| Code: | 2MK09 | Acronym: | PDTPE |
| Keywords | |
|---|---|
| Classification | Keyword |
| OFICIAL | Marketing |
| Active? | Yes |
| Responsible unit: | Management |
| Course/CS Responsible: | Master in Marketing |
| Acronym | No. of Students | Study Plan | Curricular Years | Credits UCN | Credits ECTS | Contact hours | Total Time |
|---|---|---|---|---|---|---|---|
| MARKT | 28 | Bologna Official Syllabus | 2 | - | 7,5 | 56 | 202,5 |
LESSON 1 (1st part): stages of the research process (MARIA DO PILAR GONZÁLEZ and SOFIA CRUZ)
i. Research question;
ii. Exploratory readings;
iii. Theoretical framework: theories and concepts;
iv. Model analysis and research hypotheses construction;
v. Methodology;
vi. Collecting and treating the data;
vii. Conclusions.
Bibliography:
- Hart, C. (2008), Doing your Masters Dissertation: Realizing your Potential as a Social Scientist,
London: SAGE.
LESSON 1 (2nd part): scientific writing (MARIA DO PILAR GONZÁLEZ and SOFIA CRUZ)
i. Rules for presentation of dissertations and reports;
ii. How to structure a scientific work;
iii. Academic integrity.
Bibliography:
- Hart, C. (2008), Doing your Masters Dissertation: Realizing your Potential as a Social Scientist,
London: SAGE.
- Saunders, M., P. Lewis & A. Thornhill (2002), Research Methods for Business Students, 3rd ed.,
Edinburgh: Prentice-Hall.
LESSON 2: bibliometrics (tutorial support: AURORA TEIXEIRA)
i. Key concepts (bibliometrics, scienciometrics, meta-analysis);
ii. Bibliometrics as a tool for literature review;
iii. Data, sources, variables & methods;
iv. Practical application of bibliometrics using Scopus Sci Verse and Web of Science
bibliographic databases.
Bibliography:
- Castro e Silva, M. & A. A. C. Teixeira (2012), "Methods of assessing the evolution of science: a
review ", European Journal of Scientific Research, Vol. 68(4): 616-635.
- Cronin, B. & C. R. Sugimoto (eds.) (2014), Beyond Bibliometrics: Harnessing Multidimensional
Indicators of Scholarly Impact, London: MIT Press.
- Gingras, Y. (2016), Bibliometrics and Research Evaluation: Uses and Abuses, Cambridge: MIT Press.
- Osareh, F. (1996), Bibliometrics, Citation Analysis and Co-Citation Analysis: a review of analysis, in
Libri., vol.46: 149-158.
LESSON 3: sampling and surveys (tutorial support: MARIA EDUARDA SILVA)
7
i. Data collection: introduction;
ii. Steps of research process;
iii. Data collection;
iv. Sampling (first concepts):
a. Probabilistic methods: systematic sampling; stratified sampling; cluster sampling;
multistage sampling;
b. Non probabilistic methods: convenience sampling; snowball sampling; quota sampling.
v. Sample survey/questionnaires:
a. Sources of information;
b. How to make a questionnaire;
c. Rules;
d. Assessing questionnaires;
e. Measurement scales.
vi. General overview of some Statistical Databases available in FEP.
Bibliography:
- Cohen L., L. Manion & K. Morrison (2005), Research Methods in Education, 5th ed., Taylor & Francis.
- Norland-Tilburg, E. V. (1990), “Controlling error in evaluation instruments”, Journal of Extension,
28(2) (http://www.joe.org/joe/1990summer/tt2.html).
- Trochim, W. M. K. (2006), The Research Methods Knowledge Base, 2nd ed.
(http://www.socialresearchmethods.net/kb/).
LESSONS 4A, 5A and 6A: qualitative methods (tutorial support: MARIA DA CONCEIÇÃO RAMOS e RAQUEL MENESES)
i. Qualitative research;
ii. Theoretical frameworks: narrative inquiry, phenomenology, ethnography, generic
qualitative inquiry, action-research, grounded theory;
iii. Qualitative designs;
iv. Data collection: observation, interview, focus-group, life stories, netnography, visual
methods;
v. Data analysis: content analysis (using or not NVivo11);
vi. Advantages and disadvantages of qualitative research;
vii. Ethical considerations.
Bibliography:
- Patton, M. (2014), Qualitative Research and Evaluation Methods, 4th ed., London: Sage Publications.
LESSON 4B: quantitative methods – parametric and non parametrical statistical tests (tutorial
support: ALEXANDRA RAMOS)
i. Introduction;
ii. Types of data;
iii. Descriptive statistics;
iv. Distributions, inference and hypothesis testing (assumptions and applications);
v. Parametrical tests:
a. T-Student test for 1 population;
b. T-Student test for 2 independent populations;
c. T-Student test for 2 paired samples;
8
d. ANOVA.
vi. Non parametrical tests:
a. Normality tests;
b. Wilcoxon test for 1 population;
c. Mann-Whitney test for 2 independent populations;
d. Wilcoxon test for 2 paired populations;
e. Kruskall-Wallis test for k independent populations.
vii. Correlations;
viii. Chi-Square independence test.
Bibliography:
- Conover, W. J. (1999), Practical Nonparametric Statistics, 3rd ed., New York: John Wiley & Sons.
- Keller, G. (2008), Statistics for Management and Economics, Thomson.
LESSON 5B: quantitative methods – multivariate data analysis (tutorial support: MARIA PAULA
BRITO)
i. Data matrix and variables;
ii. Types of methods;
iii. Multiple regression;
iv. MANOVA;
v. Discriminant analysis;
vi. Factorial analysis;
vii. Principal component analysis;
viii. Cluster analysis:
a. Hierarchical method;
b. K-means.
Bibliography:
- Everitt, B. S. & G. Dunn (2013), Applied Multivariate Data Analysis, 2nd ed., Wiley.
- Hair Jr., J. F., W. C. Black, B. J. Babin & R. E. Anderson (2010), Multivariate Data Analysis – A Global
Perspective, 7th ed., Pearson Prentice Hall.
- Keller, G. (2008), Statistics for Management and Economics, Thomson.
- Sharma, S. (1996), Applied Multivariate Techniques, Wiley.
LESSON 6Bi: quantitative methods – social network analysis, opinion mining, sentiment analysis
(tutorial support: JOÃO GAMA)
i. Social network analysis. Social networks: interactions between actors. Professional social
networks, e.g. LinkedIn. Social network analysis:
a. The role of actors in the network: centralities and influence;
b. Communities and interactions;
c. Information diffusion in social networks.
ii. Sentiment analysis:
a. Opinions in the digital age: social media, blogs, tweets, etc.;
b. Text mining: identifying entities, and polarity.
Bibliography:
- Liu, B. (2012), Sentiment Analysis and Opinion Mining, Human Language Technologies.
9
- Zafarani, R., M. Ali Abbasi & H. Liu (2014), Social Media Mining, Cambridge University Press.
LESSON 6Bii: quantitative methods – econometric methods (tutorial support: MARIA MARGARIDA
MELLO)
i. Object and method of Econometrics;
ii. The linear regression model;
iii. Qualitative dependent variable models;
iv. Time series models.
Bibliography:
- Asteriou, D. & S. G. Hall (2015), Applied Econometrics, 3rd ed., Palgrave.
- Griffiths, W. E., R. C. Hill & G. C. Lim (2012), Using EViews for Principles of Econometrics, 4th ed.,
John Wiley & Sons.
- Gujarati, D. (2014), Econometrics by Example, 2nd ed., Palgrave.
- Gujarati, D. N. & D. C. Porter (2009), Basic Econometrics, 5th ed., McGraw-Hill.
- Heij, C., P. De Boer, P. H. Franses, T. Kloek & H. K. Van Dijk (2004), Econometric Methods with
Applications in Business and Economics, Oxford University Press.
- Hill, R.C., W. E. Griffiths & G. C. Lim (2012), Principles of Econometrics, 4th ed., John Wiley & Sons.
| Designation | Weight (%) |
|---|---|
| Apresentação/discussão de um trabalho científico | 30,00 |
| Trabalho escrito | 70,00 |
| Total: | 100,00 |
| Designation | Time (hours) |
|---|---|
| Elaboração de projeto | 6,00 |
| Total: | 6,00 |
Students must attend the classes