitting. Hence, it is of primary
importance to understand when one can avoid vanishing exponents or to evaluate their prevalence. Several success-
ful strategies to characterize the generic dynamical behavior are worth mentioning: [12, 10] for volume-preserving
diffeomorphisms, sympletic maps and linear cocycles in any dimension; [5, 7] for volume-preserving flows; [6] for
Hamiltonians with two degrees of freedom; [28] for diffeomorphisms acting in a three-dimensional manifold. In
what follows, we will borrow ideas and techniques from these articles. To extend them to area-preserving reversible
dynamical systems, the main difficulties are to handle with hyperbolic pieces which are not the entire manifold (see
Sections 6 and 7); and to set up a program of C1 small perturbations which keep invariant both the area-preserving
character and the reversibility (details in Section 5), that collapse the expanding directions into the contracting ones
in such an extent that the upper Lyapunov exponent diminishes (as done in Section 9).

A dynamical symmetry is a geometric invariant which plays an important role through several applications in
Physics, from the Classical [8] and Quantum Mechanics [48] to Thermodynamics [31]. In this context we may
essentially distinguish two types of natural symmetries: those which preserve orbits and those which invert them.
Much attention has been paid to the former (see, for instance, [20, 24] and references therein); the latter, called
reversibility [2, 3, 4], is a feature that most prominently arises in Hamiltonian systems and became an useful tool
for the analysis of periodic orbits and homoclinic or heteroclinic cycles [19]. The references [32] and [51] present a
thorough survey on reversible dynamical systems.
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Another, more studied, dynamical invariant by smooth maps is a symplectic form [43]. Our research will be focused
on surfaces, where symplectic maps are the area-preserving ones. Some dynamical systems are twofold invariant, both
reversible and symplectic, as for instance the Chirikov-Taylor standard map [40], the Hénon conservative map [51]
and the Arnold cat map [4]. To the best of our knowledge, only a few systematic comparisons between these two
settings have been investigated, as in [19] and [53].

3. Preliminaries

In this section, we will discuss some of the consequences of reversibility and summarize a few properties of
Lyapunov exponents and dominated splittings.

3.1. Reversibility. Let R ∈ Diff ∞µ (M) such that R = R−1 and consider f ∈ Diff 1
µ,R(M). Geometrically, reversibility

means that, applying R to an orbit of f , we get an orbit of f −1. The f -orbit of a point x ∈ M, say O(x) = { f n(x), x ∈ Z},
is said to be R-symmetric if R(O(x)) = O(x). If x is a fixed point by f and its orbit is R-symmetric, then obviously x
is a fixed point by R as well. Yet, in general, the fixed point set of f , say Fix ( f ), is not preserved by R. Each element
of the set Fix ( f ) \ Fix (R) is called asymmetric.

Consider f , g ∈ Diff 1
µ,R(M). Then R ◦ f −1 = f ◦ R, but R ◦ ( f ◦ g) = ( f −1 ◦ R) ◦ g = ( f −1 ◦ g−1) ◦ R = (g ◦ f )−1 ◦ R,

so the set Diff 1
µ,R(M) endowed with the composition of maps is, in general, not a group. Moreover, if f ∈ Diff 1

µ,R(M)
is conjugate through h to g ∈ Diff 1

µ (M), then, although (R ◦ h) ◦ g = f −1(R ◦ h), g may be not R-reversible.

Remark 3.1. The space Diff ∞µ (M) is a Lie group whose differential structure is locally Fréchet [17, 34]. Its subset of
involutions

Inv∞µ = {R ∈ Diff ∞µ (M) : R2 = IdM}

is the fixed point set of the continuous group transformation

R ∈ Diff ∞µ (M) 7→ R−1,

and so Inv∞µ is a closed subgroup; therefore, it is also a Lie group (see [17, Section 26] or [42]). Moreover, given
R ∈ Inv∞µ ,

Diff ∞µ,R(M) = { f ∈ Diff ∞µ (M) : ∃ U ∈ Inv∞µ : f = R ◦ U}
since

• if f = R ◦ U, for some U ∈ Inv∞µ , then R ◦ f = U = (U ◦ R) ◦ R = f −1 ◦ R;
• if R ◦ f = f −1 ◦ R, then U = R ◦ f ∈ Inv∞µ and f = R ◦ U.

So, Diff ∞µ,R(M) = R (Inv∞µ ) and Diff ∞µ,R(M) is a Lie pseudogroup.

3.2. Dominated splitting. In the sequel we will use the canonical norm of a bounded linear map A given by ‖A‖ =

sup‖v‖=1 ‖A v‖. For f ∈ Diff 1(M), a compact f -invariant set Λ ⊆ M is said to be uniformly hyperbolic if there is m ∈ N
such that, for every x ∈ Λ, there is a D f -invariant continuous splitting TxM = Eu

x ⊕ Es
x such that

‖D f m
x |Es

x‖ ≤
1
2

and ‖(D f m
x )−1|Eu

x‖ ≤
1
2
.

There are several interesting ways to weaken the definition of uniform hyperbolicity. Here we use the one introduced
in [35, 36, 47]. Given m ∈ N, a compact f -invariant set Λ ⊆ M is said to have a m-dominated splitting if, for every
x ∈ Λ, there exists a D f -invariant continuous splitting TxΛ = Eu

x ⊕ Es
x satisfying

‖D f m
x |Es

x‖ ‖(D f m
x )−1|Eu

x‖
−1 ≤

1
2
. (3.1)

Observe that, if Λ displays an m-dominated splitting for f , then the same splitting is dominated for f −1. Under a
dominating splitting, both sub-bundles may expand or contract, although Eu expands more efficiently than Es and, if
both sub-bundles contract, Eu is less contracting than Es. Moreover, as happens in the uniform hyperbolicity setting,
the angle between these sub-bundles is uniformly bounded away from zero, because the splitting varies continuously
with the point and Λ is compact, and the dominated splitting extends to the closure of Λ (see [14] for full details).
Within two-dimensional area-preserving diffeomorphisms, hyperbolicity is in fact equivalent to the existence of a
dominated splitting [9, Lemma 3.11].
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Lemma 3.2. Consider f ∈ Diff 1
µ,R(M) and a closed f -invariant set Λ ⊆ M with an m-dominated splitting. Then R(Λ)

is closed, f -invariant and has an m-dominated splitting as well.

Proof. Clearly, as R is an involution, f R(Λ) = R f −1(Λ) = R(Λ). Let x ∈ Λ whose orbit exhibits the decomposition
T f i(x)M = Eu

f i(x) ⊕ Es
f i(x)

, for i ∈ Z. Then we also have a D f -invariant decomposition for R(x), namely T f i(R(x))M =

Eu
f i(R(x)) ⊕ Es

f i(R(x))
, for i ∈ Z, where

Eu
f i(R(x)) = DR f −i(x)(E

s
f −i(x))

and
Es

f i(R(x)) = DR f −i(x)(E
u
f −i(x)).

Indeed, for x ∈ Λ and i ∈ Z, we have

D f f i(R(x))(E
s
f i(R(x))) = D fR( f −i(x))(E

s
f i(R(x))) = D fR( f −i(x))DR f −i(x)(E

u
f −i(x))

= DR f −i−1(x)D f −1
f −i(x)(E

u
f −i(x)) = DR f −i−1(x)(E

u
f −i−1(x)) = Es

f i+1(R(x)),

and a similar invariance holds for the sub-bundle Eu. Therefore, since R is a diffeomorphism in the compact Λ, we
deduce that the angle between the sub-bundles at R(x) is bounded away from zero. Finally, notice that

‖D f m
R(x)|Es

R(x)
‖ ‖(D f m

R(x))
−1|Eu

R(x)
‖−1 = ‖D f m

R(x)|DRx(Eu
x)‖ ‖(D f m

R(x))
−1|DRx(Es

x)‖
−1 = ‖R(D f m

x )−1|Eu
x‖ ‖R(D f m

x |Es
x)‖
−1

= ‖(D f m
x )−1|Eu

x‖ ‖D f m
x |Es

x‖
−1 (3.1)
≤

1
2
.

�

3.3. Lyapunov exponents. By Oseledets’ theorem [46], for µ-a.e. point x ∈ M, there is a splitting TxM = E1
x ⊕

... ⊕ Ek(x)
x (called Oseledets’ splitting) and real numbers λ1(x) > ... > λk(x)(x) (called Lyapunov exponents) such that

D fx(Ei
x) = Ei

f (x) and

lim
n→±∞

1
n

log ‖D f n
x (v j)‖ = λ j( f , x)

for any v j ∈ E j
x\{~0} and j = 1, ..., k(x). This allows us to conclude that, for µ-a.e. x,

lim
n→±∞

1
n

log | det(D f n
x )| =

k(x)∑
j=1

λ j(x) dim(E j
x), (3.2)

which is related to the sub-exponential decrease of the angle between any two subspaces of the Oseledets splitting
along µ-a.e. orbit. Since, in the area-preserving case, we have | det(D f n

x )| = 1 for any x ∈ M, by (3.2) we get
λ1(x) + λ2(x) = 0. Hence either λ1(x) = −λ2(x) > 0 or they are both equal to zero. If the former holds for µ-a.e. x,
then there are two one-dimensional subspaces Eu

x and Es
x, associated to the positive Lyapunov exponent λ1(x) = λu(x)

and the negative λ2(x) = λs(x), respectively. We denote by O( f ) the set of regular points, that is,

O( f ) = {x ∈ M : λ1(x), λ2(x) exist}

by O+( f ) ⊆ O( f ) the subset of points with one positive Lyapunov exponent

O+( f ) = {x ∈ O( f ) : λ1(x) > 0}

and by O0( f ) ⊆ O( f ) the set of those points with both Lyapunov exponents equal to zero

O0( f ) = {x ∈ O( f ) : λ1(x) = λ2(x) = 0}.

So O+( f ) = O( f )\O0( f ). With this notation, we may summarize Oseledets’ theorem in the area-preserving reversible
setting as:

Theorem 3.3. [46] Let f ∈ Diff 1
µ,R(M). For Lebesgue almost every x ∈ M, the limit

λ+( f , x) = lim
n→+∞

1
n

log ‖D f n
x ‖
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exists and defines a non-negative measurable function of x. For almost any x ∈ O+, there is a splitting Ex = Eu
x ⊕ Es

x
which varies measurably with x and satisfies:

v ∈ Eu
x\{
~0} ⇒ lim

n→±∞

1
n

log ‖D f n
x (v)‖ = λ+( f , x).

v ∈ Es
x\{
~0} ⇒ lim

n→±∞

1
n

log ‖D f n
x (v)‖ = −λ+( f , x).

~0 , v < Eu
x ∪ Es

x ⇒ lim
n→+∞

1
n

log ‖D f n
x (v)‖ = λ+( f , x) and lim

n→−∞

1
n

log ‖D f n
x (v)‖ = −λ+( f , x).

The next result informs about a natural rigidity on the Lyapunov exponents of reversible diffeomorphisms.

Lemma 3.4. Let f ∈ Diff 1
µ,R(M). If x ∈ O+ has a decomposition Eu

x ⊕ Es
x , then

(a) R(x) ∈ O+.
(b) The Oseledets splitting at R(x) is Eu

R(x) ⊕ Es
R(x) with Eu

R(x) = DRx(Es
x), Es

R(x) = DRx(Eu
x).

(c) λ+( f ,R(x)) = λ+( f , x) and λ−( f ,R(x)) = λ−( f , x) = −λ+( f , x).
(d) If x ∈ O0, then R(x) ∈ O0.

Proof. Assume that x ∈ O+ and let v ∈ Eu
x\{
~0}. Consider the direction v′ = DRx(v) ∈ TR(x)M and let us compute the

Lyapunov exponent at R(x) along this direction:

λ( f ,R(x), v′) = lim
n→±∞

1
n

log ‖D f n
R(x)(v

′)‖ = lim
n→±∞

1
n

log ‖D(R ◦ f −n ◦ R)R(x)(v′)‖

= lim
n→±∞

1
n

log ‖DR f −n(R2(x))D f −n
R2(x)DRR(x)DRx(v)‖ = lim

n→±∞

1
n

log ‖DR f −n(x)D f −n
x (v)‖

= lim
n→±∞

1
n

log ‖D f −n
x (v)‖ = − lim

n→±∞

1
−n

log ‖D f −n
x (v)‖ = −λ+( f , x, v).

Thus R(x) ∈ O+. The other properties are deduced similarly. �

3.4. Integrated Lyapunov exponent. It was proved in [9] that, when Diff 1
µ (M) is endowed the C1-topology and

[0,+∞[ has the usual distance, then the function

L : Diff 1
µ (M) −→ [0,+∞[
f −→

∫
M λ+( f , x) dµ

is upper semicontinuous. This is due to the fact that L is the infimum of continuous functions, namely

L ( f ) = inf
n∈N

1
n

∫
M

log ‖D f n
x ‖dµ. (3.3)

Clearly, the same holds for the restriction of L to Diff 1
µ,R(M). Therefore, there exists a residual set in Diff 1

µ,R(M) for
which the map L is continuous. Now, the upper semicontinuity of L implies that L −1([0, τ[) is C1-open for any
τ > 0; hence

Aτ =
{
f ∈ Diff 1

µ,R(M) : L ( f ) < τ
}

is C1-open.

3.5. (R, f )-free orbits. Given a subset X of M, we say that X is (R, f )-free if f (x) , R(y) for all x, y ∈ X.

Lemma 3.5. Let f ∈ Diff 1
µ,R(M). If x ∈ M and R(x) does not belong to the f -orbit of x, then this orbit is (R, f )-free.

Proof. Let us assume that there exist i, j ∈ Z such that f i(x) = R( f j(x)). Then f i(x) = f − j(R(x)) and f j+i(x) = R(x),
which contradicts the assumption. �

Proposition 3.6. There is a residual D ⊂ Diff 1
µ,R(M) such that, for any f ∈ D , the set of orbits outside Fix (R) which

are not (R, f )-free is countable.
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Proof. Since f and R are smooth maps defined on M, by Thom’s transversality theorem [25] there exists an open
and dense set D1 ⊂ Diff 1

µ,R(M) such that, if f ∈ D1, the graphs of f and R are transverse submanifolds of M × M,
intersecting only at isolated points. Therefore, we may find a neighborhood of each intersection point where it is
unique. By compactness of M, we conclude that generically the graphs of f and R intersect at a finite number of
points (and this is an open property). Denote by F1 = {x1, j}

k1
j=1 the set of points such that f (x1, j) = R(x1, j).

Analogously, for n ∈ N, let Dn ⊂ Diff 1
µ,R(M) be the open and dense set of diffeomorphisms f ∈ Diff 1

µ,R(M) such
that the graphs of { f −n, ..., f −1, f , f 2, ..., f n} and R are transverse, and denote by Fn = {xn, j}

kn
j=1 the finite set of f -orbits

satisfying f i(xn, j) = R(xn, j) for some j ∈ {1, ..., kn} and i ∈ {−n, ...,−1, 1, ..., n}. Finally, define

D =
⋂
n ∈N

Dn

and the countable set of (R, f )-not-free orbits by

F =
⋃

n ∈N,m ∈Z

f m(Fn).

We are left to show that, if f ∈ D and x ∈ M\[F ∪ Fix (R)], then the orbit of x is a (R, f )-free set. Indeed, by
construction, for such an x, the iterate R(x) does not belong to the f -orbit of x; thus, by Lemma 3.5, this orbit is
(R, f )-free. �

Remark 3.7. The previous argument may be performed in Diff r
µ,R(M), for any r ∈ N.

From this result and the fact that dim Fix (R) = 1, we easily get:

Corollary 3.8. Generically in Diff 1
µ,R(M), the set of (R, f )-free orbits has full Lebesgue measure.

4. Stability of periodic orbits

Let R ∈ Diff ∞µ,R(M) be an involution such that Fix (R) is a submanifold of M with dimension equal to 1. Consider
f ∈ Diff 1

µ,R(M). For area-preserving diffeomorphisms, hyperbolicity is an open but not dense property. Indeed,
the C1-stable periodic points are hyperbolic or elliptic; furthermore, in addition to openness, the area-preserving
diffeomorphisms whose periodic points are either elliptic or hyperbolic are generic [52]. A version of Kupka-Smale’s
theorem for reversible area-preserving diffeomorphisms has been established in [19]. It certifies that, for a generic f
in Diff 1

µ,R(M), all the periodic orbits of f with given period are isolated.

Theorem 4.1. [19] Let Sk = { f ∈ Diff r
µ,R(M) : every periodic point of period ≤ k is elementary} and

S =
⋂
k ∈N

Sk.

Then, for each k, r ∈ N, the set Sk is residual in Diff r
µ,R(M). Thus, S is Cr-residual as well.

Therefore a generic f ∈ Diff r
µ,R(M) has countably many periodic points, a finite number for each possible period.

Corollary 4.2. There is a residual Er ⊂ Diff r
µ,R(M) such that, for any f ∈ Er, the set of periodic points of f has

Lebesgue measure zero.

In [54], the author states generic properties of reversible vector fields on 3-dimensional manifolds. To convey those
features to diffeomorphisms on surfaces, we take the vector field defined by suspension of a reversible diffeomorphism
f : M → M, without losing differentiability [50], acting on a quotient manifold M̄ = M ×R/ ∼ where it is transversal
to the section M × 0/ ∼. This vector field is reversible with respect to the involution obtained by projecting R× (−Id),
whose fixed point set is still a submanifold of dimension 1 of M̄. This way, we deduce from [54] that:

Proposition 4.3. A generic f ∈ Diff r
µ,R(M) has only asymmetric fixed points and all its periodic orbits are hyperbolic

or elliptic.
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Figure 1. Illustration of the 1st perturbation lemma: B is the ball B(x, r).

5. Local perturbations

Let R ∈ Diff ∞µ,R(M) be an involution such that Fix (R) is a submanifold of M with dimension equal to 1. Consider
f ∈ Diff 1

µ,R(M). Given p ∈ M, if we differentiate the equality R ◦ f = f −1 ◦ R at p, then we get DR f (p) ◦ D fp =

D f −1
R(p) ◦DRp, a linear constraint between four matrices of SL(2,R), two of which are also linked through the equality

R2 = Id. As the dimension SL(2,R) is 3, there is some room to perform non-trivial perturbations.
In this section, we set two perturbation schemes that are the ground of the following sections. The first one describes

a local small C1 perturbation within reversible area-preserving diffeomorphisms in order to change a map and its
derivative at a point, provided x has a (R, f )-free non-periodic orbit of f . The second one is inspired by Franks’
Lemma ([21]), proved for dissipative diffeomorphisms, and allows to perform locally small abstract perturbations,
within the reversible setting, on the derivative along a segment of an orbit of an area-preserving diffeomorphism.
These perturbation lemmas have been proved in the C1 topology only, for reasons appositely illustrated in [49, 14].

5.1. 1st perturbation lemma. Consider f ∈ Diff 1
µ,R(M) and take a point x ∈ M whose orbit by f is not periodic and

f (x) , R(x). Notice that those points exist if f ∈ D1 ∩ E1, as described in Proposition 3.6 and Corollary 4.2. We will
see how to slightly change f and D f at a small neighborhood of x without losing reversibility.

Denote by B(x, ρ) the open ball centered at x with radius ρ and by C the union B(x, ρ) ∪ R( f (B(x, ρ))).

Lemma 5.1. Given f ∈ Diff 1
µ,R(M) and η > 0, there exist ρ > 0 and ζ > 0 such that, for any x ∈ M satisfying

f (x) , R(x) and for every C1 area-preserving diffeomorphism h : M → M coinciding with the Identity in M\B(x, ρ)
and ζ-C1-close to the Identity, there exists g ∈ Diff 1

µ,R(M) which is η-C1-close to f and such that g = f outside C and
g = f ◦ h in B(x, ρ).

Proof. Using the uniform continuity of f on the compact M and the fact that f is C1, we may choose τ > 0 such that,
each time the distance between two points z and w of M is smaller than τ, then the distance between their images by
f , the norm of the difference of the linear maps D fz and D fw and the norm of the difference of the linear maps DRz

and DRw are smaller than min
{
η
2 ,

η
2 ‖ f ‖C1 ‖R‖C1

}
.

As f (x) , R(x), calling on the continuity of both f and R we may find 0 < ρ < τ such that the open ball B(x, ρ)
satisfies f (B(x, ρ)) ∩ R(B(x, ρ)) = ∅ (or, equivalently, B(x, ρ) ∩ R( f (B(x, ρ))) = ∅). Moreover, if x is not a fixed point
of f , we may choose ρ so that B(x, ρ) ∩ f (B(x, ρ)) = ∅ (see Figure 1).

Consider the estimate

ζ =
1
2

min
{
τ,

η

2 max { ‖ f ‖C1 (‖R‖C1)2, ‖ f ‖C1 }

}
7



Figure 2. Illustration of the 1st perturbation lemma: x is fixed by f .

and take a C1 area-preserving diffeomorphism h : M → M equal to the Identity in M\ B(x, ρ) and ζ-C1-close to the
Identity. If x < Fix ( f ), define g : M → M by

g(t) =


f (t) if t < C;
f ◦ h (t) if t ∈ B(x, ρ);
R ◦ h−1 ◦ f −1 ◦ R (t) if t ∈ R( f (B(x, ρ)));
f (t) if t ∈ R(B(x, ρ)) ∪ f (B(x, ρ)).

Otherwise, if f (x) = x as illustrated in Figure 2, let g : M → M be given by

g(t) =


f (t) if t < C;
f ◦ h (t) if t ∈ B(x, ρ);
R ◦ h−1 ◦ f −1 ◦ R (t) if t ∈ R( f (B(x, ρ))).

We are left to confirm that g ∈ Diff 1
µ,R(M) and is η-C1-close to f . We begin by showing that the equality R ◦ g =

g−1 ◦ R holds. If y < B(x, ρ) ∪ f (B(x, ρ)) ∪ R(B(x, ρ)) ∪ R f (B(x, ρ)), then R(y) is also out of this union and, therefore,
g(y) = f (y) and g−1(R(y)) = f −1(R(y)). Hence R(g(y)) = R( f (y)) = f −1(R(y)) = g−1(R(y)). If y ∈ B(x, ρ), then
R(y) ∈ R(B(x, ρ)) and so

R(g(y)) = R( f ◦ h)(y) = R( f ◦ h)(R ◦ R)(y) = (R ◦ h−1 ◦ f −1 ◦ R)−1(R(y)) = g−1(R(y)).

Analogous computations prove the reversibility condition on R( f (B(x, ρ))). Finally, if y ∈ R(B(x, ρ)), then R(y) ∈
B(x, ρ) and R(g(y)) = R( f (y)) = f −1(R(y)) = g−1(R(y)). Similar reasoning works for y ∈ f (B(x, ρ)).

Let us now verify that g is η-C1-close to f .

(a) C0-approximation.

By definition, the differences between the values of g and f are bounded by the distortion the map h induces on
the ball B(x, ρ) plus the effect that deformation creates on the first iterate by f and the action of R (which preserves
distances locally). Now, for z ∈ B(x, ρ), the distance between h(z) and z is small than ζ, which is smaller than τ. So,
by the choice of τ, the distance between g(z) and f (z) is smaller than η.

(b) C1-approximation.

We have to estimate, for z ∈ B(x, ρ), the norm ‖D fz − Dgz‖ = ‖D fz − D fh(z)(Dhz)‖ and, for z ∈ R( f (B(x, ρ))),
‖D fz − D(R ◦ h−1 ◦ f −1 ◦ R)z‖. Concerning the former, from the choices of τ and ζ, we have

‖D fz − D fh(z)Dhz‖ ≤ ‖D fz − D fh(z)‖ + ‖D fh(z) − D fh(z) Dhz‖ ≤
η

2
+ ‖ f ‖C1 ‖Idz − Dhz‖ ≤

η

2
+ ‖ f ‖C1 ζ < η.

8



Regarding the latter,

‖D fz − D(R ◦ h−1 ◦ R ◦ f )z‖ = ‖D fz − D(R ◦ h−1 ◦ R) f (z) D fz‖ ≤ ‖Id f (z) − D(R ◦ h−1 ◦ R) f (z)‖ ‖ f ‖C1

= ‖DRR( f (z)) DR f (z) − D(R ◦ h−1)R( f (z)) DR f (z)‖ ‖ f ‖C1

≤ ‖DRR( f (z)) − D(R ◦ h−1)R( f (z))‖ ‖ f ‖C1 ‖R‖C1

≤ ‖DRR( f (z)) − DRh−1(R( f (z))) Dh−1
R( f (z))‖ ‖ f ‖C1 ‖R‖C1

≤
η

2
+ ‖IdR( f (z)) − Dh−1

R( f (z))‖ ‖ f ‖C1 (‖R‖C1)2 ≤
η

2
+ ζ ‖ f ‖C1 (‖R‖C1)2 < η.

�

5.2. 2nd perturbation lemma. We will now consider an area-preserving reversible diffeomorphism, a finite set in M
and an abstract tangent action that performs a small perturbation of the derivative along that set. Then we will search
for an area-preserving reversible diffeomorphism, C1 close to the initial one, whose derivative equals the perturbed
cocycle on those iterates. To find such a perturbed diffeomorphism, we will benefit from the argument, suitable for
area-preserving systems, presented in [13]. But before proceeding, let us analyze an example.

Example 5.2. Take the linear involution R induced on the torus by the linear matrix A(x, y) = (x,−y), and consider
the diffeomorphism f = R. Clearly, R ◦ f = f −1 ◦ R. The set of fixed points of f is the projection on the torus of
[0, 1] × {0} ∪ [0, 1] × {12 }, and so it is made of two closed curves. All the other orbits of f are periodic with period 2.

Given p < Fix ( f ), we have D fp = D f f (p) =

(
1 0
0 −1

)
. Now, if η > 0 and

L(p) =

(
1 + η 0
η − 1

1+η

)
= L( f (p))

we claim that no diffeomorphism g on the torus satisfying

Dgp = L(p), Dg f (p) = L( f (p)) and g(p) = f (p)

can be R-reversible. Indeed, differentiating the equality R ◦ g = g−1 ◦ R at p, we would get

A ◦ Dgp = Dg−1
R(p) ◦ A = Dg−1

f (p) ◦ A

that is, (
1 0
0 −1

) (
1 + η 0
η − 1

1+η

)
=

( 1
1+η 0
η −1 + η

) (
1 0
0 −1

)
thus (

1 + η 0
−η 1

1+η

)
=

( 1
1+η 0
η 1 + η

)
which yields η = 0. This example evinces the need to impose some restrictions on the set where we wish to carry the
perturbation.

Lemma 5.3. Fix an involution R and f ∈ Diff 1
µ,R(M). Let X = {x1, x2, ..., xk} be a finite (R, f )-free set of distinct points

in M. Denote by V = ⊕x∈XTxM and V ′ = ⊕x∈XT f (x)M and let P : V → V ′ be a map such that, for each x ∈ X,
P(x) ∈ SL(TxM → T f (x)M). For every η > 0, there is ζ > 0 such that, if ‖P−D f ‖ < ζ, then there exists g ∈ Diff 1

µ,R(M)
which is η-C1-close to f and satisfies Dgx = P|Tx M for every x ∈ X. Moreover, if K ⊂ M is compact and K ∩ X = ∅,
then g can be found so that g = f in K.

Proof. Given η > 0, take the values of ρ > 0 and ζ > 0 associated to η
k by Lemma 5.1, and note that each element of

X satisfies the hypothesis of this Lemma. Starting with x1 and using Franks’ Lemma for area-preserving diffeomor-
phisms [13], we perform a perturbation of f supported in B(x1, ρ1), where 0 < ρ1 < ρ is sufficiently small, obtaining
G1 ∈ Diff 1

µ (M) such that DG1x1
= P(x1) and G1 is ζ-close to f .

Define h1 = f −1 ◦ G1. The C1 diffeomorphism h1 is area-preserving, equal to the Identity in M\B(x1, ρ1) and
ζ-C1-close to the Identity. So, by Lemma 5.1, there is g1 ∈ Diff 1

µ,R(M) which is η
k -C1-close to f , g1 = f outside

C1 = B(x1, ρ1) ∪ R( f (B(x1, ρ1))) and g1 = f ◦ h1 = G1 inside B(x1, ρ1).
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We proceed repeating the above argument for x2 and g1 just constructed, taking care to choose an open ball centered
at x2, with radius 0 < ρ2 < ρ, such that C2 = B(x2, ρ2)∪R( f (B(x2, ρ2))) does not intersect C1: this is a legitimate step
according to the constraints X has to fulfill. Applying again [13], we do a perturbation on g1 supported in B(x2, ρ2),
which yields G2 ∈ Diff 1

µ (M) such that DG2x2
= P(x2) and G2 is ζ-close to g1. Therefore, the C1 diffeomorphism

h2 = g−1
1 ◦G2 is area-preserving, equal to the Identity in M\B(x2, ρ2) and ζ-C1-close to the Identity. So, by Lemma 5.1,

there is g2 ∈ Diff 1
µ,R(M) which is η

k -C1-close to g1, thus 2η
k -C1-close to f , satisfies g2 = g1 outside C2 and is such that

g2 = g1 ◦ h2 = G2 inside B(x2, ρ2).
In a similar way we do the remaining k − 2 perturbations till we have taken into consideration all the elements of

X. At the end of this process we obtain a diffeomorphism g ∈ Diff 1
µ,R(M) which is η-C1-close to f and differs from f

only at C = M\
⋃k

i=1 Ci.
Surely, if K is compact and K ∩ X = ∅, then C may be chosen inside the complement of K.

�

6. Smoothing out a reversible diffeomorphism

In this section we will show that a C1 reversible area-preserving diffeomorphism of the open and dense set D1 (see
Proposition 3.6) can be smoothed as a R-reversible area-preserving C∞ diffeomorphism up to a set of arbitrarily small
Lebesgue measure. The argument follows the guidelines of [55], although adapted to comply with reversibility.

Proposition 6.1. Given f ∈ D1, a neighborhood V f ⊂ Diff 1
µ,R(M) of f and ε > 0, there exist g ∈ Diff 1

µ,R(M), a
compact Z ⊂ M and an open neighborhood VZ of Z such that:

(a) g ∈ V f .
(b) g is C∞ in VZ .
(c) µ(M \ Z) < ε.
(d) µ(VZ \ Z) < ε/2.
(e) Z = M, if f (x) , R(x) for all x ∈ M.

Proof. For the sake of completeness, we will reconstruct the main steps of the proof of [55], highlighting the differ-
ences forced by the reversibility. Some details in the argument of of [55] are easier in our context of compact manifolds
(for instance, [55] addressed locally compact manifolds), while others demand full attention to reversibility.

6.1. Construction of Z. Assume that f is not C2 and denote by P = {x1, · · · , xk} the finite set {x ∈ M : f (x) , R(x)}.
For arbitrary ε > 0, take the open covering of P defined by (B(xi, r(ε))){i=1,··· ,k}, where r(ε) is chosen small enough so
that B(xi, r(ε)) ∩ R(B(xi, r(ε))) = ∅. Then, let B be the set

B =

k⋃
i=1

B(xi, r(ε)) ∪ R

 k⋃
i=1

B(xi, r(ε))


and consider the complement of B in M

Z = M\B.

Observe that we may select a value of r(ε) sufficiently small to guarantee that µ(M\Z) < ε/2. Moreover, if f (x) , R(x)
for all x ∈ M, then Z = M.

6.2. Coverings and charts. As f is a C1 area-preserving map, for each x ∈ M there are symplectic charts, say
(U(x), ϕ1) and (V(x), ϕ2), such that x ∈ U(x), f (x) ∈ V(x), f (U(x)) ⊂ V(x), ϕ1 and ϕ2 are C∞ local symplectomor-
phisms and

ψ = ϕ2 ◦ f ◦ ϕ−1
1 ∈ C1 [

ϕ1(U(x)), ϕ2(V(x))
]

where C1[A, B] stands for the set of C1 maps from A ⊂ R2 to B ⊂ R2. In what follows, the map ψ will be also
addressed as

(u, v) 7→ ψ(u, v) := (ξ, η).
Due to the compactness of Z we may take a finite open covering of Z made of these symplectic charts

U1 = (Ui){i=1,··· ,`}
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such that Ui ∩ P = ∅, for all i, and the diameter ofU1 is arbitrarily small. Denote byU the open covering

U f = U1 ∪ R( f (U1)) where R( f (U1)) = (R( f (Ui))){i=1,··· ,`} .

As f (x) , R(x) for all x ∈ Ui and every i ∈ {1, · · · , `}, we may find Ui small enough so that Ui is disjoint from
R( f (Ui)). In particular, denoting by distC0 the Hausdorff distance we have:

min
i ∈ {1,··· ,`}

{distC0 (Ui,R( f (Ui)))} > 0.

Moreover, we may assume that the neighborhoodV f is small enough so thatV f ⊂ D1 and

h ∈ V f ⇒ min
i ∈ {1,··· ,`}

{distC0 (Ui,R(h(Ui))) > 0

which ensures, in particular, that

h ∈ V f ⇒ h(x) , R(x), ∀x ∈ Ui, ∀i ∈ {1, · · · , `}.

6.3. Generating functions. The first part of Zehnder’s argument (see [55, Lemma 1]) characterizes locally sym-
plectic maps between symplectic manifolds of the same dimension by means of the so-called generating functions.
In particular, it proves that a diffeomorphism f : M → M is symplectic if and only if, given x ∈ M, there exist a
symplectic chart (U(x), ϕ1) at x and a C2-function S : ϕ1(U(x))→ R such that, for all (t, η) ∈ ϕ1(U(x)), we have

ξ =
∂S (t, η)
∂η

, y =
∂S (t, η)
∂t

and det (dt dη S (t, η)) , 0.

In this case, we say that the map ψ is generated by S , or that S is a generating function for ψ.

6.4. Smoothing locally in R2. The second section of Zehnder’s reasoning is devoted to smooth a generating function;
see [55, Lemma 2]. Let W1,W2 be open sets of R2 and ψ : W1 → W2 be a map generated by S . Given δ > 0 and
z ∈ W1, take small open subsets W (1)

1 (z), W (2)
1 (z) and W(3)

1 (z) containing z such that

W (3)
1 (z) ⊂ W(2)

1 (z) ⊂ W (1)
1 (z) ⊂ W (1)

1 (z) ⊂ W1

and so that inside W(1)
1 (z) we can construct a C2-map

S 1 = S − ω2
(
ω1 S − X?

δ (ω1 S )
)
,

where ω1 and ω2 are real smooth maps on W (1)
1 (z) satisfying ω1 ≡ 1 on W (3)

1 (z), ω2 ≡ 1 on W (2)
1 (z) and

‖ω2 (ω1 S − X?
δ (ω1 S ))‖C2 < δ.

Here X?
δ (ω1 S ) stands for the δ-Friedrichs mollifier associated to ω1 S ; see [23] and references therein.

By construction, the map S 1 is C1-δ-close to S and has the following properties:

(1) S 1 is C∞ in W(3)
1 (z);

(2) S 1 is C2 in W (2)
1 (z) \W (3)

1 (z);
(3) S 1 ≡ S in W(1)

1 (z) \W(2)
1 (z).

Let the map ψ1, defined on W (1)
1 (z), be generated by S 1. Then:

(1) ψ1 is C∞ on W (3)
1 (z);

(2) ψ1 is C2 on W (1)
1 (z);

(3) ψ1 coincides with ψ on W (1)
1 (z) \W (2)

1 (z).
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6.5. Smoothing locally in M. The third step in Zehnder’s proof (see [55, page 834]) is to smooth out the diffeo-
morphism f in Ui, for any i ∈ {1, · · · , `}, by locally smoothing its generating function. As f (x) , R(x) for all x in
any element of the open covering U f of Z, we can perform a balanced perturbation, as explained in Lemma 5.1, in
order to guarantee that the resulting diffeomorphism is still R-reversible: each time we smooth in Ui, we also induce
smoothness in R( f (Ui)). Let us check this procedure in more detail.

Take the element U1 of the covering U f and fix x ∈ U1. Consider z = ϕ1(x) and charts at x, say U(1)
1 (x), U(2)

1 (x)
and U(3)

1 (x), such that

U(3)
1 (x) ⊂ U(2)

1 (x) ⊂ U(1)
1 (x) ⊂ U(1)

1 (x) ⊂ U1,

µ
(
U1 \ U(3)

1 (x)
)
< ε/(4 `)

and so that, on U(1)
1 (x), every symplectic diffeomorphism inV f is given by a generating function as described before

and the previous local construction can be carried out, for a given δ > 0, with respect to

W (3)
1 (z) = ϕ1(U(3)

1 (x)) ⊂ W (2)
1 (z) = ϕ1(U(2)

1 (x)) ⊂ W (1)
1 (z) = ϕ1(U(1)

1 (x)).

Define the C1 area-preserving diffeomorphism f1 : M → M as follows:

f1(u) =

 f (u) if u ∈ M \ U(2)
1 (x)

ϕ−1
2 ◦ ψ1 ◦ ϕ1(u) if u ∈ U(1)

1 (x)

Notice that f1 is C2 on U(2)
1 (x), is C∞ in U(3)

1 (x) and satisfies f1(U1) = f (U1). Besides, δ could have been chosen
small enough so that f1 ∈ V f .

Now, as U1 ∩ R f (U1) = ∅ and R ∈ Diff ∞µ (M), we use the method explained in Lemma 5.1 to change f1 into a dif-
feomorphism g1, which is R-reversible, C1, area-preserving, C∞ in U(3)

1 (x)∪R f (U(3)
1 (x)), C2 on U(2)

1 (x)∪R f (U(2)
1 (x))

and satisfies g1(U1) = f (U1). It is defined by

g1(u) =


f (u) if u ∈ M \ (U1 ∪ R f (U1))
f1(u) if u ∈ U1
R ◦ f −1

1 ◦ R(u) if u ∈ R f (U1)

Observe that, by definition, g1 ∈ V f .

6.6. Construction of g and VZ . Afterwards, we consider the open chart U2 and find, in a similar way,

• three charts U(1)
2 , U(2)

2 and U(3)
2 such that

U(3)
2 ⊂ U(2)

2 ⊂ U(1)
2 ⊂ U2 and µ

(
U2 \ U(3)

2

)
< ε/(4 `);

• a C1 area-preserving diffeomorphism f2 : M → M such that
– f2 is C∞ in U(3)

1 ∪ U(3)
2 ;

– f2 is C2 in U(2)
1 ∪ U(2)

2 ;

– f2 = g1 in M \ U(2)
2 ;

– f2(U2) = g1(U2).

Moreover, we have f2 ∈ V f , so U2 ∩ R f2(U2) = ∅. Therefore, as previously done, we get a R-reversible, C1,
area-preserving diffeomorphism g2, which is C∞ in U(3)

2 ∪ R f2(U(3)
2 ) and C2 in U(2)

2 ∪ R f2(U(2)
2 ), by defining

g2(u) =


g1(u) if u ∈ M \ (U2 ∪ R f2(U2))
f2(u) if u ∈ U2
R ◦ f −1

2 ◦ R(u) if u ∈ R f2(U2)

Notice that the definition of g2 is compatible with the one of g1 on intersecting charts and that g2 ∈ V f .
Iterating this procedure, we reach g = g`. This is a C1 diffeomorphism which is R-reversible, area-preserving, C∞

in
⋃`

i=1 U(3)
i ∪ R f`−1(U(3)

i ) and C2 in
⋃`

i=1 U(2)
i ∪ R f`−1(U(2)

1 ). Moreover, g ∈ V f .
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The neighborhood VZ of Z is given by

VZ =
⋃̀
i=1

U(3)
i ∪ R f`−1(U(3)

1 )

and we have

µ(VZ \ Z) ≤
∑̀
i=1

µ(Ui \ U(3)
i ) + µ(R f`−1(Ui \ U(3)

i ))) =
∑̀
i=1

2 µ(Ui \ U(3)
i )) < ε/2.

�

Remark 6.2. If Λ is a compact hyperbolic set for g such that µ(Λ) > 0 but µ(Λ ∩ Z) = 0, then

µ(Λ) = µ(Λ ∩ Z) + µ(Λ ∩ (M \ Z)) < ε

and, as Λ and µ are g-invariant,

µ

(Λ ∩ (M\Z)) ∩
⋃
j ∈Z

g− j(Z)

 = µ

(Λ ∩ (M\Z) ∩
⋃
j ∈Z

g− j(Λ ∩ Z)

 = µ

⋃
j ∈Z

Λ ∩ (M\Z) ∩ g− j(Λ ∩ Z)


≤

∑
j∈Z

µ
(
g− j(Λ ∩ Z)

)
= 0

which means that the iterates by g of µ almost every point in Λ ∩ (M\Z) remain there.

7. Hyperbolic sets

It is known [16] that basic hyperbolic sets of C2 non-Anosov diffeomorphisms have zero measure. In [11], it was
proved that the same result holds for compact hyperbolic sets of C2 symplectic diffeomorphisms without assuming
that they are basic pieces. Using [55], which says that every C1 symplectic diffeomorphism can be approximated by a
C2 one, it has been deduced in [12] that C1 generically a symplectic diffeomorphism f is Anosov or every hyperbolic
set of f has Lebesgue zero measure. Up to now, no such density of C2 diffeomorphisms is known in the context of
area-preserving reversible diffeomorphisms. Therefore, we can only ensure that:

Proposition 7.1. If Λ f is a compact hyperbolic set for f ∈ Diff 1
µ,R(M), then either Λ f = M or Λ f has empty interior.

Proof. As Λ f is hyperbolic, there exist a neighborhood V of Λ f in M and a neighborhood W of f in Diff 1
µ (M) such

that, for each g ∈ W, there is a compact hyperbolic set Λg ⊂ V and a (Hölder) homeomorphism h : Λ f → Λg such
that h ◦ f = g ◦ h; see [30, Theorem 19.1.1]. Now, if Λ f has interior points, then, for each g ∈ W, the hyperbolic set
Λg has nonempty interior as well. Moreover, by Theorem 1.3 of [15], we may find a transitive diffeomorphism g0 in
W. A dense orbit of such a g0 has to enter Λg0 , so, by invariance, this orbit is contained in Λg0 . By compactness of
Λg0 , we finally conclude that Λg0 = M. Thus, Λ f = M as well. �

8. Proof of Theorem A

Consider f ∈ Diff 1
µ,R(M). If f is Anosov or its integrated Lyapunov exponent (see Section 3.4) is zero, the proof

ends. For instance, if f = R, then all orbits of f have zero Lyapunov exponents. Otherwise, we start approaching f by
f1 of the open and dense set D1. Then, given ε > 0, by Proposition 6.1 there exist a subset Z ⊂ M, whose complement
in M has Lebesgue measure smaller than ε, and a diffeomorphism f2 ∈ D1 which is C1-close to f1 (thus close to f )
and is of class C2 in an open neighborhood of Z. Using Corollaries 4.2 and 3.8, we then find a diffeomorphism F ∈ D
whose set of periodic points is countable (so it has null Lebesgue measure), is C1 close to f2 (hence close to f ) and is
still C2 when restricted to Z.

According to the Proposition 7.1, either F is Anosov or any compact hyperbolic set Λ of F has empty interior. Yet,
in the latter case, Λ ∩ Z may have positive (although strictly smaller than one) Lebesgue measure. The next result,
with which we will end the proof of Theorem A, will be proved under the assumption that

µ(Λ ∩ Z) = 0, for any compact hyperbolic set Λ of F (8.1)

in which case µ(Λ) < ε (see Remark 6.2). This happens, for instance, when Z = M, since then F is C2 and µ(Λ) = 0;
or if µ is ergodic for F, because then µ(Λ) = 0 as well, unless Λ = M.
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Proposition 8.1. Given δ > 0, there is g ∈ Diff 1
µ,R(M) which is C1-close to F and satisfies L (g) < ε + δ.

Let A be the C1-open subset of Diff 1
µ,R(M) of the R-reversible Anosov diffeomorphisms and, for any k, n ∈ N,

denote by Ak,n the set

Ak,n =

{
h ∈ Diff 1

µ,R(M) : L (h) <
1
k

+
1
n

}
.

Clearly (see Section 3.4), the union
A ∪Ak,n

is C1-open in Diff 1
µ,R(M). After Proposition 8.1, we know that it is dense as well. Therefore, the set

A ∪
{
h ∈ Diff 1

µ,R(M) : L (h) = 0
}

is a countable intersection of the C1 open and dense sets

A ∪

{
h ∈ Diff 1

µ,R(M) : L (h) <
1
k

+
1
n

}
and so it is residual.

9. Proof of Proposition 8.1

Let F ∈ D be the diffeomorphism constructed on Section 8 after fixing f ∈ Diff 1
µ,R(M) and ε > 0. Recall that F

belongs to Diff 1
µ,R(M)\A , Lebesgue almost all its orbits are (R, F)-free and its set of periodic points has Lebesgue

measure zero. In what follows we will assume that F satisfies the property (8.1).

9.1. Reducing locally the Lyapunov exponent. The prior ingredient to prove Proposition 8.1 is the next lemma
whose statement is the reversible version of the Main Lemma in [9].

Lemma 9.1. Given η, δ > 0 and κ ∈ ]0, 1[, there exists a measurable function N : M → N such that, for x in a set
Ẑ with Lebesgue measure bigger than 1 − ε and every n ≥ N(x), there exists % = %(x, n) > 0 such that, for any ball
B(x, r), with 0 < r < %, we may find G ∈ Diff 1

µ,R(M), which is η-C1-close to F, and compact sets K1 ⊂ B(x, r) and
K2 ⊂ R Fn(K1) ⊂ R Fn(B(x, r)) satisfying:

(a) F = G outside
(⋃n−1

j=0 F j(B(x, r))
) ⋃ (⋃n

j=1 R F j(B(x, r))
)
.

(b) For j ∈ {0, 1, ..., n − 1}, the iterates F j(B(x, r)) and R F j+1(B(x, r)) are pairwise disjoint.

(c) µ(K1) > κ µ(B(x, r)) and µ(K2) > κ µ(R Fn(B(x, r))).

(d) If y1 ∈ K1 and y2 ∈ K2, then 1
n log ‖DGn

yi
‖ < δ for i = 1, 2.

Although the proof of this lemma follows closely the argument of [9], it is worth registering the fundamental
differences between the previous result and [9, Main Lemma]. Firstly, each time we perturb the map F around F j(x),
for j ∈ {0, ..., n − 1}, we must balance with a perturbation around R F j+1(x) to prevent the perturbed diffeomorphisms
exit from Diff 1

µ,R(M). Thus the perturbations in
⋃n−1

j=0 F j(B(x, r)) spread to a deformation of F in
⋃n

j=1 R F j(B(x, r)).
This is possible because F ∈ D , but our choice of % must be more judicious and, in general, smaller than the one in
[9] to avoid inconvenient intersections. Secondly, we need an additional control on the function N and on µ(K2) to
localize the computation of the Lyapunov exponents along the orbits of elements of K2.

Aside from this, we also have a loss in measure. As F is not globally C2, instead of a function N : M → N with
nice properties on a full measure set, during the proof [9] we have to take out a compact hyperbolic component with,
perhaps, positive measure. Fortunately, that portion has measure smaller than ε, though its effect shows up in several
computations and cannot be crossed off the final expression of the integrated Lyapunov exponent.

Regardless of these difficulties, reversibility also relieves our task here and there. For instance, the inequality
for y2 ∈ K2 in the previous lemma, that is, ‖Dgn

y2
‖ < enδ, follows from the corresponding one for y1 due to the
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reversibility and the fact that ‖A‖ = ‖A−1‖ for any A ∈ SL(2,R). Indeed, given y2 ∈ K2, there exists y1 ∈ K1 such that
y2 = R(Fn(y1)) = F−n(R(y1)). Then (see Lemma 5.1)

‖DGn
y2
‖ = ‖D(R G−n R)(y2)‖ ≤ ‖DG−n

R(y2)‖ = ‖DGn
y1
‖ < enδ.

In what follows we will check where differences start emerging and summarize the essential lemmas where re-
versibility steps in.

9.1.1. Sending Eu to Es.

Definition 9.2. [9, §3.1] Given η > 0, κ ∈ ]0, 1[, n ∈ N and x ∈ M, a finite family of linear maps L j : TF j(x)M →

TF j+1(x)M, for j = 0, ..., n − 1, is an (η, κ)-realizable sequence of length n at x if, for all γ > 0, there is ρ > 0 such that,
for j ∈ {0, 1, ..., n − 1}, the iterates F j(B(x, ρ)) and R(F j(B(x, ρ))) are pairwise disjoint and, for any open non-empty
set U ⊆ B(x, ρ), there exist

(a) a measurable set K1 ⊆ U such that µ(K1) > κ µ(U)
(b) h ∈ Diff 1

µ,R(M), η-C1-close to F satisfying:

(b.1) h = F outside
(⋃n−1

j=0 F j(U)
)⋃ (⋃n

j=1 R(F j(U))
)

(b.2) if y1 ∈ K1, then ‖Dhh j(y1) − L j‖ < γ for j = 0, 1, ..., n − 1.

Notice that, if the orbit of x is (R, F)-free and not periodic (or periodic but with period greater than n) and we define
K2 = R(Fn(K1)) and, for j ∈ {0, 1, ..., n − 1}, the sequence

L̃ j : TR(Fn− j(x))M −→ TR(Fn− j−1(x))M
v 7−→ DRFn− j−1(x)L−1

n− j−1DRR(Fn− j(x))(v)

then we obtain, for y2 ∈ K2 and j = 0, 1, ..., n − 1, the inequality ‖Dhh j(y2) − L̃ j‖ < γ.

The following lemma is an elementary tool to interchange bundles using rotations of the Oseledets directions, and
thereby construct realizable sequences. If x ∈ M and θ ∈ R, consider a local chart at x, ϕx : Vx → R

2 and the maps
Dϕ−1

x RθDϕx : R2 → R2, where Rθ is the standard rotation of angle θ at ϕx(x).
Denote by Y the full Lebesgue measure subset of M with countable complement, given by Proposition 3.6 and

Corollary 4.2, whose points have (R, F)-free and non-periodic orbits by F.

Lemma 9.3. [9, Lemma 3.3] Given η > 0 and κ ∈ ]0, 1[, there is θ0 > 0 such that, if x ∈ Y and |θ| < θ0, then {DFxRθ}

and {RθDFx} are (η, κ)-realizable sequence of length 1 at x.

The next result enables us to construct realizable sequences with a purpose: to send expanding Oseledets directions
into contracting ones. This will be done at a region of M without uniform hyperbolicity because there the Oseledets
directions can be blended. More precisely, for x ∈ O+(F) and m ∈ N, let

∆m(F, x) =
‖DFm

x |Es(x)‖

‖DFm
x |Eu(x)‖

and

Γ(F,m)∗ =

{
x ∈ O+(F) ∩ Y : ∆m(F, x) ≥

1
2

}
.

Lemma 9.4. [9, Lemma 3.8] Take η > 0 and κ ∈ ]0, 1[. There is m ∈ N such that, for every x ∈ Γ(F,m)∗, there exists
an (η, κ)-realizable sequence {L0, L1, ..., Lm−1} at x with length m satisfying

Lm−1(. . .)L1L0(Eu
x) = Es

Fm(x)

and, consequently,
L̃m−1(. . .)L̃1L̃0(Eu

R(Fm(x))) = Es
R(x).
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The ensuing step is to verify that the above construction may be done in such a way that the composition of
realizable sequences has small norm. Consider the F-invariant set

Ωm(F) =
⋃
n ∈Z

Fn(Γ(F,m)∗).

ThenHm = O+(F)−Ωm(F) is empty or its closure is a compact hyperbolic set [9, Lemma 3.11]. Under the hypothesis
(8.1), we have µ(Hm) < ε. Hence,

Lemma 9.5. [9, Lemma 3.13] Consider η > 0, κ ∈ ]0, 1[ and δ > 0. There exists a measurable function N : M → N
such that, for x in a subset with Lebesgue measure greater that 1 − ε and all n ≥ N(x), we may find a (η, κ)-realizable
sequence {L j}

n−1
j=0 of length n such that

‖Ln−1(. . .)L0‖ < e
4
5 n δ.

If γ is chosen small enough in the Definition 9.2, Lemma 9.1 is a direct consequence of the preceding one.

9.2. Reducing globally the Lyapunov exponent. After Lemma 9.1 we know how to find large values of n such that,
for some perturbation G ∈ Diff 1

µ,R(M) of F, we get ‖DGn
x‖ < enδ for a considerable amount of points x inside a small

ball and its image by RF. However, the Lyapunov exponent is an asymptotic concept and we need to evaluate, or find
a good approximation of it on a set with full µ measure. In this section we will extend the local procedure to an almost
global perturbation, which allows us to draw later on global conclusions. The classic ergodic theoretical construction
of a Kakutani castle [1] is the bridge between these two approaches, as was discovered in [9, §4]. The main novelties
here are the possible presence of compact hyperbolic sets with positive measure and the fact that, when building some
tower of the castle, we simultaneously build its mirror inverted reversible copy.

9.2.1. A reversible Kakutani castle. Let A ⊆ M be a borelian subset of M with positive Lebesgue measure and n ∈ N.
The union of the mutually disjoint subsets

⋃n−1
i=0 Fi(A) is called a tower, n its height and A its base. The union of

pairwise disjoint towers is called a castle. The base of the castle is the union of the bases of its towers. The first return
map to A, say τ : A → N ∪ {∞}, is defined as τ(x) = inf{n ∈ N : Fn(x) ∈ A}. Since µ(A) > 0 and F is measure-
preserving, by Poincaré’s recurrence theorem the orbit of Lebesgue-almost all points in A will come back to A. Thus,
τ(x) ∈ N for Lesbesgue almost every x ∈ A. If An = {x ∈ A : τ(x) = n}, then Tn,A = An ∪ F(An) ∪ . . . ∪ Fn−1(An) is a
tower and the F-invariant set

⋃
n ∈Z Fn(A) is the union of the towers Tn,A, creating a castle with base A. Moreover,

Lemma 9.6. [26, pp. 70 and 71] For every borelian U such that µ(U) > 0 and every n ∈ N, there exists a positive
measure set V ⊂ U such that V, F(V), . . . , Fn(V) are pairwise disjoint. Besides, V can be chosen maximal, that is, no
set containing V and with larger Lebesgue measure than V has this property.

Fix η, δ > 0 and take 0 < κ < 1 such that 1 − κ < δ2. Apply Lemma 9.1 to get a function N as stated. For each
n ∈ N, consider Pn = {x ∈ M : N(x) ≤ n}. Clearly,

lim
n→∞

µ(Pn) ≥ 1 − ε.

Hence, there is α ∈ N such that
µ(M\Pα) < ε + δ2

and therefore
µ (M\(Pα ∪ R(Pα))) < ε + δ2.

For U = Pα ∪ R(Pα) and α, Lemma 9.6 gives a maximal set B ⊂ Pα ∪ R(Pα) with positive Lebesgue measure and
such that B, F(B), . . . , Fα(B) are mutually disjoint. Denote by Q̂ the Kakutani castle associated to the base B, that is

Q̂ = ∪n ∈ZFn(B).

Observe that, by the maximality of B, the set Q̂ contains Pα ∪ R(Pα), and so µ
(
Q̂\(Pα ∪ R(Pα))

)
< ε + δ2.

Consider now the castle Q ⊂ Q̂ whose towers have heights less that 3α. Adapting the argument in [9, Lemma 4.2],
we obtain:

Lemma 9.7. µ
(
Q̂\Q

)
< 3(ε + δ2).
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Furthermore,

Lemma 9.8.
(a) µ (B4R(B)) = 0.
(b) If Tn,B is the tower of height n associated to B, then also is R(Tn,B). Besides, RFn(Tn,B ∩ B) = R(Tn,B) ∩ B.

Proof. (a) We will show that R(B) ⊂ B modulo µ. Assume that there exists a positive µ-measure subset C ⊂ R(B)
such that C is not contained in B. Observe that C ⊂ Pα∪R(Pα) because Pα∪R(Pα) is R-invariant and B ⊂ Pα∪R(Pα).
As B is maximal and there are points of C out of B, we have Fi(C) ∩ F j(C) , ∅ for some i , j ∈ {0, ..., α}.
However, R(C) ⊂ B and µ(R(C)) = µ(C) > 0, so Fi(R(C)) ∩ F j(R(C)) = ∅ which, using reversibility, is equivalent to
R(F−i(C)) ∩ R(F− j(C)) = ∅, that is, F−i(C) ∩ F− j(C) = ∅, a contradiction.
(b) This is a direct consequence of (a). Since Tn,B is a tower of height n with base B, its first floor T0 and its top floor
Tn are in B. By (a), R(T0) and R(Tn) are in B as well, and so they are, respectively, the top and first floor of the tower
R(Tn,B), and its height has to be n as well. �

Remark 9.9. At this stage, one may wonder about the effect of the existence of a hyperbolic set Λ ∩ (M\Z) with
positive, although small, Lebesgue measure. Could a typical orbit x ∈ B visit regions with hyperbolic-type behavior
and positive measure? Yes, but only a null Lebesgue measure subset of points in B may visit M\Z; see Remark 6.2.

9.2.2. Regular families of sets. Following [33], we say that colletion V of mensurable subsets of M is a regu-
lar family for the Lebesgue measure µ if there exists ν > 0 such that diam(V)2 ≤ νµ(V) for all V ∈ V, where
diam(A) = sup{d(x, y), x, y ∈ A}. In what follows, we will prove that the family of all ellipses with controled eccen-
tricity constitutes a regular family for the Lebesgue measure.

An ellipse E ⊂ M whose major and minor axes have lengths a and b, respectively, has eccentricity e ≥ 1 if it is the
image of the unitary disk D ⊂ M under a diffeomorphism Φ ∈ Diff 1

µ (O), defined on an open neighborhood O of D
and satisfying ‖Φ‖C0 = e =

√
a/b. Given e0 > 1, the family of all ellipses whose eccentricity stays between 1 and e0

is a regular family for the Lebesgue measure (just take ν = e2
0).

Let B be the base of the castle Q and let n(x) be the height of the tower containing x. Recall that we have
N(x) ≤ α ≤ n(x).

Lemma 9.10. Consider the castle Q and x ∈ B. There exists r(x) > 0 and a ball B(x, r(x)) such that the set
B(x, r(x)) ∪ R(Fn(x)(B(x, r(x)))) is a regular family.

Proof. Clearly, the sets B(x, r(x)) are regular (choose ν = 4/π). Let us see that R Fn(x)(B(x, r(x))) is also regular.
Notice that, in general, this set is not an ellipse. However, if B(x, r(x)) is small, then R Fn(B(x, r(x))) is close to its
first order approximation, that is DR DFn(B(x, r(x))), which is an ellipse.

First observe that the height of a tower is constant in balls centered at points of B with sufficiently small radius [9,
Section 4.3]. Denote by CF = maxz∈M ‖DFz‖. Since µ is F and R invariant, if r(x) < 1 we have[

diam(R Fn(x)(B(x, r(x))))
]2

=
[
diam(Fn(x)(B(x, r(x))))

]2
≤ (2 r(x) CF)2 n(x) =

(2 CF)2 n(x) r(x)2 n(x)−2

π
π r(x)2

≤
(2 CF)6α r(x)6α−2

π
π r(x)2 ≤

(2 CF)6α

π
π r(x)2 =

(2 CF)6α

π
µ(B(x, r(x))

= ν µ
(
R Fn(x)(B(x, r(x)))

)
where ν =

(2 CF )6α

π . �

9.2.3. Construction of g. The last auxiliary result says that it is possible, using Vitali Covering Lemma and Lemma 9.10,
to cover the base B essentially with balls and ellipses.

Lemma 9.11. [9, §4.3] Let γ > 0 satisfy γ < δ2α−1. Then:
(a) There is a compact castle Q1 contained in Q and an open castle Q2 containing Q with the same shape1 as Q

and such that µ(Q2\Q1) < γ.

1This means that the castles have the same number of towers and the towers have the same heights.
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(b) The base B3 of the castle Q2 ∩ Q may be covered by a finite number of balls B(xi, r′(xi)) and their images
R Fni(B(xi, r′(xi)), where xi ∈ B3 and r′(xi) is small enough so that n(x)|B(xi ,r′(xi))

≡ ni and

µ
(
B3 \

·⋃
B(xi, r(xi)) ∪ R Fni(B(xi, r(xi)))

)
µ(B3)

< γ.

Once the covering
⋃

B(xi, r(xi)) ∪ R Fni(B(xi, r(xi))) is found, Lemma 9.1 provides, for each i, a diffeomorphism
gi ∈ Diff 1

µ,R(M) which is C1-close to F and compact sets

Ki
1 ⊂ B(xi, r(xi)) and Ki

2 ⊂ R Fni(B(xi, r(xi))))

such that:
(1) gi = F outside [

⋃ni−1
j=0 F j(B(xi, r(xi)))]

⋃
[
⋃ni

j=1 R(F j(B(xi, r(xi))))].

(2) For j ∈ {0, 1, ..., ni − 1}, the iterates F j(B(xi, r(xi))) and R(F j+1(B(xi, r(xi)))) are pairwise disjoint.

(3) µ(Ki
1) > κ µ(B(xi, r(xi))) and µ(Ki

2) > κ µ(R Fni(B(xi, r(xi)))).

(4) If y1 ∈ Ki
1 and y2 ∈ Ki

2, then log ‖(Dgni
i )y1‖ < ni δ and log ‖(Dgni

i )y2‖ < ni δ.

Finally, we define the diffeomorphism g ∈ Diff 1
µ,R(M) by g = gi in each componentni−1⋃

j=0

F j(B(xi, r(xi)))

 ⋃  ni⋃
j=1

R F j(B(xi, r(xi))))


and g = f elsewhere.

9.2.4. Estimation of L (g). For ϕ ∈ Diff 1(M), let Cϕ = max {‖Dϕz‖ : z ∈ M} and denote by C1 the maximum of the
set {

C(ϕ) : ϕ ∈ Diff 1
µ,R(M) and ϕ is η-C1-close to F

}
.

As in [9], despite the necessary adjustments, there are a constant C2 > 0, a positive integer N ≥ δ−1 α, a g-castle K of
the same type as Q2 and a subset G =

⋂N−1
j=1 g− j(K) of M such that

L (g) =

∫
G

λ+(g) dµ +

∫
Ẑ\G

λ+(g) dµ +

∫
M\Ẑ

λ+(g) dµ ≤
∫
G

1
N

log ‖DgN‖ dµ +

∫
Ẑ\G

λ+(g) dµ +

∫
M\Ẑ

λ+(g) dµ

≤ C2 δ + ln (C1)(δ + ε) +

∫
M\Ẑ

lim
n→+∞

1
n

ln ‖Dgn
x‖ dµ ≤ C2 δ + ln (C1)(δ + ε) + ln (C1) ε

= (C2 + ln (C1)) δ + 2 ln (C1) ε.

10. Proof of Theorem B

Given m ∈ N and f ∈ Diff 1
µ,R(M), let Λ( f ,m) ⊂ M be the set of points with a m-dominated splitting, Y f the set of

points in M whose f -orbits are (R, f )-free and not periodic and

Γ( f ,m) = M \ Λ( f ,m)

Γ( f ,m)] = O+( f ) ∩ Γ( f ,m)

Γ( f ,m)∗ = Γ( f ,m)] ∩ Y f

Γ( f ,∞) =
⋂
m∈N

Γ( f ,m)

Γ( f ,∞)] =
⋂
m∈N

Γ( f ,m)]
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The aim of this argument is to reduce the Lyapunov exponents in Γ( f ,m)], if they are positive, using a Kakutani castle
in Γ( f ,m)∗ (instead of in the whole M as we did on the previous section). The argument essentially follows three steps:

1st step: Mixing directions along an orbit segment and lowering the norm.

As proved in [11, Lemma 4.1], the set Γ( f ,∞)] contains no periodic points for f . Moreover (see [11, Lemma 4.2]),
given η > 0, κ ∈ ]0, 1[, δ > 0 and m sufficiently large, there exists a measurable function

N : Γ( f ,m)∗ → N

such that, for x ∈ Γ( f ,m)∗ and all n ≥ N(x), we may find a (η, κ)-realizable sequence {L j}
n−1
j=0 of length n such that

‖Ln−1(. . .)L0‖ < e
4
5 n δ.

Moreover (see [11, Proposition 4.8]), given f ∈ Diff 1
µ,R(M), ε0 > 0 and δ > 0, then there exist m ∈ N and g ∈

Diff 1
µ,R(M) which is ε0-C1-close to f , coincides with f outside the open set Γ( f ,m) and satisfies∫

Γ( f ,m)
λ+(g, x)dµ < δ.

2nd step: Globalization.

Define

J f =

∫
Γ( f ,∞)

λ+( f , x)dµ.

Then [11, Lemma 4.17] proves that, given f ∈ Diff 1
µ,R(M), ε0 > 0 and δ > 0, then there exists g ∈ Diff 1

µ,R(M)
ε0-C1-close to f such that ∫

M
λ+(g, x)dµ <

∫
M
λ+( f , x)dµ − J f + δ.

3rd step: Conclusion.

Let f ∈ Diff 1
µ,R(M) be a point of continuity of L defined by

L : f 7→
∫

M
λ+( f , x)dµ.

Notice that J f must be 0, which means that λ+( f , x) = 0 for almost every x ∈ Γ( f ,∞). If x ∈ O( f ) and all Lyapunov
exponents of f at x vanish, then there is nothing left to prove. Otherwise, if λ+( f , x) > 0, then x < Γ( f ,∞), that is,
x ∈ Λ( f ,m) for some m; hence, there is a dominated splitting along the orbit of x. As we are dealing with surfaces,
we conclude that the orbit of x is hyperbolic, and therefore its closure is a compact hyperbolic set which, according
to Proposition 7.1, is M or has empty interior.
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[38] R. Mañé, The Lyapunov exponents of generic area preserving diffeomorphisms, Int. Conf. on Dynamical Systems, Montevideo, 1995, Pitman Research

Notes in Mathematics Series, 362, Longman, Harlow, 110–119, 1996
[39] A. Manning, There are no new Anosov diffeomorphisms on tori, Amer. J. Math. 96, 3, 422–429, 1974
[40] J. D. Meiss, Symplectic maps, variational principles, and transport, Rev. Modern Phys. 64, (3), 795–848, 1992
[41] S. Lopez de Medrano, Involutions on Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete, Bd. 59. Berlin, Heidelberg, Springer, New York,

1971
[42] D. Montgomery, L. Zippin, Topological transformation groups, Interscience, New York, 1955
[43] J. Moser, E. Zehnder, Notes on dynamical systems, Courant Lecture Notes in Mathematics, 12. New York University, Courant Institute of Mathematical

Sciences, New York; American Mathematical Society, Providence, RI, 2005
[44] J.R. Munkres, Elementary Differential Topology, Princeton University Press, 1966
[45] S. Newhouse, Quasi-elliptic periodic points in conservative dynamical systems, Amer. J. Math. 99, 1061–1087, 1977
[46] V.I. Oseledets, A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems Trans. Moscow Math. Soc. 19, 197–231, 1968
[47] V. A. Pliss, On a conjecture of Smale, Differ. Uravnenija 8, 268–282, 1972
[48] I. Prigogine, Why irreversibility? The formulation of classical and quantum mechanics for nonintegrable systems, Int. J. Bifur. Chaos, Appl. Sci. Engrg.

5, 1, 3–16, 1995
[49] H. Pujals, M. Sambarino, On the dynamics of dominated splitting, Ann. of Math. 169, 3 , 675–740, 2009
[50] J. Palis, F. Takens, Topological equivalence of normally hyperbolic dynamical systems, Topology 16, 335–345, 1977
[51] J. A. G. Roberts, G. R. W. Quispel, Chaos and time-reversal symmetry. Order and chaos in reversible dynamical systems, Phys. Rep. 216, 63–177, 1992
[52] C. Robinson, Generic properties of conservative systems I and II. Amer. J. Math. 92, 562–603, 1970
[53] M. B. Sevryuk, Reversible systems, Lecture Notes in Math. 1211, Springer-Berlin, 1986

20



[54] K. Webster, Bifurcations in reversible systems with application to the Michelson system, PhD. Thesis, Imperial College of London, 2005
[55] E. Zehnder, Note on smoothing symplectic and volume-preserving diffeomorphisms, Proc. III Latin Amer. School of Math., IMPA – CNPq, Rio de Janeiro,

1976, Lect. Notes in Math. 597, 828–854, Springer, Berlin, 1977
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