

MESTRADO INTEGRADO EM MEDICINA

2022/2023

André Carlos Almeida Balsa

Therapeutic approaches in PAH with beneficial effects on right ventricular function - preclinical studies

MARÇO, 2023

André Carlos Almeida Balsa

Therapeutic approaches in PAH with beneficial effects on right ventricular function - preclinical studies

Mestrado Integrado em Medicina

Área: Ciências da Saúde Tipologia: Monografia

Trabalho efetuado sob a Orientação de: Doutora Carmen Dulce da Silveira Brás Silva Ribeiro

> E sob a Coorientação de: Doutor Rui Miguel da Costa Adão

Trabalho organizado de acordo com as normas da revista: Frontiers in Cardiovascular Medicine

MARÇO, 2023

UC Dissertação/Projeto (6º Ano) - DECLARAÇÃO DE INTEGRIDADE

Eu, André Carlos Almeida Balsa, abaixo-assinado, nº mecanográfico 201705745, estudante do 6º ano do Ciclo de Estudos Integrado em Medicina, na Faculdade de Medicina da Universidade do Porto, declaro ter atuado com absoluta integridade na elaboração deste projeto de opção.

Neste sentido, confirmo que **NÃO** incorri em plágio (ato pelo qual um indivíduo, mesmo por omissão, assume a autoria de um determinado trabalho intelectual, ou partes dele). Mais declaro que todas as frases que retirei de trabalhos anteriores pertencentes a outros autores, foram referenciadas, ou redigidas com novas palavras, tendo colocado, neste caso, a citação da fonte bibliográfica.

Faculdade de Medicina da Universidade do Porto, 23/03/2023

Assinatura conforme cartão de identificação:

UC Dissertação/Projeto (6º Ano) - DECLARAÇÃO DE REPRODUÇÃO

NOME

. . .

André Carlos Almeida Balsa		

NUMERO DE ESTUDANTE	E-MAIL	
201705745	up201705745@up.pt	

DESIGNAÇÃO DA ÁREA DO PROJECTO

Ciências da saúde

TÍTULO DISSERTAÇÃO

Therapeutic approaches in PAH with beneficial effects on right ventricular function - preclinical studies

ORIENTADOR

Carmen Dulce da Silveira Brás Silva Ribeiro

COORIENTADOR

Rui Miguel da Costa Adão

ASSINALE APENAS UMA DAS OPÇÕES:

É AUTORIZADA A REPRODUÇÃO INTEGRAL DESTE TRABALHO APENAS PARA EFEITOS DE INVESTIGAÇÃO, MEDIANTE DECLARAÇÃO ESCRITA DO INTERESSADO, QUE A TAL SE COMPROMETE.	
É AUTORIZADA A REPRODUÇÃO PARCIAL DESTE TRABALHO (INDICAR, CASO TAL SEJA NECESSÁRIO, Nº MÁXIMO DE PÁGINAS, ILUSTRAÇÕES, GRÁFICOS, ETC.) APENAS PARA EFEITOS DE INVESTIGAÇÃO, MEDIANTE DECLARAÇÃO ESCRITA DO INTERESSADO, QUE A TAL SE COMPROMETE.	
DE ACORDO COM A LEGISLAÇÃO EM VIGOR, (INDICAR, CASO TAL SEJA NECESSÁRIO, Nº MÁXIMO DE PÁGINAS, ILUSTRAÇÕES, GRÁFICOS, ETC.) NÃO É PERMITIDA A REPRODUÇÃO DE QUALQUER PARTE DESTE TRABALHO.	\mathbf{X}

Faculdade de Medicina da Universidade do Porto, 23/03/2023

Assinatura conforme cartão de identificação: André Balsa

Dedicatória

Aos meus orientadores, por toda a disponibilidade e apoio durante o processo de elaboração desta dissertação. À professora Rita Ferreira, por toda a atenção desde o estágio no meu 2º ano. Aos meus amigos, por toda a ajuda no que precisava e no que nem sabia que precisava. À minha família, por todo o apoio e motivação para continuar.

Therapeutic approaches in PAH with beneficial effects on right ventricular function - preclinical studies

- 3 André Balsa¹, Rui Adão^{1,3,4}, Carmen Brás-Silva^{1,2*}
- ⁴ ¹UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto,
- 5 Porto, Portugal
- ⁶ ²Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
- ⁷ ³Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de
- 8 Madrid, Madrid, Spain
- 9 ⁴CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
- 10 * Correspondence:
- 11 Carmen Brás Silva
- 12 carmensb@med.up.pt

Keywords: pulmonary hypertension, pulmonary arterial hypertension, pulmonary arterial banding, right ventricle, animal models, right ventricular function.

- 15
- 16 Abstract

17 Introduction: Pulmonary hypertension (PH) is a progressive condition that affects pulmonary vessels,

18 but its main prognostic factor is right ventricle (RV) function. It is defined as an elevation of mean

19 pulmonary arterial pressure above 20 mmHg at rest. PH group 1 – pulmonary arterial hypertension

20 (PAH) – is a syndrome that primarily benefits from targeted treatment. Many mice/rat models are used

21 for research in PAH, but results fail to translate in clinical trials. Recently, more and more studies are

also using pulmonary arterial banding (PAB) – a model of RV dysfunction/failure without PH. This

review aims to summarize studies that test interventions on PAB and other PH models concomitantly.

24 Methods: articles were searched in Scopus, Web of Science and PubMed/MEDLINE, without time or

25 language limitation. Inclusion criteria consisted of pharmacological therapeutical interventions, tested

- 26 on a PAB and in a PAH animal model. Exclusion criteria were acute interventions, genetic models,
- and studies without data for PAB group and, at least, one other PH model.
- 28 Results: multiple tested drugs both improved pulmonary vascular hemodynamics on PH models and ameliorated RV structure and function after PAB, in rats and mice. PH models and PAB frequently 29 exhibited similar results (73,1% concordance) with drugs other than endothelin receptor antagonists 30 31 and phosphodiesterase inhibitors. RV systolic pressure (RVSP) accounted for most differences 32 between PH models and PAB. Only dichloroacetate improved it in PAB animals, whereas 14 out of 19 33 drugs/combination of drugs improved RVSP in PH models. Results on RV fibrosis, on the other hand, 34 all agreed (12 drugs). Macitentan, sildenafil and tadalafil improved most tested pathophysiological 35 parameters in PH models, but almost none in PAB animals: only macitentan ameliorated two - Fulton
- 36 index and TAPSE. Dapagliflozin was the only drug that improved no parameters.

Conclusion: this review showed that many drugs currently under research for PAH have a cardioprotective effect on animals that may translate to humans, as well as pulmonary vascular hemodynamics and remodelling benefits. However, results of isolated studies should be interpreted with caution, as small differences in the methodology can lead to noticeable changes in the results. To improve the translational potential of drugs in this field, researchers should test them in multiple models, including PAB, while optimizing induction methods for human disease translation.

43

44 **1** Introduction

45 Pulmonary hypertension (PH) is a progressive condition that affects pulmonary vessels, leading to the 46 worsening of the right ventricular function(1), which is the main prognostic factor(2). It is defined as 47 an elevation of mean pulmonary arterial pressure above 20 mmHg at rest(3). There are 5 major types 48 of PH, based on clinical presentation, pathophysiology, and management(3). Group 1 PH is also called 49 pulmonary arterial hypertension (PAH), and it is less common than PH groups 2 and 3(3). Most (50-50 60%) of PAH cases are idiopathic(3). The other most common associated conditions are connective 51 tissue disease, congenital heart disease and portal hypertension(3). Treatment of underlying condition is possible for patients with PH group 2 (PH associated with left heart disease), group 3 (PH associated 52

53 with lung diseases/hypoxia) and group 4 (PH associated with pulmonary obstructions)(3), unlike for

- 54 most patients with PAH.
- 55 Many small animal models are used for research in the field of PH: from older, "classical" models – 56 chronic hypoxia (CH) and monocrotaline (MCT) - to newer models - such as Sugen5416/hypoxia 57 (SuHx) and pulmonary artery banding (PAB).(4) "Classical" models tend to present with a milder 58 phenotype(4). MCT model is induced by a single injection of monocrotaline, which leads to PH, RV 59 hypertrophy and pulmonary vascular remodelling – as in human PH – but it also affects the liver, the 60 myocardium, and the kidney, unlike human disease(5). CH animals are exposed to a hypoxic (generally 61 with 10% oxygen) environment for 3-4 weeks(5). This causes pulmonary vascular remodelling, which 62 improves with normoxia(5). Therefore, they are mostly used to investigate milder forms of PH, like group 3 PH(6). SuHx animals receive an injection of a vascular endothelial growth factor receptor 2 63 64 (VEGFR-2) antagonist (semaxinib or Sugen5416) and then are exposed to hypoxia, like CH animals(5). SuHx rats have the advantage of showing pulmonary plexiform lesions – like human PAH 65 - as well as vascular remodelling(5). PAB rats or mice undergo surgery to permanently constrict the 66 67 pulmonary trunk, which leads to right ventricle remodelling, without PH(6). It is used to evaluate the
- 68 direct effects of drugs on the RV(6).

69 Many drugs which improve PAH in small animals fail in clinical trials(7). In fact, in a recent meta-70 analysis, only 41 out of 522 interventions in animal models (8%) were ineffective(8). Yet only drugs 71 targeting 3 pathways are currently approved for PAH treatment - nitric oxide, endothelin, and 72 prostacyclin pathways – and they are all related to benefits in pulmonary vasculature(7). No approved 73 therapy targets the RV(9). This difficulty on the translation from animal models to human has multiple 74 explanations. Most importantly, no existing animal model replicates all features of PAH in humans(5). 75 Some problems are milder phenotype (CH), damage in other organs (MCT) and absence of pulmonary 76 vessels remodelling (PAB)(6). Also, depending on the model and on the methodology - type of 77 rat/mouse, duration of induction, anaesthetic used for hemodynamic evaluation – the phenotype can 78 greatly vary(4, 9).

- 79 The current PH animal models have similarities and differences to human PAH. Therefore, it is
- 80 advantageous to use models which combine more than one hit (like SuHx), or to compare the effect of
- 81 pre-clinical drugs on multiple models(10). Furthermore, as the main prognostic factor of PAH is the
- 82 right ventricular function(2), direct cardioprotection assessed by PAB is an interesting novel
- option(6), so many recent papers have concomitantly evaluated potential PAH drugs in PAB plus one
- or more PH models. This review summarizes and analyses these studies. We aim to provide a picture of the effect of pre-clinical and clinical therapies on multiple animal models, with a special focus on
- 85 of the effect of pre-chinical and chinical therapies on multiple animal models, with a special focus on 86 PAB.
- 87
- 88

89 2 Methods

90 This review included studies from Scopus, Web of Science and PubMed/MEDLINE, without time or 91 language limitation.

- 92 The query used was: (pulmonary hypertension OR pulmonary arterial hypertension) AND (SUGEN
- 93 OR SU5416 OR (chronic hypoxia) OR monocrotaline OR MCT OR Schistosomiasis OR Schistosoma

94 OR (Endothelin receptor-B) OR ET-B OR Angiopoeitin-1 OR Serotonin OR 5-HTT) AND (PAB OR

- 95 pulmonary artery banding or PTB or pulmonary trunk banding).
- 96

97 2.1 Inclusion and exclusion criteria

- Inclusion criteria consisted of pharmacological interventions to prevent/reverse PH, tested both on aPAB group and in a PH animal model.
- 100 Studies were excluded because of acute interventions (when the treatment was administered only once)
- 101 and studies without data for PAB group and, at least, one other PH model.
- 102

103 **2.2 Data extraction**

All selected studies were carefully reviewed. We extracted data from most assessed and important outcomes related to RV. Outcomes were divided on model induction, RV structure, RV systolic function, RV diastolic function and pulmonary vascular hemodynamics and remodelling to facilitate their presentation, although some outcomes are related to more than one area.

- 108
- 109
- 110
- 111
- 112

113 **3 Results**

114 Nineteen studies were selected after applying exclusion and inclusion criteria (figure 1) (11-29). They

115 were published between 2009 and 2022 and they provide results of 20 drugs and two combinations of

116 two drugs, with a great variety of mechanisms of action (table 1). Some drugs are already in use for

- 117 PAH such as sildenafil, tadalafil and macitentan, and others are important in other diseases like
- 118 sacubitril/valsartan, dapagliflozin and ivabradine.
- 119

120 **3.1 Methodology**

121 Drugs were tested in 5 different PH/RV remodelling models: chronic hypoxia (CH), SU5416/hypoxia 122 (SuHx), monocrotaline (MCT), monocrotaline + shunt (MCT+S), and pulmonary artery banding 123 (PAB).

124 All MCT animals were rats (table 2). They were given a single monocrotaline dose of 60 mg/Kg, except

in one group (30 mg/Kg)(14), to induce PH. In two studies, rats further underwent aortocaval shunt

surgery (MCT+S)(17, 29). Other models underwent hypoxia periods: CH and SuHx (table 3). Almost

127 all these animals were exposed to air with 10% O_2 for 3/4 weeks. In the start of the hypoxia period,

128 SuHx rats were additionally given an VEGFR inhibitor – Sugen 5416 (semaxinib) – at a 20 or 25mg/Kg

dose. Different from the other models, PAB animals underwent surgery for pulmonary artery

130 constriction, whose grade of constriction is defined by the needle/clip size. Even for the same strains 131 of mice/rats, the sizes greatly varied: for example, in Sprague-Dawley banded rats, the needle size

131 of mice/rats, the sizes greatly varied: for example, in Sprague-Dawley banded rats, the need 132 ranged from 22G to 16G, and one study used a 0.9 mm diameter clip(16).

133 Treatment regimens also had important differences (table 2 and 3). Some studies adopted a preventive

134 strategy, starting the treatment immediately after induction, while others waited some (maximum 4)

135 weeks to start it – therapeutic strategy. Treatment duration ranged from 1 to 7 weeks, and its duration

136 was the same for PH and PAB models in about half the studies.

137 Finally, an important variable for the final outcomes is the choice of the anaesthetic for hemodynamic

138 measurements. In this regard, most (at least 10 in 19) of the experiments used isoflurane (table 1).

139

140 **3.2** Differences of effects across different models

Overall, 63,0% of PH models results agree with the PAB results (40,3% both improve and 22,7% both have no significant effect). This percentage is bigger for structure parameters (results of table 3, plus RV weight measures, TIMP-1, and RV wall thickness) for MCT rats than SuHx animals (75,8%). The already approved therapies for PAH – macitentan, tadalafil and sildenafil – account for nearly half of the discordances (43,9%). Considering all other drugs but these 3, overall concordance raises to 73,1%,

146 and for structure parameters in MCT rats to 92,6%.

147 Most used models, besides PAB, were MCT and SuHx. Concordance of MCT (65,9%) and SuHx 148 (61,9%) with PAB results was similar.

- 149
- 150

151 **3.3 RV structure**

- Results of MCT and SuHx groups were the same as PAB groups in RV fibrosis, for all the 12 drugs with data for more than one model (table 4). Sildenafil decreased TIMP-1 (marker of fibrosis) in the
- 154 MCT group but had no significant effect in the PAB group (table S2) (26).

Some drugs had positive effects in PH models and PAB, some improved mostly parameters on PH 155 156 models, and some improved no parameters (table 4). Urocortin-2, ivabradine, sunitinib, sorafenib, neuregulin-1 and dantrolene ameliorated multiple parameters in more than one animal model. 157 Sildenafil, macitentan, tadalafil and the combination of the previous two had no effect on the PAB 158 groups, except for macitentan, which ameliorated Fulton index. Sildenafil even significantly worsened 159 PAB group cross-sectional area, despite decreasing it in the MCT group. Sacubitril/valsartan, 160 dapagliflozin and RVX208 had no significant effect on these parameters. RVX208 further increased 161 Fulton index in the PAB rats(29). 162

163

164 **3.4 RV systolic function and blood pressure**

RVSP and TAPSE were the most assessed RV systolic function parameters (table 5). Most of the drugs ameliorated RVSP in the PH models. However, out of 18 drugs/combination of drugs, only dichloroacetate improved RVSP of PAB animals(24). Dichloroacetate also improved pulmonary artery gradient in banded rats(24). Of all drugs with data for both parameters (16 drugs), only dapagliflozin had no significant effect on neither RVSP nor TAPSE(19). Like RV structure results, sildenafil, macitentan, tadalafil and the combination of the previous two improved no RV systolic function parameters in PAB animals, except macitentan, which ameliorated TAPSE(20).

Some studies also measured RVEF, RV fractional area change, CO, CI, MAP and SBP (table 5, S1 and S2). Urocortin-2 (MCT and PAB), GS-444217 (MCT) and neuregulin-1 (MCT) improved RV ejection fraction. Sacubitril/valsartan did not improve RVEF. Other studies lacked data. Ivabradine (SuHx and PAB), celastrol (SuHx and PAB) and gapmeR H19 (MCT and PAB) improved RV fractional area change, another measure of RV function. Gallein improved CO only on the MCT group, and CI only in the PAB group(25). Sacubitril/valsartan decreased mean arterial pressure(12). Sorafenib increased it in the MCT group(16).

179 **3.5 RV diastolic function and pulmonary vascular remodelling**

- 180 Most (14 out of 19) studies measured RVEDD and/or RVEDP (table 6). In two studies, PH induction
- 181 with MCT injection did not increase RVEDD and RVEDP(14, 15). RV remodelling induction by PAB
- 182 did not increase RVEDP in one study(11). A few (4) studies measured RV tau. In all these (7) groups,
- 183 RV tau improved with the intervention. As a highlight, GapmeR H19 improved RVEDD and RVEDP
- in both MCT and PAB groups(22). Urocortin-2 and neuregulin ameliorated RVEDD, RVEDP and tau
- in MCT rats(11, 21). They also improved RV end-diastolic volume and stiffness (data not shown).
- 186 Most studies also provided information on pulmonary vascular remodelling (table 7). Data from total,
- medial and intimal thickness resulted from analysis of many different arteriole size ranges. Results
- 188 were very positive: 12 out of 14 drugs improved PVR, TPR or PAAT: dapagliflozin and GapmeR H19
- 189 had no significant effect. These drugs also did not decrease mean medial thickness. Also, macitentan
- 190 and tadalafil alone or combined improved TPR but only when combined significantly decreased
- 191 arteriole muscularization(20).

192 **4 Discussion**

We found that multiple drugs both improved pulmonary vascular hemodynamics on PH models and ameliorated RV structure and function after PAB, in rats and mice. With drugs other than ERA and PDE5i, PH models and PAB frequently exhibited similar results (73,1% concordance), particularly in the case of MCT rats for structure-related parameters (92,6%).

RVSP accounted for most differences between PH models and PAB. Only dichloroacetate improved it
in banded animals, whereas 14 out of 19 drugs/combination of drugs improved RVSP in PH models.
Results on RV fibrosis, on the other hand, all agreed (12 drugs). ERA and PDE5i – macitentan,
sildenafil and tadalafil – improved most parameters in PH models, but almost none in PAB animals:
only macitentan ameliorated two – Fulton index and TAPSE. Combination of macitentan and tadalafil
improved pulmonary remodelling (arteriole muscularization), unlike both drugs on monotherapy.
Unexpectedly, dapagliflozin was the only drug that improved no parameters.

204

205 4.1 Recent studies show multiple drugs with cardioprotective potential

PAB is a model used in PH research. Rats or mice undergo surgery to mechanically constrict the
pulmonary trunk, developing RV dysfunction, without affecting pulmonary vessels(30). Therefore, if
a drug improves RV function of a PAB animal, that drug likely has a direct cardioprotective action(6).
In PH models, an improvement of RV function can also result of indirect action, through afterload
reduction due to pulmonary effects, therefore the PAB model is useful to distinguish these effects(6).

As RV function is the main determinant of prognosis in PH(2), cardioprotection is seen as a key to improve PH treatment(6). Therefore, researchers search more and more for drugs with direct benefits on the RV. As the studies in this review are recent (more than half were published after 2018) and they use the PAB model, it is comprehensible that most drugs seem to directly protect the RV. Some documented cardioprotective mechanisms include pathways related to fibrosis (GS-444217, sorafenib, sunitinib), mitochondrial dysfunction (dichloroacetate), oxidative stress (MitoQ), and epigenetic alternations (CommoB 110, BVW208, acdium unknowta)(21)

217 alterations (GapmeR H19, RVW208, sodium valproate)(31).

218

219 **4.2 RVSP** accounted for most discordances, **RV** fibrosis for most concordances

In the absence of RV outflow obstruction, RVSP estimates pulmonary artery systolic pressure, which
can be used to calculate mean pulmonary artery pressure (mPAP)(32). PH models, like in PH in
humans, present with an elevated mPAP(4). This explains why, in all studies included in this review,
PH models also exhibit an increased RVSP. Treatment with most drugs decreased RVSP, so these
drugs also ameliorated mPAP.

In PAB model, there is an obstruction to RV outflow, leading to RV pressure overload(6), which causes RVSP elevation. All drugs but one had no effect on RVSP. Only dichloroacetate decreased RVSP in the PAB model(24). Dichloroacetate also reduced the pulmonary artery pressure gradient(24). This suggests that RVSP decrease was caused by reduction of pressure gradient. As PAB uses a fixed constriction on the pulmonary artery, pressure gradient should also be constant. This finding requires further research. PH and PAB models exhibited similar RV fibrosis improvements, which suggests that these models
 may share common fibrotic pathways. Furthermore, 92,6% of MCT results agreed with PAB for the
 structure parameters, excluding ERA and PDE5i. This disagrees with a recent review on RV fibrosis

- due to PH which points some differences in fibrosis location and mechanisms(33). However, the review
- also states that \hat{RV} fibrosis is an area that needs more research(33).
- 236

4.3 Results from individual studies should be interpreted with caution

238 Other studies tested these drugs on animal models and results lacked consistency. In Schafer et al 239 study(26), sildenafil treatment for 3 weeks, immediately after PAB surgery in rats, had no effect on the 240 RV function and structure, except increasing the cardiomyocyte cross-sectional area. Rai et al(34) found similar results after 4 weeks of treatment. Borgdorff et al(35, 36) obtained different results, 241 242 depending on the treatment regimen. Preventive strategy, with 4 weeks of sildenafil from PAB surgery 243 day 1, resulted in RV systolic function improvement, no effect on RV diastolic function, and RV 244 fibrosis worsening(35). Therapeutical strategy, based on sildenafil treatment starting 4 weeks after 245 surgery, for 4 weeks, resulted in RV systolic and diastolic improvement, and RV fibrosis reduction(36). 246 Studies on MCT rats showed improvements on RV systolic and diastolic function, and structure(37-247 39).

- 248 Sildenafil, as tadalafil, is a PDE5 inhibitor. PDE5 is an abundant enzyme in the lung vasculature that
- degrades cGMP(40). Its inhibition leads to vasodilation, improving pulmonary hemodynamics(40).
- 250 There is also evidence of direct cardioprotective effects(41). However, these effects may be of a lesser
- 251 importance in PAH, as studies with PH models show benefits, but many with PAB reveal absence of
- 252 improvements, of even worsening of RV fibrosis.
- Unlike Li et al(19), in posterior studies dapagliflozin improved RV function, RV hypertrophy, and pulmonary vascular remodelling in MCT rats(42, 43). Tang et al attributed the difference to the lower mortality of MCT rats and to the longer duration of treatment: 3 weeks instead of 2 weeks(42). Wu et al treated rats for even longer: 5 weeks from MCT injection(43).
- Andersen et al reported that sacubitril/valsartan improved some parameters only in SuHx rats and mean
 arterial pressure also in PAB(12). In other studies, sacubitril/valsartan also improved Fulton index, RV
 wall thickness, fibrosis and RVEDP, in MCT and SuHx animals(44, 45). A study found a RVSP and
- 260 RV hypertrophy reduction in PAB animals(46).
- As the study included in this review(14) which tested sodium valproate in MCT and PAB rats other studies showed beneficial effects of valproic acid on CH and MCT plus CH animals(47, 48). A study reported multiple detrimental effects of trichostatin A(49), another histone deacetylase inhibitor, in PAB rats: it worsened fibrosis, RV dilation, cardiac output, TAPSE, and more parameters.
- To sum up, these different findings can be related to the methodology, particularly in the induction of the models. The most important factor for hemodynamic, structural and vascular worsening is the induction period, the longer, the more severe the phenotype(4). Additionally, older models – CH and MCT – cause milder phenotypes, some anaesthetics influence RVSP and mPAP values (greater pressure values are obtained with isoflurane), and preventive strategies lead to better outcomes than therapeutic ones(4). In the PAB model, a tighter constriction of the pulmonary artery causes a more severe phenotype, ranging from RV adaptative dysfunction to RV failure(50).

4.4 Some drugs are already approved and other are being evaluated in clinical trials

273 Some of the drugs considered in this review are already approved for PAH. 2022 ESC/ERS guidelines for PH(3) recommend the use of PDE5 inhibitors and/or ERA in some patients, depending on 274 275 cardiopulmonary comorbidities and mortality risk, due to many favourable effects on clinical trials. 276 PDE5 inhibitors improve hemodynamics, functional class and 6-minute walk distance(51). They also reduce mortality(51). In the REPAIR clinical trial, macitentan (ERA) improved pulmonary 277 hemodynamics, RV function and structure(52), like in SuHx rats (citação). AMBITION clinical trial 278 279 compared combination and monotherapy of ambrisentan - another ERA - and tadalafil(53). Combination therapy further reduced morbidity and improved 6-minute distance(53). 280

281 Other drugs have been already tested in smaller clinical trials and observational studies, with positive 282 outcomes. Dichloroacetate improved mPAP and PVR in genetically susceptible patients(54). 283 Sacubitril/valsartan also reduced mPAP, in patients with heart failure with reduced ejection fraction 284 (HFrEF)(55) and preserved ejection fraction (HRpEF)(56). A positive effect on RV function, assessed 285 by TAPSE, was only present in HFrEF(55). Ivabradine led to functional improvements in 10 PAH patients with high heart rates(57). Sorafenib showed improvements in patients with refractory 286 287 PAH(58). However, in other study, without placebo group, sorafenib led to a decrease in the cardiac index and a non-significant increase in systemic blood pressure(59). 288

289 **4.5** Small findings can be important

In one article(25), cardiac output (in mL/min) and cardiac index (mL/min/g) were assessed. Gallein treatment improved cardiac output only in MCT rats, and cardiac index only in PAB animals: the bodyweght indexing affected the results. Other studies show significant differences between the control and MCT groups (neuregulin), MCT and MCT + treatment (neuregulin), sham and PAB (ivabradine), and PAB and PAB + treatment (ivabradine). Borderline cardiac output improvements can become significant with or without indexing.

Also, unlike their monotherapy, macitentan plus tadalafil improved pulmonary vascular remodelling
 in MCT rats(20). This was the only advantage of the combination. Accordingly, in ABMITION clinical

- trial, combination of ERA and PDE5i had benefits compared to both monotherapies(53).
- 299

300 4.6 Limitations

301 One limitation of this review is the absence of statistic tests. Many studies did not present the absolute 302 values, and considering the high heterogeneity in the methods, statistic comparisons would be hard to 303 interpret. Also, this study does not include all drugs tested on PAB model. Although it would be 304 interesting to have a picture of all potentially cardioprotective drugs, analysing only studies which test two or more models allows to understand, for each molecule, which seem to have direct, indirect, or 305 306 mixed cardioprotective effects. Also, as the same research group performs the experiments on both 307 models, this decreases heterogeneity. One more limitation is the absence of drugs which are known to lack benefits on PAH. They would be useful for comparison purposes. In this study, only dapagliflozin 308 309 completely lacked benefits, but even this drug showed improvements in animal models and in some patients. Finally, this review does not include all results of studies: some important outcomes may have 310 been missed and the proportion of similarities/differences between models can be unrepresentative of 311

the full results.

313 **5** Conclusion

This review showed that many drugs currently under research for PAH have a cardioprotective effect on animals that may translate to humans, as well as pulmonary vascular hemodynamics and remodelling benefits. However, results of isolated studies should be interpreted with caution, as small differences in the methodology can lead to noticeable changes in the results. To improve the translational potential of drugs in this field, researchers should test them in multiple models, including PAB, while optimizing induction methods for human disease translation.

320

321 6 Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

324

325 7 Author Contributions

326 AB conceived the idea and has been involved in reviewing the literature and drafting the manuscript.

327 RA has made substantial contributions to conception and design and has been involved in drafting

328 the manuscript. CB-S has made substantial contributions to conception and design and has been

involved in revising it critically for important intellectual content. All authors contributed to the

article and approved the submitted version.

331 8 Funding

This work was supported by the Portuguese Foundation for Science and Technology under the auspices of the Cardiovascular R&D Center–UnIC (UIDB/00051/2020 and UIDP/00051/2020) and projects RELAX-2-PAH (2022.08921.PTDC) and IMPAcT (PTDC/MED-FSL/31719/2017; POCI-01-0145-FEDER-031719).

- 336
- 337
- 338
- 339
- 340
- 341 342
- 343
- 344
- 345
- 346

347

- 348
- 349 350
- 350
- 352

353 9 References

Humbert M, Guignabert C, Bonnet S, Dorfmuller P, Klinger JR, Nicolls MR, et al. Pathology
 and pathobiology of pulmonary hypertension: state of the art and research perspectives. The
 European respiratory journal. 2019;53(1).

Howard LS. Prognostic factors in pulmonary arterial hypertension: assessing the course of the
 disease. Eur Respir Rev. 2011;20(122):236-42.

Humbert M, Kovacs G, Hoeper MM, Badagliacca R, Berger RMF, Brida M, et al. 2022
 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J.
 2022;43(38):3618-731.

362 4. Sztuka K, Jasinska-Stroschein M. Animal models of pulmonary arterial hypertension: A
363 systematic review and meta-analysis of data from 6126 animals. Pharmacol Res. 2017;125(Pt
364 B):201-14.

365 5. Wu XH, Ma JL, Ding D, Ma YJ, Wei YP, Jing ZC. Experimental animal models of
366 pulmonary hypertension: Development and challenges. Animal Model Exp Med. 2022;5(3):207-16.

367 6. Dignam JP, Scott TE, Kemp-Harper BK, Hobbs AJ. Animal models of pulmonary
368 hypertension: Getting to the heart of the problem. Br J Pharmacol. 2022;179(5):811-37.

369 7. Yang Y, Lin F, Xiao Z, Sun B, Wei Z, Liu B, et al. Investigational pharmacotherapy and
370 immunotherapy of pulmonary arterial hypertension: An update. Biomed Pharmacother.
371 2020;129:110355.

Sztuka K, Orszulak-Michalak D, Jasinska-Stroschein M. Systematic review and meta-analysis
 of interventions tested in animal models of pulmonary hypertension. Vascul Pharmacol.
 2018;110:55-63.

9. Prisco SZ, Thenappan T, Prins KW. Treatment Targets for Right Ventricular Dysfunction in
Pulmonary Arterial Hypertension. JACC Basic Transl Sci. 2020;5(12):1244-60.

Sommer N, Ghofrani HA, Pak O, Bonnet S, Provencher S, Sitbon O, et al. Current and future
 treatments of pulmonary arterial hypertension. Br J Pharmacol. 2021;178(1):6-30.

Adao R, Mendes-Ferreira P, Santos-Ribeiro D, Maia-Rocha C, Pimentel LD, Monteiro-Pinto
C, et al. Urocortin-2 improves right ventricular function and attenuates pulmonary arterial
hypertension. Cardiovascular Research. 2018;114(8):1165-77.

Andersen S, Axelsen JB, Ringgaard S, Nyengaard JR, Hyldebrandt JA, Bogaard HJ, et al.
Effects of combined angiotensin II receptor antagonism and neprilysin inhibition in experimental
pulmonary hypertension and right ventricular failure. International Journal of Cardiology.
2019:293:203-10.

Budas GR, Boehm M, Kojonazarov B, Viswanathan G, Tian X, Veeroju S, et al. ASK1
Inhibition Halts Disease Progression in Preclinical Models of Pulmonary Arterial Hypertension.
American Journal of Respiratory and Critical Care Medicine. 2018;197(3):373-85.

14. Cho YK, Eom GH, Kee HJ, Kim HS, Choi WY, Nam KI, et al. Sodium Valproate, a Histone
Deacetylase Inhibitor, but Not Captopril, Prevents Right Ventricular Hypertrophy in Rats.
Circulation Journal. 2010;74(4):760-70.

15. Ishii R, Okumura K, Akazawa Y, Malhi M, Ebata R, Sun M, et al. Heart Rate Reduction

Improves Right Ventricular Function and Fibrosis in Pulmonary Hypertension. American Journal of
 Respiratory Cell and Molecular Biology. 2020;63(6):843-55.

- Kojonazarov B, Sydykov A, Pullamsetti SS, Luitel H, Dahal BK, Kosanovic D, et al. Effects
 of multikinase inhibitors on pressure overload-induced right ventricular remodeling. International
- 397 Journal of Cardiology. 2013;167(6):2630-7.
- Kurakula K, Hagdorn QAJ, van der Feen DE, Noordegraaf AV, ten Dijke P, de Boer RA, et
 al. Inhibition of the prolyl isomerase Pin1 improves endothelial function and attenuates vascular
 remodelling in pulmonary hypertension by inhibiting TGF-beta signalling. Angiogenesis.
 2022;25(1):99-112.
- 402 18. Kurosawa R, Satoh K, Nakata T, Shindo T, Kikuchi N, Satoh T, et al. Identification of
 403 Celastrol as a Novel Therapeutic Agent for Pulmonary Arterial Hypertension and Right Ventricular
 404 Failure Through Suppression of Bsg (Basigin)/CyPA (Cyclophilin A). Arteriosclerosis Thrombosis
 405 and Vascular Biology. 2021;41(3):1205-17.
- Li H, Zhang Y, Wang S, Yue Y, Liu Q, Huang S, et al. Dapagliflozin has No Protective
 Effect on Experimental Pulmonary Arterial Hypertension and Pulmonary Trunk Banding Rat
 Models. Front Pharmacol. 2021;12:756226.
- 409 20. Mamazhakypov A, Weiß A, Zukunft S, Sydykov A, Kojonazarov B, Wilhelm J, et al. Effects
 410 of macitentan and tadalafil monotherapy or their combination on the right ventricle and plasma
 411 metabolites in pulmonary hypertensive rats. Pulm Circ. 2020;10(4):2045894020947283.
- 412 21. Mendes-Ferreira P, Maia-Rocha C, Adao R, Mendes MJ, Santos-Ribeiro D, Alves BS, et al.
 413 Neuregulin-1 improves right ventricular function and attenuates experimental pulmonary arterial
 414 hypertension. Cardiovascular Research. 2016;109(1):44-54.
- 415 22. Omura J, Habbout K, Shimauchi T, Wu WH, Breuils-Bonnet S, Tremblay E, et al.
- Identification of Long Noncoding RNA H19 as a New Biomarker and Therapeutic Target in Right
 Ventricular Failure in Pulmonary Arterial Hypertension. Circulation. 2020;142(15):1464-84.
- Pak O, Scheibe S, Esfandiary A, Gierhardt M, Sydykov A, Logan A, et al. Impact of the
 mitochondria-targeted antioxidant MitoQ on hypoxia-induced pulmonary hypertension. European
 Respiratory Journal. 2018;51(3).
- 421 24. Piao L, Fang YH, Cadete VJ, Wietholt C, Urboniene D, Toth PT, et al. The inhibition of
 422 pyruvate dehydrogenase kinase improves impaired cardiac function and electrical remodeling in two
 423 models of right ventricular hypertrophy: resuscitating the hibernating right ventricle. Journal of
 424 molecular medicine (Berlin, Germany). 2010;88(1):47-60.
- Piao L, Fang YH, Parikh KS, Ryan JJ, D'Souza KM, Theccanat T, et al. GRK2-Mediated
 Inhibition of Adrenergic and Dopaminergic Signaling in Right Ventricular Hypertrophy Therapeutic
 Implications in Pulmonary Hypertension. Circulation. 2012;126(24):2859-+.
- Schafer S, Ellinghaus P, Janssen W, Kramer F, Lustig K, Milting H, et al. Chronic inhibition
 of phosphodiesterase 5 does not prevent pressure-overload-induced right-ventricular remodelling.
 Cardiovascular Research. 2009;82(1):30-9.
- 431 27. Sun XQ, Peters EL, Schalij I, Axelsen JB, Andersen S, Kurakula K, et al. Increased MAO-A
 432 Activity Promotes Progression of Pulmonary Arterial Hypertension. Am J Respir Cell Mol Biol.
 433 2021;64(3):331-43.
- 434 28. Tanaka S, Yamamoto T, Mikawa M, Nawata J, Fujii S, Nakamura Y, et al. Stabilization of 435 RyR2 maintains right ventricular function, reduces the development of ventricular arrhythmias, and 426 improves progressis in pulmonery hypertension. Heart rhythm 2022;10(6):086-07
- 436 improves prognosis in pulmonary hypertension. Heart rhythm. 2022;19(6):986-97.

437 29. Van der Feen DE, Kurakula K, Tremblay E, Boucherat O, Bossers GPL, Szulcek R, et al. 438 Multicenter Preclinical Validation of BET Inhibition for the Treatment of Pulmonary Arterial 439 Hypertension. American Journal of Respiratory and Critical Care Medicine. 2019;200(7):910-20. 440 30. Guihaire J, Bogaard HJ, Flecher E, Noly PE, Mercier O, Haddad F, et al. Experimental 441 models of right heart failure: a window for translational research in pulmonary hypertension. Semin Respir Crit Care Med. 2013;34(5):689-99. 442 443 31. Mamazhakypov A, Sommer N, Assmus B, Tello K, Schermuly RT, Kosanovic D, et al. Novel 444 Therapeutic Targets for the Treatment of Right Ventricular Remodeling: Insights from the Pulmonary Artery Banding Model. Int J Environ Res Public Health. 2021;18(16). 445 446 32. Jang AY, Shin MS. Echocardiographic Screening Methods for Pulmonary Hypertension: A 447 Practical Review. J Cardiovasc Imaging. 2020;28(1):1-9. 448 33. Egemnazarov B, Crnkovic S, Nagy BM, Olschewski H, Kwapiszewska G. Right ventricular 449 fibrosis and dysfunction: Actual concepts and common misconceptions. Matrix Biol. 2018;68-69:507-21. 450 451 34. Rai N, Veeroju S, Schymura Y, Janssen W, Wietelmann A, Kojonazarov B, et al. Effect of 452 Riociguat and Sildenafil on Right Heart Remodeling and Function in Pressure Overload Induced 453 Model of Pulmonary Arterial Banding. Biomed Res Int. 2018;2018:3293584. 454 35. Borgdorff MA, Bartelds B, Dickinson MG, Boersma B, Weij M, Zandvoort A, et al. 455 Sildenafil enhances systolic adaptation, but does not prevent diastolic dysfunction, in the pressure-456 loaded right ventricle. Eur J Heart Fail. 2012;14(9):1067-74. 457 Borgdorff MA, Bartelds B, Dickinson MG, van Wiechen MP, Steendijk P, de Vroomen M, et 36. 458 al. Sildenafil treatment in established right ventricular dysfunction improves diastolic function and attenuates interstitial fibrosis independent from afterload. American journal of physiology Heart and 459 460 circulatory physiology. 2014;307(3):H361-9. 461 37. Schermuly RT, Kreisselmeier KP, Ghofrani HA, Yilmaz H, Butrous G, Ermert L, et al. 462 Chronic sildenafil treatment inhibits monocrotaline-induced pulmonary hypertension in rats. Am J Respir Crit Care Med. 2004;169(1):39-45. 463 464 Liu H, Liu ZY, Guan Q. Oral sildenafil prevents and reverses the development of pulmonary 38. 465 hypertension in monocrotaline-treated rats. Interact Cardiovasc Thorac Surg. 2007;6(5):608-13. 466 39. Yoshiyuki R, Tanaka R, Fukushima R, Machida N. Preventive effect of sildenafil on right 467 ventricular function in rats with monocrotaline-induced pulmonary arterial hypertension. Exp Anim. 468 2016;65(3):215-22. 469 40. Triposkiadis F, Xanthopoulos A, Skoularigis J, Starling RC. Therapeutic augmentation of 470 NO-sGC-cGMP signalling: lessons learned from pulmonary arterial hypertension and heart failure. Heart Fail Rev. 2022;27(6):1991-2003. 471 472 41. Hutchings DC, Anderson SG, Caldwell JL, Trafford AW. Phosphodiesterase-5 inhibitors and 473 the heart: compound cardioprotection? Heart. 2018;104(15):1244-50. 474 42. Tang Y, Tan S, Li M, Tang Y, Xu X, Zhang Q, et al. Dapagliflozin, sildenafil and their 475 combination in monocrotaline-induced pulmonary arterial hypertension. BMC Pulm Med. 476 2022;22(1):142. 477 Wu J, Liu T, Shi S, Fan Z, Hiram R, Xiong F, et al. Dapagliflozin reduces the vulnerability of 43. 478 rats with pulmonary arterial hypertension-induced right heart failure to ventricular arrhythmia by restoring calcium handling. Cardiovasc Diabetol. 2022;21(1):197. 479

- 480 44. Chaumais MC, Djessas MRA, Thuillet R, Cumont A, Tu L, Hebert G, et al. Additive 481 protective effects of sacubitril/valsartan and bosentan on vascular remodelling in experimental
- 482 pulmonary hypertension. Cardiovasc Res. 2021;117(5):1391-401.
- 483 45. Clements RT, Vang A, Fernandez-Nicolas A, Kue NR, Mancini TJ, Morrison AR, et al.
 484 Treatment of Pulmonary Hypertension With Angiotensin II Receptor Blocker and Neprilysin
 485 Inhibitor Sacubitril/Valsartan. Circulation Heart failure. 2019;12(11):e005819.
- 486
 46. Sharifi Kia D, Benza E, Bachman TN, Tushak C, Kim K, Simon MA. Angiotensin Receptor487 Neprilysin Inhibition Attenuates Right Ventricular Remodeling in Pulmonary Hypertension. J Am
 488 Heart Assoc. 2020;9(13):e015708.
- 489 47. Zhao L, Chen CN, Hajji N, Oliver E, Cotroneo E, Wharton J, et al. Histone deacetylation
 490 inhibition in pulmonary hypertension: therapeutic potential of valproic acid and suberoylanilide
 491 hydroxamic acid. Circulation. 2012;126(4):455-67.
- 492 48. Lan B, Hayama E, Kawaguchi N, Furutani Y, Nakanishi T. Therapeutic efficacy of valproic
 493 acid in a combined monocrotaline and chronic hypoxia rat model of severe pulmonary hypertension.
 494 PLoS One. 2015;10(1):e0117211.
- 49. Bogaard HJ, Mizuno S, Hussaini AA, Toldo S, Abbate A, Kraskauskas D, et al. Suppression
 496 of histone deacetylases worsens right ventricular dysfunction after pulmonary artery banding in rats.
 497 Am J Respir Crit Care Med. 2011;183(10):1402-10.
- 498 50. Andersen S, Schultz JG, Holmboe S, Axelsen JB, Hansen MS, Lyhne MD, et al. A
 499 Pulmonary Trunk Banding Model of Pressure Overload Induced Right Ventricular Hypertrophy and
 500 Failure. J Vis Exp. 2018(141).
- 501 51. Barnes H, Brown Z, Burns A, Williams T. Phosphodiesterase 5 inhibitors for pulmonary 502 hypertension. Cochrane Database Syst Rev. 2019;1(1):CD012621.
- 503 52. Vonk Noordegraaf A, Channick R, Cottreel E, Kiely DG, Marcus JT, Martin N, et al. The
 504 REPAIR Study: Effects of Macitentan on RV Structure and Function in Pulmonary Arterial
 505 Hypertension. JACC Cardiovasc Imaging. 2022;15(2):240-53.
- 506 53. Galie N, Barbera JA, Frost AE, Ghofrani HA, Hoeper MM, McLaughlin VV, et al. Initial Use
 507 of Ambrisentan plus Tadalafil in Pulmonary Arterial Hypertension. N Engl J Med. 2015;373(9):834508 44.
- 509 54. Michelakis ED, Gurtu V, Webster L, Barnes G, Watson G, Howard L, et al. Inhibition of 510 pyruvate dehydrogenase kinase improves pulmonary arterial hypertension in genetically susceptible
- 511 patients. Sci Transl Med. 2017;9(413).
- 512 55. Zhang J, Du L, Qin X, Guo X. Effect of Sacubitril/Valsartan on the Right Ventricular
- 513 Function and Pulmonary Hypertension in Patients With Heart Failure With Reduced Ejection
- 514 Fraction: A Systematic Review and Meta-Analysis of Observational Studies. J Am Heart Assoc.
 515 2022;11(9):e024449.
- 516 56. Codina P, Domingo M, Barcelo E, Gastelurrutia P, Casquete D, Vila J, et al.
- 517 Sacubitril/valsartan affects pulmonary arterial pressure in heart failure with preserved ejection
- 518 fraction and pulmonary hypertension. ESC Heart Fail. 2022;9(4):2170-80.
- 519 57. Correale M, Brunetti ND, Montrone D, Totaro A, Ferraretti A, Ieva R, et al. Functional 520 improvement in pulmonary arterial hypertension patients treated with ivabradine. J Card Fail.
- 521 2014;20(5):373-5.

522 523	58. Kimura G, Kataoka M, Inami T, Fukuda K, Yoshino H, Satoh T. Sorafenib as a potential strategy for refractory pulmonary arterial hypertension. Pulm Pharmacol Ther. 2017;44:46-9.
524 525 526	59. Gomberg-Maitland M, Maitland ML, Barst RJ, Sugeng L, Coslet S, Perrino TJ, et al. A dosing/cross-development study of the multikinase inhibitor sorafenib in patients with pulmonary arterial hypertension. Clin Pharmacol Ther. 2010;87(3):303-10.
527	
528	
529	
530	
531	
532	
533	
534	
535	
536	
537	
538	
539	
540	
541	
542	
543	
544	
545	
546	
547	
548	
549	

	70 studies • After search in Pubmed, Web of Science and Scopus, and duplicate	 27 studies Inclusion criteria: pharmacologic intervention, use of PAB and, at least, another PH 	 19 studies Exclusion criteria: drug not tested in both models (n=5), acute effect evaluated only
	remvoval	model	(n=3)
552	Figure 1 – study selection		
553			
554			
555			
556			
557			
558			
559			
560			
561			
562			
563			
564			
565			
566			
567			
568			
569			
570			

571 Table 1 – Selected articles and characteristics

Study	Author	Year	PH models	Drug(s) tested	Anesthesic	Mechanism of action
1	Adão, R. et al.	2018	PAB, MCT	Urocortin-2	Sevoflurane	Type 2 CRH receptor activator
2	Andersen, S. et al.	2019	PAB, SuHx	Sacubitril/valsartan	Sevoflurane	Angiotensin II receptor/neprilysin inhibitors
3	Budas, G. R. et al.	2018	PAB, MCT, SuHx	GS-444217	Isoflurane (MCT and PAB), xylazine+ketamine (SuHx)	ASK1 inhibitor
4	Cho, Y. K. et al.	2010	PAB, MCT	Sodium valproate	(no haemodynamic evaluation)	Histone deacetylase inhibitor
5	Ishii, R. et al.	2020	PAB, MCT, SuHx	Ivabradine	Isoflurane	l _f current inhibitor
6	Kojonazarov, B. et al.	2013	PAB, MCT	Sunitinib, sorafenib	Isoflurane	PDGFR-, VEGFR- and KIT-inhibitor; raf1/b- , VEGFR-, PDGFR-inhibitor
7	Kurakula, K. et al.	2022	PAB, MCT + shunt	Juglone	ND	Pin1 inhibitor
8	Kurosawa, R. et al.	2021	PAB, SuHx	Celastrol	Isoflurane	Bsg, CyPA and NF-Kb inhibitor
9	Li, H. et al.	2021	PAB, MCT	Dapagliflozin	Pentorbital	SGTL-2 inhibitor
10	Mamazhakypov, A. et al.	2020	PAB, SuHx	Macitentan, tadalafil	Isoflurane	Endothelin-1 receptor antagonist; PDE5 inhibitor
11	Mendes-Ferreira, P. et al.	2016	PAB, MCT	Neuregulin-1	Sevoflurane, fentanyl, midazolam	ErbB family tyrosine kinase receptors activator
12	Omura, J. et al.	2020	PAB, MCT	GapmeR H19	Isoflurane	IncRNA H19 suppressor
13	Pak, O. et al.	2018	PAB, CH	MitoQ	ND	Mitochondria-targeted antioxidant
14	Piao, L. et al.	2010	PAB, MCT	Dichloroacetate	Isoflurane	Pyruvate dehydrogenase kinase inhibitor
15	Piao, L. et al.	2012	PAB, MCT	Gallein	Isoflurane	Gβγ–GRK2 signaling inhibitor
16	Schafer, S. et al.	2009	PAB, MCT	Sildenafil	Pentorbital, isoflurane	PDE5 inhibitor
17	Sun, X. Q. et al.	2021	PAB, SuHx	Clorgyline	Isoflurane	MAO-A inhibitor
18	Tanaka, S. et al.	2022	PAB, MCT	Dantrolene	Medetomidin, midazolam, butorphanol	Cardiac ryanodine receptor (RyR2) stabilizer
19	Van der Feen, D. E. et al.	2019	PAB, MCT + shunt, SuHx	RVX208	ND	BET inhibitor (BRD4 antagonist)

572 Anaesthetic: anaesthetic used for hemodynamical evaluation; CH: chronic hypoxia; MCT: monocrotaline; ND: no data; PAB: pulmonary artery banding;

573 PH: pulmonary hypertension; SuHx: Sugen 5416/hypoxia

Study Intervention МСТ PAB Induction to Induction to Intervention Model Model Sex MCT Sex Intervention (drug) MCT PAB PAB dose needle/clip intervention intervention period MCT period PAB (mg/Kg) size period MCT period PAB 1 10 days Urocortin-2 16G 2 weeks = WR = Male 60 = = Clip 0,3mm 3 GS-444217 SDR CM Male 60 1 week = 3 weeks 2 weeks = 4 0 days Sodium SDR = Male 30 22G 0 days 3 weeks = = valproate 18G 2 weeks 3 weeks 5 Ivabradine SDR = Both = 60 = = 6 2 weeks Sunitinib/ SDR = Both = 60 Clip 0,9mm 3 weeks 2 weeks = Sorafenib WR Male 60 18G 3 weeks 4 weeks 2 weeks 4 weeks 7 Juglone (shunt) = = 9 Dapagliflozin SDR = Male 60 18G 2 weeks 3 weeks 2 weeks = = Neuregulin-1 11 16G 1 week = WR = Male = 60 2 weeks = 12 GapmeR H19 SDR = Male = 60 19G 2 weeks 3 weeks 2 weeks 5 weeks 14 Dichloroacetate 3 weeks SDR = Male = 60 16G 10 days 0 days 7 weeks 2 weeks 15 Gallein SDR = Both = 60 18G 2 weeks = = 0 days 16 Sildenafil SDR WR Male 60 18G 2 weeks 2 weeks 3 weeks = 18G 18 SDR 60 4 weeks Dantrolene = Male 0 days -1 week = = 60 ND 3 weeks 4 weeks 2 weeks 4 weeks 19 RVX208 (shunt) WR = Male =

574 Table 2 – Methods overview of studies using MCT or MCT + shunt models

575 =: same as MCT values; CM: C57BL/6 mice; MCT: monocrotaline; ND: no data; PAB: pulmonary artery banding; SDR: Sprague/Dawley rats; SuHx: Sugen

576 5416/hypoxia; WR: wistar rats

577 Induction to intervention period MCT: time from monocrotline injection until the start of the treatment

578 Induction to invervention period PAB: time from PAB surgery to the start of the treatment (in one study, treatment started before surgery, so this value

579 is negative)

- 580
- 581
- 582
- 583
- 50
- 584
- 585

586 Table 3 – Methods overview of studies using CH or SuHx models

Study	Intervention (model)	Model CH/ SuHx	Model PAB	Sex CH/ SuHx	Sex PAB	SU5416 dose (mg/Kg)	Hipoxia time (weeks)	PAB needle/ clip size	Induction to intervention period CH/SuHx	Induction to intervention period PAB	Intervention period CH/SuHx	Intervention period PAB
2	Sacubitril/valsartan (SuHx)	SDR	WR	Male	=	25	4	Clip 0,7mm	2 weeks	=	5 weeks	=
3	GS-444217 (SuHx)	SDR	CM	Male	=	ND	4	Clip 0,3mm	-4 weeks	1 week	4 weeks	2 weeks
5	Ivabradine (SuHx)	SDR	=	Both	=	20	3	18G	0 weeks	2 weeks	3 weeks	=
8	Celastrol (CH/SuHx)	SDR	CM	Male	=	-/20	4/3	25G	-4/0 weeks	0 weeks	4/2 weeks	3 weeks
10	Macitentan/Tadalafil/ Macitentan+Tadalafil (SuHx)	WKR	=	Male	=	20	3	18G	2 weeks	1 week	2 weeks	=
13	MitoQ (CH)	CM	=	Both	=	-	4	Clip 0,35mm	-4 weeks	0 weeks	4 weeks	=
17	Clorgyline (SuHx)	SDR	WR	Male	=	25	4	Clip 0,6mm	4 weeks	2 weeks	3 weeks	6 weeks
19	RVX208 (SuHx)	SDR	WR	Male	=	20	3	ND	3 weeks	4 weeks	4 weeks	=

587 =: same as CH/SuHx values; CH: chronic hypoxia; CM: C57BL/6 mice; ND: no data; PAB: pulmonary artery banding; SDR: Sprague/Dawley rats; SuHx:

588 Sugen 5416/hypoxia; WKR: wistar/kyoto rats; WR: wistar rats

589 Induction to invervention period CH/SuHx: time from the end of the hypoxia period to the start of the treatment (some studies start the intervention

590 during the hypoxia period; in such cases this value is negative)

591 Induction to invervention period PAB: time from PAB surgery to the start of the treatment

592

593

594

595

596 Table 4 – Results of studies related to RV structure

		Fulton index					RV I	Fibros	is		CS	A/D		Bľ	NP/N	T-pro	BNP
	Drug(s)	С	Μ	S	Р	С	Μ	S	Р	С	Μ	S	Р	С	Μ	S	Р
1	Urocortin-2		\downarrow		\downarrow		\downarrow		\downarrow		\downarrow		\downarrow		\downarrow		
2	Sacubitril/valsartan			\leftrightarrow	\leftrightarrow			\leftrightarrow	\leftrightarrow							\leftrightarrow	\leftrightarrow
3	GS-444217		\checkmark	\downarrow	\downarrow				\checkmark				\leftrightarrow		\downarrow	\downarrow	
4	Sodium valproate		\checkmark		\downarrow												
5	Ivabradine						\downarrow	\checkmark	\downarrow		\checkmark	\downarrow	\downarrow				
6	Sunitinib		\checkmark		\downarrow		\downarrow		\checkmark				\downarrow		\downarrow		\downarrow
6	Sorafenib		\downarrow		\downarrow		\downarrow		\checkmark				\downarrow		\downarrow		\downarrow
7	Juglone		\leftrightarrow		\downarrow				\leftrightarrow								
8	Celastrol	\checkmark		\downarrow				\checkmark	\checkmark				\downarrow				
9	Dapagliflozin			\leftrightarrow	\leftrightarrow		\leftrightarrow		\leftrightarrow								
10	Macitentan			\checkmark	\downarrow			\leftrightarrow	\leftrightarrow							$\downarrow^{\#}$	\leftrightarrow
10	Tadalafil			\downarrow	\leftrightarrow			\leftrightarrow	\leftrightarrow							$\downarrow^{\#}$	\leftrightarrow
10	Mac. + Tad.			\checkmark	\leftrightarrow			\leftrightarrow	\leftrightarrow							$\downarrow^{_{\#}}$	\leftrightarrow
11	Neuregulin-1		\checkmark		\downarrow		\downarrow		\checkmark		\checkmark		\downarrow		\downarrow		
12	GapmeR H19		\leftrightarrow		\leftrightarrow		\downarrow		\checkmark		\checkmark		\downarrow				
13	MitoQ	\checkmark			\downarrow												
14	Dichloroacetate		\checkmark														
15	Gallein		\leftrightarrow		\leftrightarrow												
16	Sildenafil		\checkmark		\leftrightarrow						\checkmark		\uparrow		\downarrow		\leftrightarrow
17	Clorgyline			\downarrow	\leftrightarrow			\leftrightarrow	\leftrightarrow^*			\downarrow	\leftrightarrow				
18	Dantrolene						\downarrow				\checkmark		\downarrow				
19	RVX208		\leftrightarrow	\leftrightarrow	\uparrow				\leftrightarrow				\leftrightarrow				

597 CSA/D: cardiomyocyte cross-sectional area/diameter; C: chronic hypoxia; M: monocrotaline (with or without

shunt); S: Sugen 5416/hypoxia; P: pulmonary artery banding

599 ψ - significant decrease in the parameter

- $600 \quad \uparrow$ significant increase in the parameter
- $601 \quad \leftrightarrow$ no significant effect in the parameter
- 602 * in the animal model, the parameter did not significantly worsen
- 603 # NT-proBNP
- 604
- 605
- 606
- 607
- 608
-
- 609

610 Table 5 – Results of studies related to RV systolic function and MAP

		RVSP TAP			PSE			(0			(N	1AP				
Study	Drug(s)	С	Μ	S	Р	С	Μ	S	Р	С	Μ	S	Р	С	Μ	S	Р	С	Μ	S	Р
1	Urocortin-2		\downarrow		\leftrightarrow		\uparrow				\uparrow		\leftrightarrow^*								
2	Sacubitril/valsartan			\downarrow	\leftrightarrow			\leftrightarrow	\leftrightarrow							\leftrightarrow	\leftrightarrow			\downarrow	\downarrow
3	GS-444217				\leftrightarrow				\uparrow		\uparrow		\uparrow						\leftrightarrow	\leftrightarrow	\leftrightarrow
4	Sodium valproate																				
5	Ivabradine		\leftrightarrow	\leftrightarrow	\leftrightarrow		\leftrightarrow	\uparrow	\uparrow		\uparrow	\uparrow	\uparrow								
6	Sunitinib		\downarrow		\leftrightarrow		\uparrow		\uparrow						\uparrow		\uparrow		\leftrightarrow		\leftrightarrow
6	Sorafenib		\downarrow		\leftrightarrow		\uparrow		\uparrow						\uparrow		\leftrightarrow		\uparrow		\leftrightarrow
7	Juglone								\leftrightarrow								\leftrightarrow				
8	Celastrol	\checkmark		\downarrow	\leftrightarrow			\uparrow	\uparrow			\uparrow	\uparrow								
9	Dapaglifozine		\leftrightarrow		\leftrightarrow		\leftrightarrow		\leftrightarrow												
10	Macitentan			\downarrow	\leftrightarrow			\uparrow	\uparrow			\uparrow	\leftrightarrow							\leftrightarrow	\leftrightarrow^*
10	Tadalafil			\downarrow	\leftrightarrow			\uparrow	\leftrightarrow			\uparrow	\leftrightarrow							\leftrightarrow	\leftrightarrow^*
10	Mac. + Tad.			\downarrow	\leftrightarrow			\uparrow	\leftrightarrow			\uparrow	\leftrightarrow							\leftrightarrow	\leftrightarrow^*
11	Neuregulin-1		\checkmark								\uparrow		\leftrightarrow								
12	GapmeR H19		\leftrightarrow		\leftrightarrow		\uparrow		\uparrow		\uparrow		\uparrow								
13	MitoQ	\leftrightarrow			\leftrightarrow	\leftrightarrow			\uparrow	\leftrightarrow			\leftrightarrow								
14	Dichloroacetate		\downarrow		\checkmark						\uparrow		\uparrow								
15	Gallein		\leftrightarrow		\leftrightarrow		\uparrow				\uparrow		\leftrightarrow		\leftrightarrow		\uparrow				
16	Sildenafil		\downarrow		\leftrightarrow										\uparrow		\leftrightarrow		\leftrightarrow		\leftrightarrow
17	Clorgyline			\downarrow	\leftrightarrow			\leftrightarrow	\leftrightarrow			\leftrightarrow									
18	Dantrolene		\downarrow		\leftrightarrow						\uparrow										
19	RVX208			\downarrow					\leftrightarrow			\leftrightarrow	\leftrightarrow								

611 CI: cardiac index; CO: cardiac output; MAP: mean arterial pressure RVSP: right-ventricular systolic pressure; TAPSE: tricuspid annular plane systolic

612 excursion; C: chronic hypoxia; M: monocrotaline (with or without shunt); S: Sugen 5416/hypoxia; P: pulmonary artery banding

613 ψ - significant decrease in the parameter

614 \uparrow - significant increase in the parameter

615 \leftrightarrow - no significant effect in the parameter

616 * - in the animal model, the parameter did not significantly worsen

617

618 Table 6 – Results of studies related to RV diastolic function

		RVEDD RVEDP						Tau					
Article	Drug(s)	С	М	S	Р	С	Μ	S	Р	С	М	S	Р
1	Urocortin-2		\downarrow		\leftrightarrow		\downarrow		\leftrightarrow^*		\checkmark		
2	Sacubitril/valsartan							\leftrightarrow	\leftrightarrow				
3	GS-444217				\downarrow								
4	Sodium valproate		\leftrightarrow^*		\downarrow								
5	Ivabradine		\leftrightarrow	\downarrow	\leftrightarrow		\leftrightarrow^*	\checkmark	\downarrow		\checkmark	\checkmark	\downarrow
6	Sunitinib		\checkmark		\downarrow								
6	Sorafenib		\checkmark		\downarrow								
7	Juglone												
8	Celastrol			\checkmark					\downarrow				
9	Dapagliflozin												
10	Macitentan			\checkmark	\downarrow								
10	Tadalafil			\checkmark	\leftrightarrow								
10	Mac. + Tad.			\checkmark	\leftrightarrow								
11	Neuregulin-1		\checkmark				\checkmark				\checkmark		
12	GapmeR H19		\checkmark		\downarrow		\checkmark		\downarrow				
13	MitoQ	\downarrow			\downarrow								
14	Dichloroacetate												
15	Gallein												
16	Sildenafil						\checkmark		\leftrightarrow				
17	Clorgyline			\leftrightarrow	\leftrightarrow								
18	Dantrolene						\leftrightarrow		\downarrow		\checkmark		\downarrow
19	RVX208												

619 RVEDD: right-ventricular end-diastolic diameter; RVEDP: right-ventricular end-diastolic pressure; Tau: right-

620 ventricular relaxation time constant; C: chronic hypoxia; M: monocrotaline (with or without shunt); S: Sugen

621 5416/hypoxia; P: pulmonary artery banding

622 ψ - significant decrease in the parameter

623 \uparrow - significant increase in the parameter

 $624 \quad \leftrightarrow$ - no significant effect in the parameter

625 * - in the animal model, the parameter did not significantly worsen

626

627

628

629

630

					-			-					-			
			PVR			PAA	Г		omple ulariza			edial/			TPR	
Study	Drug(s)	С	Μ	S	С	Μ	S	С	М	S	С	Μ	S	С	Μ	S
1	Urocortin-2		\downarrow									\downarrow^1				
2	Sacubitril/valsartan												\downarrow^2			
3	GS-444217		\checkmark							\checkmark						
4	Sodium valproate															
5	Ivabradine															
6	Sunitinib					\uparrow			\checkmark						\downarrow	
6	Sorafenib					\uparrow			\checkmark						\downarrow	
7	Juglone											\leftrightarrow^{1}				
8	Celastrol						\uparrow						\downarrow ³			
9	Dapagliflozin					\leftrightarrow						\leftrightarrow^4				
10	Macitentan									\leftrightarrow						\checkmark
10	Tadalafil									\leftrightarrow						\checkmark
10	Mac. + Tad.									\checkmark						\checkmark
11	Neuregulin-1		\downarrow			\uparrow						\downarrow^4				
12	GapmeR H19							\leftrightarrow				\leftrightarrow^{5}			\leftrightarrow	
13	MitoQ															
14	Dichloroacetate					\uparrow										
15	Gallein															
16	Sildenafil															
17	Clorgyline												\leftrightarrow^{6}			J

631 Table 7 – Results of studies related to pulmonary vascular hemodynamics and remodelling

	16	Sildenatii					
	17	Clorgyline				\leftrightarrow^6	\downarrow
	18	Dantrolene			$\sqrt{7}$		
	19	RVX208	\leftrightarrow	\downarrow	$\leftrightarrow^{\scriptscriptstyle 1}$	\leftrightarrow^1	
)		Imonon orton cocolorati	on tim	o, DV/B; pulmonary vascular resistance; TD	D. tota	l nulmonany	

632 PAAT: pulmonary artery acceleration time; PVR: pulmonary vascular resistance; TPR: total pulmonary

resistance; C: chronic hypoxia; M: monocrotaline (with or without shunt); S: Sugen 5416/hypoxia; ¹ medial

634 thickness of small vessels (<50 μm); ² reduction in wall thickness in arterioles of 30-60 μm, but not <30 μm

and >60 μ m; ³ medial thickness of distal pulmonary arteries (50-100 μ m); ⁴ pulmonary arterial medial wall

636 thickness; ⁵ medial thickness of small vessels (<100 μm); ⁶clorgyline reduced intimal thickness, but not medial

637 $\,$ thickness in pulmonary arterioles (25-100 μm); 7medial wall thickness

- 638 ψ significant decrease in the parameter
- 639 \uparrow significant increase in the parameter
- $640 \quad \leftrightarrow$ no significant effect in the parameter
- 641 * the parameter did not significantly worsen with the model induction
- 642
- 643
- 644
- 645
- 646
-
- 647

648 Table S1 – Other results

		RVEF				mPAP				RV/BW				RV w		RV/TL					
Study	Drug(s)	С	Μ	S	Р	С	М	S	Р	С	Μ	S	Р	С	Μ	S	Р	С	Μ	S	Р
1	Urocortin-2		\uparrow		\uparrow^*																
2	Sacubitril/valsartan			\leftrightarrow	\leftrightarrow							\downarrow	\leftrightarrow								
3	GS-444217		\uparrow				\checkmark	\downarrow											\downarrow		
4	Sodium valproate										\checkmark		\checkmark								
5	Ivabradine																				
6	Sunitinib																				
6	Sorafenib																				
7	Juglone						\checkmark										\leftrightarrow				
8	Celastrol																				
9	Dapaglifozine																				
10	Macitentan																				
10	Tadalafil																				
10	Mac. + Tad.																				
11	Neuregulin-1		\uparrow																\downarrow		
12	GapmeR H19																				
13	MitoQ																				
14	Dichloroacetate																				
15	Gallein																				
16	Sildenafil														\downarrow		\leftrightarrow				
17	Clorgyline																				
18	Dantrolene										\checkmark										
19	RVX208						\checkmark	\leftrightarrow													

649 mPAP: mean pulmonary arterial pressure; RV: right ventricle; RV/BW: right ventricle weight/bodyweight; RVEF: right-ventricular ejection fraction;

650 RV/TL: right ventricle weight/ tibial length; C: chronic hypoxia; M: monocrotaline (with or without shunt); S: Sugen 5416/hypoxia; P: pulmonary artery

651 banding

- 652 ψ significant decrease in the parameter
- $653 \quad \uparrow$ significant increase in the parameter
- $654 \quad \leftrightarrow$ no significant effect in the parameter
- 655 * in the animal model, the parameter did not significantly worsen
- 656

657 Table S2 – Other results

		SV			TIMP-1				Treadmill distance				RVWT				RV FAC				
Study	Drug(s)	С	Μ	S	Р	С	Μ	S	Р	С	Μ	S	Р	С	Μ	S	Р	С	Μ	S	Р
1	Urocortin-2										\uparrow										
2	Sacubitril/valsartan			\leftrightarrow	\leftrightarrow																
3	GS-444217						\checkmark	\downarrow													
4	Sodium valproate														\downarrow		\checkmark				
5	Ivabradine		\uparrow	\uparrow	\uparrow						\uparrow	\leftrightarrow	\uparrow^*						\leftrightarrow	\uparrow	\uparrow
6	Sunitinib														\downarrow		\checkmark				
6	Sorafenib														\downarrow		\downarrow				
7	Juglone																				
8	Celastrol											\uparrow					\downarrow			\uparrow	\uparrow
9	Dapaglifozine																				
10	Macitentan																\leftrightarrow				
10	Tadalafil																\leftrightarrow				
10	Mac. + Tad.																\leftrightarrow				
11	Neuregulin-1																				
12	GapmeR H19		\uparrow		\uparrow														\uparrow		\uparrow
13	MitoQ													\downarrow			\leftrightarrow				
14	Dichloroacetate														\downarrow						
15	Gallein										\leftrightarrow		\uparrow								
16	Sildenafil		\uparrow		\leftrightarrow		\checkmark		\leftrightarrow												
17	Clorgyline			\leftrightarrow	\leftrightarrow																
18	Dantrolene														\downarrow						
19	RVX208				\uparrow																

658 SV: stroke volume; RVWT: right-ventricular wall thickness; RV FAC: right-ventricular fractional area change; M: monocrotaline (with or without shunt);

659 S: Sugen 5416/hypoxia; P: pulmonary artery banding

660 \downarrow - significant decrease in the parameter

661 \uparrow - significant increase in the parameter

 $662 \quad \leftrightarrow$ - no significant effect in the parameter

663 * - in the animal model, the parameter did not significantly worsen

664

665

Scale for the Assessment of Narrative Review Articles – SANR	RA
Please rate the quality of the narrative review article in question, using categories 0–2 on the following scale. For each quality, please choose the option which best fits your evaluation, using categories 0 and 2 freely to imply general low and h These are not intended to imply the worst or best imaginable quality.	
Nota: Para a UC de Dissertação/Projecto, todos os seis items devem ser cumpridos	em nível 2.
1) Justification of the article's importance for the readership	
The importance is not justified0	
The importance is alluded to, but not explicitly justified.	2
The importance is explicitly justified2	
Página 2, parágrafo 4, "No approved therapy targets the RV(9). This difficulty on the translation from animal models has multiple explanations."	
2) Statement of concrete aims or formulation of questions	
No aims or questions are formulated0	
Aims are formulated generally but not concretely or in terms of clear questions1	2
One or more concrete aims or questions are formulated2	
Página 3, parágrafo 1, "We aim to provide a picture of the effect of pre-clinical and clinical therapies on multiple animal models, with a speacial focus on PAB"3) Description of the literature search	
The search strategy is not presented0	
The literature search is described briefly1	2
The literature search is described in detail, including search terms and inclusion criteria2	
Página 3, parágrafos 2 e 3, "The query used was: (pulmonary hypertension OR pulmonary arterial hyperbanding or PTB or pulmonary trunk banding)	pertension) () pulmonary a
4) Referencing	
Key statements are not supported by references0	
The referencing of key statements is inconsistent1	2
Key statements are supported by references2 Página 6, parágrafo 3, "() mechanically constrict the pulmonary trunk, developing RV dysfunction, v vessels(30). Therefore, if a drug improves RV function of a PAB animal, that drug likely has a direct of	
5) Scientific reasoning	
(e.g., incorporation of appropriate evidence, such as RCTs in clinical medicine)	
The article's point is not based on appropriate arguments0	
Appropriate evidence is introduced selectively1	2
Appropriate evidence is generally present2	
Página 2, parágrafo 4, "In fact, in a recent meta-analysis, only 41 out of 522 interventions in animal models (8%) were ineffective(8).	
6) Appropriate presentation of data	
(e.g., absolute vs relative risk; effect sizes without confidence intervals)	
Data are presented inadequately0	
Data are often not presented in the most appropriate way1	2
Relevant outcome data are generally presented appropriately2 Página 4, parágrafo 6, "Overall, 63,0% of PH models results agree with the PAB results (40,3% both improve and 22,7% both have no significant effect)."	
Sumscore	12
Fig. 1 SANRA - Scale	

Nota 1: O ponto 5 diz respeito à contextualização da evidência científica em relação ao tipo de estudo(s) que a produziu (e, idealmente, à qualidade do(s) mesmo(s)). O ponto 6 diz respeito a sustentar as afirmações com os dados quantitativos mais apropriado. A título de exemplo, para cumprir o ponto 5 e o ponto 6, ao invés de afirmar "já foi evidenciado que os testes de alergia às penicilinas apresentam alta especificidade e moderada sensibilidade", dever-se-á indicar "uma revisão sistemática com meta-análise de acuidade diagnóstica evidenciou que os testes de alergia às penicilinas apresentam alta especificidade (valor meta-analítico: 97%; IC95%=94-98%) e moderada sensibilidade (valor meta-analítico: 31%; IC95%=19-46%).

SANRA – explanations and instructions

This scale is intended to help editors assess the quality of a narrative review article based on formal criteria accessible to the reader. It cannot cover other elements of editorial decision making such as degree of originality, topicality, conflicts of interest or the plausibility, correctness or completeness of the content itself. SANRA is an instrument for editors, authors, and reviewers evaluating individual manuscripts. It may also help editors to document average manuscript quality within their journal and researchers to document the manuscript quality, for example in peer review research. Using only three scoring options, 0, 1 and 2, SANRA is intended to provide a swift and pragmatic sum score for quality, for everyday use with real manuscripts, in a field where established quality standards have previously been lacking. It is not designed as an exact measurement of the quality of all theoretically possible manuscripts. For this reason, the extreme values (0 and 2) should be used relatively freely and not reserved only for perfect or hopeless articles.

We recommend that users test-rate a few manuscripts to familiarize themselves with the scale, before using it on the intended group of manuscripts. Ratings should assess the totality of a manuscript, including the abstract. The following comments clarify how each question is designed to be used.

Item 1 – Justification of the article's importance for the readership

Justification of importance for the readership must be seen in the context of each journal's readership. Consider how well the manuscript outlines the clinical problem and highlights unanswered questions or evidence gaps – thoroughly (2), superficially (1), or not at all (0).

Item 2 – Statement of concrete/specific aims or formulation of questions

A good paper will propose one or more specific aims or questions which will be dealt with or topics which will be reviewed. Please rate whether this has been done thoroughly and clearly (2), vaguely or unclearly (1), or not at all (0).

Item 3 – Description of the literature search

A convincing narrative review will be transparent about the sources of information on which the text is based. Please rate the degree to which you think this has been achieved. To achieve a rating of 2, it is not necessary to describe the literature search in as much detail as for a systematic review (searching multiple databases, including exact descriptions of search history, flowcharts, etc.), but it is necessary to specify search terms, and the types of literature included. A manuscript which only refers briefly to its literature search would score 1, while one not mentioning its methods would score 0.

Item 4 – Referencing

No manuscript references all statements. However, those that are essential for the arguments of the manuscript – "key statements" – should be backed by references in all or almost all cases. Exceptions could reasonably be made for rating purposes where a key statement has uncontroversial face-validity, such as "Diabetes is among the commonest causes of chronic morbidity worldwide." Please rate the completeness of referencing: for most or all relevant key statements (2), inconsistently (1), sporadically (0).

Item 5 - Scientific reasoning

The item describes the quality of the scientific point made. A convincing narrative review presents evidence for key arguments. It should mention study design (randomized controlled trial, qualitative study, etc), and where available, levels of evidence. Please rate whether you feel this has been done thoroughly (2), superficially (1), or hardly at all (0). Unlike item 6, which is concerned with the selection and presentation of concrete outcome data, this item relates to the use of evidence and of types of evidence in the manuscript's arguments.

Item 6 – Appropriate presentation of data:

This item describes the correct presentation of data central to the article's argument. Which data are considered relevant varies from field to field. In some areas relevant data would be absolute rather than relative risks or clinical versus surrogate or intermediate endpoints. These outcomes must be presented correctly. For example, it is appropriate that effect sizes are accompanied by confidence intervals. Please rate how far the paper achieves this – thoroughgoingly (2), partially (1), or hardly at all (0). Unlike item 5, which relates to the use of evidence and of types of evidence in the manuscript's arguments, this item is concerned with the selection and presentation of concrete outcome data.

Fig. 2 SANRA—explanations and instructions document

Author guidelines

General standards

Article type

Frontiers requires authors to select the appropriate article type for their manuscript and to comply with the article type descriptions defined in the journal's 'Article types' page, which can be seen from the 'For authors' menu on every Frontiers journal page. Please pay close attention to the word count limits.

Templates

If working with Word please use our <u>Word templates</u>. If you wish to submit your article as LaTeX, we recommend our <u>LaTeX templates</u>. For LaTeX files, please ensure all relevant manuscript files are uploaded: .tex file, PDF, and .bib file (if the bibliography is not already included in the .tex file).

During the <u>interactive review</u>, authors are encouraged to upload versions using track changes. Editors and reviewers can only download the PDF file of the submitted manuscript.

Manuscript length

Frontiers encourages the authors to closely follow the article word count lengths given in the 'Article types' page of the journals. The manuscript length includes only the main body of the text, footnotes, and all citations within it, and excludes the abstract, section titles, figure and table captions, funding statement, acknowledgments, and references in the bibliography. Please indicate the number of words and the number of figures and tables included in your manuscript on the first page.

Language editing

Frontiers requires manuscripts submitted to meet international English language standards to be considered for publication.

For authors who would like their manuscript to receive language editing or proofreading to improve the clarity of the manuscript and help highlight their research, Frontiers recommends the language-editing services provided by the following external partners. Note that sending your manuscript for language editing does not imply or guarantee that it will be accepted for publication by a Frontiers journal. Editorial decisions on the scientific content of a manuscript are independent of whether it has received language editing or proofreading by these partner services or other services.

Editage Frontiers is pleased to recommend the language-editing service provided by our external partner Editage to authors who believe their manuscripts would benefit from professional editing. These services may be particularly useful for researchers for whom English is not the primary language. They can help to improve the grammar, syntax, and flow of your manuscript prior to submission. Frontiers authors will receive a 10% discount by visiting the following link: <u>editage.com/frontiers</u>.

The Charlesworth Group Frontiers recommends the Charlesworth Group's author services, who has a long-standing track record in language editing and proofreading. This is a third-party service for which Frontiers authors will receive a 10% discount by visiting the following link: <u>www.cwauthors.com/frontiers</u>.

Frontiers推荐您使用在英语语言编辑和校对领域具有悠久历史和良好口碑的查尔斯沃思作者服务。此项服务由第三方为您提供,Frontiers中国作者通过此链接提 交稿件时可获得10%的特别优惠:www.cwauthors.com.cn/frontiers

Language style

The default language style at Frontiers is American English. If you prefer your article to be formatted in British English, please specify this on the first page of your manuscript. For any questions regarding style, Frontiers recommends authors to consult the <u>Chicago Manual of Style</u>.

Search engine optimization (SEO)

There are a few simple ways to maximize your article's discoverability. Follow the steps below to improve the search results of your article:

- include a few of your article's keywords in the title of the article
- do not use long article titles
- pick 5-8 keywords using a mix of generic and more specific terms on the article subject(s)
- use the maximum amount of keywords in the first two sentences of the abstract
- use some of the keywords in level 1 headings.

CrossMark policy

<u>CrossMark</u> is a multi-publisher initiative to provide a standard way for readers to locate the current version of a piece of content. By applying the CrossMark logo Frontiers is committed to maintaining the content it publishes and to alerting readers to changes if and when they occur. Clicking on the CrossMark logo will tell you the current status of a document and may also give you additional publication record information about the document.

Title

The title should be concise, omitting terms that are implicit and, where possible, be a statement of the main result or conclusion presented in the manuscript. Abbreviations should be avoided within the title.

Witty or creative titles are welcome, but only if relevant and within measure. Consider if a title meant to be thought-provoking might be misinterpreted as offensive or alarming. In extreme cases, the editorial office may veto a title and propose an alternative. Authors should avoid:

- titles that are a mere question without giving the answer
- unambitious titles, for example starting with 'Towards,' 'A description of,' 'A characterization of' or 'Preliminary study on'
- vague titles, for example starting with 'Role of', 'Link between', or 'Effect of' that do not specify the role, link, or effect
- including terms that are out of place, for example the taxonomic affiliation apart from species name.

For Corrigenda, General Commentaries, and Editorials, the title of your manuscript should have the following format:

- 'Corrigendum: Title of Original Article'
- General Commentaries: 'Commentary: Title of Original Article'
 'Response: Commentary: Title of Original Article'
- 'Editorial: Title of Research Topic'

The running title should be a maximum of five words in length.

Authors and affiliations

All names are listed together and separated by commas. Provide exact and correct author names as these will be indexed in official archives. Affiliations should be keyed to the author's name with superscript numbers and be listed as follows:

• Laboratory, Institute, Department, Organization, City, State abbreviation (only for United States, Canada, and Australia), and Country (without detailed address information such as city zip codes or street names). Example: Max Maximus1 1 Department of Excellence, International University of Science, New York, NY, United States.

Correspondence

The corresponding author(s) should be marked with an asterisk in the author list. Provide the exact contact email address of the corresponding author(s) in a separate section. Example: Max Maximus* maximus@iuscience.edu If any authors wish to include a change of address, list the present address(es) below the correspondence details using a unique superscript symbol keyed to the author(s) in the author list.

Equal contributions

The authors who have contributed equally should be marked with a symbol (†) in the author list of the doc/latex and pdf files of the manuscript uploaded at submission.

Please use the appropriate standard statement(s) to indicate equal contributions:

- **Equal contribution:** These authors contributed equally to this work
- First authorship: These authors share first authorship
- Senior authorship: These authors share senior authorship
- Last authorship: These authors share last authorship
- Equal contribution and first authorship: These authors contributed equally to this work and share first authorship
- Equal contribution and senior authorship: These authors contributed equally to this work and share senior authorship
- Equal contribution and last authorship: These authors contributed equally to this work and share last authorship

Example: Max Maximus 1⁺, John Smith2⁺ and Barbara Smith1 ⁺These authors contributed equally to this work and share first authorship

Consortium/group and collaborative authors

Consortium/group authorship should be listed in the manuscript with the other author(s).

In cases where authorship is retained by the consortium/group, the consortium/group should be listed as an author separated by a comma or 'and'. The consortium/group name will appear in the author list, in the citation, and in the copyright. If provided, the consortium/group members will be listed in a separate section at the end of the article.

For the collaborators of the consortium/group to be indexed in PubMed, they do not have to be inserted in the Frontiers submission system individually. However, in the manuscript itself, provide a section with the name of the consortium/group as the heading followed by the list of collaborators, so they can be tagged accordingly and indexed properly.

Example: John Smith, Barbara Smith and The Collaborative Working Group. In cases where work is presented by the author(s) on behalf of a consortium/group, it should be included in the author list separated with the wording 'for' or 'on behalf of.' The consortium/group will not retain authorship and will only appear in the author list.

Example: John Smith and Barbara Smith on behalf of The Collaborative Working Group.

Abstract

As a primary goal, the abstract should make the general significance and conceptual advance of the work clearly accessible to a broad readership. The abstract should be no longer than a single paragraph and should be structured, for example, according to the IMRAD format. For the specific structure of the abstract, authors should follow the requirements of the article type or journal to which they're submitting. Minimize the use of abbreviations and do not cite references, figures or tables. For clinical trial articles, please include the unique identifier and the URL of the publicly-accessible website on which the trial is registered.

Keywords

All article types require a minimum of five and a maximum of eight keywords.

Text

The entire document should be single-spaced and must contain page and line numbers in order to facilitate the review process. The manuscript should be written using either Word or LaTeX. See above for templates.

Nomenclature

The use of abbreviations should be kept to a minimum. Non-standard abbreviations should be avoided unless they appear at least four times, and must be defined upon first use in the main text. Consider also giving a list of non-standard abbreviations at the end, immediately before the acknowledgments.

Equations should be inserted in editable format from the equation editor.

Italicize gene symbols and use the approved gene nomenclature where it is available. For human genes, please refer to the HUGO Gene Nomenclature Committee (<u>HGNC</u>). New symbols for human genes should be submitted to the HGNC <u>here</u>. Common alternative gene aliases may also be reported, but should not be used alone in place of the HGNC symbol. Nomenclature committees for other species are listed <u>here</u>. Protein products are not italicized.

We encourage the use of Standard International Units in all manuscripts.

Chemical compounds and biomolecules should be referred to using systematic nomenclature, preferably using the recommendations by the International Union of Pure and Applied Chemistry (IUPAC).

Astronomical objects should be referred to using the nomenclature given by the International Astronomical Union (IAU) provided <u>here</u>.

Life Science Identifiers (LSIDs) for ZOOBANK registered names or nomenclatural acts should be listed in the manuscript before the keywords. An LSID is represented as a uniform resource name (URN) with the following format: urn:lsid:<Authority>:<Namespace>:<ObjectID>[:<Version>]

For more information on LSIDs please see the 'Code' section of our <u>polices and</u> <u>publication ethics</u>.

Sections

The manuscript is organized by headings and subheadings. The section headings should be those appropriate for your field and the research itself. You may insert up to 5 heading levels into your manuscript (i.e.,: 3.2.2.1.2 Heading Title).

For Original Research articles, it is recommended to organize your manuscript in the following sections or their equivalents for your field.

Introduction Succinct, with no subheadings.

Materials and methods This section may be divided by subheadings and should contain sufficient detail so that when read in conjunction with cited references, all procedures can be repeated. For experiments reporting results on animal or human subject research, an ethics approval statement should be included in this section (for further information, see the 'Bioethics' section of our <u>polices and publication ethics</u>.)

Results This section may be divided by subheadings. Footnotes should not be used and must be transferred to the main text.

Discussion This section may be divided by subheadings. Discussions should cover the key findings of the study: discuss any prior research related to the

subject to place the novelty of the discovery in the appropriate context, discuss the potential shortcomings and limitations on their interpretations, discuss their integration into the current understanding of the problem and how this advances the current views, speculate on the future direction of the research, and freely postulate theories that could be tested in the future.

For further information, please check the descriptions defined in the journal's 'Article types' page, in the 'For authors' menu on every journal page.

Acknowledgments

This is a short text to acknowledge the contributions of specific colleagues, institutions, or agencies that aided the efforts of the authors. Should the content of the manuscript have previously appeared online, such as in a thesis or preprint, this should be mentioned here, in addition to listing the source within the reference list.

Contribution to the field statement

When you submit your manuscript, you will be required to briefly summarize in 200 words your manuscript's contribution to, and position in, the existing literature in your field. This should be written avoiding any technical language or non-standard acronyms. The aim should be to convey the meaning and importance of this research to a non-expert. While Frontiers evaluates articles using objective criteria, rather than impact or novelty, your statement should frame the question(s) you have addressed in your work in the context of the current body of knowledge, providing evidence that the findings – whether positive or negative – contribute to progress in your research discipline. This will help the chief editors to determine whether your manuscript fits within the scope of a specialty as defined in its mission statement; a detailed statement will also facilitate the identification of the editors and reviewers most appropriate to evaluate your work, ultimately expediting your manuscript's initial consideration.

Example statement on: Markram K and Markram H (2010) The Intense World Theory – a unifying theory of the neurobiology of autism. Front. Hum. Neurosci. 4:224. doi: 10.3389/fnhum.2010.00224

Autism spectrum disorders are a group of neurodevelopmental disorders that affect up to 1 in 100 individuals. People with autism display an array of symptoms encompassing emotional processing, sociability, perception and memory, and present as uniquely as the individual. No theory has suggested a single underlying neuropathology to account for these diverse symptoms. The Intense World Theory, proposed here, describes a unifying pathology producing the wide spectrum of manifestations observed in autists. This theory focuses on the neocortex, fundamental for higher cognitive functions, and the limbic system, key for processing emotions and social signals. Drawing on discoveries in animal models and neuroimaging studies in individuals with autism, we propose how a combination of genetics, toxin exposure and/or environmental stress could produce hyper-reactivity and hyper-plasticity in the microcircuits involved with perception, attention, memory and emotionality. These hyperfunctioning circuits will eventually come to dominate their neighbors, leading to hyper-sensitivity to incoming stimuli, over-specialization in tasks and a hyperpreference syndrome. We make the case that this theory of enhanced brain function in autism explains many of the varied past results and resolves conflicting findings and views and makes some testable experimental predictions.

Figure and table guidelines

CC-BY license

All figures, tables, and images will be published under a Creative Commons <u>CC-BY license</u>, and permission must be obtained for use of copyrighted material from other sources (including republished/adapted/modified/partial figures and images from the internet). It is the responsibility of the authors to acquire the licenses, follow any citation instructions requested by third-party rights holders, and cover any supplementary charges.

For additional information, please see the 'Image manipulation' section of our polices and publication ethics.

Figure requirements and style guidelines

Frontiers requires figures to be submitted individually, in the same order as they are referred to in the manuscript; the figures will then be automatically embedded at the end of the submitted manuscript. Kindly ensure that each figure is mentioned in the text and in numerical order.

For figures with more than one panel, panels should be clearly indicated using labels (A), (B), (C), (D), etc. However, do not embed the part labels over any part of the image, these labels will be replaced during typesetting according to Frontiers' journal style. For graphs, there must be a self-explanatory label (including units) along each axis.

For LaTeX files, figures should be included in the provided PDF. In case of acceptance, our production office might require high-resolution files of the figures included in the manuscript in EPS, JPEG or TIF/TIFF format.

To upload more than one figure at a time, save the figures (labeled in order of appearance in the manuscript) in a zip file and upload them as 'Supplementary Material Presentation.'

Please note that figures not in accordance with the guidelines will cause substantial delay during the production process.

Captions

Captions should be preceded by the appropriate label, for example 'Figure 1.' Figure captions should be placed at the end of the manuscript. Figure panels are referred to by bold capital letters in brackets: (A), (B), (C), (D), etc.

Image size and resolution requirements

Figures should be prepared with the PDF layout in mind. Individual figures should not be longer than one page and with a width that corresponds to 1 column (85 mm) or 2 columns (180 mm).

All images must have a resolution of 300 dpi at final size. Check the resolution of your figure by enlarging it to 150%. If the image appears blurry, jagged, or has a stair-stepped effect, the resolution is too low.

The text should be legible and of high quality. The smallest visible text should be no less than eight points in height when viewed at actual size.

Solid lines should not be broken up. Any lines in the graphic should be no smaller than two points wide.

Please note that saving a figure directly as an image file (JPEG, TIF) can greatly affect the resolution of your image. To avoid this, one option is to export the file as PDF, then convert into TIFF or EPS using a graphics software.

Format and color image mode

The following formats are accepted: TIF/TIFF (.tif/.tiff), JPEG (.jpg), and EPS (.eps) (upon acceptance). Images must be submitted in the color mode RGB.

Chemical structures

Chemical structures should be prepared using ChemDraw or a similar program. If working with ChemDraw please use our <u>ChemDraw template</u>. If working with another program please follow the guidelines below.

- Drawing settings: chain angle, 120° bond spacing, 18% width; fixed length, 14.4 pt; bold width, 2.0 pt; line width, 0.6 pt; margin width, 1.6 pt; hash spacing, 2.5 pt. Scale 100% Atom Label settings: font, Arial; size, 8 pt
- Assign all chemical compounds a bold, Arabic numeral in the order in which the compounds are presented in the manuscript text.

Table requirements and style guidelines

Tables should be inserted at the end of the manuscript in an editable format. If you use a word processor, build your table in Word. If you use a LaTeX processor, build your table in LaTeX. An empty line should be left before and after the table.

Table captions must be placed immediately before the table. Captions should be preceded by the appropriate label, for example 'Table 1.' Please use only a single paragraph for the caption.

Kindly ensure that each table is mentioned in the text and in numerical order.

Please note that large tables covering several pages cannot be included in the final PDF for formatting reasons. These tables will be published as supplementary material.

Tables which are not according to the above guidelines will cause substantial delay during the production process.

Accessibility

Frontiers encourages authors to make the figures and visual elements of their articles accessible for the visually impaired. An effective use of color can help people with low visual acuity, or color blindness, understand all the content of an article.

These guidelines are easy to implement and are in accordance with the W3C Web Content Accessibility Guidelines (WCAG 2.1), the standard for web accessibility best practices.

Ensure sufficient contrast between text and its background People who have low visual acuity or color blindness could find it difficult to read text with low contrast background color. Try using colors that provide maximum contrast.

WC3 recommends the following contrast ratio levels:

- Level AA, contrast ratio of at least 4.5:1
- Level AAA, contrast ratio of at least 7:1

You can verify the contrast ratio of your palette with these online ratio checkers:

- <u>WebAIM</u>
- Color Safe

Avoid using red or green indicators More than 99% of color-blind people have a red-green color vision deficiency.

Avoid using only color to communicate information Elements with complex information like charts and graphs can be hard to read when only color is used to distinguish the data. Try to use other visual aspects to communicate information, such as shape, labels, and size. Incorporating patterns into the shape fills also make differences clearer; for an example please see below:

Supplementary material

Data that are not of primary importance to the text, or which cannot be included in the article because they are too large or the current format does not permit it (such as videos, raw data traces, PowerPoint presentations, etc.), can be uploaded as supplementary material during the submission procedure and will be displayed along with the published article. All supplementary files are deposited to Figshare for permanent storage and receive a DOI.

Supplementary material is not typeset, so please ensure that all information is clearly presented without tracked changes/highlighted text/line numbers, and the appropriate caption is included in the file. To avoid discrepancies between the published article and the supplementary material, please do not add the title, author list, affiliations or correspondence in the supplementary files.

The supplementary material can be uploaded as:

- data sheet (Word, Excel, CSV, CDX, FASTA, PDF or Zip files)
- presentation (PowerPoint, PDF or Zip files)
- image (CDX, EPS, JPEG, PDF, PNG or TIF/TIFF),
- table (Word, Excel, CSV or PDF)
- audio (MP3, WAV or WMA)
- video (AVI, DIVX, FLV, MOV, MP4, MPEG, MPG or WMV).

Technical requirements for supplementary images:

- 300 DPIs
- RGB color mode.

For supplementary material templates (LaTeX and Word), see our <u>supplementary material templates</u>.

References

Frontiers' journals use one of two reference styles, either Harvard (author-date) or Vancouver (numbered). Please check our <u>help center</u> to find the correct style for the journal to which you are submitting.

- All citations in the text, figures or tables must be in the reference list and vice-versa
- The names of the first six authors followed by et al. and the DOI (when available) should be provided
- Given names of authors should be abbreviated to initials (e.g., Smith, J., Lewis, C.S., etc.)
- The reference list should only include articles that are published or accepted
- Unpublished data, submitted manuscripts, or personal communications should be cited within the text only, for article types that allow such inclusions

- For accepted but unpublished works use 'in press' instead of page numbers
- Data sets that have been deposited to an online repository should be included in the reference list. Include the version and unique identifier when available
- Personal communications should be documented by a letter of permission
- Website URLs should be included as footnotes
- Any inclusion of verbatim text must be contained in quotation marks and clearly reference the original source
- Preprints can be cited as long as a DOI or archive URL is available, and the citation clearly mentions that the contribution is a preprint. If a peer-reviewed journal publication for the same preprint exists, the official journal publication is the preferred source. See the preprints section for each reference style below for more information.

Harvard reference style (author-date)

Many Frontiers journals use the Harvard referencing system; to find the correct reference style and resources for the journal you are submitting to, please visit our <u>help center</u>. Reference examples are found below, for more examples of citing other documents and general questions regarding the Harvard reference style, please refer to the <u>Chicago Manual of Style</u>.

In-text citations

- For works by a single author, include the surname, followed by the year
- For works by two authors, include both surnames, followed by the year
- For works by more than two authors, include only the surname of the first author followed by et al., followed by the year
- For humanities and social sciences articles, include the page numbers.

Reference examples

Article in a print journal Sondheimer, N., and Lindquist, S. (2000). Rnq1: an epigenetic modifier of protein function in yeast. Mol. Cell. 5, 163-172.

Article in an online journal Tahimic, C.G.T., Wang, Y., Bikle, D.D. (2013). Anabolic effects of IGF-1 signaling on the skeleton. Front. Endocrinol. 4:6. doi: 10.3389/fendo.2013.00006

Article or chapter in a book Sorenson, P. W., and Caprio, J. C. (1998). "Chemoreception," in The Physiology of Fishes, ed. D. H. Evans (Boca Raton, FL: CRC Press), 375-405. **Book** Cowan, W. M., Jessell, T. M., and Zipursky, S. L. (1997). Molecular and Cellular Approaches to Neural Development. New York: Oxford University Press.

Abstract Hendricks, J., Applebaum, R., and Kunkel, S. (2010). A world apart? Bridging the gap between theory and applied social gerontology. Gerontologist 50, 284-293. Abstract retrieved from Abstracts in Social Gerontology database. (Accession No. 50360869)

Website World Health Organization. (2018). E. coli. https://www.who.int/news-room/fact-sheets/detail/e-coli [Accessed March 15, 2018].

Patent Marshall, S. P. (2000). Method and apparatus for eye tracking and monitoring pupil dilation to evaluate cognitive activity. U.S. Patent No 6,090,051. Washington, DC: U.S. Patent and Trademark Office.

Data Perdiguero P, Venturas M, Cervera MT, Gil L, Collada C. Data from: Massive sequencing of Ulms minor's transcriptome provides new molecular tools for a genus under the constant threat of Dutch elm disease. Dryad Digital Repository. (2015) http://dx.doi.org/10.5061/dryad.ps837

Theses and dissertations Smith, J. (2008) Post-structuralist discourse relative to phenomological pursuits in the deconstructivist arena. [dissertation/master's thesis]. [Chicago (IL)]: University of Chicago

Preprint Smith, J. (2008). Title of the document. Preprint repository name [Preprint]. Available at: https://persistent-url (Accessed March 15, 2018).

Vancouver reference style (numbered)

Many Frontiers journals use the numbered referencing system; to find the correct reference style and resources for the journal you are submitting to, please visit our <u>help center</u>.

Reference examples are found below, for more examples of citing other documents and general questions regarding the Vancouver reference style, please refer to <u>Citing Medicine</u>.

In-text citations

- Please apply the Vancouver system for in-text citations
- In-text citations should be numbered consecutively in order of appearance in the text – identified by Arabic numerals in the parenthesis (use square brackets for physics and mathematics articles).

Reference examples

Article in a print journal Sondheimer N, Lindquist S. Rnq1: an epigenetic modifier of protein function in yeast. Mol Cell (2000) 5:163-72.

Article in an online journal Tahimic CGT, Wang Y, Bikle DD. Anabolic effects of IGF-1 signaling on the skeleton. Front Endocrinol (2013) 4:6. doi: 10.3389/fendo.2013.00006

Article or chapter in a book Sorenson PW, Caprio JC. "Chemoreception". In: Evans DH, editor. The Physiology of Fishes. Boca Raton, FL: CRC Press (1998). p. 375-405.

Book Cowan WM, Jessell TM, Zipursky SL. Molecular and Cellular Approaches to Neural Development. New York: Oxford University Press (1997). 345 p.

Abstract Christensen S, Oppacher F. An analysis of Koza's computational effort statistic for genetic programming. In: Foster JA, editor. Genetic Programming. EuroGP 2002: Proceedings of the 5th European Conference on Genetic Programming; 2002 Apr 3–5; Kinsdale, Ireland. Berlin: Springer (2002). p. 182–91.

Website World Health Organization. E. coli (2018). https://www.who.int/news-room/fact-sheets/detail/e-coli [Accessed March 15, 2018].

Patent Pagedas AC, inventor; Ancel Surgical R&D Inc., assignee. Flexible Endoscopic Grasping and Cutting Device and Positioning Tool Assembly. United States patent US 20020103498 (2002).

Data Perdiguero P, Venturas M, Cervera MT, Gil L, Collada C. Data from: Massive sequencing of Ulms minor's transcriptome provides new molecular tools for a genus under the constant threat of Dutch elm disease. Dryad Digital Repository. (2015) http://dx.doi.org/10.5061/dryad.ps837

Theses and dissertations

Smith, J. (2008) Post-structuralist discourse relative to phenomological pursuits in the deconstructivist arena. [dissertation/master's thesis]. [Chicago (IL)]: University of Chicago

Preprint Smith, J. Title of the document. Preprint repository name [Preprint] (2008). Available at: https://persistent-url (Accessed March 15, 2018).