# BOOK OF ABSTRACTS



Organização







# **YOUNG** RESEARCHERS MEETING







### TÍTULO | *TITLE*

Livro de Resumos do 17.º Encontro de Investigação Jovem da U.Porto / *Book of Abstracts Young Researchers Meeting of U.Porto* 

Universidade do Porto Vice-Reitor para a investigação e Inovação Professor Doutor Pedro Rodrigues ijup@reit.up.pt

ISBN

#### Design

Serviço de Comunicação e Imagem da U.Porto

### 21840 | Optimization of DNA Extraction Methods for Metagenomic Analysis in Surface Water Samples

<u>Cátia Matos</u><sup>1,2</sup>; Bárbara Duarte<sup>1,2</sup>; Ana R. Freitas<sup>1,2,4</sup>; Margarida Valente<sup>5</sup>; Carolina Tavares<sup>5</sup>; Juliana Rodrigues<sup>5</sup>; Luísa Peixe<sup>1,2</sup>; Carla Novais<sup>1,2</sup>; Patrícia Antunes<sup>1,2,3</sup> UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto. Porto, Portugal<sup>1</sup>; Associate Laboratory i4HB -Institute for Health and Bioeconomy. Faculty of Pharmacy. University of Porto. Porto, Portugal<sup>2</sup>; Faculty of Nutrition and Food Sciences, Porto University, Porto, Portugal<sup>3</sup>; 1H-TOXRUN, One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL – Gandra, Portugal<sup>4</sup>; Águas do Douro e Paiva, Laboratory of Microbiology. Porto. Portugal<sup>5</sup>

Background & Aim: Metagenomics is vital for studying microbial communities, shedding light on ecosystem dynamics and biodiversity. However, microbial DNA extraction is a challenge, namely when dealing with environmental samples. We aimed to optimize DNA extraction from water and sediment samples of different rivers used for drinking water production to obtain high-quality DNA for metagenomics analysis. Methods: The tested samples included 28 water and 29 sediments from 6 rivers of North of Portugal (10-months/2022-2023). At the same day of sampling, water (450-900 ml) was filtered through a 0.22µm nitrocellulose membrane (450 ml per membrane). The sediments varied in the type of texture and water in turbidity. Membranes and sediments were stored at -80°C before DNA extraction using the DNeasy PowerSoil kit (Qiagen) with standard or modified conditions (e.g. increasing sample amount-SA or temperatures adaptation-TA and time extension-TE in lysis steps). The aim was to obtain a yield of >20ng/µl (>1000ng) and a DNA/protein 260/280 ratio of 1.6-2.5 (NanoDrop spectrophotometer) required for sequencing. PCR of 16S rRNA gene was done to confirm DNA extraction in test samples and in negative controls to exclude contaminations. Results: Standard protocol conducted to DNA concentrations of 28-40 ng/ $\mu$ l (260/280>1,6/>1000ng) for only 2 water and 2 muddy sediments, with all other samples having concentration of 0-10 ng/ $\mu$ l. With protocol modifications required DNA concentrations and quality was obtained with TE+TA (n=26 of water; n=23 of muddy sediments; 21-85ng/ $\mu$ L) and TE+TA+SA (n=4 of sandy sediments; 25-140ng/μL). The DNA of 23 samples, including of 19 under protocol modifications, were sent for outsourced sequencing services, all passing quality control. Negative controls did not amplify the 16S RNA gene. **Conclusions**: Unique characteristics of environmental samples may influence

## 1004

the amount and quality of microbial DNA extraction for metagenomics, which can be easily overcome by few modifications in commercial kits protocols.

Keywords: Metagenomics, Environmental Samples, Dna Extraction.

#### Acknowledgements

This work is funded by national funds from FCT - Foundation for Science and Technology, IP, under the project 2022.02124.PTDC. This work is funded by national funds from FCT - Foundation for Science and Technology, IP, under the projects UIDP/04378/2020, and UIDB/04378/2020 of the Research Unit in Applied Molecular Biosciences – UCIBIO, and project LA/P/0140/2020 from the Associated Laboratory of the Institute of Health and Bioeconomy - i4HB. Cátia Matos was supported by a scholarship (REQUIMTE 2023-02) associated with project 2022.02124.PTDC.

1005