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Introduction

e

e

e

e

e

Wildfires are one of the most common natural disasters in many world regions and
actively impact life quality.

These events have become frequent due to climate change, local policies, and human
behaviour.

This study considers the historical data with the geographical locations of all the "fire
spots' detected by the reference satellites covering the Brazilian territory between
January 2011 and December 2022, comprising more than 2.2 million fire spots.

This data was modelled with a spatio-temporal generalized linear model for areal unit
data, whose inferences about its parameters are made in a Bayesian approach. We use
meteorological variables (precipitation, air temperature, humidity, and wind speed)
and a human variable (land-use transition and occupation) as covariates.

The change in land use from the forest and green areas to farming significantly
impacts the number of fire spots for all six Brazilian biomes.
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Brazilian Biomes

o

o

o

Brazil is the fifth country in the world in territorial extension.

It is considered by many experts as the “country of megadiversity”, given that 15-20%
of the known species in the world are found in its territory.

Its fauna and flora are officially separated into six biomes: Amazonia, Caatinga,
Cerrado, Mata Atlantica, Pampas, and Pantanal:

< Amazonia: includes about 60% of the largest rainforest in the world, with extensive mineral reserves and
20% of the world's water availability.

< Caatinga: a semi-arid climate, with great biological richness and unique species

< Cerrado: recognized as the richest savanna in the world in terms of biodiversity, having remained
unchanged until the 1950s when the federal capital was transferred to Brasilia.

< Mata Atlantica: located on the Brazilian coast, thus being the most threatened biome in the country,
where only 27% of the original forest cover is still preserved.

< Pampas: characterized by a rainy climate without a dry period and negative temperatures during the
winter.

< Pantanal: recognized as the planet's most extensive continuous floodplain.

EstaTisTiCA

IME - UFBA




Brazilian biomes and meteorological stations

Caatinga
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The data

@ This study used complex data from three different sources, considering a time interval

of twelve years between January 1, 2011, and December 31, 2022. The data sources
used were:

Satellite images that resulted in a data set containing all fire spots in the whole
Brazilian territory during the twelve years;

ii.  hourly climatic data from all available meteorological stations in Brazil during the ten
years used for modelling, i.e., between January 1, 2012, and December 31, 2021; and

iii. data related to land use and land-use transition during the ten used for modelling, i.e.,
between January 1, 2012, and December 31, 2021.

© The difference in data collection periods was due to data availability. Land use and
land-use transition are made available with a large delay. The temporal and spatial
descriptive and exploratory analysis of the number of fire spots considered 12 years
(2011-2022) and the model building considered 10 years (2012-2021).
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Flowchart of the methodology
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Spatio-temporal modelling

Data visualization
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Number of fire spots in Brazil

Daily number of fire
spots in the Brazilian
territory between
January 1, 2011, and
December 31, 2022

Fire Spots

Fire Spots  Variation Rate (%)

2011 158,099 _
2012 217,238 37
2013 128,149 -41
Total number of fire spots in the 2014 175,900 37
- : 2015 216,782 23
Brazilian territory per year, between 2016 184,218 15
January 1, 2011, and December 31, 2017 207,511 13
2022 and i L. M 2018 132,872 -36
, and its variation rate compare 2019 197632 49
with the previous year. 2020 222,798 13
2021 184,081 17
2022 200,763 9
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Daily number of fire spots in Brazil, per biome
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Fire spots per month per Brazilian municipality
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Average menthly humidity (%)

Average monthly humidity (%)
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Covariates — Meteorological variables
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Monthly average of the meteorological variable relative air humidity in each Brazilian biome between

2012 and 2022.
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Spatio-temporal modelling

e

e

e

e

Objective: to model the total number of fire spots, aggregated by municipality and
month, by including explanatory variables such as precipitation, temperature,
humidity, radiation, and land-use transition.

As we deal with panel data (counts) that vary in time and space, we decided to work
with a spatio-temporal generalized linear model for areal unit data, whose inferences
about its parameters are made in a Bayesian framework.

Models of this class help to fit areal unit data given in discrete periods while allowing
the inclusion of explanatory variables.

We consider the model proposed by

« Lee, D., Rushworth, A., & Napier, G. (2018). Spatio-temporal areal unit modeling in R with conditional
autoregressive priors using the CARBayesST package. Journal of Statistical Software, 84, 1-39.
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Spatio-temporal generalized linear model
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® jir¢ denotes the expectation of Yz ¢;
® Uy is a latent component for municipality & and month ¢ embracing one or
more sets of spatiotemporally autocorrelated random effects;

, Bp) is a p-dimensional vector of covariate regression parameters;
® W = [wy,,] is a binary neighborhood matrix N x N, with wy; = 0if k = j
(diagonal elements equal to zero), wy ; = 1 if the municipalities k£ and j
share a common border, and wy ; = 0 if the municipalities k£ and j do not
share a common border:
The random effects ¢ = (p1,...,¢K) and 6 = (d1,...,d0x) are modeled as

K K

spatially autocorrelated by the CAR prior, satisfying > o = > 6 = 0,
with ¢_, and _j denoting the vectors ¢ and o V&-’ithouftc t.llleir coriv'eslponding

k™ components, respectively;
pint and pg, are two spatial dependence parameters.
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The model gives the spatio-temporal
pattern in the mean response with a
spatially varying linear time trend.
Municipality k has its own linear
time trend, with a spatially varying
intercept 1" + @ and a spatially
varying slope a + J;. The
hyperparameters are chosen to have
non informative prior distributions.
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Concluding Remarks

o

o

o

o

o

o

The number of fire spots in Brazil has been increasing in the last years.
The most affected biomes are Amazonia, Cerrado, and Pantanal.
The highest incidence of fire spots is in August, September, and October.

Loss in land-use and occupation by green areas (forests or non-forest natural

formations) in 2011 - 2021. Opposite trend for land-use and occupation by farming.

Land-use transition (from green areas to farming) was statistically significant for all
models/biomes with positive coefficients, representing a considerable increase in the
transition from green areas to farming. A higher value for this variable represents a

higher number of fire spots.

The atmospheric variable (precipitation for Pampas and humidity for the other five
biomes) was statistically significant for all models/biomes with negative coefficients,

i.e., the variable is inversely correlated with the number of fire spots.
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Thank you for your attention!

Questions/Remarks/Suggestions?

E-mail: paulocanas@gmail.com

Web: www.paulocanas.org

Statistical learning laboratory: www.SalLy.ufba.br
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