Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > 2MADSAD05

Data Analysis

Code: 2MADSAD05     Acronym: AD

Keywords
Classification Keyword
OFICIAL Statistics

Instance: 2015/2016 - 2S Ícone do Moodle

Active? Yes
Responsible unit: Agrupamento Científico de Matemática e Sistemas de Informação
Course/CS Responsible: Master in Modeling, Data Analysis and Decision Support Systems

Cycles of Study/Courses

Acronym No. of Students Study Plan Curricular Years Credits UCN Credits ECTS Contact hours Total Time
MADSAD 39 Bologna Official Syllabus 1 - 7,5 56 202,5
ME 3 Bologna Syllabus 1 - 7,5 56 202,5

Teaching language

English

Objectives

To form the students in methods for univariate, bivariate and multivariate analysis of data.

Learning outcomes and competences


- Understanding the theorectical foundations of the methods taught.

- Capacity of analysing a multivariate real data set, using the methods taught.

Working method

Presencial

Pre-requirements (prior knowledge) and co-requirements (common knowledge)

The students are suppposed to master, at undergraduate level :

- Linear algebra : matrix calculus, matrix differentiation ; determination of eigenvalues and eigenvectors.

- Probability and Statistics :descritive statistics;notions of probabilty calculus;  multinormal distribution ;hypothesis testing.

Program

• Exploratory (preliminar) data analysis

• Contingency tables.

• Factorial Analysis : Principal Component Analysis; Simple Correspondence Analysis ;  Multiple Correspondence Analysis.

• Cluster Analysis : Comparison measures ; Hierarchical Clustering;Non-Hierarchical Clustering.

• Discriminant Analysis: Discriminant Analysis in 2 groups;Discriminant Analysis in K groups.

 

Mandatory literature

Subhash Sharma; Applied Multivariate Techniques, Wiley, 1996
João Maroco; Análise Estatística com utilização do SPSS, Edições Sílabo
L. Lebart, A. Morineau, M. Piron; Statistique Exploratoire Multidimensionnelle, Dunod, Paris,, 1995
H. Fenneteau, C. Biales ; Analyse Statistique des Données. Applications et cas pour le Marketing, Ellipses, Paris, 1993
Elisabeth Reis; Estatística Multivariada Aplicada, Edições Sílabo
B. Murteira, C. Silva Ribeiro, J. Andrade e Silva, C. Pimenta; Introdução à Estatística, McGraw-Hill

Complementary Bibliography

Diday, Lemaire, Pouget, Testu ; Éléments d'Analyse des Données, Dunod, Paris, 1982
B. S. Everitt; The Analysis of Contingency Tables, Chapman & Hall

Teaching methods and learning activities

- Theorectical-pratical classes, with examples of software using. 

- Exercises proposed for personal training.

- Follow-up of the practical assignement.

 

Software

SPAD
R
SPSS

Evaluation Type

Distributed evaluation with final exam

Assessment Components

Designation Weight (%)
Exame 60,00
Trabalho de campo 40,00
Total: 100,00

Eligibility for exams

Final exam and practical assignement.

Calculation formula of final grade

Final mark = 0.6* exam mark + 0.4*practical assignement mark.

Approving is conditioned to having a minimum mark of 7.0 in the final exam.

 

Examinations or Special Assignments

The practical assignement consists in analysing a real data set, using the methods taugh and one or more software packages.
It consists in two parts : 1st part : description of the data set, univariate and bivariate data analysis ; 2nd part : multivariate data analysis.

It should be made by groups of 2 (two) students.

The practical assignement has an oral presentation.

Recommend this page Top
Copyright 1996-2025 © Faculdade de Economia da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-11-29 at 15:42:06 | Privacy Policy | Personal Data Protection Policy | Whistleblowing
SAMA2