VRP with release dates and deadlines: a blood sample collection application

Dalila B. M. M. Fontes
LIAAD - INESC TEC
Faculdade de Economia
Universidade do Porto, Portugal

Application Problem

- Collect blood samples from a set of geographically disperse healthcare centers and deliver them to a central laboratory for clinical analysis
- Patients have blood samples extracted at healthcare centers
- Healthcare centers have a time window during which blood is extracted
- Healthcare centers store the extracted blood until collected
- Blood samples are transported to a central laboratory for clinical analysis
(Uncapacitated) Vehicle Routing Problem with time windows (VRPTW)

Application Problem

- Blood is perishable - it must be analyzed within 150 minutes of extraction (lifespan):
- Release date - blood extraction time
- Deadline - release date plus lifespan (150 minutes) after which the blood is no longer viable

VRPTW with release dates and deadlines

Application Problem

- Dynamic VRPTW with release dates and deadlines - blood deadline is given by its release date plus its lifespan
- Lifespan limits the time between healthcare center previous visit (opening time) and the delivery of the blood collected to the central laboratory in the subsequent (first) visit

Dynamic VRPTW with release dates and deadlines

Application Problem

- Extraction time windows are larger than blood lifespan:
- Multiple tours - each tour may visit any subset of the set of healthcare centers
- Multiple visits to each healthcare center - the blood extraction time window is larger than the blood lifespan (viability time window)
- Last visit to each healthcare center- must be after the end of the blood extraction time window

Dynamic VRPTW with release dates and deadlines and multiple tours and multiple visits

Dynamic VRPTW with release dates and deadlines and multiple tours and multiple visits

Problem characteristics.			Only tour duration is time constrained		
	Doerner et al. 2008	Anaya-Arenas et al. 2016	Toschi et al. 2018	Anaya-Arenas et al. 2021	Ours
Biological degradation during transport	Yes	Yes	Yes	Yes	Yes
Biological degradation waiting in the center	Yes	No	No	No	Yes
Number of vehicles	infinite	infinite	infinite	infinite	one
Number of pickups at each center	fixed	fixed	variable	fixed	variable
Opening and closing time in the centers	defined	defined	undefined	undefined	defined
Tour time limit	No	Yes	Yes	Yes	Yes
Time limit between consecutive visits	No	Yes	Yes	Yes	Yes

Problem characteristics.

Tours are not interconnected:
can start and finish at any time

| | Doerner et
 al. 2008 | Anaya-Arenas
 et al. 2016 | Toschi et al.
 2018 | Anaya-Arenas
 et al. 2021 | Ours |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Biological degradation
 during transport | Yes | Yes | Yes | Yes | Yes |
| Biological degradation
 waiting in the center | Yes | No | No | No | Yes |
| Number of vehicles | infinite | infinite | infinite | infinite | one |
| Number of pickups at
 each center | fixed | fixed | variable | fixed | variable |
| Opening and closing
 time in the centers | defined | defined | undefined | undefined | defined |
| Tour time limit | No | Yes | Yes | Yes | Yes |
| Time limit between
 consecutive visits | No | Yes | Yes | Yes | Yes |

Problem characteristics.			Predefined and not optimized		
	Doerner et al. 2008	Anaya-Arenas et al. 2016	$\begin{gathered} \text { Toschi et al. } \\ 2018 \end{gathered}$	Araya-Arenas et al. 2021	Ours
Biological degradation during transport	Yes	Yes	Yes	Yes	Yes
Biological degradation waiting in the center	Yes	No	No	No	Yes
Number of vehicles	infinite	infinite	infinite	infinite	one
Number of pickups at each center	fixed	fixed	variable	fixed	variable
Opening and closing time in the centers	defined	defined	undefined	undefined	defined
Trip time limit	No	Yes	Yes	Yes	Yes
Time limit between consecutive visits	No	Yes	Yes	Yes	Yes

Problem characteristics.			Imposed after getting a solution\square		
	Doerner et al. 2008	Anaya-Arenas et al. 2016	Toschi et al. 2018	Anaya-Arenas et al/2021	Ours
Biological degradation during transport	Yes	Yes	Yes	Yes	Yes
Biological degradation waiting in the center	Yes	No	No	No	Yes
Number of vehicles	infinite	infinite	infinite	infinite	one
Number of pickups at each center	fixed	fixed	variable	fixed	variable
Opening and closing time in the centers	defined	defined	undefined	undefined	defined
Trip time limit	No	Yes	Yes	Yes	Yes
Time limit between consecutive visits	No	Yes	Yes	Yes	Yes

Problem characteristics.

Not major changes, but may make sense drivers and service

	Doerner et al. 2008	Anaya-Arenas et al. 2016	Toschi et al. 2018	Anayz-Arenas ec al. 2021	Ours
Biological degradation during transport	Yes	Yes	Yes	Yes	Yes
Biological degradation waiting in the center	Yes	No	No	No	Yes
Number of vehicles	infinite	infinite	infinite	infinite	one
Number of pickups at each center	fixed	fixed	variable	fixed	variable
Opening and closing time in the centers	defined	defined	undefined	undefined	defined
Trip time limit	No	Yes	Yes	Yes	Yes
Time limit between consecutive visits	No	Yes	Yes	Yes	Yes

Problem formulation - notation

Sets and indices:
■ $\mathrm{V}=\{1, \ldots, \mathrm{n}\}$ - Set of n customer, indexed by i, j and l;

- $\mathrm{V}^{\prime}=\mathrm{V} \cup\{0\}$ - Set of n customer and departure depot, indexed by i, j and l;

■ $\mathrm{V}^{\prime \prime}=\mathrm{V} \cup\{\mathrm{n}+1\}$ - Set of n customer and arrival depot, indexed by i, j and $/$;

- $\mathrm{W}=\mathrm{V} \cup\{0, \mathrm{n}+1\}$ - Set of n customers and departure and arrival depot (departure and arrival depots are the same), indexed by i, j and $/$;

■ $A=\left\{(i, j): i \in V^{\prime}, j \in V^{\prime}, i \neq j\right\}-$ Set of arcs;
■ T - Set of tours $\{1, \ldots, \cup\}\left(\mathrm{T}^{\prime}=\mathrm{T} \cup\{0\}\right)$, indexed by k, s and t;

Problem formulation - notation

Parameters:

- H - Product lifespan (time between production and delivery to the depot);
- $s t_{i}$ - Service time, customer $\mathrm{i} \in \mathrm{W}\left(s t_{0}=0\right)$;
- e_{i} - Production starting / opening time, customer $\mathrm{i} \in V$;
- $\quad l_{i}$ - Production ending / closing time, customer i $\in V$;
- $t_{i j}$ - Travel time of $\operatorname{arc}(i, j) \in A$;
- $d_{i j}$ - Travel distance of $\operatorname{arc}(i, j) \in A$;
- D-Maximum tour duration;
- $\quad F_{i}$ - Maximum time between consecutive visits to customer $\mathrm{i} \in V$;
- $U=\sum_{i \in V}\left\lceil\frac{l_{i}-e_{i}}{H}\right\rceil$
- M - a sufficiently large integer.

Problem formulation - notation

Decision Variables \& Auxiliary Variables:

- s_{i}^{t} - Pickup time, $i \in W$ in tour $t \in T^{\prime}, 0$ if customer i is not visited in tour t (real);

■ $x_{i j}^{t}$ - set to 1 if $j \in V^{\prime \prime}$ is visited immediately after $i \in V^{\prime}$ in tour $t \in T$; 0 otherwise;

- y^{t} - set to 1 if tour $t \in T^{\prime}$ is used; 0 otherwise;
- $v_{i}^{s t}$ - set to 1 if tours $s \in T^{\prime}$ and $t \in T, s<t$ are consecutive visits to $i \in V$; 0 otherwise;
- w_{i}^{t} - set to 1 if customer e $i \in V$ is visited in tour $t \in T ; 0$ otherwise;
- z_{i}^{t} - set to 1 if tour $\mathrm{t} \in T$ is the last visit to customer $i \in V ; 0$ otherwise;

■ $s p_{i}^{t}$ - Last pickup time, $i \in V$ if tour $t \in T$ is its last tour, 0 otherwise (real).

Problem formulation - objective function

- Minimize the total traveled distance

$$
\text { Minimize } \sum_{t \in T} \sum_{i \in V^{\prime}} \sum_{j \in V^{\prime \prime}} x_{i j}^{t} \times d_{i j}
$$

- Other possibilities
- Minimize the total traveled time
- Minimize the time of the last arrival to the central laboratory (how long the vehicle/driver is used)

Problem formulation - Tours

(1) $\quad \sum_{i \in V} x_{0 i}^{t} \leq 1$,
(2) $\sum_{i \in V} x_{0 i}^{t}=\sum_{j \in V} x_{j, n+1}^{t}$,
(3) $\sum_{j \in V^{\prime \prime}: j \neq i} x_{i j}^{t} \leq 1$,
(4) $\sum_{j \in V^{\prime \prime}: j \neq i} x_{i j}^{t}=\sum_{j \in V^{\prime}: j \neq i} x_{j i}^{t}$,
(5) $y^{t}=\sum_{i \in V} x_{0 i}^{t}$,
(6) $y^{t} \leq y^{t-1}$,
(7) $\quad y^{1}=1$.
$\forall t \in T$,
$\forall t \in T$,
$\forall \mathrm{i} \in V^{\prime}, t \in T$,
$\forall i \in V, t \in T$,
$\forall t \in T$,
$\forall t \in T: \mathrm{t} \geq 2$,

Problem formulation - visiting times

(8) $s_{0}^{1} \geq 0$,
(9) $s_{0}^{t} \leq \mathrm{M} y^{t}$,
$\forall t \in T: \mathrm{t} \geq 2$,
(10) $s_{0}^{t} \geq s_{n+1}^{t-1}+s t_{n+1}-M\left(2-y^{t-1}-y^{t}\right), \quad \forall t \in T: t \geq 2$,
(11) $s_{i}^{t} \geq e_{i}-M\left(1-w_{i}^{t}\right)$,
(12) $s_{j}^{t} \geq s_{i}^{t}+s t_{i}+t_{i j}-M\left(1-s_{i j}\right)$,
(13) $s_{i}^{t} \leq \mathrm{M} w_{i}^{t}$,
$\forall i \in V, t \in T$,
$\forall i \in V^{\prime}, j \in V^{\prime \prime}, i \neq j, t \in T$,
$\forall \mathrm{i} \in V, t \in T$.

Problem formulation - last visit to each customer

(14) $\sum_{t \in T} z_{i}^{t}=1$,
$\forall i \in V$,
(15) $\sum_{t \in T} s p_{i}^{t} \geq l_{i}$,
$\forall i \in V$,

$$
\begin{equation*}
s p_{i}^{t} \leq s_{i}^{t}-M\left(z_{i}^{t}-1\right), \quad \forall i \in V, t \in T \tag{16}
\end{equation*}
$$

(17) $\sum_{t \in T} s p_{i}^{t} \geq s_{i}^{t}$,
$\forall i \in V, t \in T$,
(18)

$$
s p_{i}^{t} \leq M \times z_{i}^{t}
$$

$\forall i \in V, t \in T$.

Problem formulation - goods delivered within lifespan

(19) $s_{n+1}^{t}+s t_{n+1}-s_{i}^{s} \leq \mathrm{H}-\mathrm{M}\left(v_{i}^{s t}-1\right), \quad \forall i \in V, s \in T^{\prime}, t \in T, s<t$,
(20) $s_{i}^{0}=e_{i}$,
(21) $w_{i}^{t}=\sum_{j \in V^{\prime \prime}: j \neq i} x_{i j}^{t}$,
(22) $w_{i}^{0}=1$,
(23) $v_{i}^{s t}+\sum_{k=s+1}^{t} w_{i}^{k} \geq w_{i}^{s}+w_{i}^{t}$,
$\forall i \in V$,
$\forall i \in V, t \in T$,
$\forall i \in V$,
$\forall i \in V, s \in T^{\prime}, t \in T, s<t$.

Problem formulation - other time limitations and variables domain

(24) $s_{n+1}^{t}-s_{0}^{t} \leq D, \quad \forall t \in T$,
(25) $s_{i}^{t}-s_{i}^{s} \leq F_{i}-\mathrm{M}\left(v_{i}^{s t}-1\right), \quad \forall i \in V, s \in T^{\prime}, t \in T, s<t$,
(26) $s_{i}^{t}, s p_{i}^{t} \geq 0$,
(27) $x_{i j}^{t}, v_{l}^{s t}, w_{l}^{s}, y^{t} \in\{0,1\}$, $\forall i \in V, t \in T$, $\forall i \in V, j \in V^{\prime \prime}, l \in V, s \in T^{\prime}, t \in T$.

Case Study

Problem faced in North of Portugal by a collection of community healthcare centers and a hospital in the region named Unidade Local de Saúde de Matosinhos (ULSM)

Working hours, service time (min) and travel time/distance ($\mathrm{min} / \mathrm{Km}$)

Health centers	Opening time	Closing time	Service time	Health center 1				
Health center 2	Health center 3	Health center 4						
Health center 1 Cão Mamede de Infesta	$08: 00$	$10: 30$	5	0	5	11	10	13
Health center 2 USF Porta do Sol	$08: 00$	$11: 00$	10	5	0	8	5	11
Health center 3 Matosinhos	$07: 30$	$11: 00$	6	12	10	0	5	5
Health center 4 Sra. Hora	$08: 00$	$11: 00$	10	10	6	2	0	4
Central Laboratory HPH	$00: 00$	$23: 59$	15	12	10	4	5	0

Solution of the case study

Centers	C1	C2	C3	C4
Open	08:00	08:00	07:30	08:00
Visit			08:45	
Delivery			09:11	
Time elapsed			$\begin{aligned} & 09: 11-07: 30 \\ & 101<150 \end{aligned}$	
Visit	09:23	09:33	10:00	09:48
Delivery	10:26	10:26	10:26	10:26
Time passed	$\begin{aligned} & 10: 26-08: 00 \\ & 146<150 \end{aligned}$	$\begin{aligned} & 10: 26-08: 00 \\ & 146<150 \end{aligned}$	$\begin{aligned} & 10: 26-08: 45 \\ & 101<150 \end{aligned}$	$\begin{aligned} & 10: 26-08: 00 \\ & 146<150 \end{aligned}$
Closing	10:30	11:00	11:00	11:00
Visit	$\begin{aligned} & 10: 42+8 \\ & 10: 42 \end{aligned}$	$\begin{aligned} & 11: 00 \\ & 10: 52+8 \end{aligned}$	11:15	11:27
Delivery	11:53	11:53	11:53	11:53
Time passed	$\begin{aligned} & 11: 53-09: 23 \\ & 150 \end{aligned}$	$\begin{aligned} & 11: 53-09: 33 \\ & 140 \end{aligned}$	$\begin{aligned} & 11: 53-10: 00 \\ & 113 \end{aligned}$	$\begin{aligned} & 11: 53-09: 48 \\ & 125 \end{aligned}$

Minimum total travel distance: 67 km

Conclusions

- This work addresses a current and relevant problem with several applications in healthcare (collection of blood and/or other biological products).
- Extends previous works by considering release dates, deadlines, multiple tours, multiple visits, and (dynamic) time limitations.
- We propose a MILP model and solve a small case study.
- We are in the process of gathering other partners with similar problems in other application areas.
- A metaheuristic is being developed so that large instances can be solved.

Thanks for Your Attention

Q/A

fontes@fep.up.pt

dfontes@inesctec.pt

Acknowledgments: this work is financed by the ERDF - European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation - COMPETE 2020 Programme and by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia within projects POCI-01-0145-FEDER-031821- PTDC/EGE-OGE/31821/2017 and POCI-01-0145-FEDER-031447- PTDC/EEI-AUT/31447/2017.

FCT
$\underset{\substack{\text { Fundação } \\ \text { para a Ciência }}}{ }$

