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Resumo

O principal enfoque desta tese centra-se na utilização de técnicas de camada f́ısica

para o desenho de sistemas de comunicações seguros e fiáveis.

Com o acentuado crescimento na procura por sistemas wireless de alto débito, a

tecnologia Orthogonal Frequency Division Multiplexing (OFDM) - onde os dados

são transportados com recurso a subportadoras paralelas e ortogonais - tem vindo

a reclamar um papel fundamental devido à sua capacidade de comportar elevadas

taxas de transmissão de dados de forma simples e eficaz em canais multicaminho.

Desta forma, este trabalho centra-se no desenho de estratégias de transmissão que,

para além de garantirem fiabilidade, oferecem também transmissões seguras em

sistemas de comunicações baseados em OFDM.

Em particular, esta tese explora caracterizações de taxas de transmissão segura,

baseadas em teoria da informação, para um conjunto de “wiretap channels” Gaus-

sianos paralelos e independentes (um modelo aplicável a sistemas de comunicações

OFDM), onde um transmissor e um receptor leǵıtimos tentam comunicar na pre-

sença de um utilizador não leǵıtimo (“eavesdropper”) e de um outro elemento

(amigável ou hostil), que introduz interferência de forma propositada (“jammer”).

Esta abordagem tem o intuito de desenvolver estratégias, óptimas ou quase óptimas,

de alocação de potência. Estas estratégias de alocação de potência são posterior-

mente caracterizadas com recurso a ferramentas de teoria de optimização e/ou teoria

dos jogos.

As principais contribuições deste trabalho incluem:

Primeiramente, são adoptadas técnicas de teoria dos jogos para desenvolver es-

tratégias óptimas para um “wiretap channel” Gaussiano paralelo, na presença de

um “jammer” hostil. Assume-se que o “eavesdropper” é um utilizador passivo,

mas que o “jammer” atua como um utilizador activo, injectando interferência no

v



canal de comunicação principal sob a forma de rúıdo aditivo. O principal objectivo

do “jammer” hostil é o de minimizar a taxa de transmissão segura, enquanto o

transmissor procura, por sua vez, maximizar a taxa de transmissão segura. É

proposta uma formulação, baseada em teoria dos jogos, do jogo (“zero-sum game”)

de alocação de potência entre o transmissor e o “jammer” hostil em que a função

de custo é a taxa de transmissão segura. Apresenta-se uma prova da existência de

um equiĺıbrio de Nash para este “zero-sum game” e são também caracterizadas as

alocações óptimas de potência para o transmissor e para o “jammer”.

Em segundo lugar são propostos algoritmos para o desenvolvimento de estratégias

óptimas de alocação de potência para o caso em que o “jammer” é amigável e

não hostil. Neste cenário mantém-se o pressuposto de que o “eavesdropper” é

um utilizador passivo e de que o “jammer” é um utilizador activo que, desta vez,

injecta interferência no canal do “eavesdropper” sob a forma de rúıdo aditivo, com

o objectivo de ajudar os utilizadores leǵıtimos a maximizar a taxa de transferência

segura. É apresentado um algoritmo para obter a estratégia óptima de alocação

de potência do “jammer”, que maximiza a taxa de transmissão segura, para o caso

em que o canal “wiretap” é degradado, isto é, quando o canal entre o transmissor

e o receptor leǵıtimo é melhor que o canal de transmissão entre o transmissor e o

“eavesdropper”. É também apresentado um algoritmo responsável pela obtenção

de estratégias conjuntas de alocação de potência entre o transmissor e o “jammer”

no caso em que o canal “wiretap” não é necessariamente degradado, que apresenta

ganhos consideráveis de desempenho em comparação com estratégias isotrópicas de

alocação de potência.

Por fim, é tomado como base o trabalho desenvolvido nas contribuições anteriores

para estudar o impacto das estratégias de alocação de potência propostas, em

sistemas de comunicações OFDM na presença de desvanecimento e correlação sinal.

Adicionalmente, a relação entre a porção de potência que deve ser destinada ao

transmissor a a porção que deve ser atribúıda ao “jammer” é também investigada,

em cenários em que é imposta uma restrição de potência total.

Os resultados apresentados demonstram que a adopção de estratégias óptimas ou

quase óptimas de alocação de potência podem ter um impacto dramático nas taxas

de transmissão segura em “wiretap channels” paralelos e independentes. Este

modelo teórico de análise, que foi validado através de extensivos resultados de

simulação, oferece portanto um meio para desenvolver sistemas de comunicações

OFDM fiáveis e seguros.
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Abstract

This thesis considers the use of physical-layer based techniques in order to design

reliable and secure wireless communication systems.

With the significant increase in demand for high data rate wireless systems, orthog-

onal frequency division multiplexing (OFDM) - where data is carried over parallel

orthogonal subcarriers - has taken a role of paramount importance because it offers

the means to convey high data rates with low-complex transceivers in multipath

channels. As such, the focus is on the design of transmission strategies that - in

addition to providing reliability - also lead to secure transmission in OFDM based

communications systems.

In particular, the thesis capitalizes on information-theoretic characterizations of

achievable secrecy rates for a bank of independent parallel Gaussian wiretap chan-

nels (a model applicable to OFDM communications systems), where a legitimate

transmitter and a legitimate receiver communicate in the presence of an eaves-

dropper and a friendly or unfriendly jammer, in order to design optimal or nearly

optimal power allocation strategies. The power allocation strategies associated

with the legitimate or hostile parties are then characterized by using tools from

optimization theory and/or game theory.

The main contributions include:

Firstly, we capitalize on game theoretic tools to devise optimal strategies for a

parallel Gaussian wiretap channel in the presence of unfriendly jamming. The

eavesdropper is assumed to be passive and the jammer acts as an active hostile

player injecting interference in the main channel, in the form of additive noise.

In this setting, the malicious jammer aims to minimize an achievable secrecy rate,

while the transmitter intends to maximize the achievable secrecy rate. We introduce
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a game-theoretic formulation of a zero-sum power allocation game between trans-

mitter and the unfriendly jammer using the secrecy rate as the payoff function.

We provide a proof of the existence of a Nash equilibrium and as such we also

characterize the optimal transmission and jamming power allocation strategies.

Secondly, we introduce algorithmic approaches to devise optimal power allocation

strategies for a parallel Gaussian wiretap channel in the presence of friendly jam-

ming. In such scenario, the eavesdropper is also assumed to be passive but the

jammer injects interference in the eavesdropper channel in the form of additive

noise with the objective of helping the legitimate parties to increase the secrecy

rates. We provide algorithms to compute the optimal power allocation strategy of

the jammer for a degraded scenario, i.e., when the transmitter channel is better than

the eavesdropper channel, which maximize the secrecy rate for a fixed transmitter

power allocation strategy. We also provide an algorithm to compute a joint power

allocation strategy for the jammer and the transmitter, in the case where degrad-

edness is not assumed, which leads to significant performance gains in relation to

isotropic jamming.

Finally, we build upon the previous contributions in order to study the impact of

the proposed power allocation strategies in OFDM communications system in the

presence of fading and correlation. Furthermore, the relation between the portion

of power made available to the transmitter and to the jammer is also investigated,

when a total power budget is imposed.

Our results demonstrate that the use of the optimal or nearly optimal power

allocation strategies can have a dramatic effect on the secrecy rates of parallel

independent wiretap channels. The theoretical framework, which has been validated

via extensive simulation results, then provides the means to design both reliable and

secure OFDM communications systems.
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Chapter 1

Introduction

1.1 Motivation

Security is one of the most important issues in wireless communications. Since

wireless communications face security risks and threats, in view of the broadcast

nature of the wireless medium, one of the hot topics in wireless communication at

the moment is how to secure a wireless network.

Security can be defined in terms of confidentiality, availability, and integrity. Confi-

dentiality guarantees that legitimate recipients successfully obtain source informa-

tion, while malicious users are not able to interpret this information [1]. Availability

relates to the access to confidential information by legitimate properly authenticated

users [2]. When availability is compromised, the access is denied for legitimate

users because of malicious activity. Integrity relates to the trustworthiness of

information resources, with assurance that the information is authentic and com-

plete, i.e, original source information is not modified by malicious parties during its

transmission [1].

Figure 1.1 illustrates the different functionalities addressed within a standard net-

work communication framework. Traditionally, security is viewed as an independent

feature addressed above the physical layer, and all widely used cryptographic pro-

tocols are designed and implemented assuming the physical layer has already been

established and provides an error-free link [3]. The purpose of the physical-layer is

to guarantee error-free transmission, with security mechanisms typically operating

at a higher layer of the protocol stack. State-of-the-art symmetric (secret-key) or

public-key (asymmetric) cryptographic schemes [4, 5] are thus insensitive to the

1
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characteristics of the communications channels, relying on the Shannon diffusion

and confusion principles [6] or on presumably hard-to-compute mathematical op-

erations, such as prime factorization or discrete logarithm calculation. However,

this modular approach to data security is increasingly difficult to justify due to i)

uncertainty about the correctness of the underlying intractability assumptions; ii)

the possible advent of more efficient attacks and even quantum computers; and iii)

fast and reliable communications over certain systems and applications require light

and effective security architectures. This modular approach to system security may

also lead to energy and transmission inefficiency in contemporary communications

systems and networks.

Application 

Transport 

Network

Link

Physical 

Programs, applications. 

Congestion control. 

Contention, fairness, scheduling, media access delay, 
throughput and bandwidth.

Optimal path selection. 

Power control, signal strength, interference and noise 
ratio. 

Layers Functions 

Figure 1.1: Standard network communication framework and its associated

functions.

However, the recent years have witnessed a renewed interest on the basic principles

and ideas behind information-theoretic security - widely accepted as the strictest

notion of security - which calls for the use of standard physical-layer techniques

that exploit the inherent randomness in the communications channels and media

to provide not only robustness to transmission errors but also a certain degree

of data confidentiality [1, 7]. The information-theoretic approach, which offers a

promising new mechanism towards solving wireless networking security problems

without using an encryption key, was initiated by Wyner [8] and by Csiszár and

2
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Körner [9] in the 1970´s: in particular, according to this new paradigm, a trans-

mitter intentionally adds structured randomness (Stochastic coding) to prevent

potential eavesdroppers and attackers from intercepting useful information while

guaranteeing that a legitimate receiver can obtain the information [1].

Physical-layer security is an emerging research area which capitalizes on the information-

theoretic paradigm in order to explore the possibility of achieving perfect-secrecy

data transmission among intended network nodes, while not disclosing information

to possibly malicious nodes that eavesdrop upon the transmission for improving

the security of wireless communication systems and networks. The breakthrough

concept behind wireless physical layer security is to exploit the characteristics of

the wireless channel, such as fading or noise, to provide secrecy for wireless trans-

missions. While these characteristics have traditionally been seen as impairments,

physical layer security takes advantage of these characteristics for improving the

security of wireless communication systems and networks.

The focus to date on physical-layer security research has been based on theoretical

aspects concerning the characterization of the fundamental secrecy limits of various

communications channels and networks, e.g., the secrecy capacity or the secrecy

capacity region [10, 11, 12, 13]. However, the design of concrete efficient, reliable

and secure physical-layer techniques is still an open problem at large.

In view of the ubiquitous deployment of OFDM systems in various standards such as

third-generation, fourth-generation mobile communication systems and beyond, as

well as WiFi IEEE 802.11, and Wimax IEEE 802.16 [14, 15], the focus of this thesis

is on the design of optimal or sub-optimal power allocation schemes for wireless

OFDM systems in the presence of jammers. These jammers could be purposely

deployed by a network operator in order to assist in increasing the achievable secrecy

rates between a legitimate transmitter and a legitimate receiver in the network in

the presence of a eavesdropper, i.e. the jammers would be friendly. Alternatively,

these jammers could also be deployed by malicious parties in order to assist in

decreasing the achievable secrecy rates between the legitimate parties in the network

in the presence of an eavesdropper, i.e. the jammers would be unfriendly. By

adopting a parallel Gaussian wiretap channel model of the OFDM communications

system, it will be seen that the design of appropriate power allocation policies can

have a dramatic effect on the secrecy rates of the system. By carefully designing

the power allocations across the various sub-channels associated with the OFDM

3
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communications system, it will be possible to significantly increase the secrecy rates.

1.2 Thesis organization

In this thesis, we consider power allocation schemes for secure communications over

a bank of parallel wiretap Gaussian channels, which can be used to model OFDM

communications systems, where two legitimate parties (Alice and Bob) try to

communicate in the presence of a unfriendly / friendly jammer and an eavesdropper

(Eve). The eavesdropper is assumed to be passive2 but the jammer acts as an active

player injecting interference in the form of additive noise. The information-theoretic

security metric used as a basis of the optimization of the power allocations is an

achievable secrecy rate: a secrecy rate is achievable when there is a coding scheme

such that the legitimate transmitter and the legitimate receiver can communicate

reliably (with arbitrarily low probability of error) whereas the eavesdropper is

unable to obtain any information (measured by its equivocation). When the jammer

is unfriendly it generates interference in order to decrease the achievable secrecy

rate; in contrast, when the jammer is friendly it generates interference in order to

increase the achievable secrecy rate between the legitimate transmitter and receiver.

In Chapter 2, we give a brief overview of information-theoretic and physical-layer

security as well as prior work in the area and its relation to the work in this thesis.

In Chapter 3, we address the problem where, on the one hand, the transmitter

(Alice) tries to find the power allocation strategy that maximizes her secrecy rate

and on the other hand an unfriendly jammer tries to employ the jamming power

allocation strategy that minimizes this same secrecy rate by adding interference to

the main channel. By capitalizing on game theory, we formulate a two person zero-

sum game. We prove the existence of a Nash equilibrium, i.e., where each player

(Alice and Jammer) chooses the best strategy against any opponent’s strategy. We

also characterize the optimal transmission and jamming power allocation strategies

for a zero-sum game, which are specialized for key asymptotic regimes. A range

of simulation results also illustrate the secrecy gains that an adaptive transmitter,

2The eavesdropper is assumed to be passive, which means that the eavesdropper only listens

but does not transmit. Simply, the eavesdropper target is to decode the received signal from the

transmitter but not to jam it or destruct it.
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which adapts to the jammer power allocation strategy, exhibits over a non-adaptive

one, which does not adapt its power allocation to the jammer’s power allocation.

In Chapter 4, we analyze the problem where, two legitimate parties (Alice and

Bob) communicate in the presence of a friendly jammer, which injects interference

in the eavesdropper channel in the presence of additive noise, and an eavesdropper

(Eve). The objective is to maximize the secrecy rate, between the source (Alice)

and the destination (Bob) by putting forth power allocation algorithms for the

jammer and joint power allocation algorithms for the jammer and the transmitter

in both scenarios of degraded and general (degraded and non-degraded) channels.

This is done by proposing both optimal and, whenever this is not possible due to

non-convexity considerations, sub-optimal power allocation algorithms that lead to

significant gains in relation to a simple isotropic power allocation strategy. We also

characterize optimal power allocation strategies for general and low power regimes.

In Chapter 5, we use the results of Chapter 4 to study the impact of the power

allocation policies in OFDM communications system in the presence of fading.

This work focuses on the evaluation of the secrecy rates that can be achieved over

Rayleigh / Rician fading scenario, with independent or correlated sub-channels.

Moreover, we study the tradeoff that regulates the amount of power assigned to the

transmitter and to the jammer, when a total available power constraint is imposed.

We also observe the change of the average secrecy rate when the jammer is Rayleigh

/ Rician and when its sub-channels are independent / correlated, respectively.

Chapter 6 concludes this thesis, summarizing the main contributions and suggesting

areas for future works.

1.3 Thesis contribution

The main contributions of this thesis are:

∙ Formulation of a zero-sum power allocation game associated with the maxi-

mization of the secrecy rate for the parallel Gaussian wiretap channel where a

legitimate transmitter communicates with a legitimate receiver in the presence

of an eavesdropper and an unfriendly jammer that injects interference in the
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main channel in the form of additive noise. This power allocation game, which

is played between the legitimate transmitter and the unfriendly jammer, uses

an achievable secrecy rate as the payoff function and the total available power

at the legitimate transmitter and the unfriendly jammer as constraints.

∙ Characterization of the optimal transmission and jamming power allocation

strategies for the zero-sum game for general and asymptotic low power regimes

∙ Extensive simulation results demonstrate that a transmitter that adapts to

the unfriendly jammer strategy can experience a much higher secrecy rate

than a non-adaptive transmitter.

∙ Formulation of a power allocation optimization problem associated with the

maximization of an achievable secrecy rate for a parallel Gaussian wiretap

channel where a legitimate transmitter communicates with a legitimate re-

ceiver in the presence of an eavesdropper and a friendly jammer that injects

interference in the eavesdropper channel in the form of additive noise.

∙ Characterizations of the optimal power allocation policies for the jammer and

joint power allocation algorithms for the jammer and the transmitter both for

general and low power regimes.

∙ Extensive simulation results demonstrate the effect of friendly jamming in

increasing the secrecy rates.

∙ Additional results that show that additional secrecy rates can be extracted

by optimally distributing a fixed power budget between the transmitter and

the jammer in a wireless network.

∙ Application of the results to the scenario where the legitimate transmitter, the

legitimate receiver, the eavesdropper and the friendly jammer employ OFDM

modulation. The objective is to determine the impact of the derived optimal

or nearly optimal power allocation policies in the presence of quasi-static

Rayleigh or Ricean fading, and in the presence of independent or correllated
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sub-channels. It is observed that the average achievable secrecy rate is higher

when the sub-channels are independent than when sub-channels are corre-

lated. It is also observed that the average achievable secrecy rate experiences

higher when the jammer is Rician fading than when the jammer experiences

Rayleigh fading.

These contributions have led to the following publications:

1. Munnujahan Ara, Hugo Reboredo, Francesco Renna, Miguel R. D. Rodrigues

“Power Allocation Strategies For OFDM Gaussian Wiretap Channels With a

Friendly Jammer”, IEEE International Conference on Communications (ICC-

2013), 9-13 June 2013, Budapest, Hungary.

2. Munnujahan Ara, Hugo Reboredo, Francesco Renna, Miguel R. D. Rodrigues

“Power Allocation Strategies For OFDM Gaussian Wiretap Channels With

a Friendly Jammer: The Degraded case”, ConfTele-2013, 8-10 May 2013,

Castelo Branco, Portugal.

3. Munnujahan Ara, Hugo Reboredo, Samah A. M. Ghanem, Miguel R. D.

Rodrigues “A Zero-Sum Power Allocation Game in the Parallel Gaussian

Wiretap Channel with an Unfriendly Jammer”, The 13th IEEE International

Conference on Communication Systems(ICCS-2012), 21-23 Nov. 2012, Singa-

pore.

4. Hugo Reboredo, Munnujahan Ara, Miguel R. D. Rodrigues and João Xavier

“Filter Design with Secrecy Constraints: The Degraded Multiple-Input Multiple-

Output Gaussian Wiretap Channel”, 2011 IEEE 73rd Vehicular Technology

Conference: VTC2011-Spring 15-18 May 2011, Budapest, Hungary.
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Chapter 2

Background on Information Theoretic

Security and Physical Layer Security

The main objective of this Chapter is to introduce some concepts and ideas behind

information-theoretic security. In particular, we present a set of standard models

associated with physical layer security, including the Shannon’s perfect secrecy

model, Wyner’s wiretap channel model, and other wiretap channel models that

will be used throughout the thesis. We also introduce a prior work on physical

layer security techniques with an emphasis on jamming techniques. Such techniques

relate to the theme of this thesis, which revolves around the exploitation of different

design approaches to secure wireless networks by causing interference.

2.1 Information-theoretic security

Information-theoretic security provides the theoretical foundations for physical-

layer security. The main idea behind information-theoretic security relates to the

usage of the inherent randomness of the physical medium, including noises and

channel fluctuations due to fading, in order to secure transmitted and received

data [8]. In particular, information-theoretic approaches to secure the transmission

of messages, from a legitimate transmitter to a legitimate receiver, thus bypass

the need to use any encryption mechanism. Such approaches guarantee that mali-

cious attackers cannot decode, partly or fully, their received noisy versions of the

transmitted message.

Shannon´s notion of perfect secrecy was the theoretical building block toward the

introduction of information-theoretic security, which was laid by Wyner [8] and
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later by Csiszár and Körner [9]. They proved in a set of seminal papers that there

exist channel codes that can guarantee both robustness to transmission errors and

a certain degree of data confidentiality. In the seventies and eighties, the impact

of these works was limited due to, first, from a practical perspective, such wiretap

codes were not available, second, from a theoretical perspective, a strictly positive

secrecy capacity is limited to the assumption of degradedness of the channel of

the legitimate parties, where in the classical wiretap channel setup the legitimate

sender and receiver are assumed to have some advantage over the attacker in terms

of channel quality. Moreover, a different notion of secrecy has also been proposed,

almost at the same time, with the introduction of public-key cryptography by Diffie

and Hellman [16], which was to be adopted almost by all contemporary security

schemes.

In the nineties, Maurer [17] proved that even when the legitimate parties have

a worse channel than the eavesdropper, it is yet possible to generate a secret

key through public communication over an insecure authenticated channel. In

particular, the evolution of wireless communications, which are susceptible to eaves-

dropping due to the broadcast nature of the wireless transmission medium, has

also led to a keen interest an in-depth analysis of the secrecy potential of wireless

networks.

In the early two thousands, Hero [18] introduced space-time signal processing tech-

niques for secure communication over wireless links. Of particular relevance, the

work by Barros and Rodrigues [10], who characterized in detail the outage secrecy

capacity of slow fading channels, showed that fading alone guarantees information-

theoretic security even when the eavesdropper has a better SNR on average than

the legitimate receiver, without the need for public communication over a feedback

channel. Almost at the same timeframe, Liang et al. [11], Li et al. [12] and Gopala

et al. [13] derived independently the ergodic secrecy capacity of fading channels.

More recently, Bustin et al. [19] and Liu et al. [20] gave a complete characterization

of the secrecy capacity of MIMO channels under a matrix covariance constraint on

the input covariance matrix. Furthermore, when a total power constraint is consid-

ered, the secrecy capacity of a multiple-antenna wiretap channel was computed in

the high-power regime, by Khisti et al. [21], and low-power regime, by Gursoy [22].

State of the art work on information-theoretic security usually models the OFDM
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signalling as a set of parallel Gaussian wiretap channels [23, 24, 25], assuming that

the eavesdropper utilizes OFDM demodulation. The secrecy capacity of the parallel

Gaussian wiretap channel model and its corresponding power allocation have been

derived in [23]. Optimal transmit and receive filters with secrecy constraints are

derived for the parallel Gaussian wiretap channel model, with the minimum MSE

used as the design criterion [26], [27].

2.1.1 Shannon´s model

Shannon was the first to introduce a cryptosystem to analyze the communication’s

secrecy via an information-theoretic approach [6]. Figure 2.1 illustrates Shannon’s

model of secrecy. In this model, a legitimate transmitter, say Alice, communicates

with a legitimate receiver, say Bob, in the presence of an eavesdropper, Eve.

The transmitter uses a key K to encrypt a source message W into an encrypted

message X , also called ciphertext, and the key K is assumed to be shared by the

legitimate transmitter and legitimate receiver but unknown to the eavesdropper.

The eavesdropper is only considered to know the encryption functions.

Shannon strictest notion of perfect secrecy was defined in [6], where it was shown

that perfect secrecy can be obtained if and only if the size of the secret key is at least

as large as the size of the message. Such notion of perfect secrecy was built on two

assumptions, first is that the legitimate receiver and the eavesdropper both receive

the same version of the transmitted message, second is that the eavesdropper has

limited time or limited computational resources which makes it unable to test all

possible (keys) to extract the source transmitted message W [1].

Perfect secrecy entails that p(W ∣X) = p(W ), which means that the system is

perfectly secure if the posteriori probability of the source message given encrypted

message is equal to a priori probabilities of source message. This implies that the

eavesdropper uncertainty about the message is not altered via the observation of

the cipher-text (encrypted message) X .

Now the entropy H(W ), associated with the random variable that models the

message, measures the uncertainty about the message, and the conditional entropy

associated with the random variable that models the message given the random

variable that models the encrypted message H(W ∣X) measures the eavesdropper´s

uncertainty about the message. On the other hand, the mutual information I(W ;X)
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Source key 

K 

Message 

W 

Encryption 

X 

Decryption Ŵ

K K 

Alice (Transmitter) 

Eve (Eavesdropper) 

Bob (Receiver) 

Figure 2.1: Shannon´s model of information-theoretic security.

can be seen as the amount of information that the encrypted message X contains

about the original message W (information leakage). Therefore, the system is also

said to be perfectly secure if:

H(W ∣X) = H(W ) equivalently, I(W ;X) = H(W )−H(W ∣X) = 0 (2.1)

As shown in [6], in order to achieve perfect secrecy one requires the length of the

key to be at least as large as the length of the message [1], or, H(K) ≥ H(W ),

where H(K) corresponds to the entropy of the random variable that models the

key K.

2.1.2 Wyner´s wiretap model

The theoretical basis of information-theoretic security builds Shannon’s perfect

secrecy system models a scenario where the channels, i.e. the main and the eaves-

dropper channels, do not introduce erros in the message. However, in reality, some

form of noise is always present in a communications system. Therefore, Wyner [8]

has introduced the wiretap channel model, illustrated in Figure 2.2.

In Wyner’s wiretap channel model a legitimate transmitter, say Alice, communi-

cates with a legitimate receiver, say Bob, in the presence of an eavesdropper, Eve.

The random variable W denotes the source message, the random variable X denotes

the symbols transmitted by the legitimate transmitter, the random variable Ym

denotes the symbols received by the legitimate receiver and the random variable

Ye denotes the symbols received by the eavesdropper. In turn, Xn denotes the
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Figure 2.2: The Wyner´s channel model.

sequence of transmit symbols, Y n
m denotes the sequence of receive symbols at the

legitimate receiver and Y n
e denotes the sequence of receive symols at the eavesdrop-

per. The channel is represented by the probability mass function P (ym, ye∣x), which
corresponds to the main difference between Wyner’s model and Shannon’s model,

in that models the fact is that the legitimate receiver and the eavesdropper observe

different noisy versions of the transmitted code word Xn. Therefore, the factor that

facilitates secret exchange of the original message is no longer a shared key, but the

availability of noise in the communications channel.

The legitimate transmitter, Alice, wishes to convey a (uniformly distributed) mes-

sage w ∈ W = 1, 2, . . . , 2nR to the legitimate receiver, Bob. The legitimate

transmitter-receiver pair use an (2nR, n) code (assumed to be known also to the

eavesdropper), where n denotes the number of channel uses, consisting of a stochas-

tic encoding function f : W → X n that maps the message w ∈ W = 1, 2, ..., 2nR

into a transmit codeword Xn ∈ X n, and a decoding function g : Y n → W that

maps the receive codeword Y n into the message estimate Ŵ .

The average error probability of the (2nR, n) code is:

P n
e =

1

2nR

∑

w∈W
Pr(w ∕= ŵ∣w sent). (2.2)

The objective is to maximize the transmission rate between the legitimate parties:

R =
1

n
H(W ) =

1

n
log22

nR. (2.3)
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subject to a certain equivocation rate between the legitimate transmitter and the

eavesdropper:

Re =
1

n
H(W ∣Y n

e ). (2.4)

Therefore, the main two goals are: (i) maximize the rate of reliable communication

(i.e. arbitrarily low probability of error) between transmitter and legitimate receiver

(reliability condition); (ii) ensuring that the eavesdropper learns as little as possible

about the original message (secrecy condition).

The pair (Ŕ, Ŕe) is said to be achievable if for all � > 0, there exists a sequence of

(2nR, n) codes such that R ≥ Ŕ − �, Re ≥ Ŕe − � and P n
e ≤ �. The perfect secrecy

rate Rs is achievable if for all � > 0, there exists a sequence of (2nR, n) codes such

that R ≥ Rs − �, Re ≥ Rs − � and P n
e ≤ �.

Finally, the secrecy capacity Cs corresponds to the supremum of the achievable

perfect secrecy rates over a certain input alphabet. Csiszár and Körner have shown

that the secrecy capacity of the wiretap channel is given by [9]:

Cs = max
p(U,X)

I(U ; Ym)− I(U ; Ye). (2.5)

where, I(U ; Ym) and I(U, Ye) represent mutual information and U is an auxiliary

random variable over a certain alphabet that satisfies the Markov relationship U →
X → (Ym, Ye), and the outputs Ym, Ye at the receivers, respectively. In turn, the

secrecy capacity of the degraded wiretap channel, defined as a wiretap channel with

Bob´s channel being stronger than Eve´s channel, is given by [9]:

Cs = max
p(X)

[I(X ; Ym)− I(X ; Ye)]. (2.6)

where I(X ; Ym) and I(X ; Ye) represent mutual informatoins between the random

variable X and Ym and Ye respectively. It is shown in [9] that for the degraded

wiretap channel, the secrecy rate is achievable when U = X .

2.1.3 Other wiretap models

In addition to the general wiretap channel model in Figure 2.2, there are various

other models that aim to capture particular scenarios with relevance to contempo-

rary communications systems.
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2.1.3.1 Gaussian wiretap channel

In the Gaussian wiretap channel, the legitimate and the eavesdropper channels are

modeled as:

Ym = X +Nm. (2.8)

Ye = X +Ne. (2.9)

where Ym denotes the legitimate channel receive symbol at a certain time slot, Ye

denotes the eavesdropper channel receive symbol at a certain time slot, X denotes

the transmit symbol at a certain time slot, Nm is a Gaussian random variable with

mean zero and variance N0m representing the noise in the main channel and Ne is a

Gaussian random variable with mean zero and variance N0e representing the noise

in the eavesdropper channel. Yeung and Hellman [28] have shown that the secrecy

capacity of the Gaussian wiretap channel is given by

Cs = (Cm − Ce)
+ = max

[
0,

1

2
log2

(
1 +

P

N0m

)
− 1

2
log2

(
1 +

P

N0e

)]
. (2.10)

if the legitimate channel is less noisy than the eavesdropper channel (N0m < N0e),

and

Cs = 0. (2.11)

if the legitimate channel is more noisy than the eavesdropper channel (N0m > N0e).

The variable P denotes the transmit power.

The Gaussian wiretap channel models basic communications systems where the

transmissions are contaminated by thermal noise.

2.1.3.2 The parallel Gaussian wiretap channel

In the parallel Gaussian wiretap channel, the legitimate and the eavesdropper

channels are modeled as:

ym = Λmx+ nm. (2.12)

ye = Λex+ ne. (2.13)
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where ym ∈ ℂn denotes the vector of receive symbols at the legitimate receiver

at a certain time instant, ye ∈ ℂn denotes the vector of receive symbols at the

eavesdropper at a certain time instant, Λm ∈ ℂn is diagonal matrix denotes the

legitimate channel, Λe ∈ ℂn is diagonal matrix denotes the eavesdropper channel,

x ∈ ℂn denotes the vector of transmit symbols at a certain time instant, nm ∈ ℂn

is a vector of Gaussian random variables with mean zero and identity covariance

matrix and ne ∈ ℂn is also a vector of Gaussian random variables with mean zero

and identity covariance matrix. In turn, the secrecy capacity of independent parallel

Gaussian wiretap channels is given by [12]

Cs =

n∑

i=1

max
xi→ymi

,yei
I
(
xi; ymi

)
− I
(
xi; yei

)
. (2.14)

where the maximization is over all the distributions Pxi
(xi) of the random variables

X , i = 1, 2, . . . , n is the number of sub-channels.

The parallel Gaussian wiretap channel models OFDM communications systems [29].

This model will be the basis for most of the work carried out in the thesis.

2.2 Physical-layer security: A review on the use of jamming

to achieve enhanced secrecy

The main feature of communication security is the system reliability, which means

that a certain message (encoded and transmitted over a wireless channel) intended

for a specific user (or legitimate receiver), should be reliably received by that user.

The enemy of system reliability is called a jammer. The purpose of a jammer

is solely to (i) disrupt the process of communication by increasing the legitimate

receiver’s probability of decoding error, and / or by causing reliability outage, or

secrecy capacity outage; hence called an unfriendly jammer or to (ii) increase the

secrecy of wireless networks; and therefore called a friendly jammer.

2.2.1 Jamming concept in wireless communication

Jamming in wireless networks became a relevant topic since the late eighties. Sev-

eral works studied the jamming effect on point to point communication systems.

16



Chapter 2-Background on Information Theoretic Security and Physical Layer Security

The jammer was assumed to have access either to the transmitter / eavesdropper

output [30], or the transmitter / eavesdropper input message [31].

The following sub-section provides an overview of the main contributions associated

with unfriendly and friendly jamming in wireless communications systems.

2.2.1.1 Prior work on unfriendly jamming

The impact of malicious jammers, in addition to eavesdroppers, on the quality

of the communication link is also a problem of long-standing interest. An infor-

mation theoretic analysis of communications in the presence of a hostile jammer

was presented by McEliece and Stark in 1981 [32]. They proved the existence of

simultaneously optimal strategies for both the coder and jammer under certain

restrictions. When the coder and jammer both have average power constraints the

minimax strategies are shown to be Gaussian input, Gaussian jamming. However,

Gaussian jamming is shown not to be a saddle point strategy when the input is

restricted to be binary [32].

A two-player zero sum game was formulated where the payoff function is the square-

difference distortion. The optimal policies (saddle-point) are obtained where the

jammer taps the channel and feeds back a signal, at a given energy level, for

the purpose of jamming the transmitter sequence [30]. The payoff function is to

be maximized by the jammer and to be minimized by the transmitter and the

receiver. By adopting a zero-sum game formulation, where the payoff function is

the mean squared error, a complete set of solutions is obtained under two different

sets of conditions, depending on whether the encoder mapping is deterministic or

stochastic [31].

In [33], the authors introduce a power allocation game through which a wiretapper

possesses the dual capability to act either as a passive eavesdropper and/or as an

active jammer. They investigate transmission strategies in a MIMO wiretap channel

with a transmitter, receiver and wiretapper, each equipped with multiple antennas.

The wiretapper is able to act either as a passive eavesdropper or as an active jammer

per channel use, under a half-duplex constraint. The transmitter therefore faces a

choice between dynamically allocating all of its power for data; or broadcasting

artificial noise along with the information signal in order to selectively degrade the

eavesdropper´s channel. The work has been formulated as a zero-sum game, secrecy
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rate as the payoff function, however, the transmitter power allocation strategy is

predefined, either to use its full power when transmitting data, or a sufficient power

to move the eavesdropper channel into a degraded one.

2.2.1.2 Prior work on friendly jamming

In general, secrecy rate can be increased in two ways: i) by improving the SNR

of the legitimate receiver; or ii) by reducing the SNR of the eavesdropper. It is

known that interference in wireless channels can be used effectively by cooperating

nodes to improve the performance of wireless networks, for example, [34] addresses

the secrecy sum rate maximization over a MAC and two-way wiretap channels via

cooperative jamming between transmitters against the eavesdropper. A cooperative

jamming is proposed, where users who are prevented from transmitting according

to the secrecy sum rate maximizing power allocation policy jam the eavesdropper,

thereby helping the remaining users.

Both [35] and [36] investigate physical layer security by using friendly jammer. The

secrecy capacity can be improved by using friendly jammers that introduce extra

interference to the eavesdroppers. In [35], the authors investigate the interaction

between the source that transmits the useful data and friendly jammers who assist

the source by causing interference to the eavesdropper. To select the friendly

jammer, they introduce a game theoretic approach. The game is defined such

that the source pays the jammers to interfere with the eavesdropper, therefore,

increasing the secrecy rate. The friendly jammers charge the source with a certain

price for the jamming, and there is a tradeoff for the price. If too low, the profit of

the jammers is low; and if too high, the source would not buy the service (jamming

power) or would buy it from other jammers. To analyze the game outcome, they

investigate a Stackelberg type of game between the source and the friendly jammers

as a power control scheme to achieve the optimized secrecy rate of the source, in

which the source is treated as the sole buyer and the friendly jammers are the sellers.

However [36] investigates a Stackelberg game for a two-way relay system where the

two sources can only communicate through an untrusted intermediate relay.

The impact of friendly jamming on the secrecy outage probability of a quasi-

static wiretap Rayleigh fading channel has been analyzed in [37] by computing

the probability of secrecy outage in connection with two measures of physical-layer

security: the jamming coverage and the jamming efficiency. A set of the jammer
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selection strategies are proposed based on the position of the jammer to measure

the jamming effect to increase the secrecy level between the legitimate transmitter

and receiver.

2.2.2 Prior work on jamming associated with OFDM com-

munications systems

In view of the fact that the wireless spectrum is a scarse and expensive resource,

the quest for spectral efficiency has become the holy grail in wireless communi-

cations [38]. Over the past years, the wireless network industry has been grow-

ing significantly and developing high speed network products to provide wireless

multimedia application based on OFDM due to the high data rates and robust

communication characteristics of OFDM [39, 40]. In the 1980s, OFDM was studied

for high-speed modems [41, 42], digital mobile communications and high density

recording [43]. In the 1990s, OFDM was studied for HDSL [44], ADSL, VHDSL [45].

OFDM is a modulation technique that has been suggested for use in cellular ra-

dio [46, 47], DAB [48], DVB and wireless LAN systems such as IEEE 802.11,

HIPERLAN, and MMAC [49]. In 1998, HiperLAN/2 (Europe) and MMAC (Japan)

adopted OFDM in their physical layer specifications [50]. The primary benefit of

using OFDM is spectral efficiency, which means that we can transmit more data

faster in a given bandwidth in the presence of noise. In fact, it has been shown

that OFDM leads to substantial improvements in capacity when compared to other

standard modulation schemes [38], coming very close to the Shannon limit that

defines channel capacity.

OFDM is a block modulation scheme where data symbols are transmitted in parallel

by employing a (large) number of orthogonal sub-channels. A block of N serial

data symbols, each of duration Ts, is converted into a block of N parallel data

symbols, each with duration T = NTs. The N parallel data symbols modulate

N sub-channels that are spaced 1/T Hz apart [50]. Intersymbol interference is

eliminated almost completely by introducing a guard time in every OFDM symbol.

In the guard time, the OFDM symbol is cyclically extended to avoid intercarrier

interference [51]. This process is succinctly described in Figure 2.3.

Before transmission, a stream of data is converted to parallel form where each bit is

assigned to a carrier frequency. Then the IFFT is taken, a cyclic prefix is added to

the data, transmission and reception occurs, the cyclic prefix is removed, and the
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Figure 2.3: Structure of OFDM system.

FFT is taken to get the transmitted data at the receiver.

In view of the relevance of OFDM to current wireless systems, recently OFDM is

also used to investigate physical layer security [52, 53], a number of works have also

been looking at this scheme not only to improve the reliability but also the security

of communications systems. In [53], authors consider the information theoretic

secrecy rates that are achievable by an OFDM transmitter / receiver pair in the

presence of an eavesdropper. The secrecy capacity is formulated as a maximization

problem under a total power constraint on the transmitter signal, and numerical

results are provided under a Rayleigh fading channel model and under dependence

of the main and eavesdropper channels. Both works [52, 53] did not consider the

model in the presence of friendly / unfriendly jamming.

In [12], the authors show that the secrecy capacity increases with the increase in

the number of independent parallel sub-channels. Moreover, for such scenarios

with OFDM being adopted, optimal power allocation strategies have been derived

for the parallel independent channels [12], and for the multi-user broadcast channel

in [24] and [25]. In [54], the authors proposed a method that makes use of channel

randomness, reciprocity, and fast decorrelation in space to secure OFDM with low

overheads on encryption, decryption, and key distribution.

In spite of the numerous theoretical contributions, the general problem of design

of physical-layer transmission schemes for both reliable and secure communications

over OFDM communications systems, which can be modelled using parallel Gaus-

sian wiretap channels, is still widely open. In particular, the impact of unfriendly or

friendly jammers to the achievable secrecy rates of OFDM communications systems

is still open in general. The objective of this PhD research is to fill this vacuum.
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Chapter 3

Parallel Gaussian Wiretap Channel with an

Unfriendly Jammer: A Zero-Sum Power

Allocation Game

3.1 Introduction

In this Chapter we are interested in the security aspect of the wireless communi-

cation network. On the physical layer, the computation of the secrecy capacity

of different communication channels has been an important research topic in the

last few decades [8], [10], [13], [6], [55], [56]. The impact of malicious jammers, in

addition to eavesdroppers, on the quality of the communication link is also another

problem of long-standing interest [57], [58], [59] and [60].

In the classical problem of increasing the reliable and secure information trans-

mission rate between the input and the output of a system, called the secrecy

rate, different approaches can be used which are: maximization of the mutual

information via transmit diversity techniques with known CSI [61], [62], [63], [64],

in the case of flat fading [65], [66], maximization of the SINR [67], minimization of

the BER [67], [68], [69], [70], or minimization of the MSE [67], [27].

In general, secrecy rate can be increased in two ways: i) by improving the signal-

to-noise ratio (SNR) of the legitimate receiver; or ii) by reducing the SNR of the

eavesdropper, i.e., by impairing the reception at the eavesdropper. In this Chap-

ter, we consider a scenario applicable to current OFDM communications systems

consisting of a bank of parallel independent wiretap Gaussian channels, where two

legitimate parties (Alice and Bob) communicate in the presence of a malicious

jammer and an eavesdropper (Eve). The eavesdropper is assumed to be passive but
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the jammer acts as an active player injecting interference to the main channel in

the form of additive noise.

Recently, game theory has been of main interest in the information-theoretic re-

search, particularly, in models where multiple players would exist; such as in the

wiretap channel. Different game-theoretic approaches have been used to find op-

timal power allocation strategies for MIMO and SISO channels in [71], [72] re-

spectively. Game theoretic power allocation strategies for maximizing Shannon´s

capacity with relaying have been derived in [73], [74]. In [75], the Nash equilibria

were analyzed for different types of relaying protocols. In [76], a Stackelberg game

has been used to derive the optimal power allocation for a fading MAC channel.

A two-player zero sum game was formulated in [30], where the payoff function is

the mean-squared error of the decoded message relative to the transmitter message

and the jammer taps the channel and feeds back a signal, at a given energy level,

for the purpose of jamming the transmitted sequence. The mean-squared error is

to be maximized by the jammer and to be minimized by the transmitter and the

receiver.

The main contributions of this Chapter are as follows: (i) a game-theoretic for-

mulation of the achievable secrecy rates3 in the parallel Gaussian wiretap channel

with an unfriendly jamming; (ii) a proof of the existence of a Nash equilibrium of

the zero-sum game; and (iii) a characterization of the optimal transmission and

jamming power allocation strategies for a zero-sum game, which are specialized for

key asymptotic regimes. A range of simulation results also illustrate the secrecy

gains that an adaptive transmitter exhibits over a non-adaptive one.

This chapter is organized as follows: Section 3.2 describes the problem setup.

Section 3.3 analyzes the two-person zero-sum game, by establishing the existence

of a pure strategy Nash equilibrium and by providing the best response of the

transmitter for a fixed jammer strategy, the best response of the jammer for a fixed

transmitter strategy as well as the Nash equilibrium achieving strategies in certain

asymptotic regimes. Section 3.4 presents a set of numerical results that cast further

insight into the nature of the optimal strategies as well as the Nash equilibrium. The

results also unveils the secrecy gain of an adaptive transmitter over a non-adaptive

one. In Section 3.5, we summarize the main contributions of this research work.

3The secrecy rate indicates the transmission rate at which the eavesdropper is unable to decode

any informations and also note that the secrecy capacity is the maximum value of the secrecy rate.
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3.2 Problem formulation

We consider the Gaussian wiretap channel model of Figure 3.1. The model considers

a communication scenario where a legitimate user, Alice, tries to communicate with

another legitimate user, Bob, in the presence of an eavesdropper, Eve, and an un-

friendly jammer over banks of n parallel independent Gaussian channels. Note that

this represents a simplification of typical wireless communications systems, where,

due to the characteristics of wireless propagation, the jammer would introduce

interference in both the main and the eavesdropper channels. Hence, this applies

to scenarios where, with the intent of impairing the communication over the main

channel between the legitimate parties, the jammer positions himself to be much

closer to the legitimate receiver than the eavesdropper. Furthermore, this also

applies to scenarios where the jammer colludes or cooperates with the eavesdropper

so that the eavesdropper is able to subtract the interference from the jammer.

Therefore, the interference caused by the jammer injected power will mainly harm

the communication between the two legitimate parties, Alice and Bob.
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Figure 3.1: Gaussian wiretap channel model with an unfriendly jammer.

Bob observes the output of the main channel given by:

ym = Λmxt + nm +Λjxj (3.1)

and Eve observes the output of the eavesdropper channel given by:

ye = Λext + ne (3.2)
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where ym ∈ ℂn and ye ∈ ℂn represent the vectors of complex receive symbols at the

output of the main and eavesdropper channels respectively, xt ∈ ℂn represents the

vector of complex transmit symbols with mean zero and covariance Σx = E[xtx
†
t ],

and nm ∈ ℂn and ne ∈ ℂn represent vectors of circularly symmetric complex

Gaussian noise random variables with zero-mean and identity covariance matrix,

i.e., standard white Gaussian noise. We assume that xj ∈ ℂn is a vector of circularly

symmetric complex Gaussian noise with mean zero and covariance Σj = E[xjx
†
j],

which represents the jamming action. Note that this jamming strategy is not

necessarily optimal but it is convenient both from the practical and the theoretical

stand point. For example, this choice of distribution to the jamming action leads

to closed form achievable secrecy rate expressions [59], [60]. We also assume that

the random vectors xt, xj , nm, and ne are independent.

Λm = diag (�m1
, �m2, . . . , �mn) ∈ ℂn is a diagonal matrix that contains the complex

gains of the parallel sub-channels of the main channel, Λe = diag (�e1, �e2, . . . , �en) ∈
ℂn is a diagonal matrix that contains the complex gains of the parallel sub-channels

of the eavesdropper channel, and, likewise, Λj = diag (�j1, �j2, . . . , �jn) ∈ ℂn is a

diagonal matrix that contains the complex gains of the parallel sub-channels that

compose the jammer channel. Note once again that this model arises in systems

where Alice, Bob, Eve and the jammer adopt OFDMmodulation and demodulation.

We assume that Alice, Bob, Eve and the jammer know the exact channel conditions.

In general, the legitimate parties may not be able to estimate the state of the

eavesdropper channel. For example, the legitimate parties may not even be aware

of the presence of the eavesdropper. However, this assumption can be justified in

situations where both the jammer and the eavesdropper are also active users in the

wireless network, that employs time division multiple access (TDMA). In view of

channel reciprocity, the users will be able to estimate other users channels or share

the knowledge of other users channels [77].

Both the transmitter and the unfriendly jammer transmit independent symbols

over the different sub-channels. Thus we take both the input and jamming co-

variance matrices to be diagonal, i.e., Σx = E[xtx
†
t ] = diag (�x1

, �x2
, . . . , �xn

) and

Σj = E[xjx
†
j ] = diag (�j1 , �j2, . . . , �jn), respectively, where �xi

represents the power

injected into the main sub-channel i and �ji represents the power injected into the

jammer sub-channel i, i = 1, 2, . . . , n.
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Additionally, we impose some power restrictions on both the transmitter and jam-

mer, namely:
n∑

i=1

�xi
≤ P (3.3)

n∑

i=1

�ji ≤ Pj (3.4)

where P and Pj are the total transmitter and the jammer power respectively.

The secrecy capacity corresponds to the largest achievable reliable transmission rate

with perfect secrecy [55]. The general expression of the secrecy capacity of a wiretap

channel is given by [9]:

Cs = max
v→xt→ym,ye

I
(
v;ym

)
− I
(
v;ye

)
(3.5)

where the maximization is over all joint distributions Pv,xt
(v,xt) such that the

Markov chain v → xt → ym ye holds
4.

In [12, Theorem 1], it is shown that for a bank of independent parallel Gaussian

wiretap channels the secrecy capacity in (3.5), as like (2.14), reduces to:

Cs =

n∑

i=1

Csi =

n∑

i=1

max
xti

→ymi
,yei

I
(
xti ;ymi

)
− I
(
xti ;yei

)
(3.6)

where Csi represents the secrecy capacity of the ith sub-channel and the maxi-

mizations are over all the distributions Pxti
(xti), i = 1, . . . , n and xti represents the

complex transmit symbol in the itℎ sub-channel, ymi
represents the complex receive

symbol in the itℎ main sub-channel and yei represents the complex receive symbol

in the itℎ eavesdropper sub-channel.

Note that the secrecy capacity of a bank of independent parallel Gaussian wiretap

channels, which is achieved by independent complex Gaussian inputs, is equal to

the sum of the secrecy capacities of the individual wiretap sub-channels [12].

Fix the input signal covariance Σx = diag(�x1
, . . . , �xn

) and the jammer signal

covariance Σj = diag(�j1, . . . , �jn), where �x1
, . . . , �xn

and �j1 , . . . , �jn represent the

4In this chapter we will use maxX where X is a random variable as a shorthand for the

maximization over the choice of the probability distributions PX(x) of the random variable X.
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set of powers that the transmitter and the jammer inject into the bank of parallel

independent channels, respectively. Note that, we restrict the attention to scenarios

where the jammer does not introduce correlated noise accross the sub-channels.

Then the secrecy capacity can be written as follows [12]:

Cs (�x1
, . . . , �xn

, �j1 , . . . , �jn) =

n∑

i=1

Csi(�xi
, �ji)

=
n∑

i=1

[
log

(
1 +

�xi
∣�mi

∣2

1 + �ji ∣�ji∣2

)
− log

(
1 + �xi

∣�ei∣2
)]+

(3.7)

where [z]+ = max(0, z).

We study a zero-sum game between the transmitter and the jammer with a pay-off

or utility function given by:

U
(
�x1

, . . . , �xn
; �j1, . . . , �jn

)
= Cs

(
�x1

, . . . , �xn
; �j1 , . . . , �jn

)
(3.8)

where the transmitter and the jammer determine adaptively the strategies, which

are characterized by the respective power allocation policies, that maximize and

minimize, respectively, the value of the utility function. We also impose the power

restrictions in (3.3) and (3.4) as:

n∑

i=1

�xi
≤ P (3.9)

with �xi
≥ 0, ∀ i, and

n∑

i=1

�ji ≤ Pj (3.10)

with �ji ≥ 0, ∀i, where P and Pj represent the transmitter and jammer available

power, respectively. It is simple to show that for non degraded sub-channels, where

∣�mi
∣2 < ∣�ei∣2, (�∗

xi
, �∗

ji
) = (0, 0) is an optimal strategy. Therefore, the analysis

concentrates only on degraded scenarios, where ∣�mi
∣2 ≥ ∣�ei∣2.

Le us now consider a scenario where the sub-channels are degraded. Now, note that
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the secrecy capacity of the itℎ sub-channel is equal to zero if and only if

�xi
∣�mi

∣2

1 + �ji ∣�ji∣2
≤ �xi

∣�ei ∣2

⇔ ∣�mi
∣2

1 + �ji ∣�ji∣2
≤ ∣�ei∣2

⇔ ∣�ei∣2 (1 + �ji ∣�ji∣2) ≥ ∣�mi
∣2

⇔ �ji ≥
∣�mi

∣2 − ∣�ei∣2

∣�ei ∣2 ∣�ji∣2
(3.11)

Therefore, since by setting �ji ≥
∣�mi ∣2−∣�ei ∣2
∣�ei ∣2∣�ji ∣2

, the secrecy capacity of the itℎ sub-

channel becomes equal to zero, it is only natural that a rational jammer will limit

the powers injected on the sub-channels according to such constraints in view of

the overall power constraint. Consequently, rather than considering the zero-sum

game with the payoff function:

U (�x1
, . . . , �xn

; �j1 , . . . , �jn) =
n∑

i=1

[
log

(
1 +

�xi
∣�mi

∣2

1 + �ji ∣�ji∣2

)
− log

(
1 + �xi

∣�ei∣2
)]+

(3.12)

subject to the constraints
n∑

i=1

�xi
≤ P with �xi

≥ 0, ∀i, and
n∑

i=1

�ji ≤ Pj with

�ji ≥ 0, ∀i, we will consider a zero-sum game with the slightly different payoff

function:

U1 (�x1
, . . . , �xn

; �j1 , . . . , �jn) =

n∑

i=1

[
log

(
1 +

�xi
∣�mi

∣2

1 + �ji ∣�ji∣2

)
− log

(
1 + �xi

∣�ei∣2
)]

(3.13)

subject to the constraints
n∑

i=1

�xi
≤ P with �xi

≥ 0, ∀i, and
n∑

i=1

�ji ≤ Pj with

�ji ≤ ∣�mi ∣2−∣�ei ∣2
∣�ei ∣2∣�ji ∣2

and �ji ≥ 0, ∀ i. This modification, which does not affect the

solution of the game, is motivated by the fact that the payoff function in (3.13)

exhibits convexity properties that the payoff function in (3.12) does not due to the

operation [.]+.
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3.3 Analysis

We will now study the zero-sum game put forth in (3.13). In particular, we will

establish the existence of a pure strategy Nash equilibrium and characterize the

best response of Alice for a fixed jammer strategy, the best response of the jammer

for a fixed Alice strategy and the Nash equilibrium in certain asymptotic regimes.

Definitions:

∙ Pure strategy : A pure strategy is a specific action that a player will follow

in every possible attainable situation in a game, i.e., player´s actions are

deterministic and are not regulated by probability distribution as like a mixed

strategy.

∙ Two person zero-sum game: two person zero-sum game is a two player game,

in which a player´s gains (or losses) of utility is exactly balanced by the losses

(or gains) of the other player´s utility, i.e., when a player maximizes his payoff,

he also simultaneously minimizes the other player payoff.

∙ Nash equilibrium: The Nash equilibrium is a solution concept of a non-

cooperative game. If there is a set of strategies with such properties that

no player can benefit by changing his strategy while other players keep their

strategies unchanged, then that set of strategies and corresponding payoffs

constitute the Nash equilibrium. Note that, for a two person zero-sum game,

a pure strategy Nash equilibrium exists if and only if:

maxi minj ai,j = minj maxi ai,j (3.14)

where, i and j are indices that denote the strategies of two players and ai,j is

the corresponding payoff function.

3.3.1 Existence of pure strategy Nash equilibrium

The following Theorem establishes the existence of a pure strategy Nash equilib-

rium, which consists of a set of fixed (non-probabilistic) player strategies.

Theorem 1. Consider the zero-sum game between the transmitter and the jammer

in (3.13). Then, there exists a pure strategy Nash equilibrium.
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Proof. The proof capitalizes on [78, Theorem 5.2].

The transmitter pure strategies set is given by:

Ψ =

{
�xi

∈ ℜ+
0 , i = 1, 2, ..., n :

n∑

i=1

�xi
≤ P

}
(3.15)

The jammer pure strategies set is given by:

Φ =

{
�ji ∈ ℜ+

0 , i = 1, 2, ..., n :
n∑

i=1

�ji ≤ Pj; �ji ≤
∣�mi

∣2 − ∣�ei∣2

∣�ei∣2 ∣�ji∣2

}
(3.16)

It is clear that Ψ and Φ are both closed, bounded and non-empty convex subsets

of finite dimensional Euclidean space.

It is also clear that the payoff U1(�x1
, . . . , �xn

, �j1 , . . . , �jn) is continuous in �xi
, i =

1, 2, . . . , n ∈ Ψ for given �ji , i = 1, 2, . . . , n ∈ Φ and the payoff U1(�x1
, . . . , �xn

, �j1 , . . . , �jn)

is also continuous in �ji, i = 1, 2, . . . , n ∈ Φ for given �xi
, i = 1, 2, . . . , n ∈ Ψ.

For a given transmitter strategy �xi
, the second order derivative of the payoff

U1(�x1
, . . . , �xn

, �j1, . . . , �jn) with respect to �ji , for every i = 1, 2, . . . , n, is:

∂2U1 (�xi
, �ji)

∂�ji
2

=

⎡
⎢⎣∣�ji∣4∣�mi

∣2�xi

⎡
⎢⎣

1
(
1 + �ji ∣�ji∣2 + �xi

∣�mi
∣2
)2(

1 + �ji ∣�ji∣2
)

+
1

(
1 + �ji ∣�ji∣2 + �xi

∣�mi
∣2
)(

1 + �ji∣�ji∣2
)2

⎤
⎥⎦

⎤
⎥⎦ ≥ 0 (3.17)

i.e., the payoff U1(�x1
, . . . , �xn

, �j1 , . . . , �jn) is concave in �xi
∈ Ψ for each �ji.

And for given jammer strategy �ji, the second order derivative of the payoff

U1(�x1
, . . . , �xn

, �j1, . . . , �jn) with respect to �xi
, for every i = 1, 2, . . . , n, is:

∂2U1 (�xi
, �ji)

∂�xi
2

=

⎡
⎢⎢⎣−

1
(

1+�ji ∣�ji ∣2
∣�mi ∣2

+ �xi

)2 +
1

(
1

∣�ei ∣2
+ �xi

)2

⎤
⎥⎥⎦ ≤ 0 (3.18)
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This follows from Equation (3.11) because

∣�mi
∣2

1 + �ji∣�ji∣2
≥ ∣�ei∣2

⇒ 1

∣�ei∣2
≥ 1 + �ji∣�ji∣2

∣�mi
∣2

⇒
( 1

∣�ei∣2
+ �xi

)2
≥
(1 + �ji ∣�ji∣2

∣�mi
∣2

+ �xi

)2

⇒

⎡
⎢⎢⎣−

1
(

1+�ji ∣�ji ∣2
∣�mi ∣2

+ �xi

)2 +
1

(
1

∣�ei ∣2
+ �xi

)2

⎤
⎥⎥⎦ ≤ 0, (3.19)

i.e., the payoff U1(�x1
, . . . , �xn

, �j1 , . . . , �jn) is convex in �ji ∈ Φ for each �xi
.

Therefore, by [78, Theorem 5.2], the two-person zero sum game has at least one

pair of pure strategy NE (�∗
xi
, �∗

ji
).

In addition, in view of [78, Theorem 5.2], it also follows that the solution of the

zero-sum game, i.e. the Nash equilibrium, satisfies the condition:

max
�xi

,i=1,2,...,n∈Ψ
min

�ji
,i=1,2,...,n∈Φ

U1

(
�x1

, . . . , �xn
; �j1 , . . . , �jn

)
=

min
�ji

,i=1,2,...,n∈Φ
max

�xi
,i=1,2,...,n∈Ψ

U1

(
�x1

, . . . , �xn
; �j1 , . . . , �jn

)
(3.20)

3.3.2 Characterization of best responses

We are now ready to characterize the best response of the jammer to a fixed

transmitter strategy and, likewise, the best response of the transmitter to a fixed

jammer strategy.

The following Theorem defines the best response of the jammer for a fixed trans-

mitter strategy:
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Theorem 2. Fix the transmitter strategy �xi
, i = 1, 2, ..., n. Then, the optimal

jammer strategy �∗
ji
, i = 1, 2, ..., n, that solves the optimization problem:

min
�ji

,i=1,2,...,n∈Φ
U1

(
�x1

, . . . , �xn
, �j1, . . . , �jn

)
(3.21)

where Φ is defined in Equation (3.16), subject to:
n∑

i=1

�ji ≤ Pj, �ji ≥ 0 and

�ji ≤
∣�mi ∣2−∣�ei ∣2
∣�ei ∣2∣�ji ∣2

, i = 1, 2, . . . , n is given by:

�∗
ji
=

⎧
⎨
⎩

√

�2
xi
∣�mi ∣4+

4�xi ∣�mi ∣2∣�ji ∣2
�

−(2+�xi ∣�mi ∣2)
2∣�ji ∣2

,
�xi∣�ei ∣4∣�ji ∣2

∣�mi ∣2
(
1+�xi ∣�ei ∣2

) ≤ � <
�xi ∣�mi ∣2∣�ji ∣2
1+�xi ∣�mi ∣2

∣�mi ∣2−∣�ei ∣2
∣�ei ∣2∣�ji ∣2

, � <
�xi ∣�ei ∣4∣�ji ∣2

∣�mi ∣2
(
1+�xi∣�ei ∣2

)

0, � ≥ �xi∣�mi ∣2∣�ji ∣2
1+�xi ∣�mi ∣2

(3.22)

where � such that
n∑

i=1

�∗
ji
= Pj.

Proof. See Appendix A.

The following Theorem, which also appears in a different context in [1] and [12],

defines the best response of the transmitter for a fixed jammer strategy.

Theorem 3. Fix the jammer strategy �ji, i = 1, 2, ...n. Then, the optimal Alice

strategy �∗
xi
, i = 1, 2, ..., n, that solves the optimization problem:

max
�xi

,i=1,2,...,n∈Ψ
U1

(
�x1

, . . . , �xn
, �j1 , . . . , �jn

)
(3.23)

where Ψ is defined in Equation (3.15), subject to:
n∑

i=1

�xi
≤ P and �xi

≥ 0, i =

1, 2, ..., n, is given by:
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�∗
xi
=

⎧
⎨
⎩

1
2

[√(
1

∣�ei ∣2
− 1+�ji ∣�ji ∣2

∣�mi ∣2
)(

4
�
+ 1

∣�ei ∣2
− 1+�ji ∣�ji ∣2

∣�mi ∣2
)
−
(

1+�ji ∣�ji ∣2
∣�mi ∣2

+ 1

∣�ei ∣2
)]

,

� <
∣�mi ∣2

1+�ji ∣�ji ∣2
− ∣�ei∣2

0, � ≥ ∣�mi ∣2
1+�ji ∣�ji ∣2

− ∣�ei∣2

(3.24)

where � such that
n∑

i=1

�∗
xi
= P.

Proof. See Appendix B.

These Theorems - in addition to specifying the best responses - also lead to algo-

rithms to compute the best responses. However, and of particular relevance is the

specialization of the best responses for the regimes of low available power. This

specialization will lead to a simple characterization of the Nash equilibrium in such

asymptotic regimes. The rational to study the Nash equilibrium in the asymptotic

regimes of low available power is associated with the fact that, in mobile system,

due to pure geometry users tend to lie in the periphery of the cell so users also tend

to operate in the lower power regime, where almost 40% of geographical locations

experience a signal-to-noise ratio below 0 dB while less than 10% display level above

10 dB [79], [80], [81].

In the regime of low transmitter available power, P → 0, which implies that �xi
→

0, i = 1, . . . , n, so that the payoff function in (3.13) can be expanded by using a

Taylor series as follows:

U1

(
�x1

, . . . , �xn
, �j1, . . . , �jn

)
=

n∑

i=1

[
�xi

∣�mi
∣2

1 + �ji∣�ji∣2
− �xi

∣�ei∣2 +O(�2
xi
)

]
(3.25)

This expansion leads to the characterization of the transmitter best response for a

fixed jammer strategy, which is expressed in the following Theorem.
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Theorem 4. Fix the jammer strategy �ji , i = 1, 2, ..., n. Then, as P → 0, the

transmitter best response is given by:

�∗
xi
=

⎧
⎨
⎩

P, i = k

0, i ∕= k

(3.26)

where

k = argmax
i

∣�mi
∣2

1 + �ji ∣�ji∣2
− ∣�ei∣2 (3.27)

Proof. See Appendix C.

In contrast, in the regime of low jammer available power Pj → 0, which implies

that �ji → 0, i = 1, 2, . . . , n, so that the payoff function in (3.13) can be expanded

also by using a Taylor series as follows:

U1

(
�xi

, �ji

)
=

n∑

i=1

[
log
(
1 + �xi

∣�mi
∣2
)
− �xi

�ji ∣�mi
∣2∣�ji ∣2

1 + �xi
∣�mi

∣2
− log

(
1 + �xi

∣�ei ∣2
)
+O

(
�2
ji

)]

(3.28)

This expansion also leads to the jammer best response for a fixed transmitter

strategy, which is expressed in the following Theorem.

Theorem 5. Fix the transmitter strategy �xi
, i = 1, 2, ..., n. Then, as Pj → 0, the

jammer best response is given by:

�∗
ji
=

⎧
⎨

⎩

Pj , i = k

0, i ∕= k

(3.29)

where

k = argmax
i

�xi
∣�mi

∣2∣�ji∣2

1 + �xi
∣�mi

∣2
(3.30)

Proof. See Appendix D.
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Theorems 4 and 5 reveal that in the regime of low available power the transmitter

and the jammer will inject power in a single sub-channel, which is specified by the

index in (3.27) and (3.30), respectively. In contrast, for medium and high available

powers the transmitter and the jammer will divide the power between the various

sub-channels, as specified by Theorems 2 and 3. This aspect is further explored in

the numerical results section.

3.3.3 Characterization of the Nash equilibrium in the asymp-

totic regimes of low available power

We will now characterize the Nash equilibrium in two asymptotic regimes: i) the

asymptotic regime of low transmitter available power, where P → 0; and ii) the

asymptotic regime of low jammer available power, where Pj → 0. This, which

applies to various practical scenarios as specified earlier, casts insight into the nature

of the optimal strategies. The characterization of the Nash equilibrium in such

asymptotic regimes, which is not in general possible in non-asymptotic regimes,

builds upon the best responses embodied in Theorems 4 and 5.

In particular, Theorem 4 suggests that in the regime of low transmitter power, and

for any fixed jammer strategy, the transmitter will only inject power in a single

sub-channel. This, together with the characterization of the value of the zero-sum

game on the right hand side of (3.20) leads directly to Theorem 6.

Theorem 6. When the transmitter available power is low, i.e., P → 0, there exists

a pure strategy Nash equilibrium which is given by:

(�∗
xi
, �∗

ji
) =

⎧
⎨

⎩

(
P,min

(
Pj,

∣�mi
∣2−∣�ei

∣2
∣�ei

∣2∣�ji
∣2
))
, i = k

(
0, 0
)
, i ∕= k

(3.31)

where the index k is expressed as:

k = argmax
i

⎡

⎣ P ∣�mi
∣2

1 +min
(
Pj ,

∣�mi
∣2−∣�ei

∣2
∣�ei

∣2∣�ji
∣2
)
∣�ji∣2

− P ∣�ei∣2
⎤

⎦ (3.32)

Proof. The proof is based on the fact that as P → 0, Alice puts all her power on a

single sub-channel for any fixed jammer strategy as specified in Theorem 4.
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If �x1
= P and �xi

= 0 for i ∕= 1, then the jammer will put his power in the

first sub-channel to minimize the utility (3.25), which becomes,

U1

(
�x1

, . . . , �xn
, �j1 , . . . , �jn

)
=

P ∣�m1
∣2

1 +min
(
Pj,

∣�m1 ∣2−∣�e1 ∣2
∣�e1 ∣2∣�j1 ∣2

)
∣�j1∣2

− P ∣�e1∣2 +O(P )

(3.33)

If �x2
= P and �xi

= 0 for i ∕= 2, then the jammer will put his power in the second

sub-channel to minimize the utility (3.25), which becomes,

U1

(
�x1

, . . . , �xn
, �j1 , . . . , �jn

)
=

P ∣�m2
∣2

1 +min
(
Pj,

∣�m2 ∣2−∣�e2 ∣2
∣�e2 ∣2∣�j2 ∣2

)
∣�j2∣2

− P ∣�e2∣2 +O(P )

(3.34)

Likewise, if �xn
= P and �xi

= 0 for i ∕= n, then the jammer will put his power to

the ntℎ sub-channel to minimize the utility (3.25), which becomes,

U1

(
�x1

, . . . , �xn
, �j1 , . . . , �jn

)
=

P ∣�mn
∣2

1 +min
(
Pj,

∣�mn ∣2−∣�en ∣2
∣�en ∣2∣�jn ∣2

)
∣�jn∣2

− P ∣�en∣2 +O(P )

(3.35)

It is clear from (3.25) that Alice chooses the sub-channel that leads to the best

utility, where the index k is then given by

k = argmax
i

⎡
⎢⎢⎣

P ∣�mi
∣2

1 +min
(
Pj,

∣�mi ∣2−∣�ei ∣2
∣�ei ∣2∣�ji ∣2

)
∣�ji∣2

− P ∣�ei∣2

⎤
⎥⎥⎦ (3.36)

Therefore, a Nash equilibrium exists as follows:

(�∗
xi
, �∗

ji
) =

⎧
⎨
⎩

(
P,min

(
Pj ,

∣�mi
∣2−∣�ei

∣2
∣�ei

∣2∣�ji
∣2

))
, i = k

(
0, 0
)
, i ∕= k
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In addition, Theorem 5 suggests that in the regime of low jammer power, and for

any fixed transmitter strategy, the jammer will only inject power in a single sub-

channel. Once again, this together with the characterization of the value of the

zero-sum game on the left hand side of (3.20) also leads directly to Theorem 7.

Theorem 7. When the jammer available power is very low, i.e., Pj → 0, there

exists a pure strategy Nash equilibrium which is given by:

(�∗
xi
, �∗

ji) =

⎧
⎨
⎩

(
1
2

[√(
1

∣�ei
∣2 − 1+Pj ∣�ji

∣2
∣�mi

∣2
)(

4
V + 1

∣�ei
∣2 − 1+Pj ∣�ji

∣2
∣�mi

∣2
)
− (

1+Pj ∣�ji
∣2

∣�mi
∣2 + 1

∣�ei
∣2 )
]
, Pj

)
,

i = k and V <
∣�mi

∣2
1+Pj ∣�ji

∣2 − ∣�ei ∣2

(
0, Pj

)
, i = k and V ≥ ∣�mi

∣2
1+Pj ∣�ji

∣2 − ∣�ei ∣2

(
1
2

[√
( 1
∣�ei

∣2 − 1
∣�mi

∣2 )
2 + 4

V ( 1
∣�ei

∣2 − 1
∣�mi

∣2 )− ( 1
∣�ei

∣2 + 1
∣�mi

∣2 )
]
, 0
)
,

i ∕= k and V < ∣�mi
∣2 − ∣�ei ∣2

(
0, 0
)
, i ∕= k and V ≥ ∣�mi

∣2 − ∣�ei ∣2
(3.37)

where V is such that
n∑

i=1

�∗
xi
= P and the index k is expressed as:

k = argmin
i

max
�xl

,l=1,...,n∈Ψ

U1(�x1
, . . . , �xn

; �j1 = 0, . . . , �ji−1
= 0, �ji = Pj, �ji+1

= 0, . . . , �jn = 0) (3.38)

Proof. See Appendix E.

Theorems 6 and 7 define the pairs of pure strategies that lead to the Nash equilib-

rium of the zero-sum game. Theorem 6 defines the strategies explicitly, but Theorem

7 does not because the determination of the sub-channel where the jammer injects

all the power is not put forth explicitly.

It is also interesting to note that in the regime of low transmitter power, the

transmitter and the jammer inject power in a single sub-channel; in the regime

of low jammer power, the transmitter injects power in various sub-channels but

the jammer only injects power in a single sub-channel. In contrast, in general

non-asymptotic regimes, the transmitter and the jammer will put power in various

sub-channels, as shown in the following section.
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3.4 Numerical Results

We consider for simplicity a 2×2 parallel Gaussian wiretap channel where the main,

the eavesdropper and the jammer channel matrices are, respectively, given by:

Λm =

[
5 0

0 3

]
; Λe =

[
1 0

0 2

]
; Λj =

[
2 0

0 3

]
(3.39)

The objective is to compare numerical results with the results predicted by the

analysis embodied in the previous Theorems.

3.4.1 Regime of low transmitter power (P → 0)

Figure 3.2 plots the best response of the transmitter as a function of the jammer

strategy, namely, �∗
x1(�j1), against the best response of the jammer as a function of

the transmitter strategy, namely, �∗
j1(�x1) for a low transmitter power (P = 0.01).

It is clear that the Nash equilibrium, which is given by the crossover of the two best

responses in Figure 3.2, corresponds to the strategy where both the transmitter

and the jammer inject power in a single sub-channel, i.e., (�∗
x1, �

∗
x2) = (0.01, 0) and

(�∗
j1, �

∗
j2) = (1, 0), as put forth in Theorem 6.
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Figure 3.2: �x1

∗ vs. �j1 and �j1
∗ vs. �x1

for P = 0.01 and Pj = 1.
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3.4.2 Regime of low jammer power (Pj → 0)

Figure 3.3 also plots the best response of the transmitter as a function of jammer

strategy, i.e., �∗
x1(�j1), against the best response of the jammer as a function of the

transmitter strategy, i.e., �∗
j1(�x1) for a low jammer power (Pj = 0.006). The Nash

equilibrium, which is given by the pair of pure strategies (�∗
x1, �

∗
x2) = (4.339, 1.661)

and (�∗
j1, �

∗
j2) = (0.006, 0), is such that the jammer only injects power in a single

sub-channel whereas the transmitter divides the power by the various sub-channels,

as put forth in Theorem 7.
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Figure 3.3: �x1

∗ vs. �j1 and �j1
∗ vs. �x1

for P = 6 and Pj = 0.006.

3.4.3 General regimes

In general available power regimes, Figure 3.4 shows that, as expected, the trans-

mitter and the jammer will divide the power between the various sub-channels.

In particular, in this case the Nash equilibrium is achieved with the pair of pure

strategies: (�∗
x1, �

∗
x2) = (1.868, 0.132) and (�∗

j1, �
∗
j2) = (1.974, 0.026).

3.4.4 Secrecy gains

Finally, it is interesting to demonstrate the gains in secrecy rate (Rs) that a

transmitter that adapts to a jammer, i.e., an adaptive transmitter enjoys over a
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Figure 3.4: �x1

∗ vs. �j1 and �j1
∗ vs. �x1

for P = Pj = 2.

non-adaptive transmitter that injects equal power over the sub-channels irrespective

of the jammer strategy. Figure 3.5 demonstrates that indeed the secrecy rate (Rs)

of an adaptive transmitter, which corresponds to the value of the utility function

at Nash equilibrium, can be considerably higher than the secrecy rate of the non-

adaptive transmitter.

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

Transmitter power P

R
s
 (

A
d

a
p

ti
v
e

 t
ra

n
s
m

it
te

r)
/ 

R
s
 (

N
o

n
−

d
a

p
ti
v
e

 t
ra

n
s
m

it
te

r)

R
s

vs P: Adaptive transmitter

R
s

vs P: Non−adaptive transmitter

Figure 3.5: Secrecy rate with adaptive transmitter and secrecy rate with non-

adaptive transmitter vs. transmitter power P for a fixed jammer power Pj = 5.
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From the data that provided in Table 3.1, Figure 3.6, demonstrates different com-

parisons between the secrecy rate with adaptive transmitter and the secrecy rate

with non-adaptive transmitter vs. transmitter power P . From Figure 3.6, it is

clear that, the secrecy gain of a adaptive transmitter is much better than a non-

adaptive one, when transmitter available power is much higher than the jammer

available power. Of course, when the jammer´s available power is limited, then the

interference effect of the jammer to the main channel is also limited.

Table 3.1: Secrecy rates under adaptive and non-adaptive transmitter

Jammer available power Rs Rs

adaptive transmitter non-adaptive transmitter

Pj = 0.1 3.27 3.054

Pj = 1 1.58 1.46

Pj = 5 0.1703 0.1477
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Figure 3.6: Secrecy rate with adaptive transmitter and secrecy rate with non-

adaptive transmitter vs. transmitter power P for a fixed jammer power: i) Pj = 5,

ii) Pj = 1 and iii) Pj = 0.1.

We can also observe that transmitter adaptation has higher importance as the

jammer available power increased. For higher jammer available power, the relative

gains in secrecy rate which can be achieved by adaptation are much higher than
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those which can be achieved by a non-adaptive transmitter. For example, for a

transmitter available power of P = 5, we have a relative secrecy gain of 7% by

adapting the transmitter strategy to the one where the jammer available power

is 0.1. In contrast, if the jammer available power is increased to 5, an adaptive

transmitter can obtain a relative secrecy gain of 15%, as we can observe in Figure

3.6.

3.5 Conclusion

We have studied a zero-sum power allocation game over a bank of independent

parallel Gaussian wiretap channels- applicable to OFDM communications systems-

where a legitimate transmitter-receiver pair communicates in the presence of an

eavesdropper and an unfriendly jammer. We provide a proof of the existence of

a Nash equilibrium of such game; we also characterized the optimal transmission

and jamming power allocation strategies for the game, which are specialized for

key asymptotic regimes. Extensive results demonstrate that a transmitter that

adapts to the jammer strategy can experience a much higher secrecy rate than a

non-adaptive transmitter.

This chapter has concentrated on the analysis of achievable secrecy rates of parallel

Gaussian wiretap channels in the presence of malicious jammer. The next chapter

concentrates instead on the analysis of such secrecy rates for parallel Gaussian

wiretap channels in the presence of friendly jammers.
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Appendix A: Proof of Theorem 2

Consider the optimization problem in (3.21) given by,

min
�ji

U1

(
�x1

, . . . , �xn
, �j1, . . . , �jn

)
= min

�ji

n∑

i=1

[
log
(
1 +

�xi ∣�mi ∣2
1+�ji ∣�ji ∣2

)
− log

(
1 + �xi

∣�ei∣2
)]

(3.40)

subject to:

n∑

i=1

�ji ≤ Pj, �ji ≥ 0 and �ji ≤
∣�mi

∣2 − ∣�ei∣2

∣�ei∣2 ∣�ji∣2
, i = 1, 2, ..., n. (3.41)

The Lagrangian of the optimization problem (3.40) and (3.41) can be expressed as:

ℒ (�ji, �, ui, �i) = U1

(
�x1

, . . . , �xn
, �j1 , . . . , �jn

)
+ �
( n∑

i=1

�ji − Pj

)
−

n∑

i=1

(
ui�ji

)
+

n∑

i=1

�i

(
�ji −

∣�mi
∣2 − ∣�ei∣2

∣�ei∣2 ∣�ji∣2
)

(3.42)

Where � ≥ 0, ui ≥ 0 and �i ≥ 0 are the Lagrange multipliers associated with the

problem constraints.

The KKT conditions state that:

∇�ji
ℒ(�ji, �, ui, �i) = 0, i = 1, 2, . . . , n. (3.43)

with �(
n∑

i=1

�ji − Pj) = 0 ∀ � ≥ 0, ui�ji = 0 ∀ ui ≥ 0, ∀ i and

�i(�ji −
∣�mi ∣2−∣�ei ∣2
∣�ei ∣2∣�ji ∣2

) = 0 ∀ �i ≥ 0, ∀ i

From (3.43) we have,

� − ui + �i =
�xi

∣�mi
∣2 ∣�ji∣2(

1 + �ji ∣�ji∣2
)(

1 + �ji ∣�ji∣2 + �xi
∣�mi

∣2
) (3.44)
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Let us assume that ui = 0 which implies that �ji ≥ 0

Then from (3.44) we have,

� + �i =
�xi

∣�mi
∣2 ∣�ji∣2(

1 + �ji ∣�ji∣2
)(

1 + �ji ∣�ji∣2 + �xi
∣�mi

∣2
) (3.45)

When �i > 0, then �ji −
∣�mi ∣2−∣�ei ∣2
∣�ei ∣2∣�ji ∣2

= 0. Therefore, from (3.45) we have that,

� − �xi
∣�mi

∣2 ∣�ji∣2(
1 + �ji ∣�ji∣2

)(
1 + �ji ∣�ji∣2 + �xi

∣�mi
∣2
) = −�i < 0 (3.46)

or,

� <
�xi

∣�mi
∣2 ∣�ji∣2(

1 + �ji ∣�ji∣2
)(

1 + �ji ∣�ji∣2 + �xi
∣�mi

∣2
) (3.47)

and upon substituting �ji =
∣�mi ∣2−∣�ei ∣2
∣�ei ∣2∣�ji ∣2

in (3.47) we have:

� <
�xi

∣�mi
∣2 ∣�ji∣2

(1 +
∣�mi ∣2−∣�ei ∣2
∣�ei ∣2∣�ji ∣2

∣�ji∣2)(1 +
∣�mi ∣2−∣�ei ∣2
∣�ei ∣2∣�ji ∣2

∣�ji∣2 + �xi
∣�mi

∣2)

i.e., � <
�xi

∣�ji∣2 ∣�ei∣4

∣�mi
∣2 (1 + �xi

∣�ei∣2)
(3.48)

Thus, �ji =
∣�mi ∣2−∣�ei ∣2
∣�ei ∣2∣�ji ∣2

⇒ � <
�xi ∣�ji ∣2∣�ei ∣4

∣�mi ∣2
(
1+�xi ∣�ei ∣2

)

Conversely, when � <
�xi ∣�ji ∣2∣�ei ∣4

∣�mi ∣2
(
1+�xi ∣�ei ∣2

) , then from (3.45) we have,
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� =
�xi

∣�mi
∣2 ∣�ji∣2(

1 + �ji ∣�ji∣2
)(

1 + �ji ∣�ji∣2 + �xi
∣�mi

∣2
) − �i <

�xi
∣�ji∣2 ∣�ei∣4

∣�mi
∣2
(
1 + �xi

∣�ei∣2
)

⇒ �i >
�xi

∣�mi
∣2 ∣�ji∣2(

1 + �ji ∣�ji∣2
)(

1 + �ji ∣�ji∣2 + �xi
∣�mi

∣2
) − �xi

∣�ji∣2 ∣�ei∣4

∣�mi
∣2
(
1 + �xi

∣�ei∣2
)

(3.49)

Now for each sub-channel we have:

�xi
∣�mi

∣2

1 + �ji ∣�ji∣2
≥ �xi

∣�ei∣2

⇒ �xi
∣�mi

∣2 ∣�ji∣2

1 + �ji ∣�ji∣2
≥ �xi

∣�ei∣2 ∣�ji∣2 (3.50)

Again

�xi
∣�mi

∣2

1 + �ji ∣�ji∣2
≥ �xi

∣�ei∣2

⇒ ∣�mi
∣2

∣�ei∣2
≥ 1 + �ji ∣�ji∣2

⇒ ∣�mi
∣2

∣�ei∣2
+ �xi

∣�mi
∣2 ≥ 1 + �ji ∣�ji∣2 + �xi

∣�mi
∣2

⇒
∣�mi

∣2
(
1 + �xi

∣�ei∣2
)

∣�ei∣2
≥ 1 + �ji ∣�ji∣2 + �xi

∣�mi
∣2

⇒ ∣�ei∣2

∣�mi
∣2
(
1 + �xi

∣�ei∣2
) ≤ 1

1 + �ji ∣�ji∣2 + �xi
∣�mi

∣2
(3.51)

From (3.50) and (3.51) it is clear that
�xi ∣�mi ∣2∣�ji ∣2(

1+�ji ∣�ji ∣2
)(

1+�ji ∣�ji ∣2+�xi ∣�mi ∣2
)− �xi∣�ji ∣2∣�ei ∣4

∣�mi ∣2
(
1+�xi ∣�ei ∣2

) ≥

0, i.e., from (3.49) we have that �i > 0, which implies that �ji =
∣�mi ∣2−∣�ei ∣2
∣�ei ∣2∣�ji ∣2

.
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Thus, � <
�xi ∣�ji ∣2∣�ei ∣4

∣�mi ∣2
(
1+�xi∣�ei ∣2

) ⇒ �ji =
∣�mi ∣2−∣�ei ∣2
∣�ei ∣2∣�ji ∣2

.

That is, �ji =
∣�mi ∣2−∣�ei ∣2
∣�ei ∣2∣�ji ∣2

⇔ � <
�xi ∣�ji ∣2∣�ei ∣4

∣�mi ∣2
(
1+�xi ∣�ei ∣2

)

On the other hand, �i = 0 implies and is implied by �ji <
∣�mi ∣2−∣�ei ∣2
∣�ei ∣2∣�ji ∣2

To see this, note that from (3.44) we have,

� − ui =
�xi

∣�mi
∣2 ∣�ji∣2

(1 + �ji ∣�ji∣2)(1 + �ji ∣�ji∣2 + �xi
∣�mi

∣2)
(3.52)

where the right hand side is monotonically decreasing in �ji .

When �ji = 0, then ui ≥ 0 and from (3.52) we have,

� − �xi
∣�mi

∣2 ∣�ji∣2

1 + �xi
∣�mi

∣2
= ui ≥ 0 (3.53)

i.e., � ≥ �xi ∣�mi ∣2∣�ji ∣2
1+�xi∣�mi ∣2

Thus, �ji = 0 ⇒ � ≥ �xi ∣�mi ∣2∣�ji ∣2
1+�xi ∣�mi ∣2

Conversely, when � ≥ �xi∣�mi ∣2∣�ji ∣2
1+�xi ∣�mi ∣2

, then from (3.52) we have,

� = ui +
�xi

∣�mi
∣2 ∣�ji∣2

(1 + �ji ∣�ji∣2)(1 + �ji ∣�ji∣2 + �xi
∣�mi

∣2)
≥ �xi

∣�mi
∣2 ∣�ji∣2

1 + �xi
∣�mi

∣2

⇒ ui ≥
�xi

∣�mi
∣2 ∣�ji∣2

1 + �xi
∣�mi

∣2
− �xi

∣�mi
∣2 ∣�ji∣2

(1 + �ji ∣�ji∣2)(1 + �ji ∣�ji∣2 + �xi
∣�mi

∣2)

⇒ ui ≥ 0, which implies that, �xi
= 0 (3.54)

Thus, � ≥ �xi ∣�mi ∣2∣�ji ∣2
1+�xi ∣�mi ∣2

⇒ �xi
= 0.
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That is, �ji = 0 ⇔ � ≥ �xi∣�mi ∣2∣�ji ∣2
1+�xi ∣�mi ∣2

When �ji > 0, then ui = 0 and from (3.52) we can write,

� =
�xi

∣�mi
∣2 ∣�ji∣2(

1 + �ji ∣�ji∣2
)(

1 + �ji ∣�ji∣2 + �xi
∣�mi

∣2
) <

�xi
∣�mi

∣2 ∣�ji∣2

1 + �xi
∣�mi

∣2
(3.55)

Thus, �ji > 0 ⇒ � <
�xi ∣�mi ∣2∣�ji ∣2
1+�xi ∣�mi ∣2

Conversely, when � ≥ �xi∣�mi ∣2∣�ji ∣2
1+�xi ∣�mi ∣2

, from (3.52) we have,

� = ui +
�xi

∣�mi
∣2 ∣�ji∣2(

1 + �ji ∣�ji∣2
)
(1 + �ji ∣�ji∣2 + �xi

∣�mi
∣2
) <

�xi
∣�mi

∣2 ∣�ji∣2

1 + �xi
∣�mi

∣2
(3.56)

It is clear that, we can only satisfy (3.56) with �ji > 0. Indeed, we can not satisfy

(3.56) with �ji = 0, because, this implies ui > 0.

Thus, � <
�xi∣�mi ∣2∣�ji ∣2
1+�xi ∣�mi ∣2

⇒ �ji > 0

That is, �ji > 0 ⇔ � <
�xi ∣�mi ∣2∣�ji ∣2
1+�xi∣�mi ∣2

From (3.55) we have,

� =
�xi

∣�mi
∣2 ∣�ji∣2(

1 + �ji ∣�ji∣2
)(

1 + �ji ∣�ji∣2 + �xi
∣�mi

∣2
)

=
�xi

∣�mi
∣2 ∣�ji∣2

1 + �xi
∣�mi

∣2 + 2�ji ∣�ji∣2 + �xi
�ji ∣�mi

∣2 ∣�ji∣2 + �ji
2 ∣�ji∣4
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⇒ �ji
2 ∣�ji∣4 + �ji

(
2 ∣�ji∣2 + �xi

∣�mi
∣2 ∣�ji∣2

)

+
(
1 + �xi

∣�mi
∣2 − �xi

∣�mi
∣2 ∣�ji∣2
�

)
= 0

⇒ �ji =
−(2 + �xi

∣�mi
∣2)±

√
�2
xi
∣�mi

∣4 + 4�xi ∣�mi ∣2∣�ji ∣2
�

2 ∣�ji∣2
(3.57)

Since �ji > 0, it follows that

�ji =

√
�2
xi
∣�mi

∣4 + 4�xi ∣�mi ∣2∣�ji ∣2
�

−
(
2 + �xi

∣�mi
∣2
)

2 ∣�ji∣2
(3.58)

For fixed Alice strategy �xi
, i = 1, 2, ..., n, the optimal jammer strategy �∗

ji
that

minimize the utility (3.40), subject to the constraints in (3.41) is given by:

�∗
ji
=

⎧
⎨

⎩

√

�2
xi
∣�mi ∣4+

4�xi ∣�mi ∣
2∣�ji ∣2

�
−
(
2+�xi∣�mi ∣2

)

2∣�ji ∣2
,

�xi∣�ei ∣4∣�ji ∣2

∣�mi ∣2
(
1+�xi ∣�ei ∣2

) ≤ � <
�xi∣�mi ∣2∣�ji ∣2
1+�xi ∣�mi ∣2

∣�mi ∣2−∣�ei ∣2
∣�ei ∣2∣�ji ∣2

, � <
�xi ∣�ei ∣4∣�ji ∣2

∣�mi ∣2
(
1+�xi ∣�ei ∣2

)

0, � ≥ �xi∣�mi ∣2∣�ji ∣2
1+�xi ∣�mi ∣2

(3.59)

Appendix B: Proof of Theorem 3

Consider the optimization problem in (3.23) given by,

max
�xi

U1

(
�x1

, . . . , �xn
, �j1, . . . , �jn

)
= −min

�xi

n∑

i=1

[
log
(
1 +

�xi
∣�mi

∣2

1 + �ji ∣�ji∣2
)

− log
(
1 + �xi

∣�ei∣2
)]

(3.60)
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subject to:
n∑

i=1

�xi
≤ P, and �xi

≥ 0, i = 1, 2, . . . , n. (3.61)

The Lagrangian of the optimization problem (3.60), subject to (3.61) is

ℒ (�xi
, �, ui) = −U1

(
�x1

, . . . , �xn
, �j1 , . . . , �jn

)
+ �
( n∑

i=1

�xi
− P

)
−

n∑

i=1

(
ui�xi

)

(3.62)

Where � ≥ 0, and ui ≥ 0, i = 1, 2, . . . , n are the Lagrange multipliers associated

with the problem constraints.

The KKT conditions state that :

∇�xi
ℒ (�xi

, �, ui) = 0, i = 1, 2, . . . , n (3.63)

with �(
n∑

i=1

�xi
− P ) = 0 ∀ � ≥ 0, ui�xi

= 0 ∀ ui ≥ 0, i = 1, 2, . . . , n

Note that from (3.63) we have,

� − ui =
∣�mi

∣2
(
1 + �xi

∣�ei∣2
)
− ∣�ei ∣2

(
1 + �xi

∣�mi
∣2 + �ji ∣�ji∣2

)

(
1 + �xi

∣�ei∣2
)(

1 + �xi
∣�mi

∣2 + �ji ∣�ji∣2
) (3.64)

where the right hand side is monotonically decreasing in �xi
.

Let us assume that �xi
= 0 which implies that ui ≥ 0

Then from (3.64) we have,

� − ui =
∣�mi

∣2 − ∣�ei ∣2
(
1 + �ji ∣�ji∣2

)

1 + �ji ∣�ji∣2
(3.65)

or,

� −
∣�mi

∣2 − ∣�ei∣2
(
1 + �ji ∣�ji∣2

)

1 + �ji ∣�ji∣2
= ui ≥ 0 (3.66)
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or,

� ≥
∣�mi

∣2 − ∣�ei∣2
(
1 + �ji ∣�ji∣2

)

1 + �ji ∣�ji∣2
(3.67)

i.e., �xi
= 0 ⇒ � ≥

∣�mi ∣2−∣�ei ∣2
(
1+�ji ∣�ji ∣2

)

1+�ji ∣�ji ∣2

Conversely, when � ≥
∣�mi ∣2−∣�ei ∣2

(
1+�ji ∣�ji ∣2

)

1+�ji ∣�ji ∣2
, then from (3.64) we have,

� = ui +
∣�mi

∣2
(
1 + �xi

∣�ei ∣2
)
− ∣�ei ∣2

(
1 + �xi

∣�mi
∣2 + �ji ∣�ji ∣2

)

(
1 + �xi

∣�ei ∣2
)(

1 + �xi
∣�mi

∣2 + �ji ∣�ji ∣2
) ≥

∣�mi
∣2 − ∣�ei ∣2

(
1 + �ji ∣�ji ∣2

)

1 + �ji ∣�ji ∣2

⇒ ui ≥
∣�mi

∣2 − ∣�ei ∣2
(
1 + �ji ∣�ji ∣2

)

1 + �ji ∣�ji ∣2
−

∣�mi
∣2
(
1 + �xi

∣�ei ∣2
)
− ∣�ei ∣2

(
1 + �xi

∣�mi
∣2 + �ji ∣�ji ∣2

)

(
1 + �xi

∣�ei ∣2
)(

1 + �xi
∣�mi

∣2 + �ji ∣�ji ∣2
)

(3.68)

We have,

�xi
∣�mi

∣2

1 + �ji ∣�ji∣2
≥ �xi

∣�ei∣2

⇒ 1 + �ji ∣�ji∣2 + �xi
∣�mi

∣2

1 + �ji ∣�ji∣2
≥ 1 + �xi

∣�ei ∣2

⇒ 1 + �ji ∣�ji∣2 + �xi
∣�mi

∣2 ≥
(
1 + �ji ∣�ji∣2

)(
1 + �xi

∣�ei ∣2
)

(3.69)

Now,

∣�mi
∣2 − ∣�ei ∣2

(
1 + �ji ∣�ji ∣2

)

1 + �ji ∣�ji ∣2
−

∣�mi
∣2
(
1 + �xi

∣�ei ∣2
)
− ∣�ei ∣2

(
1 + �xi

∣�mi
∣2 + �ji ∣�ji ∣2

)

(
1 + �xi

∣�ei ∣2
)(

1 + �xi
∣�mi

∣2 + �ji ∣�ji ∣2
)

=
∣�mi

∣2 + �xi
∣�mi

∣2 ∣�ei ∣2 + �ji ∣�ji ∣2 ∣�ei ∣2 + ∣�ei ∣2(
1 + �xi

∣�ei ∣2
)(

1 + �ji ∣�ji ∣2
) − ∣�mi

∣2 + �xi
∣�mi

∣2 ∣�ei ∣2 + �ji ∣�ji ∣2 ∣�ei ∣2 + ∣�ei ∣2

1 + �ji ∣�ji ∣2 + �xi
∣�mi

∣2

≥ 0, since, 1 + �ji ∣�ji ∣2 + �xi
∣�mi

∣2 ≥
(
1 + �ji ∣�ji ∣2

)(
1 + �xi

∣�ei ∣2
)

(3.70)
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From (3.68) we have ui ≥ 0, which implies that �xi
= 0

Thus, � ≥
∣�mi ∣2−∣�ei ∣2

(
1+�ji ∣�ji ∣2

)

1+�ji ∣�ji ∣2
⇒ �xi

= 0

That is, �xi
= 0 ⇔ � ≥

∣�mi ∣2−∣�ei ∣2
(
1+�ji ∣�ji ∣2

)

1+�ji ∣�ji ∣2

On the other hand, if �xi
> 0, which implies ui = 0 then

� =
∣�mi

∣2
(
1 + �xi

∣�ei∣2
)
− ∣�ei∣2

(
1 + �xi

∣�mi
∣2 + �ji ∣�ji∣2

)

(
1 + �xi

∣�ei∣2
)(

1 + �xi
∣�mi

∣2 + �ji ∣�ji∣2
)

<
∣�mi

∣2 − ∣�ei∣2
(
1 + �ji ∣�ji∣2

)

1 + �ji ∣�ji∣2
(3.71)

Thus �xi
> 0 ⇒ � <

∣�mi ∣2−∣�ei ∣2
(
1+�ji ∣�ji ∣2

)

1+�ji ∣�ji ∣2

Conversely, when � <
∣�mi ∣2−∣�ei ∣2

(
1+�ji ∣�ji ∣2

)

1+�ji ∣�ji ∣2
, then from (3.64) we have,

� = ui+
∣�mi

∣2
(
1 + �xi

∣�ei∣2
)
− ∣�ei∣2

(
1 + �xi

∣�mi
∣2 + �ji ∣�ji∣2

)

(
1 + �xi

∣�ei ∣2
)(

1 + �xi
∣�mi

∣2 + �ji ∣�ji∣2
)

<
∣�mi

∣2 − ∣�ei∣2
(
1 + �ji ∣�ji∣2

)

1 + �ji ∣�ji∣2
(3.72)

It is clear that, we can only satisfy (3.72) with �xi
> 0. Indeed, we can not satisfy

(3.72) with �xi
= 0, because, this implies ui > 0.

Thus, � <
∣�mi ∣2−∣�ei ∣2

(
1+�ji ∣�ji ∣2

)

1+�ji ∣�ji ∣2
⇒ �xi

> 0

That is, �xi
> 0 ⇔ � <

∣�mi ∣2−∣�ei ∣2
(
1+�ji ∣�ji ∣2

)

1+�ji ∣�ji ∣2
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From (3.64) we have,

� =
∣�mi

∣2
(
1 + �xi

∣�ei ∣2
)
− ∣�ei∣2

(
1 + �xi

∣�mi
∣2 + �ji ∣�ji∣2

)

(
1 + �xi

∣�ei∣2
)(

1 + �xi
∣�mi

∣2 + �ji ∣�ji∣2
)

=
∣�mi

∣2 −
(
1 + �ji ∣�ji∣2

)
∣�ei ∣2

(
1 + �ji ∣�ji∣2

)
+ �xi

2 ∣�mi
∣2 ∣�ei∣2 + �xi

[(1 + �ji ∣�ji∣2) ∣�ei∣2 + ∣�mi
∣2]

⇒ �xi

2 ∣�mi
∣2 ∣�ei∣2 + �xi

[
(
1 + �ji ∣�ji∣2

)
∣�ei∣2 + ∣�mi

∣2] +
(
1 + �ji ∣�ji∣2

)
−

∣�mi
∣2

�
+

(
1 + �ji ∣�ji∣2

)
∣�ei ∣2

�
= 0

⇒ �xi
=

−
(
1 + �ji ∣�ji∣2

)
∣�ei∣2 + ∣�mi

∣2

2 ∣�mi
∣2 ∣�ei∣2

±

√
[(

1 + �ji ∣�ji∣2
)
∣�ei∣2 + ∣�mi

∣2]2 − 4 ∣�mi
∣2 ∣�ei∣2

(
1 + �ji ∣�ji∣2 −

∣�mi ∣2
�

+

(
1+�ji ∣�ji ∣2

)
∣�ei ∣2

�

)

2 ∣�mi
∣2 ∣�ei∣2

(3.73)

Since �xi
> 0, it follows that

i.e., �xi
=

1

2

⎡
⎢⎢⎣

√√√√⎷
(
1 + �ji ∣�ji ∣2

)2

∣�mi
∣4

−
2
(
1 + �ji ∣�ji ∣2

)

∣�mi
∣2 ∣�ei ∣2

+
1

∣�ei ∣4
+

4

�

( 1

∣�ei ∣2
− 1 + �ji ∣�ji ∣2

∣�mi
∣2

)
⎤
⎥⎥⎦

− 1

2

(1 + �ji ∣�ji ∣2

∣�mi
∣2

+
1

∣�ei ∣2
)

(3.74)

For fix jammer strategy �ji, i = 1, 2, ...n., the optimal Alice strategy �∗
xi

that
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maximize (3.60) is given by:

�∗
xi
=

⎧
⎨
⎩

1
2

[√(
1

∣�ei ∣2
− 1+�ji ∣�ji ∣2

∣�mi ∣2
)(

4
�
+ 1

∣�ei ∣2
− 1+�ji ∣�ji ∣2

∣�mi ∣2
)
−
(

1+�ji ∣�ji ∣2
∣�mi ∣2

+ 1

∣�ei ∣2
)]

,

� <
∣�mi ∣2

1+�ji ∣�ji ∣2
− ∣�ei∣2

0, � ≥ ∣�mi ∣2
1+�ji ∣�ji ∣2

− ∣�ei∣2

(3.75)

Appendix C: Proof of Theorem 4

When P → 0, this implies that �xi
→ 0, ∀ i, then the Taylor expansion of the

payoff function in (3.13) can be expanded as follows:

U1 (�x1
, . . . , �xn

; �j1 , . . . , �jn) =

n∑

i=1

[
�xi

∣�mi
∣2

1 + �ji ∣�ji∣2
− �xi

∣�ei∣2 +O(�2
xi
)

]
(3.76)

The optimization problem of the first order approximation becomes as:

max
�xi

U1 (�x1
, . . . , �xn

; �j1 , . . . , �jn) = −min
�xi

n∑

i=1

[
�xi

∣�mi
∣2

1 + �ji∣�ji∣2
− �xi

∣�ei∣2
]

(3.77)

subject to:
n∑

i=1

�xi
≤ P, and �xi

≥ 0, i = 1, 2, . . . , n (3.78)

The Lagrangian of the optimization problem (3.77), subject to (3.78) is:

ℒ (�xi
, V, ui) = −U1

(
�x1

, . . . , �xn
; �j1 , . . . , �jn

)
+ V

( n∑

i=1

�xi
− P

)
−

n∑

i=1

(
ui�xi

)

(3.79)

where V ≥ 0, and ui ≥ 0 are the Lagrange multipliers associated with the problem

constraints.

The KKT conditions state that :

∇�xi
ℒ (�xi

, V, ui) = 0, i = 1, 2, . . . , n (3.80)
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with V
( n∑

i=1

�xi
− P

)
= 0 ∀ V ≥ 0 and ui�xi

= 0 ∀ ui ≥ 0, i = 1, 2, . . . , n

From (3.80) we have,

V − ui =
∣�mi

∣2

1 + �ji ∣�ji∣2
− ∣�ei∣2 (3.81)

�xi
> 0 means ui = 0

From (3.81) we have,

V =
∣�mi

∣2

1 + �ji ∣�ji∣2
− ∣�ei∣2 (3.82)

i.e., when P → 0, for fix jammer strategy �ji, Alice puts all her power in the

strongest sub-channel and the strongest sub-channel is determined by the index k,

where

k = argmax
i

∣�mi
∣2

1 + �ji ∣�ji∣2
− ∣�ei∣2 (3.83)

Therefore, for fix the jammer strategy �ji , i = 1, 2, ..., n, as P → 0, the transmitter

best response is given by:

�∗
xi
=

⎧
⎨

⎩

P, i = k

0, i ∕= k

Appendix D: Proof of Theorem 5

When Pj → 0, this implies that �ji → 0, ∀i. Then the Taylor expansion of the

payoff function in (3.13) can be expanded as follows:

U1 (�x1
, . . . , �xn

; �j1, . . . , �jn) =

n∑

i=1

[
log
(
1 + �xi

∣�mi
∣2
)
− �xi

�ji∣�mi
∣2∣�ji∣2

1 + �xi
∣�mi

∣2
− log

(
1 + �xi

∣�ei∣2
)
+O

(
�2
ji

)]

(3.84)
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The optimization problem of the first order approximation become as:

min
�ji

U1 (�x1
, . . . , �xn

; �j1 , . . . , �jn) =

min
�ji

n∑

i=1

[
log
(
1 + �xi

∣�mi
∣2
)
− �xi

�ji∣�mi
∣2∣�ji∣2

1 + �xi
∣�mi

∣2
− log

(
1 + �xi

∣�ei∣2
)]

(3.85)

subject to:

n∑

i=1

�ji ≤ Pj, �ji ≥ 0 and �ji ≤
∣�mi

∣2 − ∣�ei∣2

∣�ei∣2 ∣�ji∣2
, i = 1, 2, . . . , n (3.86)

The Lagrangian of the optimization problem (3.85), subject to (3.86) is,

ℒ (�ji, �, ui, �i) = U1

(
�x1

, . . . , �x1
; �j1, . . . , �jn

)
+ �
( n∑

i=1

�ji − Pj

)

−
n∑

i=1

(
ui�ji

)
+

n∑

i=1

[
�i

(
�ji −

∣�mi
∣2 − ∣�ei ∣2

∣�ei∣2 ∣�ji∣2
)]

(3.87)

where � ≥ 0, ui ≥ 0 and �i ≥ 0 are the Lagrange multipliers associated with the

problem constraints.

The KKT conditions state that :

∇�ji
ℒ (�ji , �, ui, �i) = 0 (3.88)

with �(
n∑

i=1

�ji − P ) = 0 ∀ � ≥ 0, ui�ji = 0 ∀ ui ≥ 0, i = 1, 2, . . . , n

and �i(�ji −
∣�mi ∣2−∣�ei ∣2
∣�ei ∣2∣�ji ∣2

) = 0 ∀ �i ≥ 0, i = 1, 2, . . . , n

From (3.88) we have,

� − ui + �i =
�xi

∣�mi
∣2 ∣�ji∣2

1 + �xi
∣�mi

∣2
(3.89)

�ji > 0 means ui = 0 and �ji ≤
∣�mi ∣2−∣�ei ∣2
∣�ei ∣2∣�ji ∣2

means �i = 0
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From (3.89) we have,

� =
�xi

∣�mi
∣2 ∣�ji∣2

1 + �xi
∣�mi

∣2
(3.90)

i.e., when Pj → 0, for fix Alice strategy �xi
, Jammer puts all his power in the

strongest sub-channel and the strongest sub-channel is determined by the index k,

where

k = argmax
i

�xi
∣�mi

∣2 ∣�ji∣2

1 + �xi
∣�mi

∣2
(3.91)

Therefore, for fix the transmitter strategy �xi
, i = 1, 2, ..., n, as Pj → 0, the jammer

best response is given by:

�∗
ji
=

⎧
⎨
⎩

Pj , i = k

0, i ∕= k

Appendix E: Proof of Theorem 7

The proof based on the fact that as Pj → 0, the Jammer puts all his power on a

single sub-channel for any fixed Alice strategy as specified in Theorem 5

If �j1 = Pj and �ji = 0 for i ∕= 1, then the utility function in (3.13) that Alice

maximizes, can be written as,

U1 (�x1
, . . . , �xn

; �j1, . . . , �jn) = log
(
1 +

�x1
∣�m1

∣2

1 + Pj ∣�j1∣2
)
− log

(
1 + �x1

∣�e1∣2
)

+
n∑

i=2

[
log
(
1 + �xi

∣�mi
∣2
)
− log

(
1 + �xi

∣�ei∣2
)]

(3.92)

and the constraints are
n∑

i=1

�xi
≤ P, and �xi

≥ 0, i = 1, 2, . . . , n (3.93)

Consider the KKT condition associated with the derivative of (3.92) with respect

to �x1
. It states that:

V − u1 =
∣�m1

∣2

1 + �x1
∣�m1

∣2 + Pj ∣�j1∣2
− ∣�e1 ∣2

1 + �x1
∣�e1∣2

(3.94)
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which is monotonically decreasing function with respect to �x1
.

Here, V (
n∑

i=1

�xi
− P ) = 0 ∀ V ≥ 0 and ui�xi

= 0 ∀ ui ≥ 0, i = 1, 2, . . . , n, where V

and ui, ∀ i, are the Lagrange multipliers associated with the problem constraints.

Now, assume that �x1
= 0 which implies that u1 ≥ 0. Them, from (3.94) we have

V − ∣�m1
∣2

1 + Pj ∣�j1∣2
− ∣�e1 ∣2 = u1 ≥ 0 (3.95)

and so,

V ≥ ∣�m1
∣2

1 + Pj ∣�j1∣2
− ∣�e1∣2 (3.96)

Therefore, �x1
= 0 ⇒ V ≥ ∣�m1 ∣2

1+Pj∣�j1 ∣2
− ∣�e1 ∣2.

Conversely, now assume that V ≥ ∣�m1 ∣2
1+Pj∣�j1 ∣2

− ∣�e1∣2. Then from (3.94) we have,

V =
∣�m1

∣2

1 + �x1
∣�m1

∣2 + Pj ∣�j1∣2
− ∣�e1∣2

1 + �x1
∣�e1∣2

+ u1 ≥
∣�m1

∣2

1 + Pj ∣�j1∣2
− ∣�e1 ∣2

⇒ u1 ≥
∣�m1

∣2

1 + Pj ∣�j1∣2
− ∣�e1 ∣2 −

∣�m1
∣2

1 + �x1
∣�m1

∣2 + Pj ∣�j1∣2
+

∣�e1 ∣2

1 + �x1
∣�e1 ∣2

(3.97)

Now,

∣�m1
∣2

1 + Pj ∣�j1∣2
− ∣�e1 ∣2 −

∣�m1
∣2

1 + �x1
∣�m1

∣2 + Pj ∣�j1∣2
+

∣�e1 ∣2

1 + �x1
∣�e1∣2

=
∣�m1

∣2 + �x1
∣�m1

∣2 ∣�e1∣2 + Pj ∣�j1∣2 ∣�e1∣2 + ∣�e1∣2(
1 + Pj ∣�j1∣2

)(
1 + �x1

∣�e1∣2
)

− ∣�m1
∣2 + �x1

∣�m1
∣2 ∣�e1 ∣2 + Pj ∣�j1∣2 ∣�e1 ∣2 + ∣�e1∣2

1 + �x1
∣�m1

∣2 + Pj ∣�j1 ∣2

≥ 0, since from (3.69) we have 1 + �x1
∣�m1

∣2 + Pj ∣�j1∣2 ≥
(
1 + Pj ∣�j1 ∣2

)(
1 + �x1

∣�e1 ∣2
)

(3.98)
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Then from (3.97) it is clear that u1 ≥ 0, which implies that �x1
= 0

Thus, V ≥ ∣�m1 ∣2
1+Pj∣�j1 ∣2

− ∣�e1∣2 ⇒ �x1
= 0

That is, �x1
= 0 ⇔ V ≥ ∣�m1 ∣2

1+Pj∣�j1 ∣2
− ∣�e1 ∣2

On the other hand, if �x1
> 0, which implies that ui = 0. Then from (3.94) we

have,

V =
∣�m1

∣2

1 + �x1
∣�m1

∣2 + Pj ∣�j1∣2
− ∣�e1 ∣2

1 + �x1
∣�e1∣2

<
∣�m1

∣2

1 + Pj ∣�j1∣2
− ∣�e1∣2 (3.99)

Conversely, if V <
∣�m1 ∣2

1+Pj∣�j1 ∣2
− ∣�e1∣2, then from (3.94) we have,

∣�m1
∣2

1 + �x1
∣�m1

∣2 + Pj ∣�j1∣2
− ∣�e1 ∣2

1 + �x1
∣�e1∣2

+ u1 <
∣�m1

∣2

1 + Pj ∣�j1 ∣2
− ∣�e1 ∣2 (3.100)

It is clear that, we can only satisfy (3.100) with �x1
> 0. We can not satisfy (3.100)

with �x1
= 0, because, this implies that ui > 0.

Thus, V <
∣�m1 ∣2

1+Pj∣�j1 ∣2
− ∣�e1 ∣2 ⇒ �x1

> 0

That is, �x1
> 0 ⇔ V <

∣�m1 ∣2
1+Pj∣�j1 ∣2

− ∣�e1∣2

It also follows from (3.99) that,

V =
∣�m1 ∣2

1+�x1 ∣�m1 ∣2+Pj∣�j1 ∣2
− ∣�e1 ∣2

1+�x1 ∣�e1 ∣2

=
∣�m1 ∣2

(
1+�x1 ∣�e1 ∣2

)
−∣�e1 ∣2

(
1+�x1 ∣�m1 ∣2+Pj∣�j1 ∣2

)

1+�x1 ∣�m1 ∣2+Pj∣�j1 ∣2+�x1 ∣�e1 ∣2+Pj�x1 ∣�j1 ∣2∣�e1 ∣2+�x1
2∣�m1 ∣2∣�e1 ∣2

⇒ �x1

2 ∣�m1
∣2 ∣�e1∣2 + �x1

[(
1 + Pj ∣�j1∣2

)
∣�e1∣2 + ∣�m1

∣2
]
+ 1 + Pj ∣�j1∣2

−∣�m1 ∣2−Pj∣�j1 ∣2∣�e1 ∣2−∣�e1 ∣2
V

= 0
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⇒ �x1
=

−
(
1 + Pj ∣�j1∣2

)
∣�e1∣2 + ∣�m1

∣2

2 ∣�m1
∣2 ∣�e1∣2

±

√
[
(
1 + Pj ∣�j1∣2

)
∣�e1 ∣2 + ∣�m1

∣2]2 − 4 ∣�m1
∣2 ∣�e1∣2

(
1 + Pj ∣�j1∣2 −

∣�m1 ∣2−Pj∣�j1 ∣2∣�e1 ∣2−∣�e1 ∣2
V

)

2 ∣�m1
∣2 ∣�e1 ∣2

(3.101)

Since �x1
> 0, the only admissible solution in (3.101) is,

�x1
= 1

2

[√(
1

∣�e1 ∣2
− 1+Pj∣�j1 ∣2

∣�m1 ∣2
)(

4
V
+ 1

∣�e1 ∣2
− 1+Pj∣�j1 ∣2

∣�m1 ∣2
)
−
(

1+Pj∣�j1 ∣2
∣�m1 ∣2

+ 1

∣�e1 ∣2
)]

Therefore, the optimal �x1

∗ that maximize the utility (3.92) is given by

�∗
x1

=

⎧
⎨

⎩

1
2

[√(
1

∣�e1 ∣2
− 1+Pj∣�j1 ∣2

∣�m1 ∣2
)(

4
V
+ 1

∣�e1 ∣2
− 1+Pj∣�j1 ∣2

∣�m1 ∣2
)
−
(

1+Pj∣�j1 ∣2
∣�m1 ∣2

+ 1

∣�e1 ∣2
)]

,

V <
∣�m1 ∣2

1+Pj∣�j1 ∣2
− ∣�e1 ∣2

0, V ≥ ∣�m1 ∣2
1+Pj∣�j1 ∣2

− ∣�e1∣2

(3.102)

Consider the KKT condition associated with the derivative of (3.92) with respect

to �xi
, i ∕= 1. It states that:

V − ui =
∣�mi

∣2

1 + �xi
∣�mi

∣2
− ∣�ei∣2

1 + �xi
∣�ei ∣2

(3.103)

with V (
n∑

i=1

�xi
− P ) = 0 ∀ V ≥ 0 and ui�xi

= 0 ∀ ui ≥ 0, ∀ i, where V and ui, ∀ i,

are also the Lagrange multipliers associated with the problem constraints.

It is possible to repeat the previous analysis. Assume that �xi
= 0, which means

that ui ≥ 0
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From (3.103) we have,

V − ui = ∣�mi
∣2 − ∣�ei∣2 (3.104)

and so,

V ≥ ∣�mi
∣2 − ∣�ei ∣2 (3.105)

Therefore, �xi
= 0 ⇒ V ≥ ∣�mi

∣2 − ∣�ei∣2

Conversely, assume now that V ≥ ∣�mi
∣2 − ∣�ei∣2. Then from (3.103) we have,

V =
∣�mi

∣2

1 + �xi
∣�mi

∣2
− ∣�ei∣2

1 + �xi
∣�ei∣2

+ ui ≥ ∣�mi
∣2 − ∣�ei∣2

⇒ ui ≥ ∣�mi
∣2 − ∣�ei∣2 −

∣�mi
∣2

1 + �xi
∣�mi

∣2
+

∣�ei∣2

1 + �xi
∣�ei ∣2

(3.106)

Now,

∣�mi
∣2 − ∣�ei∣2 −

∣�mi
∣2

1 + �xi
∣�mi

∣2
+

∣�ei ∣2

1 + �xi
∣�ei∣2

=
∣�mi

∣2 + �xi
∣�mi

∣2 ∣�ei∣2 + ∣�ei∣2

1 + �xi
∣�ei∣2

− ∣�mi
∣2 + �xi

∣�mi
∣2 ∣�ei∣2 + ∣�ei∣2

1 + �xi
∣�mi

∣2

≥ 0, since 1 + �xi
∣�mi

∣2 ≥ 1 + �xi
∣�ei∣2 (3.107)

So, from (3.106) it is clear that ui ≥ 0, which implies that �xi
= 0.

Thus, V ≥ ∣�mi
∣2 − ∣�ei∣2 ⇒ �xi

= 0

That is, �xi
= 0 ⇔ V ≥ ∣�mi

∣2 − ∣�ei∣2

On the other hand, �xi
> 0 leads to ui = 0

From (3.103) we can write,

V =
∣�mi

∣2

1 + �xi
∣�mi

∣2
− ∣�ei∣2

1 + �xi
∣�ei ∣2

< ∣�mi
∣2 − ∣�ei∣2 (3.108)

Conversely, V < ∣�mi
∣2 − ∣�ei ∣2 leads to ui = 0 and �xi

> 0.
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That is, �xi
> 0 ⇔ V < ∣�mi

∣2 − ∣�ei∣2

From (3.108) we have,

V =
∣�mi

∣2

1 + �xi
∣�mi

∣2
− ∣�ei ∣2

1 + �xi
∣�ei∣2

=
∣�mi

∣2(1 + �xi
∣�ei∣2)− ∣�ei∣2

(
1 + �xi

∣�mi
∣2
)

(
1 + �xi

∣�mi
∣2
)(

1 + �xi
∣�ei∣2

)

⇒ �xi

2 ∣�mi
∣2 ∣�ei∣2 + �xi

(
∣�ei∣2 + ∣�mi

∣2
)
+ 1− ∣�mi

∣2 − ∣�ei∣2
V

= 0

⇒ �xi
=

−
(
∣�ei∣2 + ∣�mi

∣2
)
±
√(

∣�ei∣2 + ∣�mi
∣2
)2

− 4 ∣�mi
∣2 ∣�ei ∣2

(
1− ∣�mi ∣2−∣�ei ∣2

V

)

2 ∣�mi
∣2 ∣�ei∣2

(3.109)

Since �xi
> 0, only admissible solution is,

�xi
= 1

2

[√(
1

∣�ei ∣2
− 1

∣�mi ∣2
)2

+ 4
V

(
1

∣�ei ∣2
− 1

∣�mi ∣2
)
−
(

1

∣�ei ∣2
+ 1

∣�mi ∣2
)]

Therefore the optimal �xi

∗ that maximize the utility (3.92) is given by

�∗
xi
=

⎧
⎨
⎩

1
2

[√(
1

∣�ei ∣2
− 1

∣�mi ∣2
)2

+ 4
V

(
1

∣�ei ∣2
− 1

∣�mi ∣2
)
−
(

1

∣�ei ∣2
+ 1

∣�mi ∣2
)]

,

V < ∣�mi
∣2 − ∣�ei∣2

0, V ≥ ∣�mi
∣2 − ∣�ei ∣2

(3.110)

The optimal utility under the scenario that �j1 = Pj and �ji = 0, i ∕= 1 becomes
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as,

U∗
11(�

∗
xi
, �∗

ji
) = log

(
1 +

�∗
x1
∣�m1

∣2

1 + Pj ∣�j1∣2
)
− log

(
1 + �∗

x1
∣�e1∣2

)

+

n∑

i=2

[
log
(
1 + �∗

xi
∣�mi

∣2
)
− log

(
1 + �∗

xi
∣�ei∣2

)]
(3.111)

Like wise, this process can be repeated for the scenario where �jk = Pj and �ji =

0, ∀ k, which would lead to the optimal power allocation policy

�∗
xk

=

⎧
⎨
⎩

1
2

[√(
1

∣�ek ∣2
− 1+Pj∣�jk ∣2

∣�mk ∣2
)(

4
V
+ 1

∣�ek ∣2
− 1+Pj∣�jk ∣2

∣�mk ∣2
)
−
(

1+Pj∣�jk ∣2
∣�mk ∣2

+ 1

∣�ek ∣2
)]

,

V <
∣�mk ∣2

1+Pj∣�jk ∣2
− ∣�ek ∣2

0, V ≥ ∣�mk ∣2
1+Pj∣�jk ∣2

− ∣�ek ∣2

(3.112)

and

�∗
xi
=

⎧
⎨

⎩

1
2

[√(
1

∣�ei ∣2
− 1

∣�mi ∣2
)2

+ 4
�

(
1

∣�ei ∣2
− 1

∣�mi ∣2
)
−
(

1

∣�ei ∣2
+ 1

∣�mi ∣2
)]

,

V < ∣�mi
∣2 − ∣�ei∣2

0, V ≥ ∣�mi
∣2 − ∣�ei∣2

(3.113)

∀i ∕= k, and would also lead to the ultility function,

U1k
∗
(
�xi

∗, �ji
∗
)
= log

(
1 +

�xk

∗ ∣�mk
∣2

1 + Pj ∣�jk ∣2
)
− log

(
1 + �xk

∗ ∣�ek ∣2
)

+
k−1∑

i=1

[
log
(
1 + �xi

∗ ∣�mi
∣2
)
− log

(
1 + �∗

xi
∣�ei∣2

)]
(3.114)
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In view of equation (3.114), jammer´s optimal strategies are �jk
∗ = Pj and �ji = 0

for i ∕= k, where, k = argmini U1i
∗, i.e,

k = argmin
i

max
�xl

,l=1,...,n∈Ψ
U1

(
�x1

, . . . , �xn
; �j1 = 0, . . . , �ji−1

= 0,

�ji = Pj , �ji+1
= 0, . . . , �jn = 0

)
(3.115)

Therefore, a Nash equilibrium exists as follows:

(�∗
xi
, �∗

ji) =

⎧
⎨
⎩

(
1
2

[√(
1

∣�ei
∣2 − 1+Pj ∣�ji

∣2
∣�mi

∣2
)(

4
V + 1

∣�ei
∣2 − 1+Pj ∣�ji

∣2
∣�mi

∣2
)
− (

1+Pj ∣�ji
∣2

∣�mi
∣2 + 1

∣�ei
∣2 )
]
, Pj

)
,

i = k and V <
∣�mi

∣2
1+Pj ∣�ji

∣2 − ∣�ei ∣2

(
0, Pj

)
, i = k and V ≥ ∣�mi

∣2
1+Pj ∣�ji

∣2 − ∣�ei ∣2

(
1
2

[√
( 1
∣�ei

∣2 − 1
∣�mi

∣2 )
2 + 4

V ( 1
∣�ei

∣2 − 1
∣�mi

∣2 )− ( 1
∣�ei

∣2 + 1
∣�mi

∣2 )
]
, 0
)
,

i ∕= k and V < ∣�mi
∣2 − ∣�ei ∣2

(
0, 0
)
, i ∕= k and V ≥ ∣�mi

∣2 − ∣�ei ∣2
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Chapter 4

Parallel Gaussian Wiretap Channel with

a Friendly Jammer: Power Allocation

Strategies

4.1 Introduction

In this Chapter we are interested in the security aspect of the wireless communica-

tion network with the aid of friendly jammers. We consider a model which applies

to scenarios where, with the intent of impairing the communication between the

transmitter and eavesdropper, the jammer positions himself to be much closer to

the eavesdropper than to the legitimate receiver (e.g. [82]).

It is known that interference in wireless channels can be used effectively by co-

operating nodes to improve the level of security of wireless channels and networks

(e.g. [37, 83, 84, 85, 82, 86, 87, 88, 89]). For example, in [37], the authors investigate

the design of optimal jamming configurations and the relationship between jamming

coverage, jamming efficiency and the probability of secrecy outage, in order to

characterize the security level of a network in which a transmitter and a legitimate

receiver try to communicate in the presence of an eavesdropper. [84] study a

cooperative jamming approach to increase the security of a wiretap fading channel

via distributed relays. In [85] the authors consider a MISO wiretap scenario where

a group of friendly jammers independently transmit noise in the null space of the

jammer-legitimate receiver channel in order to maximize the secrecy rate subject

to probability of outage and power constraints. The authors of [82] use a game

theoretic approach in order to characterize the interaction between the source, that

transmits the useful data, and friendly jammers, that assist the source by introduc-

ing interference in the eavesdropper channel in order to increase the secrecy capacity
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of the wiretap channel. In [89], the secrecy capacity of two nodes communicating in

the presence of eavesdroppers, placed anywhere in a confined region, is investigated

when friendly jammers, with different levels of channel state information, help the

legitimate parties by causing interference to possible eavesdroppers.

In this Chapter, two legitimate parties (Alice and Bob) communicate in the presence

of a friendly jammer and an eavesdropper (Eve). The eavesdropper is assumed to

be passive but the jammer injects interference in the eavesdropper channel in the

form of additive noise. In this scenario, we consider an OFDM communication

framework where each of the parties transmits and receives over a bank of parallel

independent Gaussian channels. The objective is to maximize the secrecy rate,

between the source (Alice) and the destination (Bob) by characterizing the optimal

power allocation policy for the jammer corresponding to the transmitter fixed power

allocation.

This Chapter is organized as follows: In Section 4.2, we present the system model

and the problem formulation. Section 4.3 analyzes the problems for the degraded

and the general case respectively. Section 4.4 presents a set of numerical results

that cast further insight into the nature of the optimal strategies. The results also

unveil the secrecy gain of an adaptive transmitter and jammer over a non-adaptive

one. In Section 4.5, we summarize the main contributions of this chapter work.

4.2 Problem formulation

We consider a communications scenario where a legitimate user, Alice, tries to

communicate with another legitimate user, Bob, in the presence of an eavesdropper,

Eve, and a friendly jammer over a bank of n parallel independent Gaussian channels.

In particular, as in Chapter 3, we assume that the jammer interferes only with

the eavesdropper channel (see Figure 4.1). Therefore, once again, this applies

to scenarios where, with the intent of impairing the communication between the

transmitter and eavesdropper, the jammer positions himself to be much closer to

the eavesdropper than to the legitimate receiver.

Bob observes the output of the main channel given by:

ym = Λmxt + nm (4.1)
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Figure 4.1: Parallel Gaussian wiretap channel model with a friendly jammer.

and Eve observes the output of the eavesdropper channel given by:

ye = Λext + ne +Λjexj (4.2)

where ym ∈ ℂn and ye ∈ ℂn represent the vectors of complex received symbols at

the output of the main and eavesdropper channels, respectively, xt ∈ ℂn represents

the vector of complex transmit symbols with zero mean and covariance Σx =

E[xtx
†
t ], and nm ∈ ℂn and ne ∈ ℂn are vectors of circularly symmetric complex

Gaussian noise random variables with zero-mean and identity covariance matrix.

We assume that xj ∈ ℂn is a vector of circularly symmetric complex Gaussian

noise with zero mean and covariance Σj = E[xjx
†
j], which represents the jamming

signal power.

Λm = diag (�m1
, �m2, . . . , �mn) ∈ ℂn is a diagonal matrix that contains the complex

gains of the parallel sub-channels of the main channel, Λe = diag (�e1, �e2, . . . , �en) ∈
ℂn is a diagonal matrix that contains the complex gains of the parallel sub-channels

of the eavesdropper channel, and, likewise, Λje = diag (�je1, �je2, . . . , �jen) ∈ ℂn is

a diagonal matrix that contains the complex gains of the parallel sub-channels

that compose the jammer channel. Note once again that this model arises in

systems where Alice, Bob, Eve and the jammer adopt OFDM modulation and

demodulation. We assume that Alice, Bob, Eve and the jammer know the exact

channel conditions [77]. These assumptions can be realistic in some scenarios as

argued in Chapter 3.
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Both the transmitter and the friendly jammer transmit independent symbols over

the different sub-channels. Thus we take both the input and jamming covari-

ance matrices to be diagonal, i.e., Σx = E[xtx
†
t ] = diag (�x1

, �x2
, . . . , �xn

) and

Σj = E[xjx
†
j ] = diag (�j1 , �j2, . . . , �jn), respectively, where �xi

represents the power

injected into main sub-channels i and �ji represents the power injected into friendly

jammer sub-channels i, i = 1, . . . , n.

Additionally we impose power restrictions on both for the transmitter and the

jammer, namely:
n∑

i=1

�xi
≤ P (4.3)

n∑

i=1

�ji ≤ Pj (4.4)

where P and Pj are the transmitter and the jammer total power respectively.

Once again, the general expression of the secrecy capacity of a wiretap channel,

which corresponds to the largest achievable reliable transmission rate with perfect

secrecy [55], is given by [9]:

Cs = max
v→xt→ym,ye

I(v;ym)− I(v;ye) (4.5)

Where the maximization is over all joint distributions Pv,xt
(v,xt) such that the

Markov chain v → xt → ym ye holds.

Once again, according to [12, Theorem 1], the secrecy capacity of a bank of inde-

pendent parallel Gaussian wiretap channels in (4.5), as like (2.14), reduces to:

Cs =
n∑

i=1

Csi =
n∑

i=1

max
xti

→ymi
,yei

I
(
xti ;ymi

)
− I
(
xti ;yei

)
(4.6)

where Csi represents the secrecy capacity of the itℎ sub-channel and the maximiza-

tions are over all the distributions Pxti
(xti), i = 1, . . . , n and xti represents the

complex transmit symbol in the itℎ sub-channel, ymi
represents the complex receive

symbol in the itℎ main sub-channel and yei represents the complex receive symbol

in the itℎ eavesdropper sub-channel.
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Let us fix the input signal covariance Σx = diag(�x1
, . . . , �xn

) and the jammer signal

covariance Σj = diag(�j1, . . . , �jn), where �x1
, . . . , �xn

and �j1 , . . . , �jn represent the

set of powers that the transmitter and the jammer inject into the bank of parallel

independent Gaussian channels, respectively. We do not claim that independent

jamming is optimal. Instead, we restrict attention to scenarios where the jammer

does not introduce correlated noise across the sub-channels5. Then, it is possible

to write an achievable secrecy rate as follows:

Rs (�x1
, . . . , �xn ;�j1 , . . . , �jn) =

n∑

i=1

[
log
(
1 + �xi ∣�mi

∣2
)
− log

(
1 +

�xi ∣�ei ∣2

1 + �ji ∣�jei ∣2
)]+

(4.7)

where [z]+ = max(0, z). This expression is the basis of the determination of the

transmitter and power allocation policies that maximize the achievable secrecy rate.

4.3 Analysis

We will now study the optimal transmitter and jammer power allocation policies

that maximize the achievable secrecy rate in (4.7) subject to the power constraints

in (4.3) and (4.4). We consider separately the degraded scenario, where ∣�mi
∣2 ≥

∣�ei∣2 , i = 1, . . . , n, and the more general non-degraded scenario.

4.3.1 The degraded case

We first consider a degraded parallel Gaussian wiretap channel where ∣�mi
∣2 ≥

∣�ei∣2 , i = 1, . . . , n. We will study the optimal power allocation of the jammer for

a fixed Alice power allocation. In this first case, the optimization problem can be

written as follows:

max
�ji

,i=1,...,n
Rs

(
�x1

, . . . , �xn
; �j1, . . . , �jn

)
=

n∑

i=1

[
log
(
1 + �xi

∣�mi
∣2
)

− log
(
1 +

�xi ∣�ei∣2

1 + �ji ∣�jei∣2
)]

(4.8)

5Note that, the secrecy capacity is the maximum value of the secrecy rate. Note also that

the transmitter must know the optimal jammer power allocation in order to develop the coding

scheme. In this work we assume that the jammer will inform the transmitter after optimizing its

jamming strategy.
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subject to the constraints:

n∑

i=1

�ji ≤ Pj with �ji ≥ 0, i = 1, . . . , n (4.9)

where Pj represent the total power available at the jammer. It is straightforward to

show that the first optimization problem constitutes a standard convex optimization

problem and thus, the optimal solution can be characterized by KKT conditions [90],

which are necessary and sufficient.

We will also characterize the power allocation policies in general power and in

asymptotic low power regimes.

4.3.1.1 Characterization of optimal power allocation policies

The following Theorem defines the optimal power allocation policy of the jammer

for a fixed transmitter power �xi
, i = 1, . . . , n:

Theorem 8. Fix the transmitter power �xi
, i = 1, 2, ..., n. Then, the optimal jam-

mer power allocation policy �∗
ji
, i = 1, 2, ..., n, that solves the optimization problem

max
�ji

,i=1,...,n
Rs (�x1

, . . . , �xn
, �j1 , . . . , �jn) (4.10)

subject to:
∑n

i=1 �ji ≤ Pj, and �ji ≥ 0, i = 1, . . . , n is given by:

�∗
ji
=

⎧
⎨

⎩

√

�2
xi
∣�ei ∣4+

4�xi ∣�ei ∣2∣�jei ∣2
�

−
(
2+�xi∣�ei ∣2

)

2∣�jei ∣2
, � <

�xi∣�ei ∣2∣�jei ∣2
1+�xi∣�ei ∣2

0, � ≥ �xi ∣�ei ∣2∣�jei ∣2
1+�xi∣�ei ∣2

(4.11)

with � such that
∑n

i=1 �
∗
ji
= Pj.

Proof. See Appendix F.

The solution embodied in Theorem 8, akin to other power allocation solution in

literature (e.g. [91]), shows that the jammer may only inject power in some sub-

channels. In particular, if the effective itℎ sub-channel strength given by
�xi

∣�ei∣2∣�jei
∣2

1+�xi
∣�ei∣2
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is below a certain threshold, then the jammer does not inject power in the itℎ sub-

channel. Otherwise, if the effective sub-channel strength given by
�xi

∣�ei∣2∣�jei
∣2

1+�xi
∣�ei∣2 is

above the threshold, then the jammer injects an appropriate fraction of its available

power in the itℎ sub-channel. The solution in Theorem 8 also leads to a simple

algorithm that produces the optimal power allocation policy in a finite number of

iterations (see Algorithm 1). Let us define:

ai =
�xi

∣�ei∣2∣�jei∣2
1 + �xi

∣�ei∣2
(4.12)

and

bi =

√
�2
xi
∣�ei∣4 +

4�xi ∣�ei ∣2∣�jei ∣2
�

−
(
2 + �xi

∣�ei∣2
)

2 ∣�jei∣2
(4.13)

Note that this iterative algorithm bypasses the need to implement standard convex

optimization procedures and it converges in a maximum on n steps. Note also that

the optimal solution differs from standard waterfilling. The most complex step of the

algorithm only requires solving a nonlinear equation, in order to determine the value

of Lagrange multiplier (see step 3). This can be accomplished using standard simple

numerical procedures (e.g., Newton-Raphson, Secant or Steffensen’s methods [92]).

4.3.1.2 Characterization of the optimal power allocation in the asymp-

totic low power regime

We will now characterize the optimal power allocation in two asymptotic low power

regimes of great operational relevance: i) the asymptotic regime of low transmitter

available power, where P → 0; and ii) the asymptotic regime of low jammer available

power, where Pj → 0. This particular characterization, which applies to some

practical scenarios as also argued in Chapter 3, casts further insight into the nature

of the optimal power allocation policies.

4.3.1.2.1 Low transmitter available power

When P → 0, then also �xi
→ 0, i = 1, . . . , n,. Therefore, the Taylor expansion of
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Algorithm 1: Algorithm to compute the set of optimal �∗
ji
, for fixed �xi

, i =

1, . . . , n, for the degraded case.

Input : Number of available sub-channels n, set of values �jei, �ei,

�xi
, i = 1, . . . , n, and Pj

Output: Set of optimal values �∗
ji
, i = 1, . . . , n, value of �, number of active

sub-channels nact and number of inactive sub-channels ninact.

1 ∙ Re-order the sub-channels such that the values ai are in a decreasing order

(define also an+1
△
= 0).

Set ninact = 0; Set ñ = n.

2 ∙ Set � = añ

3 ∙ if añ = 0 then

∙ Set �∗
jñ

= 0; ñ = ñ− 1; ninact = ninact + 1;

∙ go to step 2.

∙ else if
ñ∑

i=1

bi ≥ Pj then

∙ Set �∗
jñ

= 0; ñ = ñ− 1; ninact = ninact + 1;

∙ go to step 2.

∙ else

∙ Set nact = ñ; Set � such that:
ñ∑

i=1

bi = Pj;

Set �∗
ji
= bi, i = 1, . . . , nact;

∙ Undo the reordering done at step 1.

the secrecy rate in (4.8) can be expanded as follows:

Rs (�xi
, �ji) =

n∑

i=1

[
�xi

∣�mi
∣2 − �xi

∣�ei∣2

1 + �ji∣�jei∣2
+O(�2

xi
)

]
(4.14)

The following Theorem defines the optimal power allocation of the jammer when

the transmitter power is very low.

Theorem 9. Fix the transmitter power allocation policy �xi
, i = 1, . . . , n. Then the
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jammer optimal power that maximizes the secrecy rate as P → 0 is given by:

�∗
ji
=

⎧
⎨
⎩

√
�xi ∣�ei ∣2∣�jei ∣2

V
−1

∣�jei ∣2
, V < �xi

∣�ei∣2∣�jei∣2

0, V ≥ �xi
∣�ei∣2∣�jei∣2

(4.15)

with V such that
∑n

i=1 �
∗
ji
= Pj.

Proof. See Appendix G.

Theorem 9 reveals that, in low available transmit power, the jammer will inject

power in a single sub-channel as like transmitter as we shown in Chapter 3.

4.3.1.2.2 Low jammer available power

When Pj → 0, then �ji → 0, i = 1, . . . , n,. Therefore, the secrecy rate in (4.8)

can be also expanded by using a Taylor series as follows:

Rs (�x1
, . . . , �xn

; �j1, . . . , �jn) =

n∑

i=1

[
log
(
1 + �xi

∣�mi
∣2
)
− log

(
1 + �xi

∣�ei∣2
)

+
�xi

�ji ∣�ei∣2∣�jei∣2
1 + �xi

∣�jei∣2
+O(�2

ji
)
]

(4.16)

The following Theorem defines the optimal power allocation of the jammer when

the jammer power is very low.

Theorem 10. Fix the transmitter power allocation policy �xi
, i = 1, . . . , n. Then,

the jammer optimal power allocation policy that maximizes the secrecy rate as Pj →
0 is given by:

�∗
ji
=

⎧
⎨

⎩

Pj , i = k

0, i ∕= k

(4.17)

where

k = argmax
i

[
∣�jei∣2

1 + 1
�xi

∣�ei
∣2

]
(4.18)
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Proof. See Appendix H.

Theorem 10 reveal that in the regime of low jammer power, the jammer will inject

power in a single sub-channel, which is specified by index (4.18)

4.3.2 The general case

We now start by discussing how compute the optimal power allocation policy for the

jammer in the general scenario where the optimization problem is not necessarily

convex. The optimization problem can now be written as follows:

max
�ji

,i=1,...,n
Rs

(
�x1

, . . . , �xn
; �j1, . . . , �jn

)
=

n∑

i=1

[
log
(
1 + �xi

∣�mi
∣2
)
− log

(
1 +

�xi∣�ei∣2
1 + �ji∣�jei∣2

)]+
(4.19)

subject to the constraints:

n∑

i=1

�ji ≤ Pj with �ji ≥ 0, i = 1, . . . , n (4.20)

It is relevant to note that the optimization problem in (4.19), contrary to the

optimization problem in (4.7), is not necessarily convex in the presence of non-

degradedness – where ∣�mi
∣2 < ∣�ei∣2. However a simple argument enables us to

transform problem (4.7) into a set of convex optimization problems. In particular

it is evident that the secrecy rate of a certain non-degraded sub-channel i is zero

when,

∣�mi
∣2 ≤ ∣�ei∣2

1 + �ji ∣�jei∣2

⇔ 1 + �ji ∣�jei∣2 ≤
∣�ei∣2
∣�mi

∣2

⇔ �ji ∣�jei∣2 ≤
∣�ei∣2
∣�mi

∣2 − 1

⇔ �ji ≤
1

∣�jei∣2
[ ∣�ei∣2
∣�mi

∣2 − 1

]
(4.21)
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This means that the jammer, with the intent to maximize the secrecy rate of the

parallel Gaussian wiretap channel, has only a pair of strategies for a certain non-

degraded sub-channel i: either �ji = 0 or �ji ≥ 1
∣�jei

∣2

[
∣�ei

∣2
∣�mi

∣2 − 1
]
, provided that it

respects the available power constraint Pj .

In particular, let w denote the number of degraded sub-channels and l = n − w

denote the number of non-degraded sub-channels. Let us also re-order the sub-

channels such that �1 ≤ �2 ≤ ..... ≤ �w ≤ �w+1 ≤ ..... ≤ �n, when �i =

max
(
0, 1

∣�jei
∣2

[
∣�ei

∣2
∣�mi

∣2 − 1
])

, i = 1, 2, ....., n.

A possible procedure to determine the solution to the power allocation problem in

the general scenario would then involve setting up various optimization problems,

where the individual optimization problem are associated with different feasible jam-

mer strategies for non-degraded sub-channels (i.e. �ji = 0 or �ji ≥ 1
∣�jei

∣2

[
∣�ei

∣2
∣�mi

∣2 − 1
]

for a particular non-degraded sub-channel i).

For example, the optimization problem where it is assumed that �ji = 0, i ∈ S1 and

�ji ≥ 1
∣�jei

∣2

[
∣�ei

∣2
∣�mi

∣2 − 1
]
, i ∈ S2, where S1 and S2 are disjoint sets of indices of non-

degraded sub-channels whose union corresponds to the set of indices of the ordered

non-degraded sub-channels, i.e., w+1, . . . , n (and also
∑

i∈S2

1
∣�jei

∣2
[ ∣�ei

∣2
∣�mi

∣2 −1
]
≤ Pj

to guarantee that the problem is feasible) is given by:

max
�ji

Rs

(
�x1

, . . . , �xn
; �j1, . . . , �jn

)
=

w∑

i=1

[
log
(
1 + �xi

∣�mi
∣2
)

− log
(
1 +

�xi∣�ei∣2
1 + �ji∣�jei∣2

)]
+
∑

i∈S2

[
log
(
1 + �xi

∣�mi
∣2
)
− log

(
1 +

�xi∣�ei∣2
1 + �ji∣�jei∣2

)]

(4.22)

subject to:

�ji ≥ 0, i = 1, . . . , w, �ji ≥
1

∣�jei∣2
[ ∣�ei∣2
∣�mi

∣2 − 1

]
, i ∈ S2 and

n∑

i=1

�ji ≤ Pj (4.23)

Note that, the sub-channels with indices i ∈ S1 do not contribute to the total

secrecy rate due to the fact that those are non-degraded sub-channels. Now (4.22)

is a standard convex optimization problem.
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The desired solution is then associated with the optimization problem that leads to

the highest secrecy rate out of the various optimization problems. We recognize that

this approach to handle the non-convexity of the original problem is combinatorial

in nature, so does not scale with the number non-degraded sub-channels. As an

alternative we now present a sub-optimal iterative procedure in order to obtain not

only the jammer but also the transmitter power allocation policies. We attempt in

fact to provide an algorithm that approximates the joint power allocation policies

that maximize the objective in (4.7) rather than an algorithm that approximates

only the jammer power allocation policy that maximizes (4.7).

The rationale behind this procedure is to iteratively adapt the jammer and the

transmitter strategies to each other. The procedure involves key steps: i) we

start with a fixed transmitter strategy, e.g. isotropic power allocation where the

transmitter divides the available power equally among the various sub-channels; ii)

the jammer adapts its strategy to the transmitter strategy and selects a certain

set of degraded (w) and non-degraded (S2) sub-channels to distribute its available

power; iii) the transmitter then adapts its strategy to the jammer strategy in ii) (the

effect of the jammer strategy is in fact to create a new equivalent jammer channel);

and iv) this procedure is repeated iteratively resulting in the final transmitter and

jammer power allocation.

There are some important remarks to be made about this iterative procedure:

First, while sub-optimal, this procedure is much more efficient than the alternative

combinatorial approach and, as presented in the next section, it achieves remarkable

gains when compared with other feasible approaches; Second, this procedure also

builds upon a modified version of Algorithm 1 to obtain the values of �ji > 0, for the

fixed �xi
, thus inheriting its simplicity and efficiency; Third, key to the algorithm

is the selection of the set of non-degraded sub-channels where the jammer injects

power (i.e., R1) – this is based on the amount of power that a specific non-degraded

sub-channel needs to become degraded (the jammer selects the channel that needs

the least amount of power, subject to its power constraint); Fourth, a very im-

portant aspect of this procedure, which plays a crucial role on its performance,

is to jam only sub-channels where the transmitter also introduces power. This

procedure is formally presented in Algorithm 2. Although it is not straightforward

to analytically prove that this algorithm 2 always converges, we observed through

extensive numerical simulations that this algorithm indeed converges (though not

necessarily to the optimal solution) in a finite number of iterations.
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The modified version of Algorithm 1 works as follows: The original Algorithm 1

follows from the KKT conditions associated with the power allocation optimization

problem, which is convex in view of degradedness. The modified Algorithm 1 also

follows from the KKT conditions associated with the optimization problem (4.22),

which is also convex in view of the fact that the additional constraint �ji ≥
1

∣�jei
∣2

[
∣�ei

∣2
∣�mi

∣2 − 1
]
is imposed on the set of selected non-degraded sub-channels. The

key modifications in Algorithm 1 are: i) in step 1 sub-channels are reordered such

that the values of ai =
�xi

∣�ei∣2∣�jei
∣2

(1+�i∣�jei
∣2)(1+�i∣�jei

∣2+�xi
∣�ei∣2)

are in a decreasing order; ii)

in step 3 the new test condition is
ñ∑

i=1

bi +
∑n

i=ñ+1 �i ≥ Pj, and thus the value of �

is set such that
ñ∑

i=1

bi +
∑n

i=ñ+1 �i = Pj.

4.4 Numerical results

We consider a 64×64 parallel Gaussian random wiretap channel, which is applicable

to an OFDM based system, like WiFi IEEE802.11, where the complex values of

the main, eavesdropper and jammer sub-channel gains are independently randomly

generated according to a complex Gaussian distribution. Therefore, the system is

composed of both degraded and non-degraded sub-channels.

Figure 4.2 depicts the value of the achieved secrecy rate vs. the jammer available

power, when the transmitter available power is P = 5, for the following scenarios: i)

the jammer and the transmitter optimize their power allocation strategies according

to the proposed iterative procedure; ii) the jammer optimizes its power allocation

strategy, for a fixed transmitter power allocation policy (the transmitter adopts

the optimal power allocation presented in [12] for the case without the presence

of the jammer), jamming only the degraded sub-channels (solution presented in

Theorem 8); iii) the jammer distributes his power equally across all the degraded

sub-channels; and iv) the scenario where there is no jammer present in the system.

We can observe the clear benefits of jamming the eavesdropper channel.

Note that the curve in scenario i) is not smooth due to the nature of the iterative

procedure that forces the jammer to sub-optimally allocate power to some sub-

channels. Nonetheless, it is evident the advantage of iteratively adapting the jammer

and the transmitter power allocation strategies, when compared with jamming the

degraded sub-channels for a fixed transmitter power allocation policy or equally
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Algorithm 2: Algorithm to compute the set of values for the transmitter and

jammer power allocation strategies.

Input : Number of available sub-channels n, set of values �mi
, �ei , �jei,

�xi
, i = 1, . . . , n, transmitter available power Px, jammer available power

Pj and the number of iterations itr.

Output: Set of jammer power allocation policy values �ji , i = 1, . . . , n, set of

transmitter power allocation policy values �xi
, i = 1, . . . , n.

1 ∙ Re-order the sub-channels such that the values

�i = max
(
0, 1

∣�jei
∣2

[
∣�ei

∣2
∣�mi

∣2 − 1
])

, i = 1, . . . , n are in increasing order;

Set �xi
= Px

n
, i = 1, . . . , n;.

2 ∙ Define R1 as the set of indices i such that R1 =
{
i :
∑L

i=1 �i ≤ Pj ∧ �xi
> 0
}

(sub-channels where the jammer will put power);

Define R2 as the set of the remaining indices i.

3 ∙ Set �ji = 0, i ∈ R2; Obtain �ji, i ∈ R1 using a modified version of Algorithm 1

(with the additional constraint �ji ≥ 1
∣�jei

∣2

[
∣�ei

∣2
∣�mi

∣2 − 1
]
that guarantees convexity);

Recompute a new eavesdropper channels such that ∣�′

ei
∣2 = ∣�ei

∣2
1+�ji

∣�jei
∣2 ;

Obtain �xi
, i = 1, . . . , n, using �mi

, �
′

ei
and Px (see, e.g., [12]); Set itr = itr − 1.

4 ∙ if itr > 0 then

∙ go to step 2.

∙ else

∙ Undo the reordering done at step 1.

dividing the power across all the sub-channels.

Figure 4.3 shows the value of the achieved secrecy rate vs. the transmitter available

power, when Pj = 10, for the same previous different scenarios. Once more we can

clearly verify the impact of the jammer in the achieved secrecy rates. In fact one

can observe that the secrecy rate gain, provided by the increase of the transmitter

available power, starts to saturate above a certain value of P , and that the choice of

the jamming strategy (especially the one obtained through the proposed iterative
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Figure 4.2: Secrecy rate vs. Pj, for several power allocation policies (P = 5).

procedure) can induce dramatic increases in the achievable secrecy rates.

Note also that the iterative procedure takes very few iterations to converge to the

final solution.
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Figure 4.3: Secrecy rate vs. P , for several power allocation policies (Pj = 10).

Table 4.1 provides a summary of secrecy rates obtained under a different set of
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jamming techniques in comparison to no jamming, for different numbers of sub-

channels. Note that the values in the table are extracted at the jammer available

power Pj = 10, and transmitter available power P = 5.

Table 4.1: Secrecy rates under a different set of jamming techniques

No of No jamming Isotropic Jamming degraded Iterative

sub-channels jamming channels procedure

8 4.929 6.170 6.421 6.712

16 10.170 11.020 11.830 12.120

32 17.750 19.110 19.720 19.920

From the data provided in Table 4.1, Figure 4.4 shows the value of the achieved

secrecy rate vs. number of sub-channels, when the transmitter available power is

P = 5 and the jammer available power is Pj = 10, for the same previous different

scenarios. Figure 4.4 illustrates the effect of different jamming techniques to the one

without jamming with respect to the number of sub-channels used. It can be easily

depicted how friendly jamming techniques outperform the one without jamming for

the same number of sub-channels. For example, the secrecy rate obtained without

jamming is 73% to 89% of the one obtained via iterative jamming, for the same

number of sub-channels: 8 and 32, respectively. This bear witness that the increase

of the number of sub-channels provides one robust way to increase the secrecy rate.

However, it is worth to note that for the case of no jamming, to obtain a secrecy

rate similar to the one that can be obtained via one of the jamming techniques (like

isotropic jamming channels), more number of sub-channels need to be used. This

also follows more number of sub-channels needs to be used to obtain higher secrecy

rates, via no jamming, in comparison to the ones required with jamming techniques.

For example, it is clear that we can obtain a secrecy rate of approximately 6 bits

by using 8 sub-channels when isotropic jamming is used, however, approximately

10 bits are obtained by using 16 sub-channels when no jamming exists. Therefore,

of particular relevance is the usage of jamming techniques to the increase in the

secrecy rate and to the efficient use of the channel resources at the price of some

algorithmic complexity.

Figure 4.5 shows the value of the achieved secrecy rate vs. the transmitter available
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Figure 4.4: Secrecy rate vs. number of sub-channels, for several power allocation

policies (Pj = 10 and P = 5).
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Figure 4.5: Secrecy rate vs. P , for proposed iterative and exaustive search procedure

(Pj = 5).

power, when the jammer available power is Pj = 5, for the following scenarios: i)

the jammer and the transmitter optimize their power allocation strategies according

to our proposed iterative procedure; ii) the jammer optimizes its power allocation

strategy, for a fixed transmitter power allocation policy (the transmitter optimizes
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its power allocation, presented in [12], for the case without the presence of the

jammer) according to exaustive search (Brute-force) procedure. Intuitively, Figure

4.5 demonstrates that, the secrecy rates, by using our proposed iterative procedure,

is considerably higher than the secrecy rate that we receive by exaustive search

process.

4.5 Conclusion

We addressed the secrecy rate gains obtained via friendly jamming. We studied

a scenario where the two legitimate parties (Alice and Bob) communicate in the

presence of a friendly jammer and an eavesdropper (Eve). The eavesdropper is

assumed to be passive but the jammer injects interference in the eavesdropper

channel in the form of additive noise. Therefore, the jammer acts as a friendly

jammer who aims to help the legitimate parties to communicate with higher secrecy

rates. We have studied power allocation strategies over a bank of independent

parallel Gaussian wiretap channels-applicable to OFDM communications systems,

where a legitimate transmitter-receiver pair communicate in the presence of an

eavesdropper and a friendly jammer and all admit OFDM communication. In

particular, we put forth power allocation algorithms for the jammer and joint power

allocation algorithms for the jammer and the transmitter in different scenarios.

Simulation results demonstrate that these algorithms can lead to significant secrecy

rate gains in comparison to other power allocation approaches.
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Appendix F: Proof of Theorem 8

The optimization problem of (4.10) can be expressed as,

max
�ji

Rs

(
�x1

, . . . , �xn
, �j1, . . . , �jn

)
= −min

�ji

n∑

i=1

[
log
(
1 + �xi

∣�mi
∣2
)

− log
(
1 +

�xi
∣�ei∣2

1 + �ji ∣�jei∣2
)]

(4.24)

subject to:
n∑

i=1

�ji ≤ Pj and �ji ≥ 0, i = 1, . . . , n. (4.25)

It is straightforward to show that the first optimization problem constitutes a

standard convex optimization problem with respect to �ji and thus, the optimal

solution can be characterized by KKT conditions [90], which are necessary and

sufficient.

The Lagrangian of the optimization problem (4.24), subject to (4.25) is,

ℒ
(
�ji , �, ui

)
= −Rs

(
�x1

, . . . , �xn
, �j1, . . . , �jn

)
+ �
( n∑

i=1

�ji − Pj

)
−

n∑

i=1

(
ui�ji

)

(4.26)

Where � ≥ 0 and ui ≥ 0, i = 1, . . . , n are the Lagrange multipliers associated with

the problem constraints.

The KKT conditions state that:

∇�ji
ℒ
(
�ji , �, ui

)
= 0, i = 1, . . . , n (4.27)

with �(
n∑

i=1

�ji − Pj) = 0 ∀ � ≥ 0, and ui�ji = 0 ∀ ui ≥ 0, i = 1, . . . , n

From (4.27) we have:

� − ui =
�xi

∣�ei∣2 ∣�jei∣2(
1 + �ji ∣�jei∣2

)(
1 + �ji ∣�jei∣2 + �xi

∣�ei∣2
) (4.28)
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Assume that �ji = 0, which implies that means ui ≥ 0. Them, from (4.28) we have

� − ui =
�xi

∣�ei∣2 ∣�jei∣2

1 + �xi
∣�ei∣2

(4.29)

Therefore from (4.29) we have:

� − �xi
∣�ei∣2 ∣�jei∣2

1 + �xi
∣�ei∣2

= ui ≥ 0 (4.30)

i.e., �ji = 0 ⇒ � ≥ �xi
∣�ei∣2 ∣�jei∣2

1 + �xi
∣�ei∣2

(4.31)

Conversely, when � ≥ �xi
∣�ei∣2∣�jei ∣2

1+�xi ∣�ei ∣2
, then from (4.28) we have:

� =
�xi

∣�ei∣2 ∣�jei∣2

(1 + �ji ∣�jei∣2)(1 + �ji ∣�jei∣2 + �xi
∣�ei∣2)

+ ui ≥
�xi

∣�ei∣2 ∣�jei∣2

1 + �xi
∣�ei∣2

⇒ ui ≥
�xi

∣�ei∣2 ∣�jei∣2

1 + �xi
∣�ei∣2

− �xi
∣�ei∣2 ∣�jei∣2

(1 + �ji ∣�jei∣2)(1 + �ji ∣�jei∣2 + �xi
∣�ei∣2)

≥ 0 (4.32)

which implies that �ji = 0

Thus, � ≥ �xi
∣�ei∣2∣�jei ∣2

1+�xi ∣�ei ∣2
⇒ �ji = 0

That is, �ji = 0 ⇔ � ≥ �xi
∣�ei∣2∣�jei ∣2

1+�xi ∣�ei ∣2

Assume now that �ji > 0 which implies that ui = 0. Then from (4.28) we can

write,

� =
�xi

∣�ei∣2 ∣�jei∣2(
1 + �ji ∣�jei∣2

)(
1 + �ji ∣�jei∣2 + �xi

∣�ei∣2
) <

�xi
∣�ei∣2 ∣�jei∣2

1 + �xi
∣�ei∣2

(4.33)

Thus �ji > 0 ⇒ � <
�xi

∣�ei∣2∣�jei ∣2
1+�xi

∣�ei∣2
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Conversely, when � <
�xi

∣�ei∣2∣�jei ∣2
1+�xi

∣�ei∣2
, then (4.28) can be expressed as,

� =
�xi

∣�ei∣2 ∣�jei∣2(
1 + �ji ∣�jei∣2

)(
1 + �ji ∣�jei∣2 + �xi

∣�ei∣2
) + ui <

�xi
∣�ei∣2 ∣�jei∣2

1 + �xi
∣�ei∣2

(4.34)

It is clear that we can only satisfy (4.34) with �ji > 0. Indeed, we cannot satisfy

(4.34) with �ji = 0 because this implies that ui > 0.

Thus � <
�xi

∣�ei∣2∣�jei ∣2
1+�xi

∣�ei∣2
⇒ �ji > 0

That is, �ji > 0 ⇔ � <
�xi

∣�ei∣2∣�jei ∣2
1+�xi

∣�ei∣2

From (4.33) we have:

� =
�xi

∣�ei∣2 ∣�jei∣2(
1 + �ji ∣�jei∣2

)(
1 + �ji ∣�jei∣2 + �xi

∣�ei∣2
)

=
�xi

∣�ei∣2 ∣�jei∣2

1 + �xi
∣�ei∣2 + 2�ji ∣�jei∣2 + �xi

�ji ∣�ei∣2 ∣�jei∣2 + �ji
2 ∣�jei∣4

⇒ �ji
2 ∣�jei∣4 + �ji

(
2 ∣�jei∣2 + �xi

∣�ei∣2 ∣�jei∣2
)

+
(
1 + �xi

∣�ei∣2 −
�xi

∣�ei∣2 ∣�jei∣2
�

)
= 0

⇒ �ji =
−
(
2 + �xi

∣�ei∣2
)
±
√

�2
xi
∣�ei∣4 +

4�xi
∣�ei∣2∣�jei ∣2

�

2 ∣�jei∣2
(4.35)

Since �ji > 0, it follows that the only admissible solution is

�ji =

√
�2
xi
∣�ei∣4 +

4�xi ∣�ei ∣2∣�jei ∣2
�

−
(
2 + �xi

∣�ei∣2
)

2 ∣�jei∣2
(4.36)

Finally, for fixed Alice strategy �xi
, i = 1, 2, ..., n, the optimal Jammer strategy �∗

ji
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that minimize the utility (4.24) is given by:

�∗
ji
=

⎧
⎨
⎩

√

�2
xi
∣�ei ∣4+

4�xi ∣�ei ∣2∣�jei ∣2
�

−
(
2+�xi∣�ei ∣2

)

2∣�jei ∣2
, � <

�xi∣�ei ∣2∣�jei ∣2
1+�xi ∣�ei ∣2

0, � ≥ �xi ∣�ei ∣2∣�jei ∣2
1+�xi∣�ei ∣2

(4.37)

Therefore Theorem 8 has been proved.

Appendix G: Proof of Theorem 9

When P → 0, this implies that �xi
→ 0, ∀i. Then the Taylor expansion of the

objective function in (4.8) leads to:

Rs(�xi
, �ji) =

n∑

i=1

[
�xi

∣�mi
∣2 − �xi

∣�ei∣2

1 + �ji

∣∣�jei

∣∣2 +O(�2
xi
)

]
(4.37)

Therefore, the optimization problem reduces to:

max
�ji

Rs

(
�xi

, �ji

)
= −min

�ji

n∑

i=1

[
�xi

∣�mi
∣2 − �xi

∣�ei ∣2

1 + �ji

∣∣�jei

∣∣2 +O(�2
xi
)

]
(4.38)

subject to:
n∑

i=1

�ji ≤ Pj , and �ji ≥ 0, i = 1, . . . , n (4.39)

The Lagrangian of the optimization problem (4.38), subject to (4.39) is:

ℒ(�ji , V, �i) = −Rs(�xi
, �ji) + V (

n∑

i=1

�ji − Pj)−
n∑

i=1

(�i�ji), i = 1, . . . , n (4.40)

Where V ≥ 0, and �i ≥ 0 are the Lagrange multipliers associated with the

optimization constraints.

The KKT conditions state that:

∇�ji
ℒ(�ji , V, �i) = 0, i = 1, . . . , n (4.41)
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with V (
n∑

i=1

�ji − P ) = 0 ∀ V ≥ 0 and �i�ji = 0 ∀ �i ≥ 0, i = 1, . . . , n

From (4.41) we have:

V − �i =
�xi

∣�ei∣2
∣∣�jei

∣∣2
(
1 + �ji

∣∣�jei

∣∣2 )2 (4.42)

Assume that �ji > 0, which implies that �i = 0. Therefore, from (4.42) we have

V =
�xi

∣�ei ∣2
∣∣�jei

∣∣2
(
1 + �ji

∣∣�jei

∣∣2
)2 < �xi

∣�ei∣2
∣∣�jei

∣∣2 (4.43)

Conversely, when V < �xi
∣�ei∣2

∣∣�jei

∣∣2, then from (4.42) we have

V =
�xi

∣�ei∣2
∣∣�jei

∣∣2
(
1 + �ji

∣∣�jei

∣∣2 )2 + �i < �xi
∣�ei∣2

∣∣�jei

∣∣2 (4.44)

It is clear that we can only satisfy (4.44) with �ji > 0. In deed, we cannot satisfy

(4.44) with �ji = 0 because this implies that �i > 0.

Thus, V < �xi
∣�ei∣2

∣∣�jei

∣∣2 ⇒ �ji > 0

That is, �ji > 0 ⇔ V < �xi
∣�ei∣2

∣∣�jei

∣∣2

On the other hand, assume now that �ji = 0, which implies that �i ≥ 0 Therefore,

from (4.42) we have that

V ≥ �xi
∣�ei ∣2

∣∣�jei

∣∣2 (4.45)

Conversely, when V ≥ �xi
∣�ei∣2

∣∣�jei

∣∣2, then from (4.42) we have,

V =
�xi

∣�ei∣2
∣∣�jei

∣∣2
(
1 + �ji

∣∣�jei

∣∣2 )2 + �i ≥ �xi
∣�ei∣2

∣∣�jei

∣∣2

⇒ �i ≥ �xi
∣�ei∣2

∣∣�jei

∣∣2 −
�xi

∣�ei ∣2
∣∣�jei

∣∣2
(
1 + �ji

∣∣�jei

∣∣2 )2 ≥ 0 (4.46)
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which implies that �ji = 0.

Thus, V ≥ �xi
∣�ei∣2

∣∣�jei

∣∣2 ⇒ �ji = 0

That is, �ji = 0 ⇔ V ≥ �xi
∣�ei∣2

∣∣�jei

∣∣2

Now from (4.43) we have:

V =
�xi

∣�ei∣2
∣∣�jei

∣∣2
(
1 + �ji

∣∣�jei

∣∣2
)2

⇒ 1 + �ji

∣∣�jei

∣∣2 = ±

√
�xi

∣�ei∣2
∣∣�jei

∣∣2

V

⇒ �ji =

√
�xi∣�ei ∣2∣�jei

∣2
V

− 1
∣∣�jei

∣∣2 , since �ji > 0 (4.47)

So, when P → 0 and the transmitter power allocation is fixed. Then the jammer

optimal power allocation policy that maximizes the secrecy rate is given by:

�∗
ji
=

⎧
⎨
⎩

√
�xi ∣�ei ∣2∣�jei ∣2

V
−1

∣�jei ∣2
, V < �xi

∣�ei∣2∣�jei∣2

0, V ≥ �xi
∣�ei∣2∣�jei∣2

(4.48)

Therefore Theorem 9 has been proved.

Appendix H: Proof of Theorem 10

When Pj → 0, this implies that �ji → 0, i = 1, . . . , n. Then the Taylor expansion

of the objective function in (4.8) is as follows:

Rs(�xi
, �ji) =

n∑

i=1

[
�xi

�ji∣�ei∣2
∣∣�jei

∣∣2

1 + �xi
∣�ei∣2

+O(�2
ji
)

]
(4.49)
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The optimization problem then becomes:

max
�ji

Rs(�xi
, �ji) = −min

�ji

n∑

i=1

[
�xi

�ji ∣�ei∣2
∣∣�jei

∣∣2

1 + �xi
∣�ei ∣2

+O(�2
ji
)

]
(4.50)

subject to:
n∑

i=1

�ji ≤ Pj , and �ji ≥ 0, i = 1, . . . , n (4.51)

The Lagrangian of the optimization problem in (4.50) and (4.51) is:

ℒ
(
�ji , �, ui

)
= −Rs

(
�xi

, �ji

)
+ �
( n∑

i=1

�ji − Pj

)
−

n∑

i=1

(
ui�ji

)
(4.52)

Where � ≥ 0, and ui ≥ 0, i = 1, . . . , n are the Lagrenge multipliers associated with

the problem constraints.

The KKT conditions state that:

∇�ji
ℒ(�ji, �, ui) = 0, i = 1, . . . , n (4.53)

with �(
n∑

i=1

�ji − Pj) = 0 ∀ � ≥ 0 and ui�ji = 0 ∀ ui ≥ 0, i = 1, . . . , n

From (4.53) we have:

� − ui =
�xi

∣�ei∣2
∣∣�jei

∣∣2

1 + �xi
∣�ei∣2

(4.54)

In view of the form of (4.54), when Pj → 0, it is simple to infer that the jammer

puts all its power in the strongest sub-channel and the strongest sub-channel is

determined by the index k, where

k = argmax
i

[
�xi

∣�ei∣2
∣∣�jei

∣∣2

1 + �xi
∣�ei∣2

]
(4.55)

So, when Pj → 0, then the jammer´s optimal power is:

�∗
ji
=

⎧
⎨
⎩

Pj, i = k

0, i ∕= k

(4.56)

Therefore Theorem 10 has been proved.
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Chapter 5

Achievable Average Secrecy Rates over a

Bank of Parallel Independent Fading

Channels with Friendly Jamming: A

Case Study

5.1 Introduction

In this Chapter we evaluate the performance of the friendly jamming strategy over

a bank of parallel independent fading wiretap channel: the objective is to capitalize

on the algorithms put forth in previous chapters in order to assess the improvements

in secrecy rate brought about by the use of friendly jamming.

Fading phenomena has been a problem of long standing interest to information

theorists. The growing demand for wireless communications makes it important to

determine the capacity limits of fading channels. Many works have been done to

assess the information theoretic limits of Gaussian fading channels in [93, 94, 95,

96, 97, 98].

The flat-fading channel with channel-state information available to both receiver

and transmitter is examined in [99] and [100]. Authors in [94] obtain capacity of

a single-user fading channel with channel side information at the transmitter and

receiver, and at the receiver alone. In [101], it is shown that the use of multiple

antennas increase the achievable rates on fading channels if the channel parameters

can be estimated at the receiver and if the path gain between different antenna

pairs behave independently. The secrecy capacity of the slow fading channel was

characterized in [13] and one of the interesting results is that, a non-zero perfectly
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secure rate is achievable in the fading channel even when the eavesdropper is more

capable than the legitimate receiver. In [10], two legitimate partners communicate

over a quasi-static fading channel and an eavesdropper observes their transmission

through another independent quasi-static fading channel. The authors in [10]

defined the secrecy capacity in terms of outage probability and provide a complete

characterization of the maximum transmission rate at which the eavesdropper is

unable to decode any information.

In this Chapter, it is assumed that two legitimate parties (Alice and Bob) communi-

cate in the presence of a friendly jammer and an eavesdropper (Eve) over Rayleigh

or Rician fading channels. It is also assumed that the eavesdropper is passive

whereas the jammer injects interference in the eavesdropper channel in the form of

additive noise. We consider transmissions over a bank of parallel fading channels

so that the results are also applicable to orthogonal frequency division multiplexing

(OFDM) systems. By assuming that the friendly jammer adopts particular power

allocation policies, the goal of the work is to evaluate average secrecy rates that

can be achieved over Rayleigh or Rician fading , with independent or correlated

sub-channels.

This Chapter is organized as follows: In Section 5.2, we present the system model

and the problem formulation. Section 5.3 presents a brief description of fading

models for wireless communications. The gain in secrecy rates caused by the

presence of a friendly jammer for both cases when sub-channels are independent

and correlated is described in section 5.4. In Section 5.5, numerical results describe

the tradeoff between transmitter and jamming power under a total power constraint.

In Section 5.6, we summarize the main contributions of this Chapter.

5.2 Problem formulation

We consider communications over a bank of parallel fading channels where a legit-

imate user, Alice, tries to communicate with another legitimate user, Bob, in the

presence of an eavesdropper and a friendly jammer that interferes only with the

eavesdropper channel (see Figure 5.1). Note that this represents a simplification of

typical wireless communications systems where, due to the characteristics of wireless

propagation, the jammer would introduce interference in both the main and the
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eavesdropper channels. The justification for the validity of such assumptions has

already been put forth in Chapters 3 and 4.
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Figure 5.1: Parallel Gaussian wiretap channel model with a friendly jammer.

We assume that Alice wishes to convey to Bob the vector of symbols xt(l) ∈ ℂ
n at

time l, where n represents the number of parallel sub-channels. The output of the

main channel at time l is represented as:

ym(l) = Λm(l)xt(l) + nm(l) (5.1)

and the output of the eavesdropper channel at time l is represented as:

ye(l) = Λe(l)xt(l) + ne(l) +Λje(l)xj(l), (5.2)

where ym(l) ∈ ℂ
n and ye(l) ∈ ℂ

n represent the vectors of complex received symbols

at the output of the main and eavesdropper channels, respectively, nm(l) ∈ ℂn and

ne(l) ∈ ℂn are independent and identically distributed (i.i.d.) circularly symmetric

complex Gaussian random vectors with zero mean and identity covariance matrix

and:

Λm(l) = diag (�m1
(l), �m2

(l), . . . , �mn
(l)) (5.3)

Λe(l) = diag (�e1(l), �e2(l), . . . , �en(l)) (5.4)

Λje(l) = diag (�je1(l), �je2(l), . . . , �jen(l)) (5.5)
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i.e., Λm(l),Λe(l),Λje(l) ∈ ℂn×n are diagonal matrices that contain the complex

gains of the parallel sub-channels associated with the main, eavesdropper and

jammer channels, respectively.

We take the main sub-channels, the eavesdropper sub-channels and the jammer

sub-channels to be quasi-static fading, so that Λm(l),Λe(l) and Λje(l) remain fixed

during the entire transmission frame l = 1, 2, ...,M . Therefore, we omit the time

index l for simplicity in the sequel. We also take the sub-channel fading coefficients

in the main, eavesdropper and jammer channels to be particular realizations of

Rayleigh or Rician channels. In addition, as in previous Chapters, we assume that

the exact channel state is known to the transmitter, the receiver, the eavesdropper

and the jammer.

The objective of this work is to evaluate the achievable average secrecy rate over

a bank of parallel fading channels in the presence of friendly jamming under the

different fading regimes. We assume that the transmitter and the friendly jammer

send independent zero-mean Gaussian symbols over the different sub-channels, so

that Σx = E[xtx
†
t ] = diag(�x1

, . . . , �xn
) and Σj = E[xjx

†
j ] = diag(�j1 , . . . , �jn)

where �xi
is the power of the data-bearing signal transmitted on the i-th sub-

channel and �ji is the power of the jamming signal introduced on the i-th sub-

channel, and we assume that the transmitter and the jammer satisfy the power

constraints
∑n

i=1 �xi
≤ P and

∑n
i=1 �ji ≤ Pj, respectively. An achievable average

secrecy rate in this scenario is given by:

R̄s = E

[
max
�ji

Rs

(
�j1 . . . �jn

)]
, (5.6)

where the expectation is with respect to the fading statistics of the sub-channels

and

Rs(�j1 . . . �jn) =

n∑

i=1

[
log
(
1 + �xi

∣�mi
∣2
)
− log

(
1 +

�xi
∣�ei∣2

1 + �ji ∣�jei∣2
)]+

(5.7)

with [z]+ =max(0, z).

Note that, the friendly jammer power allocation policy that maximizes the achiev-

able secrecy rate in (5.7) for fixed channel realizations has been solved in Chapter

4 under a total jammer power constraints (see also [102, 103]).
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In particular, recall that we have posed the optimization problem:

max
�ji

,i=1,..,n
Rs

(
�j1 . . . �jn

)
(5.8)

subject to the constraints:

n∑

i=1

�ji ≤ Pj, and �ji ≥ 0, i = 1, . . . , n (5.9)

This work capitalizes on such a characterization of the optimal jammer power

allocation policy to study the achievable average secrecy rate in (5.6) under different

fading scenarios.

5.3 Fading environment

The wireless channel environment governs the performance of wireless communi-

cation systems and ’fading’ is a unique characteristic in a wireless channel. In

general, the wireless environment for any wireless channel in either an indoor or

outdoor scenario may be subject to LOS or NLOS transmission [104]. Figure 5.2

illustrates the difference between LOS and NLOS.

The received signal distribution in a LOS environment typically follows a Rician

distribution, while that in the NLOS environment follows the Rayleigh distribution.

In Rayleigh fading, there is no dominant component to the scatter (LOS), so such

process has zero mean. Rician fading occurs when one of the paths, typically a

LOS, is much stronger than the others, so that the mean of the random process will

no longer be zero, varying instead around the power-level of the dominant path.

The received signal in the propagation environment for a wireless channel can be

considered as the sum of the received signals from an infinite number of scatters

which can be represented by a Gaussian random variable due to the central limit

theorem [104]. This justifies the modelling assumptions invoked in the sequel.
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Figure 5.2: (a)Non light of sight environment (b) Light of sight environment.

5.4 Effect of a friendly jammer on the secrecy gain with

Rayleigh and Rician fading

In this section, we study the effect of a friendly jammer on the secrecy gain with

Rayleigh and Rician fading. We characterize the achievable average secrecy rate in

the scenarios where:

1. the jammer sub-channels are Rayleigh, such that �jei are zero-mean complex

Gaussian variables, i.e., �jei ∼ CN (0, �je), i = 1, . . . , n, where �je = E[∣�jei∣2]
is the average power gain of the various jammer sub-channels;

2. the jammer sub-channels are Rician, so that �jei ∼ CN
(√

K�je
1+K

,
�je
1+K

)
, i =

1, ..., n, where �je = E[∣�jei∣2] is the average power gain of the various jammer

sub-channels.

The main and the eavesdropper sub-channels are all assumed to be Rayleigh so

that

�mi
∼ CN (0, �m), i = 1, . . . , n (5.10)

where �m = E[∣�mi
∣2] and

�ei ∼ CN (0, �e), i = 1, . . . , n (5.11)
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where �e = E[∣�ei ∣2].

We also characterize the achievable average secrecy rate in scenarios where:

1. the fading across the sub-channels are independent, so that the complex Gaus-

sian random variables corresponding to gains of different main, eavesdropper

and jammer sub-channels are independent;

2. the fading across the sub-channels are correlated, so that the complex Gaus-

sian random variables corresponding to gains of different main, eavesdropper

and jammer sub-channels are correlated.

5.4.1 Sub-channels correlation

We model correlation across sub-channels by considering OFDM transmissions

where the duration of the CP is a fraction � of the OFDM symbol duration nTs, over

a frequency selective (dispersive) channel with exponentially decaying PDP, where,

a block is modeled with n serial data symbols, each of duration Ts. We denote by

ℎ(mTs), m = 0, 1, . . . , L−1, the time domain CIR of the time dispersive (frequency

selective) channel. We assume that - by proper system design - the length of LTs

of the CIR is LTs ≤ �nTs, the OFDM system becomes equivalent to n flat fading

parallel channels with gains that are given by the n-size Fourier transform of the

samples of the CIR, that is the channel frequency response [50], namely:

g(kF ) =
1√
n

L−1∑

m=0

ℎ(mTs)e
−j2�mTskF =

1√
n

L−1∑

m=0

ℎ(mTs)e
−j2�mk/n, k = 0, . . . , n−1.

(5.12)

where the channel frequency F equals to k/n cycles per sample.

Note that, we have used the multiplying factor 1√
n
so that ℎ(mTs) and g(kF ) have

the same energy.

Consider the fact that the CIR is a random quantity and, in particularl, each value

ℎ(mTs) for m = 0, . . . , L− 1 is a complex random variable that is associated with

a particular reflection of the transmitted signal. Assume that the different random

variables ℎ(mTs) are independent, complex Gaussian random variables with zero

mean and different variances, E[∣ℎ(mTs)∣2] = PDP (m), m = 0, . . . , L − 1. We

call the function PDP (m) the power delay profile of the channel.
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Then, the statistical power of the independent gains corresponding to the L different

paths in the CIR is given by [105]:

PDP (m) = �e−
m
� , m = 0, . . . , L− 1, (5.13)

where, �, � > 0 determine the decay rate and average power gain of the channel

respectively.

By expressing the relationship between the CIR ℎ(mTs) and the frequency response

g(kF ) in matrix form, it is possible to determine the correlation among the sub-

channel gains g(kF ) in terms of PDP . In particular, we collect the samples of the

CIR in n× 1 column vector as:

h =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ℎ(0)

ℎ(Ts)
...

ℎ((L− 1)Ts)

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.14)

and the samples of the channel frequency response in the n× 1 column vector as:

g =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

g(0)

g(F )
...
...

g((n− 1)F )

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5.15)

The relationship between g and h can now be expressed as follows

g = Fh (5.16)

in which, F is n-size Fourier matrix whose entry in the k-th row, m-th column is

[F ]km = 1√
n
e−j2�(k−1)(m−1)/n. Then the covariance matrix of the sub-channel gains

will be simply given by:

Σg = E[gg†] = FΣhF
†, (5.17)
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where

Σℎ = E[hh†] = diag(PDP (0), . . . , PDP (L− 1), 0, . . . , 0) (5.18)

So it is possible to retrieve directly from (5.17) the correlation between any two

sub-channel gains.

In the following sections we will analyze the effect of friendly jamming under

Rayleigh and Rician fading. We consider a 64× 64 parallel fading wiretap channel

with � = 1
4
, L = 13, � = 2 and � is chosen according to the average power gain

of the channel. Therefore, the duration of the CP which is equal to 16 Ts is larger

than the duration of the CIR which is equal to 13 Ts, so that ISI and ICI do not

arise.

5.4.2 Achievable average secrecy rates over Rayleigh fading

We now consider the gain in the achievable secrecy rates due to the presence of

a friendly jammer, for the case where sub-channels are independent and Rayleigh

fading.

Figure 5.3 shows the value of the achieved average secrecy rate vs. the transmit-

ter available power P when the various sub-channels are subject to independent

Rayleigh fading. In particular, we set Pj = 5 and the average power gains of the

main, eavesdropper and jammer channels to be the same, i.e., �m = �e = �je = 1.

We consider three different power allocation policies. In particular, we analyze the

scenario where, i) the transmitter adopts the power allocation scheme that achieves

the secrecy capacity without the presence of a friendly jammer for each sub-channels

realizations [83]; ii) the jammer distributes its power equally across all the sub-

channels; and iii) the jammer and the transmitter optimize their power allocation

policies according to the proposed iterative procedure (Algorithm 2, Chapter 4)

to maximize the secrecy rate for each sub-channels realizations. We can clearly

observe the increase in the achievable average secrecy rates due to the presence of

the friendly jammer.

Figure 5.4 shows the average secrecy rate obtained over independent and correlated

Rayleigh fading channels vs. the transmitter available power P . We also set Pj = 5

and consider the cases where: (i) the jammer and the transmitter optimize their

power allocation policies according to the proposed iterative way (Algorithm 2,
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Figure 5.3: Achievable average secrecy rate R̄s vs. P for Pj = 5, when the

transmitter, eavesdropper and jammer channel are subject to independent Rayleigh

fading for the different power allocation strategies. �m = �e = �je = 1.

Chapter 4) and (ii) the transmitter optimize its power allocation policy assuming

equal jammer power allocation for each sub-channels in order to maximize the

secrecy rate for each sub-channels realizations. We consider three different channel

configurations, corresponding to different relations between the average power gain

of the main, eavesdropper and jammer channels which are: a) the transmitter

average power gain is 15 times larger than the eavesdropper and the jammer average

power gains, i.e., �m = 15, �e = 1 and �je = 1; b) the transmitter, eavesdropper

and jammer average power gains are same, i.e., �m = �e = �je = 1; and c) the

eavesdropper average power gain is 15 times larger than the transmitter and the

jammer average power gain, i.e., �e = 15, �m = 1 and �je = 1.

We observe, in Figure 5.4, that the achieved average secrecy rate obtained with

correlated sub-channels is less than the achieved average secrecy rate for the case of

independent sub-channels. This fact can be explained by noting that independent

sub-channels provide a higher level of diversity to be exploited to guarantee favor-

able channel realizations for the legitimate receiver. It turns out that the relative

loss due to the presence of sub-channels correlation is higher when the eavesdropper

channel average power gain is much better than the main channel average power

gain (see in Figure 5.4:(c)).
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5.4.3 Achievable average secrecy rates over Rician fading

We consider the gain in the achievable secrecy rates due to the presence of a line-of-

sight channel for the jammer, for both the cases when sub-channels are independent

and correlated.

Figure 5.5 and Figure 5.6 also show the value of the achieved average secrecy rate

vs. the transmitter available power P when the various sub-channels are subject

to independent or correlated fading, the main and eavesdropper sub-channels are

subject to Rayleigh fading, and the jammer sub-channels are subject to Rayleigh or

Rician fading. We also set Pj = 5 and consider the cases where: i) the jammer and

the transmitter optimize their power allocation policies according to the proposed

iterative algorithm (Algorithm 2, Chapter 4) and (ii) the transmitter optimizes its

power allocation strategy assuming equal jammer power allocation for each sub-

channels in order to maximize the secrecy rate for each sub-channels realizations.

We also consider the previous channel configurations corresponding to the different

relations between the average power gain of the main, eavesdropper and jammer

channel, which are: a) �m = 15, �e = 1 and �je = 1; b) �m = �e = �je = 1; and c)

�e = 15, �m = 1 and �je = 1.

Figure 5.5 depicts the case in which sub-channels are independent, whereas in Figure

5.6 sub-channels are correlated. In both cases, it is clear that the gain of the

achievable secrecy rates is higher when the friendly jammer channel is Rician than

when the friendly jammer channel is Rayleigh. This result relates to the fact that the

jammer can benefit from the LOS component present in the Rician fading model to

impair the eavesdropper in a more efficient manner. It is also clear that the relative

loss due to the presence of sub-channels correlation is higher when the eavesdropper

channel average power gain is much better than the main channel average power

gain.

5.5 Fixed total power budget

It is also interesting to analyze the scenario where there is a fixed power budget to

be distributed between the transmitter and the jammer. This could have various

implications for wireless network operators that intend to use jammers to augment
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the security of their network, but yet have a certain budget power to be shared

between the transmitter (e.g. a base station) and the deployed jammers.

We analyze numerical results for the case of Rayleigh and Rician fading with

independent sub-channels6, with a total power budget of 5 to be distributed between

the transmitter and the jammer (i.e., Pj = 5 − P ). We restrict the analysis to the

case where the transmitter uses the power allocation policy that maximizes the

instantaneous secrecy capacity for each sub-channels realizations (see [83]) whereas

the jammer uses the power allocation policy embodied in the optimization problem

in (5.8) also for each sub-channels realizations.

The fraction of power devoted to data transmission and the one for jamming are

determined in order to maximize the achievable average secrecy rate. This way,

we want to provide some insight on which amount of the total available power

should be devoted to the friendly jammer for the different channel scenarios under

consideration.

Figure 5.7, Figure 5.8, Figure 5.9 and Figure 5.10 show the optimal value of the

power that should be allocated to the transmitter considering different relations

between the average power gain of the main and eavesdropper sub-channels, for

various average power gains of the jammer sub-channels: in Figure 5.7 and Figure

5.8, the average power gains of the main and the eavesdropper sub-channels are

equal, i.e., �m = �e; whereas in Figure 5.9 and Figure 5.10, the average power

gains of the main sub-channels are 15 times higher than those of the eavesdropper

channel, i.e., �m = 15 �e. For both cases the main and the eavesdropper sub-

channels are subject to Rayleigh fading, and the jammer sub-channels are subject

to either Rayleigh or Rician fading . We also consider the case where the average

power gains of the eavesdropper sub-channels are 15 times higher than those of the

main sub-channels, i.e., �e = 15 �m. But since in this case, higher fraction of the

available power of the jammer is allocated to the eavesdropper channel to decrease

the eavesdropper channel quality, the secrecy rate is not sufficiently increase and

for this reason, we did not put any figure related this case.

It is clear that, when the transmitter / eavesdropper average power gain is low, there

is less opportunity to effectively jam the eavesdropper: in fact, we can observe a

6Numerical results with correlated sub-channels show the same trends that are observed in the

case of independent Rayleigh and Rician fading.
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phase transition point that determines whether or not it is relevant to allocate any

power for the jammer to jam the eavesdropper. In contrast, when the average power

gain of the transmitter / eavesdropper is higher, we should allocate more power to

the jammer in order to increase the secrecy rate. It is possible to observe identical

trends in both cases when the average power gains at the main and eavesdropper

channels are balanced or when the main channel enjoys a clear advantage. As

expected, in this last case, a higher fraction of the available power is allocated to

the transmitter, because further decreasing the quality of the eavesdropper channel

via jamming does not result in a significant increase of the secrecy rate.

To conclude, when the transmitter channel average power gain is higher than the

eavesdropper channel average power gain, the transmitter can leverage its advantage

over the eavesdropper to obtain a positive average secrecy rate. On the other hand,

when the eavesdropper channel average power gain is higher than the transmitter

channel average power gain, positive secrecy rates are obtained with the help of

friendly jamming.

5.6 Conclusion

We have studied the performance of transmitter / jammer power allocation strate-

gies for secure communication over a bank of parallel, quasi-static fading channels

in the presence of an eavesdropper and a friendly jammer. We characterized the

effect of the optimal jammer power allocation policy, for any fixed transmitter power

allocation policy over Rayleigh or Rician fading scenarios. The results demonstrate

the increase in the average achievable secrecy rate obtained with friendly jamming.

The achieved average secrecy rate is higher for independent sub-channels than

when sub-channels are correlated. On the other hand, higher secrecy rates can

be achieved when the channel from the friendly jammer to the eavesdropper is

Rician with respect to the case of Rayleigh fading. We have also highlighted

the loss due to correlation among the sub-channels in different fading scenarios:

correlation has the most detrimental effect when the eavesdropper enjoys better

channel conditions than the legitimate parties. We also investigated the distribution

of power between the transmitter and the jammer, when there is a fixed total power

budget. Overall, these results showcase the efficacy of friendly jamming for OFDM

type of communications systems in various operating regimes.
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Figure 5.4: Achievable average secrecy rate R̄s vs. P for Pj = 5. The

transmitter, eavesdropper and jammer channels are subject to independent or

correlated Rayleigh fading for different average power gains, when (i) the jammer

and the transmitter optimize their power allocation policies according to the

proposed iterative way and (ii) isotropic jamming, where, (a) �m = 15, �e = 1

and �je = 1; (b) �m = �e = �je = 1; and (c) �e = 15, �m = 1 and �je = 1.
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Figure 5.5: Achievable average secrecy rate R̄s vs. P for Pj = 5. The

transmitter and eavesdropper channels are subject to correlated Rayleigh fading and

jammer channel is subject to independent Rayleigh or Rician fading for different

average power gains, when (i) the jammer and the transmitter optimize their

power allocation policies according to the proposed iterative way and (ii) isotropic

jamming, where, (a) �m = 15, �e = 1 and �je = 1; (b) �m = �e = �je = 1; and (c)

�e = 15, �m = 1 and �je = 1.
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Figure 5.6: Achievable average secrecy rate R̄s vs. P for Pj = 5. The transmitter

and eavesdropper channels are subject to correlated Rayleigh fading and jammer

channel is subject to correlated Rayleigh or Rician fading for different average power

gains, when (i) the jammer and the transmitter optimize their power allocation

policies according to the proposed iterative way and (ii) isotropic jamming, where,

(a) �m = 15, �e = 1 and �je = 1; (b) �m = �e = �je = 1; and (c) �e = 15, �m = 1 and

�je = 1.
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Figure 5.7: Optimal transmitter power vs. average power gains of the channels when

sub-channels are independent and the transmitter and the eavesdropper channels

are Rayleigh and the jammer channel is also Rayleigh for �m = �e. Total power

budget of P + Pj = 5
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Figure 5.8: Optimal transmitter power vs. average power gains of the channels when

sub-channels are independent and the transmitter and the eavesdropper channels

are Rayleigh and jammer channel is Rician for �m = �e. Total power budget of

P + Pj = 5
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Figure 5.9: Optimal transmitter power vs. average power gains of the channels

when sub-channels are independent and the transmitter and the eavesdropper are

Rayleigh and the jammer channel is also Rayleigh for �m = 15 �e. Total power

budget of P + Pj = 5
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Figure 5.10: Optimal transmitter power vs. average power gains of the channels

when sub-channels are independent and the transmitter and the eavesdropper are

Rayleigh and the jammer channel is Rician for �m = 15 �e. Total power budget of

P + Pj = 5
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Chapter 6

Concluding Remarks

This thesis has been concerned with the design of physical layer transmission

schemes that aim to improve the reliability and security of data conveyed over the

wireless medium. In particular, by capitalizing on an explicit information-theoretic

characterization of achievable secrecy rates, we determine optimal power allocation

strategies that a legitimate transmitter with / without a friendly jammer can use

to mitigate any external risks of breaking the physical security of the transmission.

Further, we provide characterizations of the optimal power allocation policies of a

friendly / an unfriendly, who can be used to help / deteriorate the security of the

legitimate parties.

This study has been carried out in the context of parallel Gaussian wiretap channels

with friendly or unfriendly jammers, which can act as a model for the widely used

OFDM communications systems.

By adopting tools of game theory, together with the information-theoretic charac-

terization of the achievable secrecy rates, it has been possible to determine the

power allocation policies for systems where the legitimate parties communicate

in the presence of an eavesdropper and an unfriendly jammer. On the other

hand, by adopting tools from optimization theory, it has also been possible to

determine the power allocation policies for the scenario where the legitimate parties

communicate in the presence of an eavesdropper and a friendly jammer. Such

a study has then unveiled the secrecy gains that transmitters that adapt to the

jammer power allocation policy experience over transmitters that do not perform

such an adaptation.

In addition, through the application of the developed power allocation algorithms
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to a concrete situations associated with the transmission of OFDM signals through

a wireless channel in the presence of an eavesdropper and a friendly jammer,

the thesis has also unveiled the set of average achievable secrecy rates in various

fading scenarios: in the presence of Rayleigh or Rician fading, and independent or

correlated fading across the sub-channels. This study can then act as a basis to

gauge the achievable secrecy rate associated with a range of practical OFDM based

communications systems.

Overall, the main contributions of the PhD thesis are as follows:

1. In the first part we have used game theoretic tools to devise optimal power

allocation strategies for parallel Gaussian wiretap channel in the presence of

unfriendly jamming, where, the jammer intends to minimize the achievable

secrecy rate whereas the transmitter aims to maximize the achievable secrecy

rate. We have introduced a game-theoretic formulation of a zero-sum power

allocation game between transmitter and the unfriendly jammer when the

payoff function is an achievable secrecy rate. We have provided a proof of the

existence of a Nash equilibrium of the zero-sum game. We have characterized

the optimal transmission and jamming power allocation strategies for the

game, which have also been specialized for key asymptotic regimes to shed

further insight. Our results show a transmitter that adapts to the jammer

strategy, can experience a much higher secrecy rate than a non-adaptive

transmitter.

2. In the second part we have introduced algorithms to devise optimal power

policies for parallel Gaussian wiretap channel in the presence of friendly jam-

ming, i.e., in this scenario, the jammer aims to help the legitimate parties to

increase the secrecy rate by introducing more interference in the eavesdropper

channel. In particular, we have introduced algorithms - that stem directly

from a formulation of the power allocation optimization problem and its

solution - to compute the optimal (or a nearly optimal) power allocation

policy for the jammer both in degraded and non-degraded scenarios. We have

also introduced an algorithm to compute a joint power allocation policy both

for the transmitter and the jammer that leads to significant performance gains

in relation to isotropic jamming. Simulation results demonstrate that these

algorithms can lead to significant secrecy rate gains in comparison to other

power allocation approaches.

108



Chapter 6-Concluding Remarks

3. The third mains contribution builds upon the second contribution of the

thesis contributions to study the impact of power allocation policies in OFDM

communications system in the presence of quasi-static fading. In this part,

we investigate the achievable average secrecy rate in parallel fading wiretap

channels subject to Rayleigh and Rician fading. In particular, we study

the impact that the presence of absence of LOS components have on the

average achievable secrecy rate. We also study the impact that the presence of

absence of fading correlation across the sub-channels have on such an average

achievable secrecy rate. Moreover, we also investigate the tradeoff between the

transmission power and the jamming power when there is a fixed total power

budget. The results demonstrate the increase in the achievable average secrecy

rate obtained with friendly jamming. The achieved average secrecy rate is

higher for independent sub-channels than when sub-channels are correlated.

On the other hand, higher secrecy rates can be achieved when the channel

from the friendly jammer to the eavesdropper is Rician with respect to the

case of Rayleigh fading. We have also highlighted the loss due to correlation

among the sub-channels in different fading scenarios: correlation has the most

detrimental effect when the eavesdropper enjoys better channel conditions

than the legitimate parties.

6.1 Recommendations for future research

The research work carried out in this thesis also opens various directions for future

research:

∙ This thesis has concentrated primarily on scenarios where the unfriendly jam-

mer interferes only with the main channel and the friendly jammer interferes

only with the eavesdropper channel. This can be justified in situations where

the jammer can position himself to be much closer to one of the parties or

the jammer can collude with one of the parties. However, in view of the

broadcast characteristics of the wireless propagation channel, it may also

be relevant to consider scenarios where the jammer (unfriendly or friendly)

interferes both with the main and the eavesdropper channel in order to imbue

the formulations with further realism. This may lead to game-theoretic or

optimization formulations where desired convexity or concavity properties are
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lost, hence more difficult to tackle.

∙ This thesis has also concentrated primarily on scenarios where the channel

states are known to all the parties, i.e. the legitimate transmitter and re-

ceiver, the eavesdropper and the jammer. This assumption can be justified

in some scenarios, e.g. when the entities are members of a wireless network.

However, it would also be relevant to relax this assumption in order to consider

situations where some of the parties do not have access to the exact channel

state but only to the distribution of the channel instead.

∙ It has been assumed throughout that the legitimate transmitter uses Gaussian

signalling to convey information to the legitimate receiver where as the jammer

uses Gaussian noise to interfere with the transmissions. One of the advantages

of such a formulation is associated with the existence of closed form and

tractable expressions for an achievable secrecy rate. Clearly, by relaxing such

assumptions it may be possible to conceive strategies that lead to additional

secrecy gains.

∙ Finally, and in addition to the quasi-static fading channel model, it may also

be instructive to examine scenarios where the channels experience block fading

or ergodic fading.

∙ The generalization of the work to these various settings may lead to a deeper

understanding of the potential of OFDM to secure wireless communications

both in the presence of friendly or unfriendly jamming.
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