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Abstract of Thesis Presented to the Graduate School of the
University of Florida in Partial Fulfillment of the
Requirements for the Degree of Master of Engineering
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by
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December 1986
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Cochairman: Dr. Marc I. Hoit
Major Department: Civil Engineering

Structural optimization generally involves a two-stage
procedure that in most cases is a repetitive one. It
includes in succession an analysis and then a design
optimization. The configuration described here is a closed
form where the two phases are integrated, avoiding their
separation and the consequent cycling. It creates a general
technique valid for all structures submitted to external
1oadings;

The proposed method is based on the theoretical
formulation of the Augmented Lagrangian function using
updated lagrangian multipliers. The compatibility equations
are handled as equality constraints. The limits of the
global displacements are represented by a group of
inequality constraints. The function to be minimized

is the volume of the structure, while satisfying all



the constraints that are previously imposed to the
behavior of the structure.

To examine the performance of the method, some simple
structures were tested. The results are presented,
discussed and analysed. The principal conclusion is that
the method has promising future applications and

enhancements that will improve the efficiency of structural

Ll
;l/’//. ".é’ ¢ nt )

optimization.

Chairman
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CHAPTER 1

STRUCTURAL OPTIMIZATION

1.1 Overview of Structural Optimization

The structural design activity is a multifaceted task,
with knowledge requirements in a number of tachnical areas.
The design process must be guided by clearly defined
objectives. They can be simple ones, like cost,
reliability, and weight or it can be a combination of these.
These objectives can be a function of the design variables
as well as of the behavior constraints like stresses or
displacements. These constraints generally have the form of
equalities, inequalities or limits for the variables. The
whole of these conditions, in a explicit formulation,
creates what is called a structural optimization problem.
With an implicit formulation, it is recognized as an
analysis question that the designer must solve based upon
information resulting from his design experiences.

The common design methodology for the implicit
formulation involves numerous tedious computations. This is

due to the fact that the adequacy of the cross sections can



only be confirmed after a structural analysis of an assumed
model is performed. Generally, an experienced designer is
essential to the process or the final design will be an
oversized structure. To overcome these problems, research

has been pursued on the explicit formulation of the design.

1.2 Structural Optimization Examples

There are two major types of problems in structural
design where optimization is used, each requiring a
different method of solution. The first type is the
optimization of the basic elements of a structure on an
uncoupled basis. An example of this type is the
optimization of the reinforcing steel of a concrete beam
[{ll. The second is the search for the optimal global
configuration or sizing of the basic elements of the
structure. A commonly used model of this second type of
problems is the planar trusses, where the goal is to find
the optimal bar sizes [2].

It is possible to implement methods on small computers
that can address the first problem. The result is a
computer program that is easy to use. It requires as much
data as the designer would have to know in a traditional
implicit design. Fast and accurate designs may be obtained,
because shortcuts can be implemented as a consequence of the

specific nature of the problem. These programs generally
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obtain a design required to be efficient, capable of
withstanding the external forces, which complies with the
applicable codes and other designing limitations such as the
possibility of being executed. These requirements are
generally postulated within a numerical optimization
framework. This framework leads to the minimization of an
objective function while satisfying a set of algebraic
functional constraints. The advantage of using an explicit
formulatioﬁ in element design methods lies in the ability
to produce the desired information simply and rapidly. The
main disadvantage is the assumption that the structure and
element behaviors are uncoupled, which cannot be validated
for most structural designs.

Considering the second type of optimization problem, one
of the most studied areas is truss design. The commonly
used objective function is the minimum weight, assuming that
the cost of the truss is proportional to its weight. The
explicit design problem consists of finding the optimal
cross section area for each truss member. The constraints
may represent design limitations such as bounds on member
sizes or behavior requirements like allowable stresses and
displacements. This must be achieved while satisfying the
equilibrium and compatibility conditions. The conventional
truss design method is extended to an explicit design
problem by resizing the bars through the use of optimization

methods. The size of the problem is sometimes reduced by a



technique called variable linking, consisting of making
linear combinations of the design variables. A constraint
deletion may also be used to reduce the problem size when
avoiding noncritical constraints during the future iteration
cycles [3].

Another highly researched problem of the second type is
in the area of rigid frames. The iterative process of
analyzing an initially assumed design, member resizing and
reanalysis has been used successfully. However, it has
required many simplifying assumptions that restrain the
general application. One common approach is to extract the
resulting member forces from a standard analysis. These
forces are then used in a separate optimization step where
the elements are designed and resized independently of the
structure. This method uses the global structure to
distribute the member forces and then an uncoupled approach
to optimize the particular element [4].

Another area where the explicit formulation of the
design problem is useful is the optimization of the
topologic configuration. Methods have been studied where
the most economical geometric form is a function of the
number of bays, spans, frames and frame spacings. They are
identified in order to satisfy the requireménts of floor
area, site dimensions, useable headroom, existence of

internal columns, and other architectural demands [5].
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1.3 Optimization Techniques in Structural Analysis

1.3.1 General Problem Formulation

The general mathematical statement formulating an

optimization problem in structural design is

Minimize ( or Maximize ) f(x)
X = (xl,xz,....,xn)
Subject to GRS (X ECE O SR S =17
hk(x) = O TP R = N D
x>0

The objective function is f and depends on the design
variable vector x. It represents some chosen criterion of
merit of the design which may be cost, efficiency, benefit,
etc.. The gj'inequalities and the hk equalities are the
constraints with the vector x as an argument. In the case
of structural element design, the vector x may represent the
configuration of the element, such as bar areas, depths, bar
spacings, etc. The constraints gj are the expression
defining the upper and lower bounds of stresses, dimensions
of the structural elements, deflections, or other limiting
code provisions. These constraints are generally highly

nonlinear. The constraints hk are the definition of binding
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values for the design variables, obliging the design vector

to satisfy the equality constraints [6].

1.3.2 Search Methods

These optimization approaches are based on the
presumption that there is no information about the optimum.
They explore the behavior of the objective function and
constraints, and sometimes the functional derivatives, when
different design points are tested in order to reach the
optimal point. These methods always involve a reanalysis of
the structure after an optimization cycle. The cycle is
repeated until an optimal solution is obtained.

The penalty function method is the most robust for
solving the constrained problem as a sequence of
unconstrained optimizations. This method uses a penalty
parameter, p, that multiplies the constraints violations.
These factored constraints are then added to the objective
function, f, in such a way that a violation of any
constraint leads to a very high value of the augmented
objective function. Unconstrained optimization is then used
to find a minimum of the augmented objective function for a
particular value of p. Then p is updated such that when the
unconstrained optimization is repeated, the objective
function value is reduced as well as any constraint

violations. The optimal solution will satisfy the original
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constraints and approximate the minimum of f. Several
techniques are dirsctly based on this formulation such as
the interior penalty function and the exterior penalty
function. Both present discontinuities near the
constraints. Various attempts have been made to minimize
this problem of discontinuities such as the extended linear
and quadratic penalty functions formulations [7].

Another common method involves using the gradient of the
objective function. The methods using gradients may achieve
considerable enhancement if the derivatives of the equality
constraints,supported by the stiffness matrix, are easy to
obtain, 1ike_in truss bars. 1In the case of a frame element,
additional effort is required since first moments and areas
in the stiffness matrix are themselves some function of the
design variables. Also, the gradients of the constraints
require the intermediate calculation of the gradient of the
displacement with respect to the design variables, since
most of the constraints are directly related to the
displacements. Several methods emerged from the use of the
gradients like the conjugate gradient method and the
variable metric method, widely used in some recent
algorithms [6].

A great improvement in search methods can be achieved
through the use of the derivatives of the constraint
functions with respect to the design variables. This is

called design sensitivity analysis and is very useful



because it gives information of the constraint behavior
during the search method. Several approaches have been
used: behavior space, design space and virtual load [1].
They all give the same results,'but have different
generality and efficiency. The behavior space approach
creates an adjoint relationship to express the effect of the
changes in the displacement vector in terms of the variation
of the design variables. The design space approach assumes
that the dépendent behavior variables, displacements, are
expressed in terms of the independent design variables. The
virtual load approach is formulated identically to the
design space approach, but uses a virtual load to simplify

the related calculations [2].

1.3.3 Optimality Criteria Methods

These methods try to establish conditions for the
unigueness of-the solution at the beginning of the process.
These conditions characterize the optimum of a problem and
distinguish it from all other possible solutions. The
methods then attempt to devise a scheme which iteratively
satisfies the optimality criteria conditions while searching
for the optimum. These methods have two problems: £irs N
most cases there is no absolute criterion to distinguish a
global optimum from any other local optimum ; second, the

resizing schemes (based on the optimality criteria) are only



approximate and need careful programming to yield good
results [8]. The Kuhn-Tucker conditions are often used to
define the optimality criteria. They introduce a new type
of variables, uj, called the lagrangian multipliers.
Although the size of the problem increases, this formulation
is advantageous because it creates helpful requirements and
information about the optimum [9]. Considering a nonlinear
programming problem, the optimality conditions assure that

X is an optimal point if : -

grad f£(x) - Sumj (Ej grad gj(g)) - Sum (v, grad h (x)) =0

gj(§)20 j=l,...,m
b, (x) = 0 Joy =01 SRty
B gj(g) = 0 j=1l,ec..,m
u'_>_0 k=l,.o--'l

This equation shows that the gradients of the
constraints multiplied by the respective adeguate lagrangian
multipliers will form a linear combination that will nullify
the gradient of the objective function. The other equations
represent the conditions requiring feasibility and zero
values for the lagrangian multipliers for which the

inequality constraints are not binding ( gj <E0NR),
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1.3.4 Description of Structural Examples

In trusses, the number of variables and constraints is
very large. However, the regular mathematical structure of
the problem can be used as an advantage in using simpler
methods. The objective function is linearly dependent on
the design variables, but the constraints are nonlinear.

The dual problem is the one that can be defined in
association with the initial problem (also designated as
primal). The important feature of this association is that
a solution to one is a solution to the other. Considering
the dual, the problem can be mapped into another space where
the objective function is nonlinear and the constraints are
linear [10]. This problem may be solved by making a
sequence of linear approximations to the nonlinear objective
function, which are solved by linear programming methods.

It must be emphasized that these methods are simply
numerical search methods which make no assumptions about the
nature of the optimum.

The optimum rigid plastic design of frames may also be
mapped in a problem of linear programming. This has the
coqsiderable advantage that very large problems can be
sélved quickly and efficiently. However, the formulation of
the linear programming model may be difficult since all
possible collapse mechanisms must be known and analysed.

For large frames, the number of these mechanisms can be very
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large. Some research has been done in order to make full
use of the duality between the static and kinematic theorems
of plasticity, trying to minimize the correspondent
formulation effort [11].

Optimal design of elastic frames leads to an
optimization problem similar to that of a truss-sizing.
However, members with flexural and axial loads do not easily
map into the dual problem. One popular method finds the
optimum design by using the virtual load method to formulate
displacement constraints and a force matrix approach to
reduce the problem size. This method still generates a
nonlinear objective function with linear constraints. In
order to solve the problem, direct search methods are
required. Some of the direct methods that have been used
are feasible directions, generalized reduced gradient and
the gradient projection method [12]. All of these methods
are difficult to implement due to the size of the problems
and its nonlinear nature. Mixtures of these methods have
been tried depending on the solution strategy adopted. 1In
problems where the definition of some of the constraints is
not well posed, such as concrete strength, fuzzy logic has
been applied to control the uncertainty of the material and
structural behavior [13].

Another technigue used in large scale systems uses
decomposition, or substructuring, in the problem and then

performs optimization for each subproblem until convergence
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is obtained. The energy method is also used to generate a
function which can be maximized, representing the amount of
energy absorbed by the structure when loaded and deflected.
The consideration of the problem case where structural
frames are submitted to dynamic loading has been studied by
a few researchers [14]. The importance of this type of
optimization, due to the large amount of surplus materials
involved in the design of the related structures that are
not optimal, has not been a sufficient reason to overwhelm
the complexity of these calculations. Most of the research
studies involve simplifications for specific problems that

reduce their chance of application.

1.4 Conclusions

All these structural optimization techniques were
developed later than those for structural analysis. They
appeared like an extension of structural analysis methods
using experiences from other optimization areas. For that
reason there is a real separation between these two areas in
structaral design. Sometimes that is the main reason why
the structural optimization techniques are specific for some
type of problems.or are difficult to use.

There is currently a trend to abandon imported
optimization methods from other areas and try to develop

adequate techniques for structural optimization. This trend
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is precisely the opposite of what happened in the past where
the structural optimization problems were limited, and
sometimes adapted, to suit the optimization techniques. For
instance, as a major consequence of previous research there
are no general structural optimization techniques.

What is described in the next chapters is the research
done to obtain a universal structural optimization method
that at the same time integrates analysis and optimal
design. The technigque is based in the Augmented Lagrangian
Multipliers method and the type of structures tested are
planar frames with displacement constraints. To test the
performance of the method two simple structures were
submitted to different load cases: a cantilever beam and a

one bay frame.



CHAPTER 2

DUALITY IN OPTIMIZATION

2.1 Duality Theory

2.1.1 General Description

This theory is very important for all mathematical
programming problems,linear and nonlinear. An example of
this formulation applied to a linear programming problem is

described as follows.

Given the primal (or initial) problem

maximize c

1%

|
IA
o

subject to A

x20

Then, the dual problem is defined as

minimize wb
subject to Wi ANEOSC
w > 0

14
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The new variables wl,wz,......,w that compose the row

nl
vector w, are called the dual variables and w b is now the
dual function. It is easy to prove that the minimum of the
dual function is the maximum of the primal problem [15].

Given the primal and dual constraints

and

(k2
]
IA
o
E
13>
v
ia

premultiplying and postmultiplying by the vector w and

X,respectively we obtain

wAx < wb and

1=
(g
1%
v
10
1%

and therefore,

o
I
I
I
(g
]
IA
=
o

or

[9]
%
In
i€
o

The assumption is that the primal problem is well
defined, meaning that it has a solution and is bounded.
Then the dual problem is also feasible and has a bounded
solution. This implies that the final inequality must be
strictly satisfied by an equality. The maximum of the
primal function and the minimum of the dual function have

exactly the same optimal value.
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All these conclusions are in great part a consequence of
two important theorems in duality theory: Strong duality
and Weak duality [10]. The formulation of these theorems
for a linear programming problem are defined in the next

subchapters.

2.1.2 Strong Duality Theorem

*
Let x be the optimal solution for the primal problem,
X" the design space with n dimensions for the primal problem

*
and w the optimal solution for the dual problem.

*
Suppose that for x from Xn,

Then if for the dual problem there is g* such that

*
w A > ¢

and y* 2 0, the following holds

2.1.3 Weak Duality Theorem

Let x be a feasible solution for the primal problem.

Let w be also a feasible solution to the dual problem.
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Then, the following statement relating both solutions, x and

w, holds

[9]
14
IA
i<
o

The proof of these statements may be found in several
references [9) and [10]. The extension of these theorems to
nonlinear programming problems and integer problems is

straightfofward to derive [15].

2.2 Lagrangian Dual Problem

Given a primal formulation of a nonlinear programming

problem defined by

minimize f(x)

subject to h,(x) =0, 1=1,.....,1

I

gi(g) O i =R e m

x in the set X"

where at least one the functions f,g or h, is nonlinear,
several duality formulations may be derived from the primal
problem. A commonly used one is related with the derivation
of the optimality conditions for optimization methods based
on optimality criteria. They are used to assure the Kuhn-

Tucker conditions. One of the most important and useful is
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the Lagrangian dual problem [16]. It has been widely used
in the creation of successful algorithms to solve linear,
nonlinear and integer programming problems. The formulation

is the following

maximize L ( u,v )
subject to u > 0

and if inf is the greatest lower bound of the set then
L (u,v) = inf { E£(x) + grad (uigi(x)) + grad (vihi(x)) }

This function L is updated until we find a stationary
point, with solution g*, 5* and X*r corresponding to a
minimum of f(x). The Lagrangian dual function has no lower
bound since the lagrangian multiplier us rassociated with
inequalities, are defined to be positive or null. The other
lagrangian multiplier Vi corresponding to the equalities,
is unrestricted in sign.

An example of the relation between primal and dual
formulations may be illustrated by the geometric
interpretation that can be done for a simple mathematical
programming problem [9].

Considering the primal problem defined as minimize f(x),

subject to x from x" and g(x) < 0 where, in the plane

(y,2), ¥y = g(x) and z = f(x) for X of x". This generates
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the set K, representing all the possible solutions, as shown
in figure 2.1.

The primal problem demands a point in K that is in the
negative halfspace limited by the z axis. The optimum point
is obviously A. Considering the dual problem, for a given
multiplier u, the goal is to find L (u) such that the value
f(x) + u.g(x) is minimum for all x of X". This means we want
to minimize 2z + u.y over all points in K. This is the
equation of a straight line with slope -u. This Iine
intercepts the z axis at an ordinate c. Maximizing this
ordinate we obtain the value uy leading to an optimal Cyr
which is the ordinate of the optimal point for the primal
problem.

One attractive feature of the Lagrangian function is
that it is a concave function. That means that any local
optima, if it exists, is a global optima. However, the main
difficulty in the use of the Lagrangian function is the fact
that the solution is not explicitly available. The function
can be evaluated only at the end of each minimization
subproblem [17].

The proof of the concavity of the Lagrangian function is
based on the fact that the value of Lagrangian function for
a point g3, that is a linear combination of two other points
Q4 and 22' is greater or equal to the sum of the values of
the Lagrangian function at those points Q, and 92. For the

sake of simplicity, the combination of vectors u and v is
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A,
-' - i K- I 2
C1A L(u) 4
G
vV i A
y
Feasible V%
halfspace /
Z
Z+u.y=c

Figure 2.1 Geometric interpretation of dual problem.
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designated as t and of the functions h and g as j. Assuming
that f and j are continuous functions and that the design
set is compact, then L is finite. Let ¢ be a scalar between

0 and 1 and inf the infimum of the considered set.

L (c Q, + (1l-c) Q2 ) =
inf( £(x) + [c Q) + (1-o) 9,1% j(x) ) =
inf{ ¢ [£(x) +0,% 3(x)1 + (1-0) [£(x) + 9, i(x)1 } >
c inf( £(x) + 0% j(x) } + (1-0) inf(f(x) + Q,°% itx) ) =
cL ( Ql JELEER (R1F CH TR ( g2 )

2.3 Augmented Lagrangian Multipliers

Based oﬂ the conclusions described above in the previous
subchapters, a general algorithm was developed to solve the
primal nonlinear problem. This enhancement is due to the
research studies of Schultdt [18], presented by Hestenes.
The method is based in the formulation of an augmented
penalty function based on the dual problem.

Given a typical nonlinear problem defined as in 2.1, the
problem may be redefined using the augmented function and

the formulation is

minimize L ( x,

[

(¥ ) = £(x) +u” h(x) + v~ g(x)

subject to g(x) < 0, h(x) =0 and v > 0,
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where f,h and g are assumed to be differentiable and £ has a
constrained minimum, meaning that it has a minimum and at
the same time is feasible considering the constraints.
The algorithm introduces a penalty factor P, positive
and large, to penalize the constraints violations [19]. The

new form of the function is

minimize L ( x,u,v ) = f(x) + W ( X,u,P ) +V ( x,v,P)

The scalar functions W and V are defined as

subject to P > 0

u >0,
where ﬂm(ﬁ) is the vector with the jth component defined as

gjm(g) = max { - vj / (2 * p) , gj(x) }

The authors of the method suggest that the penalty
constant P should be kept constant along the iteration
process, although some other developers and users of the
algorithm advise an increasing penalty factor.

The function L is minimized as an unconstrained

function, updating the lagrangian multipliers at the end of
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each cycle. Since the convergence rate also depends on the
initial values of the lagrangian multipliers, it is
suggested that for the first cycle they should be set to
zero. This will make the Lagrangian function, L, take the
shape of an exterior augmented penalty function, with the
terms involving the lagrangian multipliers equal to zero.

h

In this case the value of the jt component of the truncated

inequality is

g.

Jm(5) = max { gj(g) » 0 }.

On the next cycles the rules for updating the lagrangian

th

multipliers in the k iteration are

K+l 2w 4 2 % P h(x)

e

Kly= Xk +2*P g (x)

<
i

These updating rules guarantee that the inequality’
lagrangian multipliers are positive or null [20]. They also
assure that when updating the lagrangian multipliers at the
end of each cycle, the value of the Augmented Lagrangian
function will increase. This is caused by the fact that the
lagrangian multipliers have nondecreasing values. Finally,
it must be stressed that the objective of this method is to
find a stationary point of the design set where X, u and v

are optimal, at the end of a cycle of iterations.
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It can be proved that at the beginning of each
unconstrained minimization cycle, the Augmented Lagrangian
function value will not decrease when changing the value of
the multipliers obeying to these established updating

rules{2l]. Thus

W x,u"™,e ) - we x5, ) = 2 % 2t B > 0
VCad®* e ) - v xRe ) = FH g KL
v g 0 + 2 o1g iz g Flix) - g, ) g Ko

Dropping the argument x, the proof will be done for
related scalars with similar results as if it was done with

vectors [18].

Case a : vk =0 and g < 0 (end of a cycle)
ke k+1 _ k+1 _
oGRS 0, v = 0 and I =0
Then : VAL _ vk =
Case b : vk = 0 and gk >0
gkm = gk ’ Vk+l =B O -HE 2B * DAtk gk > 0 and gk+lm = gk
Then : VE™L — yX = 2 % px gk2 5
Case ¢ : vk > 0 and gk - vk / (4 * P)
gkm 2 gk g vk+l = vk ANl pl gk nd gmk+1 I8 gk

Then : Vk+l = Vk = 2 * P gk2 >0
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cCase d : v > 0 and -vE/ (4 xp) > g5 - oK/ (2 % p
gkm = gk ’ Vk+l = Vk - 2 * p * gk and
GEEENC R KA (ot )
Thent: VLTSI KT vk2 /4 (el &3 ) < p) gk A
K K2

(VAR A2 B DR &y >0

Case e : vk > 0 and gk < vk / (2 * p)
gkm =v® /2% p), v**1 2 0 ang gk+lm =0
Then : V'L - vk 2 k2 /4 w5y 5 g

The outline of the method may be summarized in the
following steps:
a) The initial constrained objective function is
replaced by a series of unconstrained augmented functions,
b)In each cycle, the unconstrained functions are
minimized with relation to x, holding u and v constants.
The solution is then used for the starting point of the next
cycle.

c)The multipliers are updated in accordance with the
rules described above.

d)The process stops when a convergence of the vectors

X, u and v is obtained.



CHAPTER 3

METHODOLOGY AND IMPLEMENTATION

3.1 Introduction

Generally, in optimization problems, the set of
variables regarding the physical properties is disjoint from
the set that guarantees compatibility of the deformed
structure. This implies a cycle of analysis-optimization
operations.

As described in the first chapter, general structural
optimization techniques include analysis and design stages,
most of the time done recursively, to achieve the desired
results. Exceptions were made to small or very épecific :
problems, where particular methods were developed [22].

The concept behind the procedure implemented in this
work is not limited to planar frames. It is a general
formulation for the optimization of any structure with a
linear and elastic behavior submitted to static loads. It
integrates analysis and design in the optimization process.

This method is based on the unconstrained optimization

using equilibrium equations as equality constraints in the
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Augmented Lagrangian function. The intention is to provide
a good final solution and obtain a better convergence rate,
avoiding the separation of the phases, therefore with
greater efficiency. It is a global procedure where the
satisfaction of the equilibrium conditions and the optimal

constrained frame are found simultaneously.

3.2 Description of Formulation

The specific problem is to minimize the weight of planar
frames with linear elements submitted to static loads. The
behavior of the frame is assumed linear and elastic. The
objective function is the weight of the structure. The
design variables are the areas and inertias of each element
and the displacements of the global degrees of freedom of
the structure. The beam element considered has six degrees
of freedom, three for each node. The number of degrees of
freedom for each joint are three, horizontal and vertical
displacements and rotation.

There are additional constraints imposed to the physical
properties that must have positive value. The behavior of
the structure was constrained imposing displacement limits
for the global degrees of freedom. These generated the set
of the inequality constraints.

The compatibility of displacements is assured by the

equilibrium between the vector of the external loads and the
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internal forces. This is given by the product of the
stiffness matrix and the vector of displacements, creating
the set of the equality constraints to be satisfied.

The method of the Augmented Lagrangian function is used
to create an integrated formulation of this problem. The
Lagrangian function was then optimized as an unconstrained
function using the Pattern Search method. The step by step
description of this method is presented in subchapter 3.3.
The statement of the problem may be given for a given a

planar frame structure with a fixed topology and

1o

structural elements,

!
=]

global degrees of freedom,
- R vector of static external loads,
- D vector of limit for the displacement vector m,

one can define the following:

a) variable design vector
x ( xl’xz""x2n’x2n+l"°'x2n+m)’ where
Xy k odd , k = 1,3,....,2n~1 -- area of element (k+l)/2
X., Jeven , j = 2,4,...,2n ---- inertia eleﬁent j/2

J

X i = 2n+l1,2n+2,..,2n+m --- global displacements

b) objective function
t
f(_}_{-) = Lp * §k’ k = 1,3,..,21’1-1,
where k is defined as in a), p =1,2,...,n and Ep is the

vector defining the length of the n elements.
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¢) equality constraints
h(x) = [ K1x -R, i = 2n+1,2n+2,..,2n+m,
where subscript i is defined as in a) and [ K ] is the

global stiffness matrix.

d) 1inequality constraints
g(x) = x -D <0, i =2n+l1,2n+2,....,2n+m,

where i is the same as in a).

e) Augmented Lagrangian function

L ( x,u,v) = £(x) +u® h(x) + P h¥x) h(x) +
Xt gp(x) + P Etm(é) 9 (X,
where 9,(X) is defined as max { g(x) , - v / (2 * P) } and

a > 0.

3.3 Step by Step Description of Pattern Search Method

Given parameters alp, fcinc, fcdec and maxi, set the

initial failure counter iter to zero.

Step 1. Choose a starting point §O = ( xol,...,xon ).
Step 2. Set i = 1.

A . 1! 0 0
Step 3. Calculate a new design point X =Xx + alp x ..

i
Set iter = iter + 1. If iter > maxi go to step 6.

i

Step 4. If L(x™) < L(ﬁo), continue in the same
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presented. Appendix A has the complete listing of the
computer code. Appendix B has a detailed description of the
format of input data, Table B.1l, and an example of the

output data, Table B.2.

3.4.2 Main Program: Princi

This program calls subroutines Datini and Optimi.

The main function of the program is to input the initial
data. It begins with the general informa£ion about the
structure: number of elements, number of global degrees of
freedom, number of displacement constraints, module of
elasticity and the number of degrees of freedom per element.
It reads the behavior properties of the frame: external
forces, displacement constraints, length and dir=ction
cosines for each element and the assembly location matrix
for the global degrees of freedom. . It follows with the
parameter options for the optimization cycles: maximum
number of iterations per cycle of unconstrained
minimization, penalty factor, factor of increase for the
penalty factor, parameter for the control of convergence,
constant for the perturbation of the pattern search method,
parameters for the decrease and increase of the search, the
initial values of the design variables and the tolerance to
close each iteration cycle with the same lagrangian

multipliers.
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At the end of the process, it writes to a data file the
final results: total number of iterations, value of the
Lagrangian function, the values of the design variables,

values of the equalities and inequalities constraints.

3.4.3 Subroutine Datini

This subroutine is called by program Princi. The values
of the lagrahgién multipliers and of scaling factors for the
constraints and the objective function aré initialized.

Also the parameters that are kept constant during the
procedure and that also depend on the input data are derived

on this subroutine.

3.4.4 Subroutine Optimi

This subroutine is called by Princi and calls Hoojee and
Lagfun. The subroutine begins with the scaling of the
objective function, inequality and equality constraints. It
updates the lagrangian multipliers and the penalty factor.
This updating is made after the unconstrained minimization
of the Lagrangian function.

It checks if the values of the equalities are less than
a relative value of the maximum external force. 1In the
affirmative case, it returns to main program and the program

stops running.
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3.4.5 Subroutine Hoojee

This subroutine is called by Optimi and calls Lag fun.
The subroutine performs the procedure prescribed in the
Pattern Search or Hooke and Jeeves method. It is a zero
order method based on a cycle of searches along the
directions defined by the design variables. At the end of
each cycle of search on the set of design variables, it
tries a pattern move along a line defined.by the initial and
the final points. This exploratory move is regulated by
some heuristic rules that seek to accelerate the
convergence.

At the end of each cycle it checks if the change in the
augmented lagrangian function, was less than the imposed

tolerance.

3.4.6 Subroutine Lagfun -

This subroutine is called by Optimi and Hoojee and calls
Equcon, Inecon and Valobf. This subroutine computes the
value of the Lagrangian function for each vector X in
accordance with the formulation presented in subchapter 2.3,
after obtaining the values of the objective function,

equality constraints and inequality constraints.
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3.4.7 Subroutine Equcon

This subroutine is called by Lagfun and calls Glosti.
In each evaluation of the Lagrangian function, calculates
the vector whose components are the product of each row of
the global stiffness by the displacement vector. Then, it
finds the value of each equality constraint. This is equal
to each component of the vector obtained by subtracting the
vector of the external forcés from the vector obtained in

the multiplication.

3.4.8 Subroutine Inecon

This subroutine is called by subroutine Lagfun. It
determines for each global degree of freedom that is
restrained, the difference between the actual displacement

and the respective imposed limit.

3.4.8 Subroutine Valobf

This subroutine is called by subroutine Lagfun. At each
evaluation of the Lagrangian function it evaluates the

volume of material in the frame.
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3.4.9 Subroutine Glosti

This subroutine is called by subroutine Equcon. The
subroutine uses a closed form to evaluate, for each element,

the element global stiffness matrix.

3.4 Program Structure

The diagrams of the program and subroutines of the

implemented code are presented on figures 3.1 trough 3.7.



36

PRINCI

OPTIMI H DATINI
HOOJEE
L AGFUN

VALOBF INECON H EQUCON

GILOS T

Figure 3.1 Structure of the computer program.




37

Read number of elements,humber of equatilities,
number of inequalities,number of itera tions,modulus

of elasticity and number of degrees of freedom :
N, IQH, 1QG, E, ND

Read external global forces R: (1,IQH)

Read displacement constraints D : ( 1,1Q6 )

Read length and direction cosines for each
structural element  CL, COS1, C0OS2 : ( 1,N)

Read location matrix for all elements
LM : (I,N(1,ND))

Read maximum number of cycles and penalty
' factor : NUMCY, RP ]

Read increase factor, decrease factor and update
constant for penalty factor: FCINC, DECFC, GA

Read perturbation factor and tolerance for
convergence: ALP1, TOL

Read initial guesses for design variables
X :(1,2*N+IQH)

Write input data to file : FINRES

Call subroutine: DATINI

Call subroutine: OPTIMI

Write final data to file: FINRES

Figure 3.2 Main program: Princi.
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Initialize lagrangian multipliers for equality
constraints CLAH: (1,I1QH)

Initialize lagrangian multipliers for inequality
constraints CLAG : ( 1,1Q6G )

Initialize scaling factors for equality
constraints CH: ( 1,I1QH )

Initialize scaling factors for inequality
constraints CG: ( 1,106 )

Initial scaling factor for objective function : CV = 1.0

Evaluate total value of equality constraints
Call subroutine: EQUCON

Do for K= 1,I1QH

TVAH = TVAH + CLAH * VAH * CH + RP *
VAH * CH * VAH * CH

Evaluate total value of inequality constraints
Call subroutine: INECON

Do for K = 1,1Q6

PSl =min [ VAG * CG ,CLAG / (2 *RP ) ]
TVAG = TVAG + PSI1 * ( CLAG + RP * PS1)

Call subroutine: VALOBF

TVAG = CV * VOF + TVAH + TVAG

Figure 3.3 Subroutines Datini and Lagfun.
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Call subroutine LAGFUN

Scale equality constraints
DO for K=1,IQH

CV=1/|| VAH ||

Scale inequality constraints
DO for K=1, 16

C6= 17| vae ||

Scale objective function CV = 1/ VOF

Control the error in equa]itg constraints and number of loops
QUOT = max || VAH(K) /R(K) ||  for K =1, IQH

While  QUOT > 0.0025 or number of loops < 10
DO

Call subroutine HOOJEE

Update lagrange multipliers for equality constraints
DO for K = 1, 1QH

CLAH = CLAH + 2 * RP * VAH * CH

Update lagrange multipliers for inequality constraints
DO for K= 1, 1Q6

PSI = min [CLAG/ (2 *RP ), VAG ]
CLAG = CLAG - 2 * RP * PS]I

Update the penalty factor : RP = RP * GA

LOOP = LOOP + 1

Figure 3.4 Subroutine Optimi.
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Initialize value of the lagrangian function
Call LAGFUN

Initialize search coefficients
DO for K= 1,2*N+ IQH

ALP(K) = ALP1

VLAGOL = VLAG and J=1

Loop on the design variable K for NUMCY
While J<NUMCY or || YLAGOL - VLAG
VLAG
DO

< TOL

DO for K= 1,2 *N + IQH

Call LAGFUN
VLAGO = VLAG

X(K) = X(K) + ALP(K) * X(K)
Call LAGFUN

VLAGO > VLAG
THEN ELSE

X(K) = X(K) - 2 * ALP(K) *
ALP(K) = * X(K)
FCINC * Call LAGFUN
* ALP(K) VYLAGO > VLAG
THEN ELSE
ALP(K) = ALP(K) =
FCINC * DECFC *
* ALP(K) * ALP(K)
J=J+ 1

Try Pattern Move : X = X°W4 1.2 ( X" Xold)

Figure 3.5 Subroutine Hoojee.
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Loop over all elements for global stiffness evaluation
DO for J=1,N

Call subroutine GLOSTI

DO for L=1,ND : K=LM(L,J)

DO for LL= 1,ND
M=LM(L,J)
VAH(K) = VAH(K) + CK( L,LL ) *
*X(2*N+M)

DO for K=1,2*N+ IQH

VAH(K) = VAH(K) - R(K)

DO for K=1, 1Q6

VAG(K) =D(K) - X(2* N + K )

DO for K=1,N

VOF = VOF + X( 2 * K - 1) * CL(K)

Figure 3.6 Subroutines Equcon, Inecon and Valobf.
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A=E*X(2%J)/CL(J) **3
B=X(2*%J-1)*CLUJ)**2/%(2%J)
G1=A%(B*COS1(J) ** 2+ 12 * COS2(J) ** 2 )
62 = A * COS1(J)* COS2 (J)* (B -12 )

G3=A* (B *C0S2 (J)** 2 + 12 * COS1(J) ** 2)
G4=-6%A*CL(J)* COS2(J)
65=6* A * CL(J) * COS1 (J)
G6=4%A*CL(J) ** 2

G7 =2 % A * CL(J) ** 2

CK(1,1) = G1
CK(1,4) = -G1
CK(2,2) = 63

CK(2,5) = -G3
CK(3,4) = -G4
CK(4,4) = G1
CK(5,5) = 63

MATRIX

CK(1,2) = 62
CK(1,5) = -62
CK(2,3) = G5
CK(2,6) = G5
CK(3,5) = -G65
CK(4,5) = 62

CK(5,6) = -G5

CK(1,3) = G4
CK(1,6) = G4
CK(2,4) = -62
CK(3,3) = G6
CK(3,6) = G7
CK(4,6) = -G4
CK(6,6) = G6

CK IS SYMMETRIC

Figure 3.7 Subroutine Glosti.




CHAPTER 4

TESTING EXAMPLES

4.1 Introduction

The methodology and the computer program described in
the previous chapters need a practical evaluation of their
performance. Some simple structures with different loading
cases were used to assess the validity of the assumptions
made. The data results are presented in Appendix B and the
analysis and discussion are presented in the following

subchapters.

4.2 Procedure Description

The examples chosen to test the program and its
performance were a cantilever beam and a one bay rectangular
frame. The reason for this choice was that the optimality
conditions were simple to determine in the first case and
the behaviors of both structures easy to assess and

understand. The loadings for the cantilever beam were
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external forces acting individually on each global degree of
freedom and a combination of the three forces. For the
frame, three load cases were tested. One was symmetric: a
vertical uniformly distributed load on the horizontal
element. One of the asymmetric loadings was an horizontal
load applied axially on the horizontal element. Finally,
the third loading case was the combination of the previous
two.

The displacement constraints imposed on the behavior of
the structures varied for the examples tested. Regarding
the cantilever beam, as it is an isostatic structure, the
imposed displacements will condition the physical properties
in a explicit form. For the frame, the results were
comparaed to exact structural analysis. The analysis was
made using the direct stiffness method for a frame with the
cross dimensions obtained in the optimization process. The
displacements obtained this way were compared with the
constraints and the values obtained in the optimization
procedure. The units used for the tests were kilopounds for
the forces and inches for the dimensions. The material
chosen was steel, with a module of elasticity of 30,000
Kkilopounds per squar2= inch. In both structures, to avoid
the possibility of having an area or moment of inertia with
zero or negative value, a minimum of 0.1 square inch and 0.1
inch elevated to the fourth power, respectively, were

established.
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4.3 Cantilever Beam

The figure 4.1 indicates the gecmetric definition as
well as the definition of the global degrees of freedom.
For the cases tested, the global external forces are defined
precisely as the global displacements.

The results of the four cases tested are presented with
the initial, the final results and the exact solution in
Tables B.3, B.4, B.5 and B.6. The optimél exact solution
for some values is not available, since it is not dependent
of the objective function. For instance, on the second
loading case, Table B.4, there is no optimal area since the
optimization iteration is going to be made around the
inertia of the element. 1In these cases, the expectad
theoretical value in the tables is undefined.

In Table B.3, with the final data from the case with
axial load and limits for all degrees of freedom, it is
clear that the optimal results were found and equilibrium
was obtained. The areza determined was the minimum value
necessary to have the maximum allowable displacement under
the axial external force. The inertia takes the minimum
value prescribed, because it is not conditioned by any
constraint or by the objective function.

Tables B.4 and B.5, with the results of vertical loading

and applied moment, respectively, having constraints on all
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Figure 4.1 Cantilever beam and load cases.



47

degrees of freedom, show without doubt that the method
guarantees equilibrium, represented by the equality
constraints. However, the minimum value of inertia is not
found because, as design variables, the moment of inertia
doesn't participate in the objective function.

Table B.6, with the data of the case with the three
types of external loading and constraints on all degrees of
freedom, presents final results fulfilling all requirements:
the minimum 6f the objective function has been found; the
final displacements are bounded by the préimposed limits;
the equality constraints, guaranteeing equilibrium, are also
satisfied.

As conclusion of the analysis of these results, the final
values are excellent. For the cases where the moment of
inertia is not connected with the Augmented Lagrangian
function, except for the inequality constraints, the value
founded nevertheless satisfies both equilibrium and

displacement limitations.

4.4 One Bay Frame

The geometric definition of the frame tested is
presented in the figure below. Also, the definition of the
global displacements, related to the global degrees of

freedom, and global forces are indicated in figure 4.2.
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This one bay frame has been tested with three loading
cases. The results from these tests are presented in Tables
B.7, B.8, B.9 and B.10 of Appendix B. As the optimal
solutions couldn't be derived explicitly, like in the
cantilever beam, a different methodology was used to verify
the final results.

To evaluate if the final areas were the optimal, the
program was passed again using as starting points the
results to verify if there was a significant improvement on
the total volume of the frame. I

Regarding the equilibrium constraints, the final values
of the areas and inertias wers used in an exact analysis of
the frame. The program Stan using direct stiffness method,
was used. It verified if the displacements from this
analysis matched the final displacements found in the
optimization procedure.

The displacement constraints were straightforward to
check once found the final values of the displacements.

Tables B.7 and B.8, have the results of the first and
second loading case, respectively. The comparison with the
exact structural analysis show that equilibrium is obtained.
Sequential runs didn't present any significant decrease in
the total volume of the structure.

Table B.9 has the results of the frame with the third
loading case. It shows clearly no equilibrium when the

exact structural analysis is performed, although the
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inequality constraints are satisfied. Table B.10 presents
the final results obtained using as starting data the final
values from the previous run as shown in the preceding
Table. With these physical properties, equilibrium is
obtained. Seguential runs don't have a significant
improvement of the total volume of the structure.

In conclusion, the computer program performed very well
for the one bay frame, with the exception of the third
loading case. However, with a better starting point, in
this case the data from the previous attempt, the efficiency

was acceptable.

4.5 Analysis and Discussion

As can be concluded from the comparisons between the
results from the computer runs and from the exact structural
analysis, the results are very encouraging. For the beam,
the results are very close and are comparable to the exact
solutions. The results of the frame test, can only be
compared to the accuracy of the exact analysis that was made
with the physical properties found in the optimization
cycles.

Although only a small number of tests are presented,
they represent the final product of a series of computer
runs. These will create a enormous volume of information.

The results of Tables B.3 trough B.1l0 are sufficient to
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illustrate the performance of the method. However, some
conclusions may be drawn from this set of runs that is

omitted. These conclusions are briefly described below.

4.5.1 Penalty Factor

The penalty factor is kept constant during the process.
This is due to the reason that the objective function and
constraints are initially scaled to a common value. The
value chosen was ten, one order of magnitﬁde bigger than the
initial values of constraints and objective function. The
update scalar for the penalty factor was one. When large
values of the penalty factor were tried, in most cases, this
caused slow or no convergence. This is a common source of
failure in optimization problems, because it often creates

an ill conditioned problem.

4.5.2 Scaling

The current method to use for scaling still needs
further study. The various expressions that are compared
have very different orders of magnitude. Scaling is
imperative if convergence is desired without the dominance
of a single constraint, or type of constraints. Several
attempts without scaling were a complete failure. The

adopted method consists of taking the scale factors as the
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inverse of the values of the equalities, inequalities and
objective function. This causes the equations and
inequalities to have the same order of magnitude at the
beginning of the optimization. Another method that was
tested was scaling through the used gradients. The
gradients were computed numerically using finite
differences, but the performance for the tests was slower

than the method chosen.

4.5.3 Initial Guesses

Some of the cases tested for the beam were done with
initial physical guesses close to the exact ones. The
results were no better than with random numbers or unity
values. This is probably due to the simplicity of the
tested structure. It is undoubtedly true that initial
values closer to the final values will give a better
scaling. Unfortunately there isn't a explicit way of
obtaining the optimal values of the one bay frame, except by
trial and error or using the values from the previous
attempt like is shown in Tables B.9 and B.10. Those are a
good test for the importance of the initial values for the
physical properties. Regarding the displacements, as the
limits are known in advance there is no reason why the

initial values shouldn't be correct.
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4.5.4 Perturbation Factor

During the search procedure, the value of the design
variable may be very small compared to the optimal one.
Then, the value of scalar that causes the perturbation of
the design variable value, perturbation factor, is important
to obtain convergence. If it is too small and the
Lagrangian function has a small slope at that point, it will
be difficult to move in the correct direction. Several
tests were run to check these values. It seems that as the
Augmented Lagrangian function is well conditioned, the
several values tested didn't create significant changes on
the behavior of the function. An exception is made to the
number of iterations of the unconstrained minimization
cycle. The larger the perturbation factor, the higher the

number of iterations per design variable needed.



CHAPTER 5

CONCLUSIONS AND SUGGESTIONS

5.1 Final Considerations

The main conclusion from the work described is that
the hypothesis of using the Augmented Lagrangian
Multipliers method for simultaneous analysis and optimal
design, has been verified. Also, the principal goal of
obtaining a method that is as general as possible within
the structural optimization, has been respected. The
results of the two tested structures, cantilever beam and
one bay frame, submitted to several loading patterns prove
that assumption.

The cantilever beam was a good structure to test
because the analytical solution of the optimum was easy to
evaluate. The reason was that the convergence to the
minimum volume of the structure could be derived in an
explicit form. Another advantage of this structure was
that any changes in the parameters of the program were
promptly examined and evaluated, like the several different

values of the penalty factor or number of cycles. The final
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data from the test of the cantilever beam, as described in
Chapter 4, show clearly that convergence and equilibrium
were met for all different loading cases. At the end, the
equality constraints were almost zero, as required, the
displacements were within the imposed limits and the minimum
material was always obtained.

The one bay frame tested with the three loading cases,
gave final results that verified the equilibrium
constraints, satisfied the displacement constraints and no
significant diminishment of the total volume was found with
sequential runs, as presented in chapter 4. The
optimization and analysis performed very well for the two
first loading cases. The minimum volume of the structure
was found and constraints were satisfied. However, on the
third loading case, to obtain the final egquilibrium of the
structure a second run of the program was needed, using the
final results of the first one. This example of the one bay
frame tested with the third léading case, leads to the
conclusion that improvements in the program are necessary
for more complicated loading cases, due certainly to
numerical problems or bad initial guesses for the design
variables.

Nevertheless, the results are promising, giving a
substantial basis for further research. Possible
improvements are described in the following subchapters.

The first set of improvements are those that won't change
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the basic structure of the computer program, although
increasing the performance. The second group are major
changes that allow the extension of the computer program to

other features.

5.2 Improvements to the Actual Structure of the Program

The main task proposed is related to the unconstrained
minimization search. The method adopted was a zero otder
technique, where only the pattern search ﬁovement uses
information from previous attempts. Even so, this movement
was a very empirical one requiring extra calculations of the
function value. It didn't use any information about the
behavior of the objective function or any of the
constraints. The test examples had a small number of
variables that could be handled by this minimization
technique. For frames where the number of design variables
is significant, the method will probably need some
improvement. The suggestion is to use more efficient
minimization methods of first or second order, with a
quicker rate of convergence and less function evaluations.
These powerful techniques could be used individually or in
an association of the severai techniques available. Of
course, the derivatives of the objective function and

constraints will have to be calculated numerically, but that
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can be done with sufficient accuracy if proper numerical
methods are used.

Another critical aspect is the scaling of the objective
function, equalities and inequalities. After running a long
series of test on various scaling techniques, the type of
scaling adopted was the one that performed best. Like the
previous proposition, scaling using first or second order
information about the behavior of those functions, may bring
a significant improvement to the optimization scheme.

The objective function adopted, considered only the
weight of the structural elements, is a function of the
Cross area. The inertias of the elements were independent
of the minimization process. This is not a real situation
and a correlation between both types of design variables
must be established. For the case of rectangular sections
the relation is very easy to implement. For I, T or U shape
elements only approximate formulas may be used, unless a
database is installed. The 6bjective function will thed be
explicitly a function of both types of design variables.

Another enhancement, involves the speeding up of the
computational operations. This can be done by changing
only, at each iteration step, the values of the objective
function, equalities and inequalities that are related to
the changing design variable. This will save computational
time involved in the evaluation of all the other equalities

and inequalities whose values don't change.
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Another improvement is related with the initial guess
of the design variables. The example of the third load case
of the one bay frame, is very clear. The second run used
initial guesses of the design variables that were the
results of the first run. Not only was the convergence
criteria satisfied, but also the number of iterations needed
to achieve the solution were less than the first run. Good
initial values will improve the performance of the method if
they satisfy simultaneously the equilibrium conditions and
the displacement constraints. This can be done with a
previous exact analysis of a frame where the structural
elements will have sufficiently large dimensions in order to

satisfy the displacement constraints.

5.3 Major Additions to the Program Structure

Further enhancements are possible to this technique.
The most important, and also the main: concern in the origin
of this formulation, is the possibility of using any type of
structural element with the very same optimization
technique. For instance, the optimization of a set of
structural finite elements can be performed simply with the
substitution of the subroutine for the generation of the
global stiffness and minor changes in the rest of the
program. These changes will have to do with the dimensions

and format of input and output. Similarly, the same can be
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made for truss elements. This allows the use of any
combination of these different types of elements.

Another significant addition is the implementation of
stress constraints. These will create another criterion for
the minimization scheme. This will imply the recovery of
the element forces and the evaluation of maximum stresses
along each element. Instead of the constraints based only
on allowable maximum displacements, we can condition the
performance of the structuré to the maximum stresses on the
structural material. The inclusion of tHis type of
constraints allows a more realistic approach, since a great
part of structural designs are based on the satisfaction of
stress constraints limitations. This type of constraint may
be used alone or with the displacement constraints. The
program has been created in such a way that this addition
will be easy to implement.

Other major modifications nezed to be studied. The
first one is the addition of elements that represent the
performance of reinforced concrete. It should include the
ductility of the element and the nonlinear properties of the
concrete and reinforcing steel. The second one is the
consideration. of dynamic loads, more specifically earthquake
loadings. These improvements are the subject of a research
proposal to the National Science Foundation. The
transcription of that research proposal is presented in the

Appendix C.
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APPENDIX A

COMPLETE PROGRAM LISTING



C
(G rore
c

C

PROGRAM PRINCI

IMPLICIT DOUBLE PRECISION ( A-H,0-Z2 )

CHARACTER*40 TITLE

DIMENSION X(100), R(40), CL(30), COS1(30), CO0S2(30),
D(20), CLAH(40), CLAG(20), LM(6,30), CK(6,6), VAG(20),
VAH(40), CH(40), CG(40), ALP(100), XOL(100)

COMMON /PARR/ DECFC, FCINC, PHLIM,CV,ALP1,E,RP

COMMON /PARI/ TOL,ITER,NUMCY,NITER,GA,IQH,IQG,ND,N,NTOT

OPEN ( 7,FILE='data', form='formatted' )

REWIND 7

OPEN ( 8,FILE='finres', form='formatted' )

REWIND 8

READ ( 7,120 ) TITLE

C---READ # ELE,# EQU,# INE,# ITE,MODULUS ELAS,# OF D. FREEDOM---

fa

READ ( 7,* ) N, IQH, IQG, NITER, E, ND
NTOT = N + N + IQH

DO 100 K = .1,IQH
READ ( 7,* ) R(K)
CONTINUE

DO 200 K = 1,I1QG
READ ( 7,* ) D(K)
CONTINUE

~-—-READ LENGTH AND DIRECTION COSINES FOR EACH ELEMENT-—-

DO 300 K = 1,N
READ ( 7,* ) CL(K), COS1(K), COS2(K)
CONTINUE

DO 400 K = 1,N
READ ( 7,* ) (LM(KK,K), KK = 1,ND)
CONTINUE

——————— READ MAXIMUM NUMBER OF CYCLES AND PENALTY FACTOR--

READ ( 7,* ) NUMCY, RP

—————— INPUT INCREASING FACTOR,DECREASING FACTOR,GAMMA=--—-

63
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READ ( 7,* ) FCINC, DECFC, GA
------------- INPUT PERTURBATION FACTOR AND TOLERANCE —=—=-—=--—=-

READ ( 7,* ) ALPl, TOL

N2 = N + N

N21 = N2 + 1

NTOT = N2 + IQH

READ ( 7,* ) ( X(I), I
READ ( 7,* ) ( X(I), I

1,N2 )
N21,NTOT )

WRITE ( 8,190 ) TITLE
WRITE ( 8,110 )

WRITE ( 8,130 ) N
WRITE ( 8,140 ) IQH
WRITE ( 8,150 ) IQG
WRITE ( 8,160 ) NITER
WRITE ( 8,170 ) E
WRITE ( 8,180 ) ND
WRITE ( 8,240 )

DO 500 K = 1,IQH
WRITE ( 8,250 ) K, R(K)
500 CONTINUE
WRITE ( 8,260 )
DO 600 K = 1,IQG
WRITE ( 8,270 ) K, D(K)
600 CONTINUE
WRITE ( 8,350 )
DO 700 K = 1,N
WRITE ( 8,360) K, CL(K), COS1(K), COS2(K)
700 CONTINUE
WRITE ( 8,380 )
WRITE ( 8,390 )
DO 750 K =1, N
WRITE ( 8,370 ) K, ( IM ( I,K ), I = 1,6 )
750 CONTINUE
WRITE ( 8,640 ) NUMCY

WRITE ( 8,650 ) RP
WRITE ( 8,730 ) FCINC
WRITE ( 8,740 ) DECFC
WRITE ( 8,760 ) GA
WRITE ( 8,840 )
DO 800 I =1,N

NE = 2 *

NO = NE - 1
WRITE ( 8,850 ) I, X(NO), X(NE)
800 CONTINUE



1000

1150

1100

110

120
130
140
150
160
170
180
190
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WRITE ( 8,860 )
DO 900 I = N21, NTOT

K =1I - N2
WRITE ( 8,870 ) K, X(I)
CONTINUE

CALL OPTIMI ( VLAG, R, X, CL, C0S1, COSs2, LM, D, CLAH,
CLAG, VAH, VAG, CK, CH, CG, ALP, XOL )

»880 )

WRITE ( 8

WRITE ( 8,890 ) ITER
WRITE ( 8,910 ) VLAG
WRITE ( 8,840 )

DO 1000 K = 1,N

NE = 2 * K

NO = NE - 1
WRITE ( 3,850 ) K, X(NO), X(NE)
CONTINUE
WRITE ( 8,960 )
DO 1150 K = N21, NTOT

I =K - N2
WRITE ( 8,970 ) I, X(K)
CONTINUE

WRITE ( 8,920 )
DO 1100 K = 1,IQH

WRITE ( 8,930 ) K, VAH(K)
CONTINUE
WRITE ( 8,940 )
DO 1200 K = 1,I0QG

WRITE ( 8,950 ) K, VAG(K)
CONTINUE

FORMAT ( //,10X,
'hkkkkkkkkkxk INTTIAL, VALUES khkkkkkkkk1 /)
FORMAT ( A25 )

FORMAT ( /,10X,'NUMBER OF ELEMENTS = L3 )

FORMAT ( /,10X, 'NUMBER OF BQUALITY CONSTRAINTS = ',I3 )
FORMAT ( /,10X, 'NUMBER OF INEQUALITY CONSTRAINTS = ',I3 )
FORMAT ( /,10X, 'NUMBER OF ITERATIONS PER CYCLE = ',I5 )
FORMAT ( /,10X, 'MODULUS OF ELASTICITY = 'yEl14.8 )

FORMAT (/,10X, 'NUMBER OF GLOBAL DEGREES OF FREEDOM =',12)
FORMAT ( //,10X,A25,// )
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250
260

270
350
360
370
380

390
640
650
730
740
760
840
850
860

870
880

890
910
920
930
940
950
960
970
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FORMAT ( //,10X, 'GLOBAL DEGREE OF FREEDOM',10X,
'"EXTERNAL FORCE' )
FORMAT ( /,20X,I2,22X,E14.8 )
FORMAT ( //,10X, 'GLOBAL DEGREE OF FREEDOM',5X,
'DISPLACEMENT CONSTRAINT' )
FORMAT ( /,20X,I3,19X,E14.8 )
FORMAT ( //,10X, 'ELEMENT',8X, 'LENGTH',9X,'COS',7X, 'SIN')
FORMAT ( /,12X,13,5X,E14.8,3X,F8.5,5X,F8.4 )
FORMAT ( /,10X,13,14X,314,3X,314 )
FORMAT ( //,10X,
'LOCATION MATRIX FOR GLOBAL DEGREES OF FREEDOM ' )
FORMAT ( /,10X,' ELEMENT ',10X,' NODE I',10X,'NODE J' )

FORMAT ( /,10X, 'MAXIMUM NUMBER OF CYCLES = 1S3 )
FORMAT ( /,10X, 'PENALTY FACTOR = ',E14.8 )

FORMAT ( /,10X,'FACTOR OF INCREASE = ',E14.8 )

FORMAT ( /,10X,'FACTOR OF DECREASE = ',E14.8 )

FORMAT ( /,10X, 'PENALTY FACTOR MULTIPLIER = '/E14.8 )
FORMAT ( /,10X,'ELEMENT',13X,'AREA',16X, 'INERTIA' )
FORMAT ( /,15X,12,8X,E14.8,8X,E14.8 )

FORMAT ( /,10X, 'GLOBAL DEGREE OF FREEDOM',5X,
'INITIAL GUESS' )
FORMAT ( /,20X,12,18X,E14.8 )
FORMAT ( ////.,10X,
thkkkkkxkkkxk* FINAI, VALUES Akkkkkkkkkkk? /// )

FORMAT ( /,10X, 'NUMBER OF ITERATIONS = =3 )

FORMAT ( /,10X, 'VALUE OF LAGRANGIAN FUNCTION = '/E14.8 )
FORMAT ( /,10X, 'EQUALITY',17X,'FINAL VALUE' )

FORMAT ( /,12X,I3,17X,E14.8 )

FORMAT ( /,10X, 'INEQUALITY',15X,'FINAL VALUE' )

FORMAT ( /,12X,I3,17X,E14.8 )

FORMAT ( /,10X, 'DISPLACEMENT',14X, ' FINAL VALUE' )

FORMAT ( /,12X,1I3,17X,E14.8 )

STOP

END
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SUBROUTINE DATINI ( CLAH,CLAG,CH,CG )
IMPLICIT DOUBLE PRECISION ( A-H,0-% )
DIMENSION CLAH(IQH),

CLAG(IQG), CH(IQH), CG(IQG) COMMON /PARR/
DECFC, FCINC, PHLIM,CV,ALP1,E,RP COMMON /PARI/
TOL,ITER,NUMCY,NITER,GA,IQH,IQG,ND,N,NTOT

DO 100 K = 1,IQH
CLAH(K) = 0.0

INITIALIZE OF LAGRANGIAN MULT. FOR INEQUALITY CONST.----

DO 200 K = 1,IQG
CLAG(K) = 0.0

DO 300 K = 1,IQH
CH(K) =1.0

DO 400 K = 1,IQG
CG(K) =1.0

PHLIM = 0.1

Cv = 1.0
RETURN
END
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SUBROUTINE OPTIMI ( VLAG, R, X, CL, COSl, COS2, LM, D,
CLAH, CLAG, VAH, VAG, CK, CH, CG, ALP, XOL )

IMPLICIT DOUBLE PRECISION ( A-H,0-Z )

DIMENSION R(IQH), X(NTOT), CL(N), COS1(N), COS2(N),
D(IQG), ALP(NTOT), CLAG(IQG), LM(ND,N), VAG(IQG),
VAH(IQH), CH(IQH),XOL(NTOT), CLAH(IQH), CG(IQG)

COMMON /PARR/ DECFC, FCINC,PHLIM,CV,ALPl,E,RP

COMMON /PARI/ TOL,ITER,NUMCY,NITER,GA, IQH, IQG,ND, N, NTOT

I =20

ITER = 0
CALL LAGFUN ( VLAG, TVAH, R, X, CL, COSl, COS2, LM, D,
CLAH, CLAG, VAG, CK, VAH, CH, CG, VOF )

DO 530 K =1, IQH
CH(K) = DABS ( 1./VAH(K) )
CONTINUE

DO 540 K = 1,IQG
CG(K) = DABS ( 1./VAG(K) )
CONTINUE

Cv = 1./VOF

CALL HOOJEE ( TVAH, VLAG, R, VAH, VAG, X, CL, cos1,
Cos2, LM, D, CLAH, CLAG, CK, CH, CG, ALP, XOL )

T =T iE - pe]

ITER = ITER + 1

WRITE ( 8,1500 ) I

WRITE ( *,1500 ) I

FORMAT ( 'END "OF LOOP = ',I3)

IF ( I.GT.10 ) THEN
RETURN
ENDIF
RP2 = RP + RP

—---UPDATE LAGRAGIAN MULTIPLIERS FOR EQUALITY CONS.--
DO 100 K = 1,IQH
CLAH(K) = CLAH(K) + RP2 * VAH(K) * CH(K)
CONTINUE
UPDATE LAGRAGIAN MULTIPLIERS FOR INEQUALITY CONS.--—-

DO 200 K = 1,IQG
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V = VAG(K) * CG(K)
CLAGK = CLAG(K)
Z = CLAGK / RP2
PSI = DMIN1 ( V,Z )
CLAGK = CLAGK - RP2 * PSI
CLAG(K) = CLAGK
200 CONTINUE

CONTE = 0.0
DO 700 K = 1,IQH
IF ( R(K).EQ.0 ) THEN
GO TO 700
ENDIF
QUOT = DABS ( VAH(K) / R(K) )
IF ( CONTE.LT.QUOT ) THEN
CONTE = DABS ( VAH(K) / R(K) )
ENDIF
700 CONTINUE
IF ( CONTE.LT.0.0025 ) THEN
RETURN
ENDIF
GO TO 300
END
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SUBROUTINE HOOJEE ( TVAH, VLAG, R, VAH, VAG, X, CL,

X cosl, cCos2, LM, D, CLAH, CLAG, CK, CH, CG, ALP, XOL )
IMPLICIT DOUBLE PRECISION ( A-H,0-2 )
DIMENSION X(NTOT), CL(N), COS1(N), COS2(N), LM(ND,N),

. D(IQG), CLAH(IQH), CLAG(IQG), R(IQH), VAH(IQH),

w3 VAG(IQG), CH(IQH), CG(IQG), ALP(NTOT), XOL(NTOT)
COMMON /PARR/ DECFC, FCINC,PHLIM,CV,ALP1,E,RP
COMMON /PARI/ TOL, ITER,NUMCY,NITER,GA,IQH,IQG,ND,N, NTOT

©
Casss S INITIALIZE VALUE OF LAGRANGIAN FUNCTION=—====—=e—c——---
cC
CALL LAGFUN ( VLAG, TVAH, R, X, CL, COSl1l, COs2,
= LM, D, CLAH, CLAG, VAG, CK, VAH, CH, CG, VOF )
VLAGO = VLAG
VLAGOL = VLAG
KL = 0
C :
G S S S S INITIALIZE OPTIMIZATION COEFFICIENTS-—=—=-—--—ee——————
cC
150 KL = KL + 1
DO 110 K = 1,NTOT
110 ALP(K) = ALP1
C WRITE ( *,1500 ) KL
C WRITE ( 8,1500 ) KL
C 1500 FORMAT(/,5X, 'CYCLE # =',11,/)
N2 = N + N
C
Cose s LOOP ON VARIABLE # K FOR THE SPECIFIED # OF ITERATIONS----
DO 200 J = 1,NITER
DO 115 K = 1,NTOT
115 XOL(K) = X(K)
DO 100 K = 1,NTOT
X0 = X(K) :
XK = X(K)
C
i VALUE OF LAGRANGIAN FUNCTION FOR INITIAL VALUES------
C
510 CONTINUE
Z = ALP(K) * XO
X(K) = X(K) + 2
IF ( K.LE.N2 ) THEN
X(K) = DMAX1l ( X(K),PHLIM )
ENDIF
©
CESES e e e CALCULATE NEW VALUE OF LAG. FUNCTION~————=—==c———=-
(&
CALL LAGFUN ( VLAG, TVAH, R, X, CL, COSl, CO0Ss2,
= LM, D, CLAH, CLAG, VAG, CK, VAH, CH, CG, VOF )
IF ( VLAGO.GT.VLAG ) THEN
c

C---~INCREASE OF VARIABLE WITH SUCCESS IN DECREASING FUNCTION----
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c
ALP(K) = ALP(K) * FCINC
VLAGO = VLAG
X0 = X(K)
GO TO 510
ELSE
C
C----DIRECTION REVERSED WITH FAILURE IN DECREASING FUNCTION-—-—--
~
ALP(K) = - ALP(K)
X(K) = XO + ALP(K) * XO
ENDIF

IF ( K.LE.N2 ) THEN
X(K) = DMAX1 ( X(K),PHLIM )
ENDIF
. CALL LAGFUN ( VLAG, TVAH, R, X, CL, COsl,
* COs2, LM, D, CLAH, CLAG, VAG, CK, VAH, CH, CG, VOF )
IF ( VLAGO.GT.VLAG ) THEN

C
C-mmm- INCREASE OF VARIABLE W/ SUCCESS IN DECREASING FUNCTION=--—-—
c
ALP(K) = ALP(K) * FCINC
VLAGO = VLAG
X0 = X(K)
GO TO 510
ELSE
@
S DECREASE OF VARIABLE W/ FAILURE IN DECREASING FUNCTION--
@
ALP(K) = ALP(K) * DECFC
X(K) = XO
ENDIF
X(K) = X0
100 CONTINUE
190 CONTINUE
@
Cmmmmmm e - ATTEMPT OF PATTERN MOVE~===m=—m—m oo __
c
DO 170 K = 1,NTOT
X(K) = 1.2 * X(K) - 0.2 * XOL(K)
IF ( K.LE.N2.AND.X(K).LT.PHLIM ) THEN
X(K) = PHLIM
ENDIF
170 CONTINUE
CALL LAGFUN ( VLAG, TVAH, R, X, CL, COSl, COS2,
* LM, D, CLAH, CLAG, VAG, CK, VAH, CH, CG, VOF )

IF ( VLAGO.GT.VLAG ) THEN
VLAGO = VLAG
GO TO 190
ELSE
DO 180 K = 1,NTOT
180 - X(K) = ( X(K) + 0.2 * XOL(K) ) / 1.2
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ENDIF
CALL LAGFUN ( VLAG, TVAH, R, X, CL, Ccosl, cos2,
& LM, D, CLAH, CLAG, VAG, CK, VAH, CH, CG, VOF )
200 CONTINUE

DMAX = DABS ( ( VLAGOL ~ VLAGO ) / VLAGO )
IF ( DMAX.LT.TOL ) THEN
RETURN
ELSE
VLAGOL = VLAGO
ENDIF
IF ( KL.LT.NUMCY ) THEN
GO TO 150
ELSE
RETURN
ENDIF
END
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SUBROUTINE LAGFUN ( VLAG, TVAH, R, X, CL, COSl, COS2, LM,
D, CLAH, CLAG, VAG, CK, VAH, CH, CG, VOF )

IMPLICIT DOUBLE PRECISION ( A-~H,0-%2 )

DIMENSION X(NTOT), CL(N), COS1(N), COS2(N), LM(ND,N),
D(IQG), CLAH(IQH), CLAG(IQG), VAG(IQG), R(IQH),
VAH(IQH), CH(IQH), CG(IQG)

COMMON /PARR/ DECFC, FCINC,PHLIM,CV,ALPl,E,RP

COMMON /PARI/ TOL,ITER,NUMCY,NITER,GA,IQH,IQG,ND,N,NTOT

TVaH 0.0

TVAG 0.0

RP2 = RP + RP

CALL EQUCON ( E, IQH, N , ND, NTOT, VAH, X, CL, COS1,
co0s2, LM, R, CK )
DO 100 K = 1,IQH
VAHK = VAH(K) * CH(K)
CLAHK = CLAH(K)
TVAH = TVAH + DABS ( CLAHK * VAHK ) + RP * VAHK * VAHK
CONTINUE

CALL INECON ( IQG, N, NTOT, VAG, X, D )
DO 200 K = 1,IQG

V = VAG(K) * CG (K)

CLAGK = CLAG (K)

Z = CLAGK / RP2

PSI = DMIN1 ( V,Z )

TVAG = TVAG + DABS ( CLAGK * PSI ) + PSI * PSI * RP
CONTINUE

CALL VALOBF ( N, NTOT, VOF, X, CL )
AVOF = CV * COF

VLAG = AVOF + TVAH + TVAG

RETURN

END
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SOUBROUTINE EQUCON ( E, IQH, N, ND, NTOT, VAH, X, CL,
= Ccosl, cos2, LM, R, CK )
IMPLICIT DOUBLE PRECISION ( A-H,0-% )
DIMENSION VAH(IQH), X(NTOT), CL(N), COS1(N), COS2(N)
DIMENSION CK(6,6), LM(ND,N), R(IQH)
NEL2 = N + N
DO 100 K = 1,IQH
100 VAH (K) = 0.0
¢
C---LOOP OVER ALL ELEMENTS FOR GLOBAL STIFFNESS EVALUATION—=—-—-

lad
-

DO 700 J =1,N
CALL GLOSTI ( E, J, N, IQH, NTOT, CL, CK, X, cos1,
w3 COS2, ND )
DO 300 L = 1,ND
K=1IM ( L,J)
VAHT = 0.0
IF ( K.EQ.0 ) GO TO 300
bO 200 LL = 1,ND
M=1LM ( LL,J )
IF ( M.EQ.O ) GO TO 200
JJ = NEL2 + M
VAHT = VAHT + CK( L,LL ) * X(JJ)
200 CONTINUE
VAH(K) = VAH(K) + VAHT
300 CONTINUE
700 CONTIWUE

DO 500 K
VAH (K)
500 CONTINUE
RETURN
END

1,IQH
VAH(K) - R(K)
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SUBROUTINE GLOSTI ( E, J, N, IQH, NTOT, CL, CK, X, COSl1,
C0s2, ND )

IMPLICIT DOUBLE PRECISION ( A-H,0-2 )

DIMENSION CL(N), X(NTOT), CK(6,6), COS1(N), COS2(N)

Cl = COS1(J)

C2 = C0s2(J)
Cl2 =Cl1 * Cl1
C22 =C2 * C2
JI =J + J

JA = JI - 1

CLl1 = CL(J)

CL2 = CL1 * CL1
CL3 = CL2 * CL1

A =E * X(JI) / CL3

B = X(JA) * CL2 / X(JI)
Gl =A* ( B * Cl2 + 12. * C22)
G2 =A * Cl *C2 * (B - 12.)
G3B=UATXM(NBR*AC2 28+ 512 L IR *E CI258)
G4 =- A * 6, * CL1 * C2
G5 =2A* 6., * CL1 * Cl1
G7 = A * 2, * CL2

G6 = G7 + G7

CK(1l,1) = G1

CK(2,1) = G2

CK(3,1) = G4

CK(4,1) = - G1

CK(5,1) = - G2

CK(6,1) = G4

CK(1,2) = G2

CK(2,2) = G3

CK(3,2) = G5

CK(4,2) = - G2

CK(5,2) = - G3

CK(6,2) = G5

CK(1l,3) = G4

CK(2,3) = G5

CK(3,3) = Gé6

CK(5,3) = - G5

CK(6,3) = G7

CK(1l,4) = - G1

CK(2,4) = - G2

CK(3,4) = - G4

CK(4,4) = G1

CK(5,4) = G2

CK(6,4) = - G4

CK(1l,5) = - G2

CK(2,5) = - G3

CK(3,5) = - G5

CK(4,5) = G2

CK(6,5) = - G5
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CK(1l,6) = G4
CK(2,6) = G5
CK(3,6) = G7
CK(4,6) = - G4
CK(5,6) = - G5
CK(6,6) = G6
RETURN

END

SUBROUTINE VALOBF ( N, NTOT, VOF, X, CL )
IMPLICIT DOUBLE PRECISION ( A-H,0-Z )
DIMENSION X (NTOT), CL(N)
VOF = 0.0
DO 100 K = 1,N
J=K+K -1
100 VOF = VOF + X(J) * CL(K)
RETURN
END

SUBROUTINE INECON ( IQG, N, NTOT, VAG, X, D )
IMPLICIT DOUBLE PRECISION ( A-H,0-Z )
DIMENSION VAG(IQG), X(NTOT), D(IQG)
NEL2 = N + N
DO 100 K = 1,IQG
J = NEL2 + K
VAG(K) = DABS (D(K)) - DABS (X(J))
100 CONTINUE
RETURN
END
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Table B.1l User's manual and example of input form.

USER'S MANUAL

Heading line

This line is used to write the title of the problem

N, IQOH, IQG, NUMAX, E, ND

where N is the number of elements of the frame
IQH is the number of equality constraints
IQG is the number of displacement constraints

NUMAX is the number of trial points for each
design variable in each cycle

E is the module of elasticity of the material

ND is the number of global degrees of freedom

R ( IQH lines )

where R is the external global force

D ( IQG lines )

where D is the displacement constraint

CL, COS1, COS2 ( N lines )

where CL is the length of each element
COs1 is the cosine of the angle between the

element and the horizontal
C0s2 is the sine of the angle defined above

IM (1,3 ), I =1,NDand J=1,N (N lines )

where LM ( I,J ) is the global gggree of freedom
corresponding to, the i element degree of
freedom of the j element

MAXCY, P
: where MAXCY is number of cycles with'the same
lagrangian multipliers
P is the penalty factor
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FCINC, DECFA, GA

79
Table B.l1l Continued.

where FCINC 1is the increasing factor
DECFC 1is the decreasing factor
GA is the updating scalar for the penalty
factor
ALP, TOL
where ALP is the perturbation factor
TOL is the minimum allowable change for the
lagrangian function without the updating
of the lagrangian multipliers
X (N + N elements, one line )
where X is the initial values of areas and moments
of inertia; odd values are areas; even
values are inertias
X ( number of global degrees of freedom, one line )
where X is the initial values of global

displacements
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Table B.l Continued.

Frame : first loading
3, 6, 6, 30, 30000, 6
0

1000

COO0OO0OOCOOOCOO

¢ o o o o
(SIS, O NS, N, NG, ]

[
o o]
o

r 0, 1

240, 1, O

180, 0, 1

O 05 0, 15882 7853
l, 2, 3, 4, 5, 6
0, 0, 0, 4, 5, 6
5, 100

1.2, 0.7, 5

100, 0.0000000001
K Al A kA AL Rl
0.4, 0.4, 0.4, 0.4, 0.4, 0.4

A) First line

Title of example

B) Second line

3, 6, 6, 30, 30000, 6

(number of elements, number of equality constraints, number
of inequality constraints, number of trial points for each
design variable, modulus of elasticity and number of degrees
of freedom per element ; dimensions of modulus of elasticity
are psi)

C) Third to eigth line

0
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Table B.l Continued.
1000

OO0 OO

(one line for each global external force ; the only force
applied has the direction and sense of the second global
degree of freedom ; the global external forces are ordered
as the global degrees of freedom ; the dimensions of forces
are kips)

D) Nineth to thirtieth line

OCOO0OO0OO
(S C IS, OS]

0.5

(absolute values of each of the global displacement
constraint ; the global displacement constraints are ordered
as the global degrees of freedom ; the dimensions of
displacement constraints are inches)

E) Fifteenth to seventeenth line

180, 0, 1
240, 1, O
180, 0, 1

(the lines are ordered per element ; the first value of
each line is the length of the element ; the second value is
the cosine of the angle between the horizontal axis and the
structural element measured counterclockwise ; the third
value is the sine of that angle ; the dimensions of length
are inches)

F) Eighteenth to twentieth line

ol OI 0l l’ 2' 3
ll 2' 3I 4[ 5, 6
o, 0, 0, 4, 5, 6

(location matrix : for each element relates the local
degrees of freedom with the global degrees of freedom ;
first line states that for the first node in the element
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Table B.l Continued.

there are no global degrees of freedom and for the second
node, the fourth local degree of freedom is the same as the
first global degree of freedom and so forth ; the second
line defines the relations for the second element and the
third line for the third)

G) Twenty first line

5, 100

(first value defines the number of cycles with the same
lagrangian multipliers; second value is the penalty factor)

) Twenty second line

IB2n Uotls 5

(first value is the increase stepsize value for the design
variable ; the second is the decrease stepsize value ; the
third value is the updating scalar for the penalty factor at
the end of each cycle)

I) Twenty third line

100, 0.0000000001

(first value is the scalar that multiplies the value of
each design variable at the first trial point ; the second
is the minimum admissible relative change in the lagrangian
function at each loop of cycles)

Jd) Twenty fourth line

1,1, 1,1, 1,1

(quesses for the physical properties of the frame ; the
first, third and fifth values are the initial areas for the
first, second and third elements ; the others are the
respective inertias)

K) Twenty fifth line

0.4, 0.4, 0.4, 0.4, 0.4, 0.4

(initial values of the global displacements, assumed
feasible in the inequality constraints domain)
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Table B.2 Example of output form.

TEST OF A BEAM

kkkkkkkkkkxx INITIAL VALUES ****kkkhks

NUMBER OF ELEMENTS = 1

NUMBER OF EQUALITY CONSTRAINTS = 3

NUMBER OF INEQUALITY CONSTRAINTS = 3

NUMBER OF ITERATIONS PER CYCLE =

MODULUS OF ELASTICITY =

50

0.30000000E+05

NUMBER OF GLOBAL DEGREES OF FREEDOM = §

GLOBAL DEGREE OF FREEDOM
1
2
3

GLOBAL DEGREE OF FREEDOM

i
2
3
ELEMENT LENGTH
1 0.10000000E+03

LOCATION MATRIX FOR GLOBAL
ELEMENT NODE I
1 0 0

MAXIMUM NUMBER OF CYCLES =

EXTERNAL FORCE
0.10000000E+04
0.00000000E+00
0.00000000E+00

DISPLACEMENT CONSTRAINT
0.50000000E+00
0.50000000E+00
0.50000000E+00

Cos SIN

1.00000 0.0000

DEGREES OF FREEDOM
NODE J

0 1 2 3

10
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Table B.2 Continued.
PENALTY FACTOR = 0.10000000E+04

FACTOR OF INCREASE 0.12000000E+01

FACTOR OF DECREASE 0.70000000E+00

PENALTY FACTOR MULTIPLIER = 0.10000000E+01

ELEMENT AREA INERTIA
]! 0.10000000E+01 0.10000000E+01
GLOBAL DEGREE OF FREEDOM INITIAL GUESS
1 0.10000000E+01
2 0.10000000E+01
3 0.10000000E+01

khkkkhkkhkdkkkhkk FINAL VALUES ***%xkkkkkkkk

NUMBER OF ITERATIONS = 1

VALUE OF LAGRANGIAN FUNCTION = 0.27482949E-11

ELEMENT AREA INERTIA
1 0.66682531E+01 0.10000000E+00

DISPLACEMENT FINAL VALUE

1 0.49988107E+00

2 ~.21501374E-05

3 ~.37650328E-07
EQUALITY FINAL VALUE

1 0.36692930E-04

2 -.96343543E-08

3 -.64779215E~06
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Table B.2 Continued.

INEQUALITY FINAL VALUE
1 0.11893492E-03
2 0.49999785E+00

3 0.49999996E+00
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Table B.3 Cantilever beam: first loading

Load Vector ..... OO 000D OO0 QOO

( kips and kip.in )

Displacement Constraint Vector
( inches and radians )

Initial
Aresa ( in2 ) 19
Inertia ( in4 ) 1.
Horizontal
Displacement ( in ) 0.4
Vertical
Displacement ( in ) 0.4
Rotational
Displacement ( rad ) 0.4

o
]

( 1000, 0, 0 )

SRR = (05 RS sl 0x S i)

Final Exact solution
6.6471 6.6667

0.1 (undetermined)
0.5009 _ 0.5
0.0363 ( undetermined )
0.000s6 { undetermined )
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Table B.4 Cantilever beam: second loading

Load Vector....0......'...‘..0.0
( kips and kip.in )

Displacement Constraint Vector ceces.D

( inches and radians )

Initial
Area ( in2 ) I
Inertia ( in4 ) 1.
Horizontal
Displacement ( in ) 0.4
Vertical
Displacement ( in ) 0.4
Rotational
Displacement ( rad ) 0.4
Note :

area and inertia.

R= (0, 1000, 0

( 0.5, 0.5, 0.5

Final Exact solution
0% ( undetermined
34400.2 ( undetermined
0 0
0.3232 0.3230
0.0048 0.0048

Exact values of displacements determined with final
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Table B.5 Cantilever beam: third loading.

Load Vector .'.‘................'.... R= ( 0' 0' 10000000 )
( kips and kip.in )

( 0.5, 0.5, 0.5 )

Displacement Constraint Vector....... D
( inches and radians )

Initial Final Exact solution
Area ( in? ) | 1.0 0.1 ( undetermined )
Inertia ( in% ) 1.0 58369.609 ( undetermined )
Horizontal
Displacement ( in ) 0.4 0 0
Vertical
Displacement ( in ) 0.4 0.2856 0.2856
Rotational
Displacement ( rad ) 0.004 0.0057 0.0057

Note : Exact values of displacements determined with final
area and inertia.

/ )



Table B.6 Cantilever beam:

FoadRVect Or e e alerelere it el oy iee
( kips and kip.in )

Displacement Constraint Vector...

( inches and radians )

89

-]
i

(1000,

fourth loading.

1000, 100000 )

S0 Di=E (S0 5 TR OIS S O )

Initial Final
Area ( in? ) 1.0 6.649133
Inertia ( in% ) 1.0 78625.13
Horizontal
Displacement ( in ) 0.4 0.5009
Vertical
Displacement ( in ) 0.4 0.3534
Rotational
Displacement ( rad ) 0.4 0.0064

Exact solution

6.666667

( undetermined )

0.5000

0.3524

0.0064

Note : Exact values of displacements determined with final

area and inertia
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Table B.7 One bay frame: first loading.

Load Vector.........R = ( 0, -1000, -1000, 0, -1000, 1000 )
( kips and kips.inch)

Displacement
Constraint Vector....D = ( 0.5, 0.05, 0.5, 0.5, 0.05, 0.5 )
( kips and radians )

Physical properties

Initial Final

Element 1-2

Area ( in? ) 1.0 S 1197756

Inertia ( in? ) 1.0 0.20446
Element 2-3

Area ( in? ) 1.0 0.10000

Inertia ( in? ) 1.0 8.71938
Element 3-4

Area ( in? ) 1.0 119.8357

Inertia ( ind ) 1.0 0.19978
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Table B.7 Continued.

Global Displacements
Initial

Degree of freedom # 1 0.4
( inch )

Degree of freedom 4 2 0.04
( inch )

Degree of freedom # 3 0.4
( radians )

Degree of freedom # 4 0.4
( inch )

Dagree of freedom # 5 0.04
( inch )

Dagree of freedom # 6 0.4

radians )

Final

0.4764

-0.0500

-0.4321

0.4376

-0.0500

0.4321

Exact

0.4675

-0.0501

-0.4320

0.4287

-0.0501

0.4321
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Table B.8 One bay frame: second loading.

LoadmVec oLy i 0,88 i o0 e RESS (S 1000507000 0l
( kips and kips.inch)

Displacement

Constraint Vector..... DES (R 0L 15050578 075), 0%i5 % OR10 SEERO0RISEE)

( kips and radians )~

Physical properties

Initial Final

Element 1-2
Area ( in? ) 1.0 0.3769091
Inertia ( in? ) 140 145164. 85

Element 2-3
Area ( in2 ) 1.0 0.5641342
Inertia ( in? ) 1.0 5836.6834

Elemant 3-4
Area ( in? ) 1.0 0.9709580

Inertia ( in? ) 1.0 76.810583
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Table B.8 Continued.

Global Displacements

Initial Final Exact
Degree of freedom 0.4 0.4764 0.4193
(B1ncn'se)
Degree of freedom 0.04 0.0479 0.0479
(§81°n C hier)
Degree of freedom 0.4 -0.0034 -0.0034
( radians )
Degree of freedom 0.4 0.3860 0.3860
( inch )
Degree of freedom 0.04 -0.0186 -0.0186
(SFi'nchil)
Degree of freedom 0.4 0.0012 0.0012

radians )
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Table B.9 One bay frame: third loading (first run).

FIRST RUN ( random initial gueszes )

Load
Vector....... R = ( 1000, -1000, -100000, 0, -1000, 100000 )
( kips and kips.inch)
Displacement
Constraint Vector...... jol 2 (6 W aet 0 e S B, BB 08 08 )
( kips and radians )
Physical properties
Initial Final
Element 1-2
Area ( in? ) 1.0 25.547329
Inertia ( in? ) 1.0 0.1000000
Element 2-3
Area ( in? ) 1.0 90.957438
Inertia ( in? ) 1.0 590.32596
Element 3-4
Area ( in? ) 1.0 34.538765
4

Inertia ( in" ) 1.0 150.23984



Global

Table B.9 Continued.

Displacements

Degree

Degree

Degrze

Degree

Degree

Degree

of freedom # 1
inch )

[(V]

of freedom #
inch )

of freedom # 3
radians )

of freedom # 4
inch )

of freedom # 5
inch )

of freedom # 6
radians )

95

Initial

0.4

Final

0.4499

0.2317

-0.4939

0.4149

~0.1728

0.5000

Exact

86.152

~0.1411

~0.4614

86.064

-0.2435

0.2434



Table B.10 One bay frame: third loading (second run).

96

SECOND RUN ( with results from first run )

Load

V.S C EIO L e R = ( 1000, -1000, -100000, O, -1000, 100000 )
( kips and kips.inch)

Displacement

Constraiat Vector....... D = DIRSHEOMSY 07215 AR 0855

( kips and radians )~

Physical properties

Element 1-2

2

Ars2a ( in“ )

4

Inertia ( in® )

Element 2-3

2

Area ( in“ )

4

Inertia ( in~ )

Element 3-4
Area ( in2 )

Inertia ( in4 )

Initial

25.547329
0.1000000

90.957438
590.32596

34.538765
150.23984

Final

25.414238
120224.43

179.44512
5912.0086

35.071602
17058.589



Global
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Table B.10 Continued.

Displacements

of freedom # 1
inch )

of freedom # 2
inch )

of freedom # 3
radians )

of freedom # 4
inch )

(3]

of freedom #
inch )

of freedom # 6
radians )

Initial

0.4499

0.2317

~0.4939

0.4149

~0.1728

0.5000

Final

0.4574

-0.2338

-0.0050

0.4268

-0.1728

0.0049

Exact

0.4642

-0.2329

-0.0050

0.4241

-0.1734

0.0048



Proposal to the National 3cience Foundation
Integrated Equality Constraint Optimization

by

Marc Hoit, Fernando Fagundo and Alfredo Soeiro

SUMMARY

Optimization as a general design technigue is an
evolving area of study. 1In its current form, it is a varied
collection of specialized methods and greatly simplified
problems. 1In the area of structural optimization, these
methods have not produced any clear direction for further
research. The major result of current researcn is that it
1s not the optimization methods that need study, but the
problem formulation. It has been shown that less than five
percent of the effort in structural optimization is in the
optimization strategies [1]. The rest of the effort is
taken up by problem formulation.

It is for this reason that we propose to study a new
problem formulation method. This method will directly
develop the objective function as well as all constraint
functions in the design variable space. This is different
from current techniques which map portions.of the design
variables from one space to another. This mapping is
performed so that standard techniques can be used to form
the design variables. As an example, in structural analysis
the design variables are usually stresses, moments of
inertia and areas. Standard structural analysis uses a
displacement-based analysis method. Therafore, the analysis
problem is first solved in the displacement space. Then the
displacements are mapped into the stress space by standard
direct stiffness techniques. Optimization is performed on
these resulting stresses [2].

The method we wish to study will use the equations of
equilibrium as equality constraints of the optimization
problem. The equality constraints will be satisfied through
the use of Augmented Lagragian Multipliers. The
displacements will now be considered as design variables.
Although this will greatly increase the number of variables
in the optimization problem, it should reduce the problem
formulation effort. The overall effect will be to increase

99
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solution accuracy while reducing numerical effort. 1In
addition, it will shift the burden of solution to
optimization methods, thereby taking full advantage of
currently available search techniques.

Description of Research Project

General computational capabilities available to the
designer have increased drastically in recent years.
However, design methods still consist of a trial and error
procedure. This is due in part to the lack of easily
understood and used algorithms. Thus, current designs are
in accordance with applicable design codes, but are
generally not related to an optimal solution. The resulting
structure is an unbalanced solution between the minimal
total cost and acceptable performance due to external,
gravity and lateral loading. The problem of designing
reinforced concrete in ar=as exposed to seismic risks is of
particular importance. The seismic forces acting on the
structure are directly related to the structural
configuration, stiffness and weight.

Until recently, the optimization of frames subjected to
seismic loading dealt mainly with a homogeneous elastic
material, namely steel. Reinforced concrate is made of two
different materials, usually cast in place, and has both
non-elastic behavior and varying external forces due to the
seismic loading. This introduces a considerable amount of
extra computation in the optimization procedure because of
additional design variables and constraints. The fact that
concrete cracks when subjected to tension creates a
reduction in structural stiffness. This requires, without
other simplifying assumptions, an itsrative procedure to
solve the non-linear optimization problem. Ductility
variation is primarily important when the frame is submitted
to seismic forces. The cyclic nature of seismic loading
produces a generally more severe effect compared to the
service design loads. All this creates a very complex
problem in terms of formulation and computational strategy.
As a result, the inclusion of non-linear materials has
previously been ignored [3].

Proposed Formulation

The primary goal of this research is to study a new
formulation method and the techniques required to
efficiently solve the problem of the optimization of
concrete structures subjected to seismic loading. The new
formulation is a departure from current techniques in that
the solution is carried entirely in the design space, using
only optimization techniques. This formulation will use
displacements, areas, moments of inertia and any related
structural properties that are to be optimized as design
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variables. It is the simultaneous inclusion of the
displacements with all other variables that is the basis of
the new formulation.

Previously, researchers have used the displacements
alone, properties alone or some very simplified combination
of displacements and properties. None of the approaches
were general enough to be usable as a basis for the
optimization of general structures. Current techniques use
general analysis programs to find the design variables
(stresses). The optimization is then performed on the
results of the analysis. This analysis and subsequent
optimization is an iterative procedure that is repeated
until the problem converges to an acceptable solution. It
is exactly this iterative cycle that has hindered the
progress of structural optimization [4]. .

Studies have shown that over 95% of the effort involved
in current optimization methods is spent in problem
formulation and in methods for information gathering. This
means that almost all of the effort is involved in the
traditional analysis portion of the problem. While
traditional displacement-based techniques are relatively
efficient, they still require large amounts of effort in
generating the problem and reducing the results of the
analysis.

The solution to this bottle neck is to formulate the
entire problem as an optimization problem. This means
ramoving the structural analysis step completely. The
displacements will now be considered design variables. As a
result, the normally separate displacement analysis and
stress recovery phase of the optimization procedure is
eliminated. The equilibrium equations used in traditional
structural analysis will become equality constraints in the
design space. The solution of equality constraints can be
handled through the use of Augmented Lagrangian Multipliers.
The use of this new formulation will shift the solution
emphasis back to optimization techniques. This is due to
the fact that the number of design variables and constraint
equations will increase dramatically [5].

Research Obijectives

The research project has three definite objectives.
These objectives will be accomplished in succession over a
two year period. The first objective is to implement and
study the complete formulation. This consists of creating
the pseudo-objective function relating the merit function,
the equilibrium constraints and the behavioral constraints,
The second is to research current optimization techniques
and find the most applicable method or combination of
methods for this new formulation. Third is to extend the
technique to non-linear problems. The study will be limited
to rigid frame structures. The inclusion of non-linear
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effects will be considered by using concrete as a structural
material. These goals are the first step toward creating a
general framework for the optimization of displacement-based
analysis problems. The extension of these techniques can be
applied to any problem currently using the finite element
method as a solution technique. Further studies should
include the extension to more general types of structural
elements, structural systems and materials.

In order to accomplish the stated objectives, we have
divided the procedure into five distinguishable steps.
First, we will formulate the problem so that structural
equilibrium will be satisfied through equality constraints.
The behavioral constraints, like maximum allowable stresses
and limits on the floor drifts, will be considered as
inequality constraints. The use of the Augmented Lagrangian
Multiplier method will derive a pseudo-objective function
that can be minimized as an unconstrained function. This
method will completely satisfy the equilibrium constraints
while avoiding the re-analysis of the structure after 2ach
cycle of the optimization procedure.

Second, the concept of the forced-mode compliance will
be studied in more depth. As an optimization algorithm,
this method seems promising in the reduction of computation
time. The method can be extended from the currently
restricted formulation to more generalized optimality
conditions. This will remove the restriction of using only
shear building models. The inclusion of a more realistic
approach to earthquake loading, rather than simple harmonic
motion to a real ground motion, will be looked at.

Third, the extension of the formulation from linear
elastic to non-linear inelastic structures will be studied.
Research in optimization algorithms related to seismic
resistant frames will create more general algorithms. We
will specifically include the non-linear behavior of
concrete and the inelastic performance of the structure due
to deformations and cracking. This extension means a
considerable increase in the computations, but it is
necessary in creating more general optimization methods.

Due to the characteristics of reinforced concrete, a
possible way of accomplishing chis is using the minimum
dissipated energy concepts for seismic loading.

Fourth, we will study the simultaneous consideration of
the service and seismic loads. These loading cases, due to
their different nature, create different types of
restrictions that must be made compatible. The different
characteristics of the two load situations may bring some
benefits to the optimization algorithm. The constraints and
the optimality criteria will consider the stochastic nature
of the seismic loads, opposed to the status of the service
loads. The objective function will also consider this
discrepancy with appropriate weighting of the effects of the
two loadings. The algorithm will include specific criteria
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in the decision making process for each type of loading.
The final solution must be a compromise between the sets of
designs.

Finally, since optimization algorithms are iterative
procedures that start with a solution, it is crucial to hava
a good initial design. The accuracy and reliability of the
initial solution is important in the algorithm dsvelopment
and on the total computational time. Work will be
concentrated on finding a procedure based on practical
kKnowledge of experienced designers. This suggests the use
of Expert Systems techniques to derive a good initial design
that is both feasible and close to the optimal solution.
This improvement in the preliminary estimate will
incorporate knowledge from other disciplines, thus
improvements on many optimization procedures are possible.

Review of Current Techniques

Practical uses of Optimization in Structural Analvysis

There are two common types of problems in structural
design in which optimization is used, each requiring a
different method of solution. First is the uncoupled
optimization of basic structural elements. Second is the
optimization of the configuration and sizing of all the
elements, considering the structure as a whole. Both
procedures have been used in the sizing and detailing of
beams, columns and slabs using steel, reinforced concrate or
prestressed concrete,

Uncoupled optimization can be reasonably implementad on
small computers. The result is a computer program that is
easy to use and requires the designer to input the same data
as required in a traditional, non-optimized design. This
method can produce designs rather quickly, because shortcuts
can be included due to the specialized nature of the
problem. These programs generally have as goals a design
that is relatively efficient, economic, capable of resisting
the external forces, and compliant with other design code
limitations, including buildability. These requirements are
generally postulated within a numerical optimization
framework of minimizing an objective function, while
satisfying a set of algebraic functional constraints. The
level of detail included in the optimization controls the
ease of use. The value of element design methods lies in
their ability to give useful information in a quick and easy
manner. The problem is that uncoupling the elements often
neglects critical parameters [6].

Optimization using a coupled approach is a much more
complete method. It is the area in which most of the
current research efforts have been concentrated. One of the
most studied areas is the optimization of trussas. This is
due to the simplicity of the problem formulation. Trusses
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are generally determinate and the functions of the design
variables can be formed directly. The optimum design
problem usually consists of finding a cross-sectional area
for each truss member so that the total weight is minimized.
The constraints are that the design loads are eguilibrated
with a satisfactory distribution of stresses and
displacements. The conventional truss design method is
extended to an optimization problem by re-sizing the bars
through the use of optimization methods. There are
procedures that can select the most appropriate discrste
size for each truss member, thus producing efficient
practical design [7].

The optimization of rigid frames is another highly
researched area. The iterative process of analyzing an
initially assumed design, then re-sizing and re-analyzing
members has been used successfully. However, it has
required many simplifying assumptions. One common approach
is to extract the resulting member forces from a standard
analysis. These forces are then used in a separate
optimization step in which the elements are designed and re-
sized independently of the structure. This method uses the
global structure to distribute the membar forces and then an
uncoupled approach to optimize the particular element.

Another area in which optimization has shown to be
useful is in choosing the structural configuration. Methods
have beesn researched in which the mcst economical structural
form, as a function of the numbar of bays, spans, frames and
frame spacings, are identified to satisfy the requirements
of floor area, site dimensions, usable headroom , 2Xistence
of internal columns and others [8].

Optimization techniques

The general mathematical statement formulating an
optimization problem is expressed as follows :

Minimize (or Maximize): fo(xi) i=1,n
Subject to: f.(xi) <or =o0or >0 j=1,m
xg 270 i=1,n

Where £, is the objective function and is a function of the
design variables x.,. It represents some chosen criterion of
merit of a design which may be cost, efficiency, benefit,
etc.. The constraints f, are also functions of the variables
X;. In the case of strudtural element design, x., may
represent the configuration of the element; such as bar
areas, depths or bar spacings [9]. The constraints f. may
also represent bending stresses, deflection, or otherJcode
provisions. These constraints are generally highly non-
linear. Thus, this becomes one of the more difficult types
of optimization problems to solve. Research has shown that
element design problems are sufficiently small enough to
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make them solvable by a variety of non-linear, constrained
optimization algorithms. Methods such as the generalized
reduced gradient, Augmented Lagragian and penalty function
are applicable for these types of problems [10].

The penalty function method is the most robust for
solving the constrained problem as a sequence of
unconstrained optimizations. This method uses a penalty
parameter, P, that multiplies the constraints. These
factored constraints are then added to the objective
function (f,) in such a way that a violation of any
constraint Qeads to a very high value of the augmented
objective function. Unconstrained optimization is then used
to find a minimum of the augmented objective function for a
particular value of P. The augmented objective function has
P as part of the set of design variables. Now P is altered
such that when the unconstrained optimization is repeated,
the objective function value is reduced as is any constraint
violations. The optimal solution is found to satisfy both
the original design variables and P [11].

In trusses, the number of variables and constraints is
very large. However, the regular mathematical structure of
the problem can be used as an advantage in using simpler
methods. The objective function is linearly dependent on
the design variables, but the constraints are non-linear.
Considering the dual of the problem, it can be mapped into
another space where the objective functions (g,) are non-
linear and the constraints (g,) are linear. This problem
may be solved by making a seqlence of linear approximations
to the nonlinear g, and solving it by the ssguential use of
linear programming methods. It must be emphasized that
these methods are simply numerical search methods which make
no assumptions about the nature of the optimum of the
problem [12].

Another common method of optimization is the one called
optimality criteria. It attempts to establish conditions of
uniqueness at the beginning of the process. These
conditions characterize the optimum of a problem and
distinguish it from all other possible solutions. The
methods then attempt to devise a scheme which iteratively
satisfies these criteria while searching for the optimum.
This method has two problems. First, in most cases there is
no absolute criterion to distinguish a global optimum from
any other local optimum. Second, the re-sizing schemes
(optimality criteria) are only approximate and need careful
programming to yield good results [13].

Current frame optimization methods depend upon whether
the problem is an elastic or a plastic design. The optimum
rigid plastic design of frames turns out to be a problem of
linear programming. This has the considerable advantage
that very large problems can be solved quickly. However,
the formulation of the linear programming model may be
difficult since all possible collapse mechanisms must be
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known. For large frames, the number of these mechanisms can
be enormous since the precise mechanism of collapse is not
initially known. Some research has been done in order to
make full use of the duality between the static and
kinematic theorems of plasticity [14].

Optimal design of elastic frames leads to an
optimization problem similar to that of truss-sizing.
However, members with flexural and axial loads do not easily
map into the dual problem. One popular method finds the
optimum design by using the virtual load method to formulate
displacement constraints and a force matrix approach to
reduce the problem size. This method still generates a non-
linear objective function with linear constraints. In order
to solve the problem, direct search methods are required.
Some of the direct methods that have been used are feasible
directions, generalized reduced gradient and the gradient
projection method. All of these methods are difficult to
implement due to the size of the problems and their non-
linear nature. Mixtures of these methods have been tried
depending on the solution strategy adopted. In problems in
which the definition of some of the constraints is not well
posed (such as concrete strength), fuzzy logic has been
applied to define the limitations [15].

Other methods described in the literature include the
use of decomposition in the general problem and then
iterative optimization between the parts. Computer-aided
design techniques are used when the designer makes search
direction designs. This technique could be extended througn
the use of Expert Systems. The energy method is also used
to generate a function which can be maximized. This
represents the amount of energy absorbed by the structure
when loaded [16]. Optimization of the structural frames
submitted to dynamic loading has been studied by a few
researchers [17].

Summary of Current Optimization of Seismic Resistant Frames

In this section a summary of the current state-of-the-
art information in structural optimization is presented.
The research discussed here consists of the most promising
methods that will be studied for use in solving the
optimization problem in its new formulation. This
presentation is the result of an intensive literature search
on this subject. It is very difficult to synthesize the
information presented due to the fact that each study
represents the application of different techniques to
different systems.

1) Optimum seismic resistant design of R/C frames

Zagajesky and Bertero present a method to optimally
design ductile R/C moment-resisting frames for buildings
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subjected to severe earthquakes [18]. It is a five stage
method grouped into two phases, a preliminary and a final
phase. A weak girder - strong column assumption 1is adopted
to simplify the analysis. The design moments for the
girders are found by the minimization of the flexural
reinforcement.

The preliminary phase is composed of a three step
process: choose an initial design, analyze the structure,
and optimize the structure. The first step consists of
assuming the properties of the structure so that an analysis
can be performed. The second step is the analysis of the
initial design to find the story shear forces for a
particular set of design conditions such as ground spectrum,
damping ratio and displacement ductility factors. The
seismic design forces are obtained using a modal analysis
technique on a shear building model. The final step of the
preliminary phase is to optimize the structure on a sub-
assemblage basis. Each floor of the structure is considered
a sub-assemblage and is independently optimized. The
optimization is based on the gravity, wind loads, seismic
story shear forces, critical load combinations and the
mechanical characteristics of the materials. The objective
is to find the optimum sizes and the optimal distribution of
the reinforcements.

Equilibrium constraints are derived from the kinematic
theorem of simple plastic theory. Serviceability
constraints are imposed to prevent yielding, wide cracking
and large deflections. Practical constraints were imposed
to satisfy code requirements and to obtain a practical
design consistent with the principles of seismic-resistant
design. This optimization problem is solved for each story
by a simplex method algorithm in a step-wise linear fashion.
The proportioning of the members is made in accordance with
the Uniform Building Code (UBC). Beams are designed to
supply moment capacities at least equal to the results from
the analysis. After the beams of an assemblage are
designed, the columns are designed using joint equilibrium
to develop the column moments.

The final design phase consists of two steps. First,
the rsanalysis of the optimized structure that resulted from
the preliminary optimization of sub-assemblages (stories).
The final step is to optimize again on a sub-assemblage
basis using a more sophisticated sub-assemblage to formulate
the optimization problem from which the final design is
obtained. As a last check on the design, the final
optimized structure is analyzed to insure overall
reliability and guidelines for detailing to ensure ductile
behavior.

The optimum values of the design moments are sensitive to
the cost of steel. Since design moment variations affect
the local inelastic demands, it is advisable to test
different techniques for the objective function and design
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constraints. Also, the higher material total costs
obtained with the optimization procedure should be evaluated
under the perspective of the other benefits obtained with
that same design.

The outlined method allows the inclusion of most of the
important factors controlling the selection of design
criteria, providing an efficient and rational basis for the
seismic design. The procedure's versatility permits design
constraints to be changed or added. It has the limitation
that the structure's behavior has to be greatly simplified
in order to reduce the problems to a reasonable size. This
work is the most complete in the area of concrete structures
subjected to seismic loading. It's procedures for forming
constraints will be applied to the new formulation.

2) Optimum earthquake design of shear buildings

Kato, Nakamura and Anraku presented a method that
optimizes a structure using constraint conditions based upon
evaluation of the cost function, using either linear and
non-linear programming [19]. Optimization of a structure
subjected to seismic loads is very difficult because of the
stochastic nature of the loads. As a result, a trial and
error method is usually applied to the design. Prato
considered the maximization of the natural frequency of the
frame [20]. Clough et al investigated how ductility factors
of members would be affected by stiffness distribution of a
frame and the intensity of an earthguakes [211].

The method described here includes the following four
phases. First, a building is analyzed to obtain the elastic
response, including member stresses. Second, sensitivity
coefficients for story deflections and member stresses are
calculated due to small changes of member sizes. Third,
these sensitivity coefficients are used to form linearized
constraint equations and an objective function. Finally,
the optimum design is obtained by iterative stepwise linear
programming.

In the first phase, a parametric study considering
multistory frames with uniformly distributed mass was
performed. The results showed an important influence of the
stiffness distribution on the value of the generated
objective function. The constraint condition required the
stress to be smaller than the yield stress. Under this
condition, the optimum design is the frame whose elastic
shear strength corresponds to the shearing force of the
response at each story level (fully stress design).

The last phase requires an optimization algorithm that
seeks the optimum design with arbitrarily distributed story
masses under either strength constraints, deflection
constraints, or both constraints. Because reciprocals of
the moment of inertia are used as design variables, the
objective function and the constraint equations become non-
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linear. A stepwise linear programming method is used.
Linear approximations to the objective function and
constraint equations are made using Taylor's series
expansions. At each linearized step, the sensitivity
coefficients and linear programming are used to modify the
values of design variables.

A sensitivity coefficient consists of a static and
dynamic factor. The dynamic factor represents the variation
of the external forces due to member changes. It is
obtained by taking the partial derivative of the natural
periods and mode shapes with respect to the design
variables.

The optimum design of shear-type frames under a given
standard spectra proved to be unique. This was true even if
the initial design variables were located in an unfeasible
solution space. This result proved that the hyperplanes
formed by constraint conditions are convex and smooth. 1In
almost all cases, the optimum design corresponded to the
fully stressed design. It was also found that the dynamic
sensitivity coefficients were functions of changes of the
eigen values and eigen vectors. Thus, the sensitivity
coefficients could be modified by changing the member sizes
of stories whose modal story deflections are large. The use
of sensitivity coefficients may be beneficial to the
solution of the general problem.

3) Optimum building design for forced mode compliance

Nakamura and Takewaki present a method with many new
ideas useful in optimizing frame structures [22]. They
studied a new system response quantity referred to as
"forced-mode compliance". They found that it is a very good
indicator for evaluating the overall dynamic compliance of a
shear building model subjected to harmonic ground motion.
This work extanded the work of Icerman [23] by deriving a
set of necessary and sufficient conditions for global
optimality of a model subject to constraints on the forced-
mode compliance, fundamental natural frequency and minimum
stiffnesses. They also obtained the optimal story
stiffnesses in closed form by taking advantage of the
characteristics of the shear building model. Lastly, they
developed formulas for directly controlling the base shear
coefficients, the maximum mechanical energy level and the
level of the maximum relative story displacement due to
harmonic excitation.

The practical significance of the forced-mode compliance
may still be argued by earthquake enginsers since it has
been defined with respect to a highly idealized excitation
together with an artificial frequency constraint. However,
just as the fundamental natural frequency has played the
priimary role the design of most engineering structures, the
forced-mode compliance may also be equally significant in
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controlling the fundamental dynamic characteristics of
building structures.

The forced-mode compliance is a measure for evaluating
the overall dynamic compliance (or stiffness) of the shear
building model. It is derived by minimizing the forced
steady-state vibration (developed by utilizing Rayleigh's
principle) and is subjected to a frequency constraint. The
optimum design problem is formulated with constraints on
forced-mode compliance, fundamental natural frequency and
minimum stiffnesses.

The method has some disadvantages. First, the modeling
of the structure as a shsar frame excludes the effect of the
moment distribution on the nodes due to the flexibility of
the beams. This reduces the constraining moment of the
story columns. Second, the method assumes that all the
columns of a story have the same stiffness. Third, the
method does not solve the case in which all or some of the
minimum story stiffness constraints are active. This
requires that a systematic search procedure be included in
the procedure or that the optimality conditions be
rederived. The paper states that the use of a harmonic
ground motion as the simulation of an earthquaka is
questionable and further research is required.

4) Nonlinear optimum design of dynamic damped frames

Cheng and Botkin present research including effacts
previously neglected in other works by considering the
structure to be non-linear [24]. 1In doing so, they included
the following effects: viscous damping (formulated using
Raleigh damping), P-delta effects, and masses lumped at the
floor levels. Changes in the mass during the optimization
wera also included. The columns used axial forces due to
static loads while the girders iacluded the forces due to
dynamic loads. The model allowed both flexible columns and
girders. Any type of general dynamic load was allowed
including impulses, harmonic motions or earthguakes.

The method of analysis is based on modal superposition
where dynamic amplification factors are obtained from a
shock spectrum. The ordinates of these factors are computed
by a finite difference technique. The standard stepwise
linear displacement method is used to recover moments and
Stresses from the displacements. As a result, the problem
has a linear objective function angd general non-linear
constraints. The method of optimization used is the
gradient search. The objective is to minimize the weight
of the structure. This goal creates constraints that depend
on the material density, the section modulus, and the member
length. It is inversely proportional to the section depth.
By choosing the section modulus as the design variable, the
objective function becomes linear.

The method attempts to take a more general approach to



111

the optimization problem. The use of an algorithm for
optimization based on a systematic search procedure is, in
this type of problems, capable of being very demanding on
computation time in frames with a high number of design
variables. Also, the objective function is developed for
Steel frames, when it considers parameters for the physical
properties of the section, restricting the general use of
this method for other frames.

5) Optimum structural design with design constraints

Cassis and Schmit's studies aim at devising an efficient
method for the optimum design of structures subjected to
dynamic loads by treating dynamic response constraints
parametrically [25]. 1In order to reduce the complexity of
the dynamic analysis and to achieve computational
efficiency, this work employs several new concepts. Of
particular interest is the use of a process called variable
linking. This method reduces the number of design variables
by finding relationships between them. A second innovation
is the use of Taylor series expansions to obtain explicit
approximations for dynamic response quantities in terms of
the design variables. Finally, the dynamic analysis is
organized to take advantage of the repetitive nature of the
design process.

The investigation reveals that the feasible design space
associated with structural optimization in the dynamic
response regime is usually disjoint. This important
feature leads to the use of an extarior penalty function
formulation. Successful implementation of the exterior
penalty function formulation is facilitated by the use of
dummy constraint boundaries and a new approach to move the
limits of the problem. The optimization limits need to be
moved due to the use of approximate analysis tecnniques
based on the Taylor series expansions. The concept of
moving the limit involves the adaptive shrinking or
expansion of the feasible design region. This makes it
possible to use one set of constraints to serve the dual
purpose of representing the approximate behavioral
constraints and the moved limit constraints. This is
necessary since these two regions are usually disjoint.
This technigue makes it possible to generate a sequence of
non-critical designs using an exterior penalty function
formulation whenever a feasible design is available.

The researchers conclude that the sinusoidal
contributions in the relationship between design variables
and dynamic response functions can cause minimums of the
exterior penalty which could be unfeasible. The design
procedure was applied to several frames and the numerical
results illustrate the effectiveness and remarkable
efficiency of the structural synthesis capability developed
by this method.
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The problem with this method is that it uses
approximation concepts from a static optimization problem.
Techniques such as variable linking, time parametric
constraint deletion and first order Taylor expansion series
were used to approximate the dynamic response functions in
explicit form. It is an attempt to find a more efficient,
but specific, method to f£ind the optimal solution. Due to
the specific nature of the problem, the method uses an
exterior penalty function formulation for the decision
making process to obtain better points in the design space.

6) Optimum seismic design of linear shear buildings

Rosenblueth and Asfura present a very simplified method
for the design of multi-degree-of-freedom structures under
earthquake excitation [26]. It is based on two main steps:
First, create of a design spectra. Second, optimize to
produce a gtructure that satisfies a set of minimum cost
conditions. The structure is modeled as a shear building
and is assumed to behave linearly. The rigid column and
flexible beam assumption is used. Constraint conditions are
written on an individual story basis. At each story there
are two conditions to be met, maximum story deflection and
column stress. Column ar=a, section modulus and moment of
inertia are related to each other in an unique way. The
building is treated as a single bay, symmetric structure
resulting in the column moiments of inertia as the only
unknowns. This creates one unknown value per story.

It is assumed that the story shear is equal to the
square root of the sum of the squared modal shears Ffor that
story. The iterative optimization procedure is begun from
an initial design by performing a modal analysis yielding
the story shears and deformations. Next, the stiffness
required to make the stress and deformation constraints
active in each story is computed. It is assumed that the
shears do not change. The larger of the two calculated
stiffnesses are used to form a new structure. These
stiffnesses are multiplied by a coefficient that is
optimized. This optimal coefficient is found by a graphic
procedure relating the design velocity spectrum and the
fundamental period of vibration. The iterative method used
to find the optimum is a replacement for standard search
methods. :

The process makes simplifications in order to improve
the computational time. The first is to reduce the frame to
a single bay structure. The second is to assume a linear
behavior of the material, probably steel. A different
philosophy is used compared to that in general procedures.
An iterative procedure is used, instead of a search
algorithm, to optimize the structure. This tries to make
the maximum possible number of constraints active at a given
time. This iterative procedure creates a cyclic process
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requiring a modal analysis at each cycle. The modal
analysis takes into account the changes of the story
stiffnesses for a better design, but does not reevaluate the
necessary changes in the beams. The authors say that
although the process involves a modal analysis in each
cycle, it converges rapidly if the design velocity spectrum
increases with the period in the neighborhood of the
fundamental period.

Facilities

All of the ressarch will be performed on the Civil
Engineering Department's computer facilities. The equipment
is a recent donation from the ATS&T Corporation. The
department is the only non-coamputer or electrical % e
engineering department nation-wide to recieve a donation.
The donation consisted of a 3B5 computer with a math
processing unit. The computer has the S3ame processing
capabilities as a vaXx 11/780 comput=2r. The computer was
donated expressly for research purposes only. As a result,
there will be no computer time costs.

Since the system belongs to the Civil Department, the
entire capabilities of the machine ara available for this
research. This will allow research into the complete
formulation without regard to problem size or execution
time. Since these two variables can be excluded, a true
assesment of the evaluated techniques can be made.

The preliminary softwars required to perform the
research already exists. This work is a direct rasult of
previous research. The research involved methods for
creating re-usable analysis programs. This allows for rapid
creation of the tools required to study a specific problem.
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