Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > Direct numerical simulations of turbulent viscoelastic jets
Publication

Direct numerical simulations of turbulent viscoelastic jets

Title
Direct numerical simulations of turbulent viscoelastic jets
Type
Article in International Scientific Journal
Year
2020
Authors
Mateus C. Guimarães
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Nuno Pimentel
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
F. T. Pinho
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page Without ORCID
Carlos B. da Silva
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Journal
Vol. 899
ISSN: 0022-1120
Indexing
Other information
Authenticus ID: P-00S-GKS
Abstract (EN): Direct numerical simulations (DNS) of spatially evolving turbulent planar jets of viscoelastic fluids described by the FENE-P model, such as those consisting of a Newtonian fluid solvent carrying long chain polymer molecules, are carried out in order to develop a theory for the far field of turbulent jets of viscoelastic fluids. New evolution relations for the jet shear-layer thickness , centreline velocity and maximum polymer stresses are derived and validated by the new DNS data, yielding , , and , respectively, where is the coordinate in the streamwise direction. It is shown that, compared with a classical (Newtonian) turbulent jet, the effect of the polymers is to reduce the spreading rate, centreline velocity decay, Reynolds stresses and viscous dissipation rate. The self-preserving character of the flow is analysed and it is shown that profiles of mean velocity, Reynolds stresses and polymer stresses are self-similar provided the proper scales are used in the normalisation of these quantities. A fundamental difference from the Newtonian jet in this regard is the necessity for two, instead of only one, different velocity and length scales to properly characterise the evolution of the turbulent flow. These extra velocity and length scales are directly related to a time scale associated with the characteristic fading memory property of viscoelastic fluids.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 37
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

Turbulent planar wakes of viscoelastic fluids analysed by direct numerical simulations (2022)
Article in International Scientific Journal
M. C. Guimarães; F. T. Pinho; C. B. da Silva
Turbulent entrainment in viscoelastic fluids (2022)
Article in International Scientific Journal
H. Abreu; F. T. Pinho; C. B. da Silva
Turbulence dynamics near a turbulent/non-turbulent interface (2012)
Article in International Scientific Journal
Teixeira, MAC; da Silva, CB
The effect of viscoelasticity on the turbulent kinetic energy cascade (2014)
Article in International Scientific Journal
P. C. Valente; C. B. da Silva; F. T. Pinho
Soliton generation by internal tidal beams impinging on a pycnocline: laboratory experiments (2012)
Article in International Scientific Journal
Matthieu J Mercier; Manikandan Mathur; Louis Gostiaux; Theo Gerkema; Jorge M Magalhaes; Jose C B Da Silva; Thierry Dauxois

See all (36)

Recommend this page Top
Copyright 1996-2024 © Faculdade de Economia da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z  I Guest Book
Page created on: 2024-10-18 at 19:59:45 | Acceptable Use Policy | Data Protection Policy | Complaint Portal
SAMA2