VRP with release dates and deadlines: a blood sample collection application

Dalila B. M. M. Fontes LIAAD – INESC TEC Faculdade de Economia Universidade do Porto, Portugal





- Collect blood samples from a set of geographically disperse healthcare centers and deliver them to a central laboratory for clinical analysis
  - Patients have blood samples extracted at healthcare centers
  - Healthcare centers have a time window during which blood is extracted
  - Healthcare centers store the extracted blood until collected
  - Blood samples are transported to a central laboratory for clinical analysis

#### (Uncapacitated) Vehicle Routing Problem with time windows (VRPTW)

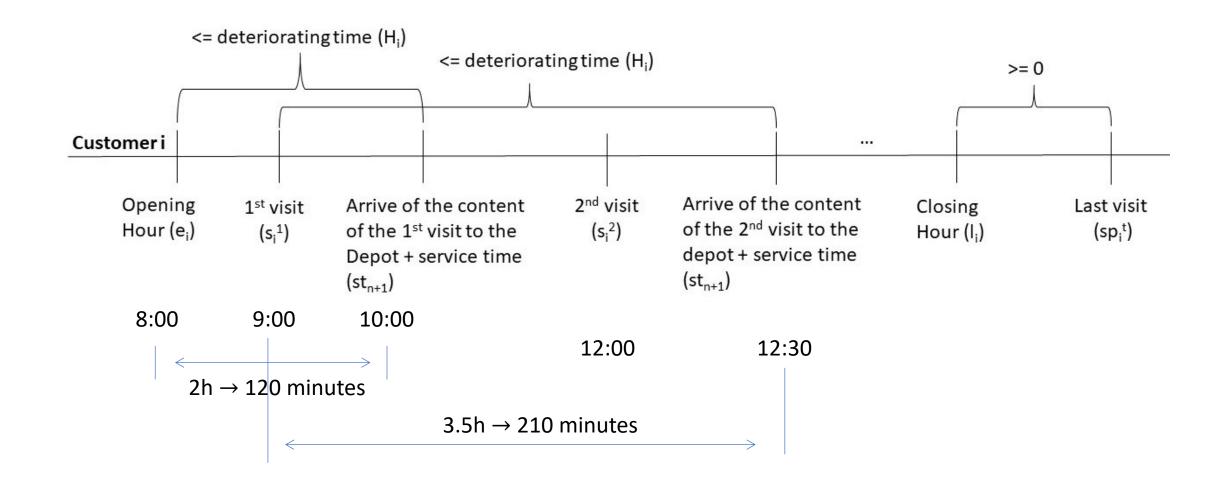
Blood is perishable – it must be analyzed within 150 minutes of extraction (lifespan):

Release date – blood extraction time

Deadline – release date plus lifespan (150 minutes) after which the blood is no longer viable

#### **VRPTW** with release dates and deadlines

- Dynamic VRPTW with release dates and deadlines blood deadline is given by its release date plus its lifespan
  - Lifespan limits the time between healthcare center previous visit (opening time) and the delivery of the blood collected to the central laboratory in the subsequent (first) visit


#### **Dynamic VRPTW with release dates and deadlines**

Extraction time windows are larger than blood lifespan:

- Multiple tours each tour may visit any subset of the set of healthcare centers
- Multiple visits to each healthcare center the blood extraction time window is larger than the blood lifespan (viability time window)
- Last visit to each healthcare center must be after the end of the blood extraction time window

#### Dynamic VRPTW with release dates and deadlines and multiple tours and multiple visits

## Dynamic VRPTW with release dates and deadlines and multiple tours and multiple visits



#### Only tour duration is time constrained

|                                              | Doerner et<br>al. 2008 | Anaya-Arenas<br>et al. 2016 | Toschi et al.<br>2018 | Anaya-Arenas<br>et al. 2021 | Ours     |
|----------------------------------------------|------------------------|-----------------------------|-----------------------|-----------------------------|----------|
| Biological degradation during transport      | Yes                    | Yes                         | Yes                   | Yes                         | Yes      |
| Biological degradation waiting in the center | Yes                    | No                          | No                    | No                          | Yes      |
| Number of vehicles                           | infinite               | infinite                    | infinite              | infinite                    | one      |
| Number of pickups at<br>each center          | fixed                  | fixed                       | variable              | fixed                       | variable |
| Opening and closing time in the centers      | defined                | defined                     | undefined             | undefined                   | defined  |
| Tour time limit                              | No                     | Yes                         | Yes                   | Yes                         | Yes      |
| Time limit between consecutive visits        | No                     | Yes                         | Yes                   | Yes                         | Yes      |

**Tours are not interconnected:** 

can start and finish at any time

1

|                                              | Doerner et<br>al. 2008 | Anaya-Arenas<br>et al. 2016 | Toschi et al.<br>2018 | Anaya-Arenas<br>et al. 2021 | Ours     |
|----------------------------------------------|------------------------|-----------------------------|-----------------------|-----------------------------|----------|
| Biological degradation during transport      | Yes                    | Yes                         | Yes                   | Yes                         | Yes      |
| Biological degradation waiting in the center | Yes                    | No                          | No                    | No                          | Yes      |
| Number of vehicles                           | infinite               | infinite                    | infinite              | infinite                    | one      |
| Number of pickups at<br>each center          | fixed                  | fixed                       | variable              | fixed                       | variable |
| Opening and closing time in the centers      | defined                | defined                     | undefined             | undefined                   | defined  |
| Tour time limit                              | No                     | Yes                         | Yes                   | Yes                         | Yes      |
| Time limit between consecutive visits        | No                     | Yes                         | Yes                   | Yes                         | Yes      |

Doerner et Anaya-Arenas Toschi et al. Araya-Arenas Ours et al. 2021 al. 2008 et al. 2016 2018 **Biological degradation** Yes Yes Yes Yes Yes during transport **Biological degradation** No Yes No Yes No waiting in the center infinite Number of vehicles infinite infinite infinite one Number of pickups at fixed fixed fixed variable variable each center Opening and closing undefined defined defined defined undefined time in the centers Yes Trip time limit No Yes Yes Yes Time limit between No Yes Yes Yes Yes consecutive visits

Predefined and not optimized

Imposed after getting a solution

|                                              | Doerner et<br>al. 2008 | Anaya-Arenas<br>et al. 2016 | Toschi et al.<br>2018 | Anaya-Arenas<br>et al 2021 | Ours     |
|----------------------------------------------|------------------------|-----------------------------|-----------------------|----------------------------|----------|
| Biological degradation during transport      | Yes                    | Yes                         | Yes                   | Yes                        | Yes      |
| Biological degradation waiting in the center | Yes                    | No                          | No                    | No                         | Yes      |
| Number of vehicles                           | infinite               | infinite                    | infinite              | infinite                   | one      |
| Number of pickups at<br>each center          | fixed                  | fixed                       | variable              | fixed                      | variable |
| Opening and closing time in the centers      | defined                | defined 🤇                   | undefined             | undefined                  | defined  |
| Trip time limit                              | No                     | Yes                         | Yes                   | Yes                        | Yes      |
| Time limit between consecutive visits        | No                     | Yes                         | Yes                   | Yes                        | Yes      |

Not major changes, but may make sense drivers and service

|                                              | Doerner et<br>al. 2008 | Anaya-Arenas<br>et al. 2016 | Toschi et al.<br>2018 | Anayz-Arenas<br>et al. 2021 | Ours     |
|----------------------------------------------|------------------------|-----------------------------|-----------------------|-----------------------------|----------|
| Biological degradation during transport      | Yes                    | Yes                         | Yes                   | Yes                         | Yes      |
| Biological degradation waiting in the center | Yes                    | No                          | No                    | No                          | Yes      |
| Number of vehicles                           | infinite               | infinite                    | infinite              | infinite                    | one      |
| Number of pickups at<br>each center          | fixed                  | fixed                       | variable              | fixed                       | variable |
| Opening and closing time in the centers      | defined                | defined                     | undefined             | undefined                   | defined  |
| Trip time limit                              | No                     | Yes                         | Yes                   | Yes                         | Yes      |
| Time limit between consecutive visits        | No                     | Yes                         | Yes                   | Yes                         | Yes      |

#### Problem formulation – notation

Sets and indices:

V = {1, . . . , n } - Set of *n* customer, indexed by *i*, *j* and *l*;

V' = V U {0} - Set of *n* customer and departure depot, indexed by *i*, *j* and *l*;

V'' = V U {n + 1} - Set of n customer and arrival depot, indexed by i, j and l;

- W = V U {0, n + 1} Set of *n* customers and departure and arrival depot (departure and arrival depots are the same), indexed by *i*, *j* and *l*;
- A = {(i, j) : i ∈ V', j ∈ V'', i ≠ j } Set of arcs;
- T Set of tours {1, . . . , U } (T' = T U {0}), indexed by k, s and t;

### Problem formulation – notation

Parameters:

- H Product lifespan (time between production and delivery to the depot);
- st<sub>i</sub> Service time, customer  $i \in W(st_0 = 0)$ ;
- $e_i$  Production starting / opening time, customer  $i \in V$ ;
- l<sub>i</sub> Production ending / closing time, customer  $i \in V$ ;
- $t_{ij}$  Travel time of arc (*i*, *j*)  $\in$  *A*;
- $d_{ij}$  Travel distance of arc (*i*, *j*)  $\in$  *A*;
- *D* Maximum tour duration;
- F<sub>i</sub> Maximum time between consecutive visits to customer  $i \in V$ ;

•  $U = \sum_{i \in V} \left[ \frac{l_i - e_i}{H} \right]$ 

M – a sufficiently large integer.

## Problem formulation – notation

Decision Variables & Auxiliary Variables:

- $s_i^t$  Pickup time,  $i \in W$  in tour  $t \in T'$ , 0 if customer i is not visited in tour t (real);
- $x_{ij}^t$  set to 1 if  $j \in V''$  is visited immediately after  $i \in V'$  in tour  $t \in T$ ; 0 otherwise;
- $y^t$  set to 1 if tour  $t \in T'$  is used; 0 otherwise;
- $v_i^{st}$  set to 1 if tours  $s \in T'$  and  $t \in T$ , s < t are consecutive visits to  $i \in V$ ; 0 otherwise;
- $w_i^t$  set to 1 if customer e  $i \in V$  is visited in tour  $t \in T$ ; 0 otherwise;
- $z_i^t$  set to 1 if tour t  $\in T$  is the last visit to customer  $i \in V$ ; 0 otherwise;
- $sp_i^t$  Last pickup time,  $i \in V$  if tour  $t \in T$  is its last tour, 0 otherwise (real).

#### Problem formulation – objective function

Minimize the total traveled distance

Minimize  $\sum \sum x_{ij}^t \times d_{ij}$  $t \in T \ i \in V' \ i \in V''$ 

- Other possibilities
  - Minimize the total traveled time
  - Minimize the time of the last arrival to the central laboratory (how long the vehicle/driver is used)

#### Problem formulation – Tours

(1) 
$$\sum_{i \in V} x_{0i}^{t} \leq 1, \qquad \forall t \in T,$$
  
(2) 
$$\sum_{i \in V} x_{0i}^{t} = \sum_{j \in V} x_{j,n+1}^{t}, \qquad \forall t \in T,$$
  
(3) 
$$\sum_{j \in V'': j \neq i} x_{ij}^{t} \leq 1, \qquad \forall i \in V', t \in T,$$
  
(4) 
$$\sum_{j \in V'': j \neq i} x_{ij}^{t} = \sum_{j \in V': j \neq i} x_{ji}^{t}, \qquad \forall i \in V, t \in T,$$
  
(5) 
$$y^{t} = \sum_{i \in V} x_{0i}^{t}, \qquad \forall t \in T,$$
  
(6) 
$$y^{t} \leq y^{t-1}, \qquad \forall t \in T: t \geq 2,$$
  
(7) 
$$y^{1} = 1.$$

#### Problem formulation – visiting times

(8)  $s_0^1 \ge 0$ , (9)  $s_0^t \leq M y^t$ ,  $\forall t \in T: t \geq 2$ , (10)  $s_0^t \ge s_{n+1}^{t-1} + st_{n+1} - M(2 - y^{t-1} - y^t), \forall t \in T: t \ge 2,$ (11)  $s_i^t \ge e_i - M(1 - w_i^t)$ ,  $\forall i \in V, t \in T$ , (12)  $s_i^t \ge s_i^t + st_i + t_{ii} - M(1 - s_{ii}),$  $\forall i \in V', j \in V'', i \neq j, t \in T$ (13)  $s_i^t \leq M w_i^t$ ,  $\forall i \in V, t \in T.$ 

#### Problem formulation – last visit to each customer

$$\begin{array}{ll} \textbf{(14)} & \sum_{t \in T} z_i^t = 1, & \forall i \in V, \\ \textbf{(15)} & \sum_{t \in T} sp_i^t \geq l_i, & \forall i \in V, \\ \textbf{(16)} & sp_i^t \leq s_i^t - M(z_i^t - 1), & \forall i \in V, t \in T, \\ \textbf{(17)} & \sum_{t \in T} sp_i^t \geq s_i^t, & \forall i \in V, t \in T, \\ \textbf{(18)} & sp_i^t \leq M \times z_i^t, & \forall i \in V, t \in T. \\ \end{array}$$

# Problem formulation – goods delivered within lifespan

(19)  $s_{n+1}^{t} + st_{n+1} - s_{i}^{s} \le H - M(v_{i}^{st} - 1), \quad \forall i \in V, s \in T', t \in T, s < t,$ (20)  $s_{i}^{0} = e_{i}, \quad \forall i \in V,$ 

(21) 
$$w_i^t = \sum_{j \in V'': j \neq i} x_{ij}^t$$
,  
(22)  $w_i^0 = 1$ ,

(23)  $v_i^{st} + \sum_{k=s+1}^t w_i^k \ge w_i^s + w_i^t$ ,

 $\forall i \in V, t \in T,$ 

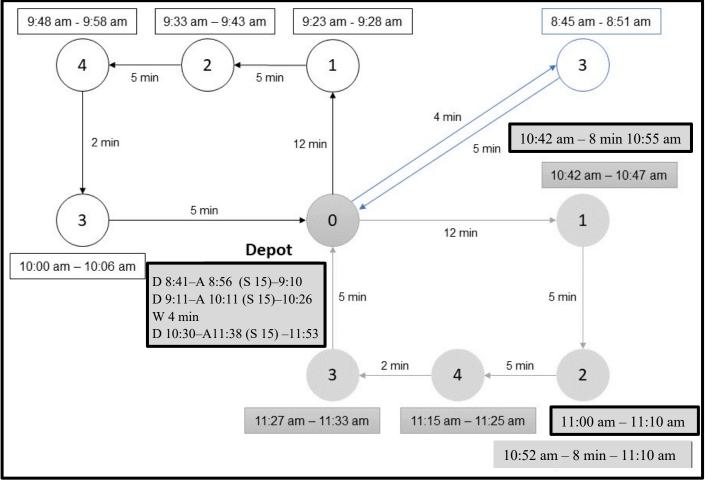
 $\forall i \in V$ ,

 $\forall i \in V, s \in T', t \in T, s < t.$ 

## Problem formulation – other time limitations and variables domain

(24) 
$$s_{n+1}^{t} - s_{0}^{t} \leq D$$
,  $\forall t \in T$ ,  
(25)  $s_{i}^{t} - s_{i}^{s} \leq F_{i} - M(v_{i}^{st} - 1))$ ,  $\forall i \in V, s \in T', t \in T, s < t$ ,  
(26)  $s_{i}^{t}, sp_{i}^{t} \geq 0$ ,  $\forall i \in V, t \in T$ ,  
(27)  $x_{ij}^{t}, v_{l}^{st}, w_{l}^{s}, y^{t} \in \{0, 1\}, \quad \forall i \in V, j \in V'', l \in V, s \in T', t \in T$ .

## Case Study


Problem faced in North of Portugal by a collection of community healthcare centers and a hospital in the region named Unidade Local de Saúde de Matosinhos (ULSM)

Implemented and solved in CPLEX

## Working hours, service time (min) and travel time/distance (min/Km)

| Health centers                              | Opening<br>time | Closing<br>time | Service<br>time | Health<br>center 1 | Health<br>center 2 | Health<br>center 3 | Health<br>center 4 | Central<br>Laboratory |
|---------------------------------------------|-----------------|-----------------|-----------------|--------------------|--------------------|--------------------|--------------------|-----------------------|
| Health center 1<br>São Mamede de<br>Infesta | 08:00           | 10:30           | 5               | 0                  | 5                  | 11                 | 10                 | 13                    |
| Health center 2<br>USF Porta do Sol         | 08:00           | 11:00           | 10              | 5                  | 0                  | 8                  | 5                  | 11                    |
| Health center 3<br>Matosinhos               | 07:30           | 11:00           | 6               | 12                 | 10                 | 0                  | 5                  | 5                     |
| Health center 4<br>Sra. Hora                | 08:00           | 11:00           | 10              | 10                 | 6                  | 2                  | 0                  | 4                     |
| Central Laboratory<br>HPH                   | 00:00           | 23:59           | 15              | 12                 | 10                 | 4                  | 5                  | 0                     |

#### Solution of the case study



| Centers         | C1                         | C2                         | C3                         | C4                         |
|-----------------|----------------------------|----------------------------|----------------------------|----------------------------|
| Open            | 08:00                      | 08:00                      | 07:30                      | 08:00                      |
| Visit           |                            |                            | 08:45                      |                            |
| Delivery        |                            |                            | 09:11                      |                            |
| Time<br>elapsed |                            |                            | 09:11 - 07:30<br>101 < 150 |                            |
| Visit           | 09:23                      | 09:33                      | 10:00                      | 09:48                      |
| Delivery        | 10:26                      | 10:26                      | 10:26                      | 10:26                      |
| Time<br>passed  | 10:26 – 08:00<br>146 < 150 | 10:26 – 08:00<br>146 < 150 | 10:26 – 08:45<br>101 < 150 | 10:26 – 08:00<br>146 < 150 |
| Closing         | 10:30                      | 11:00                      | 11:00                      | 11:00                      |
| Visit           | 10:42 + 8<br>10:42         | 11:00<br>10:52 + 8         | 11:15                      | 11:27                      |
| Delivery        | 11:53                      | 11:53                      | 11:53                      | 11:53                      |
| Time<br>passed  | 11:53 – 09:23<br>150       | 11:53 - 09:33<br>140       | 11:53 - 10:00<br>113       | 11:53 – 09:48<br>125       |

Minimum total travel distance: 67 km

#### Conclusions

- This work addresses a current and relevant problem with several applications in healthcare (collection of blood and/or other biological products).
- Extends previous works by considering release dates, deadlines, multiple tours, multiple visits, and (dynamic) time limitations.
- We propose a MILP model and solve a small case study.
- We are in the process of gathering other partners with similar problems in other application areas.
- A metaheuristic is being developed so that large instances can be solved.

#### Thanks for Your Attention

Q/A

fontes@fep.up.pt

dfontes@inesctec.pt

Acknowledgments: this work is financed by the ERDF – European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation - COMPETE 2020 Programme and by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia within projects POCI-01-0145-FEDER-031821- PTDC/EGE-0GE/31821/2017 and POCI-01-0145-FEDER-031447- PTDC/EEI-AUT/31447/2017.

