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Introduction

German Breast Cancer study data set∗

686 patients with primary node
positive breast cancer

299 patients developed recurrence
and 171 died

Patients were recruited between July
1984 and December 1989 and 16
variables

Times (in days) to recurrence
(rectime) Censoring indicator
(censrec)

∗ Sauerbrei W. and Royston P. (1999).
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Introduction

Examples of application

German Breast Cancer study data set.

Patients were followed from the date of breast cancer diagnosis
until censoring or death from breast cancer. Of the total of 686
women, 171 died. Of those that died, 21 had a recorded
survival time equal to the recurrence time.

Figure: Illness-death model for breast cancer data.
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Introduction

Examples of application

The Colon Cancer study data set∗.

In this study, 929 patients were followed from the date of cancer
diagnosis until censoring or death.

A total of 468 patients developed a recurrence and among
these 414 died; 38 patients died without recurrence. The rest of
the patients (423) remained alive and disease-free up to the
end of the follow-up.

Figure: Illness-death model for colon cancer data.

∗ Moertel (1990).
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Introduction

Examples of application

COVID-19 data set∗.

A registry of 3481 COVID-19 patients diagnosed at Centro
Hospitalar Universitario de Sao Joao (CHUSJ) between March
01, 2020 and January 01, 2021 Symptoms of the disease were
reported at admission, and its improvement was investigated
using phone interviews.

In this study, the aim was to explore the use of survival analysis
techniques for the statistical analysis of the time to the end of
COVID-19 symptoms.

∗ Leandro et al (2023).
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Introduction

Examples of application

HIV data set.

A registry of data from the Lisbon Cohort of Men Who Have
Sex With Men (MSM).

In this study, the aim was to study ‘Time to infection’.

Wound healing and healing process data in patients with
diabetic foot ulcers (DFU).

Patients with a chronic DFU were evaluated at fixed time points.

In these studies, the times of the events of interest (time to
favorable healing process) are known only to have occurred
within a time interval from the last examination without the
event to the first examination after the event has occurred.
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Introduction

Survival Analysis

Mortality Model

Figure: Mortality model for survival analysis.

Let T denote the survival times C a univariate right-censoring
which we assume to be independent of T .

Because of censoring we only observe (T̃ ,∆) where
T̃ = min(T ,C), ∆ = I(T ≤ C).
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Introduction

Kaplan-Meier estimator

S(T > y) may be consistently estimated by the Kaplan-Meier estimator
(Kaplan and Meier, 1958):

̂S(t) =∏
ti≤t
(1 −

di

ni
) ≡

n

∏

i=1
(1 −

∆[i]
n − i + 1

)

I(T̃(i)≤t)

0 10 20 30 40 50 60

0
.2

0
.4

0
.6

0
.8

1
.0

Time

S
(t

)

Kaplan-Meier survival curve

time:
1, 5, 9, 11, 11, 13, 17, 23, 29, 41, 56, 58
event:
1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0
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Introduction

Kaplan-Meier estimator

Kaplan-Meier weights

Ŝ(t) = 1 −
n

∑
i=1

Wi I(T̃(i) ≤ t) ≡ 1 − F̂(t),

where Wi is the Kaplan-Meier weight attached to T̃(i):

Wi =
∆[i]

n − i + 1

i−1

∏
j=1
[1 −

∆[j]
n − j + 1

]

A presmoothed version of the Kaplan-Meier estimator:

S̃(t) = 1 −
n

∑
i=1

PWi I(T̃(i) ≤ t) ≡ 1 − F̃(t),

where PWi are the presmoothed Kaplan-Meier weights:

PWi =
m(T̃(i))
n − i + 1

i−1

∏
j=1

⎡⎢⎢⎢⎢⎣
1 −

m(T̃(i))
n − j + 1

⎤⎥⎥⎥⎥⎦
.
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Kaplan-Meier estimator
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Figure: Estimated survival curve for favorable healing process.
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Introduction

Kaplan-Meier estimator

Figure: Estimated survival curve for COVID-19 study.

lmach
Carimbo
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Introduction

Interval censoring

In many applications, the data may be interval-censored, i.e. the random
variable of interest is known only to lie in an interval, instead of being
observed exactly.

An analog Product-Limit estimator of the survival function for
interval-censored data was introduced by Turnbull (1976).

left right treat midpoint cens
4 6 1 5 1
2 4 1 3 1
6 NA 1 6 0
4 6 1 5 1
2 NA 1 2 0
6 8 0 7 1
6 8 0 7 1
6 NA 0 6 0
2 6 0 4 1
2 8 0 5 1

Table: Lines of a possible dataset.
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Introduction

Interval censoring

1 library(survival)
2

3 left <- c(4,2, 6,4, 2,6,6, 6,2,2)
4 right <- c(6,4,NA,6,NA,8,8,NA,6,8)
5

6 fmla <- Surv(left, right, type="interval2")
7 fmla
8

9 fit <- survfit(fmla ~ 1)
10 summary(fit)
11 plot(fit)

1 midpoint <- c(5, 3, 6, 5, 2, 7, 7, 6, 4, 5)
2 cens <- c(1, 1, 0, 1, 0, 1, 1, 0, 1, 1)
3 fit2 <- survfit(Surv(midpoint, cens)~1)
4 summary(fit2)
5 plot(fit)
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Introduction

Interval censoring

1 library(survival)
2

3 left <- c(4,2, 6,4, 2,6,6, 6,4,6)
4 right <- c(6,4,NA,6,NA,8,8,NA,6,8)
5

6 fmla <- Surv(left, right, type="interval2")
7 fmla
8

9 fit <- survfit(fmla ~ 1)
10 summary(fit)
11 plot(fit)

1 midpoint <- c(5, 3, 6, 5, 2, 7, 7, 6, 5, 7)
2 cens <- c(1, 1, 0, 1, 0, 1, 1, 0, 1, 1)
3 fit2 <- survfit(Surv(midpoint, cens)~1)
4 summary(fit2)
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Introduction

Interval censoring

1 treat <- c(1,1,1,1,1,0,0,0,0,0)
2 fit <- survfit(fmla ~ treat)
3 summary(fit)
4 plot(fit, col=1:2)
5

6 library(interval)
7 test <- ictest(Surv(left, right, type = "interval2") ~

treat, scores = "logrank1")
8 test
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Introduction

Interval censoring

1 library(icenReg)
2

3 df <- data.frame(cbind(left, right, treat))
4

5 logist_ph_fit <- ic_par(Surv(left, right, type = "
interval2") ~ treat, data=df, dist = "loglogistic")

6

7 summary(logist_ph_fit)
8

9 fit_ph <- ic_sp(Surv(left, right, type = "interval2") ~
treat, model = "ph", bs_samples = 100, data = df)

10 summary(fit_ph)
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Introduction

Interval censoring

Figure: Estimated survival curve using Turnbull estimator.
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Introduction

Interval censoring

Turnbull weights

The search for Turnbull weights requires the definition of a set
of intervals: I = {(u1,v1], . . . , (um,vm]}.
The intervals are obtained from the set of all left and right
interval endpoints in such a way that uj is a left endpoint, vj is a
right endpoint and there is no other left and right endpoint
between them.

1 left <- c(4,2, 6,4, 2,6,6, 6,4,6)
2 right <- c(6,4,NA,6,NA,8,8,NA,6,8)
3

4 fmla <- Surv(left, right, type="interval2")
5 fmla
6

7 > fmla
8 [1] [4, 6] [2, 4] 6+ [4, 6] 2+ [6, 8]
9 [7] [6, 8] 6+ [4, 6] [6, 8]

Turnbull intervals: (2,4], (4,6], (6,8], (8,∞)
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Introduction

Interval censoring

Turnbull weights

The problem then reduces to estimating
pj = P(uj < T ≤ vj) = S(uj) −S(vj), j = 1, . . . ,m that are subject
to the constraints pj ≥ 0 and ∑m

j=1 pj = 1. The likelihood can be
written as

L(p1, . . . ,pm) =
n
∏
i=1

⎛
⎝

m
∑
j=1

αijpj
⎞
⎠

where αij = I{(uj ,vj] ⊆ (Li ,Ri]}. Turnbull (1976) developed a
procedure that involves an iterative process for which the r th
iteration of p, denoted by p(r), is given by

p(r)j = 1
n

n
∑
i=1

αijp
(r−1)
j

∑m
k=1 αikp(r−1)

k
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Introduction

Interval censoring

Then, the survival function can be estimated as

Ŝ(t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 t ≤ u1
1 − p̂1 − . . . − p̂j vj < t < uj+1
0 t > vm
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Introduction

Interval censoring

Available R packages that deal with interval censoring:
survival: provides extensive support for survival analysis,
including interval censoring;
interval: functions to fit nonparametric survival curves, plot
them, and perform logrank or Wilcoxon type tests;
icenReg: parametric and semi-parametric regression;
intccr: Semiparametric Competing Risks Regression under
Interval Censoring Semiparametric regression models.
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Introduction

Interval censoring

Independent censoring

Independent censoring is a key assumption: censoring process
is unrelated to the underlying event times.

HIV survival study: patients are more likely to undergo an HIV
test if they had a recent risk event.

The censoring process (whether a patient is censored or not) is
not independent of the event times (time to HIV infection) and is
influenced by specific patient behaviors or characteristics.
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Introduction

Interval censoring

Independent censoring

Possible strategies: Inverse Probability of Censoring Weighting
(IPCW) is a technique that assigns different weights to
censored observations based on the inverse of their estimated
probabilities of being censored. This method adjusts for the
dependent censoring by re-weighting the observations, giving
more weight to censored observations that are less likely to be
censored based on observed covariates.
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Multi-state models

What is a multi-state model

... is a model for a stochastic process (Y (t), t ∈ T ) with finite
state space.
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Multi-state models

Most common goals

Important goals in multi-state modeling:
Multi-state regression
A common simplifying strategy is to decouple the whole
process into various survival models, by fitting separate
intensities to all permitted using semi-parametric Cox
proportional hazard regression models, while making
appropriate adjustments to the risk set.



Challenges and Strategies for Analyzing Complex Survival Data

Multi-state models

Recurrence Death without recurrence Death with recurrence
Variable HR p-value HR p-value HR p-value
age

linear 0.9929 0.2100 1.0527 0.0276 1.0125 0.0947
nonlin - 1.6e-05 - ns - ns

size 1.0089 0.0310 1.0189 0.1664 1.0109 0.0296
nodes 1.0472 6.9e-10 1.0515 0.0758 1.0087 0.4929
prog rec 0.9980 0.0004 0.9946 0.0711 0.9967 0.0036
hormone

no 1 - 1 - 1 -
yes 0.6752 0.0037 0.8255 0.6774 0.9572 0.8138

grade
I 1 - 1 - 1 -

II 1.9604 0.0100 0.9066 0.8999 1.2151 0.7096
III 2.0780 0.0037 1.6016 0.5758 1.5932 0.3921

Table: Cox regression Markov models for all transitions. Breast
cancer data.
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Multi-state models

Most common goals (2)

Important goals in multi-state modeling:
Estimates of predictive probabilities:

Occupation Probabilities
Transition Probabilities
Cumulative Incidence Functions
Sojourn Distributions
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Multi-state models

Transition probabilities

Transition probabilities

Given two states i , j and s < t

pij(s, t) = P(X(t) = j ∣X(s) = i)

Estimating these quantities is interesting, since they allow for
long-term predictions of the process.

Markov assumption

The inference in multi-state models is traditionally performed
under the Markov assumption, which states that past and future
are independent given the present state.
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Multi-state models

Transition probabilities

Aalen and Johansen (SCAND. J. STAT. 1978) introduced a
nonparametric estimator of pij(s, t) for Markov models.
Moreira et al (EJS 2013) propose a modification of the
Aalen-Johansen estimator in the illness-death model
based on presmoothing.

dUA and Meira-Machado (Biometrics 2015) propose new
estimators based on landmarking.
Putter and Spitoni (SMMR 2016) propose a landmark
Aalen-Johansen estimator.
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Multi-state models

Transition probabilities

p11(s, t) = P(Z > t ∣ Z > s) = P(Z > t)
P(Z > s)

p12(s, t) = P(Z ≤ t ,T > t ∣ Z > s) = P(s < Z ≤ t ,T > t)
P(Z > s)

p13(s, t) = P(T ≤ t ∣ Z > s) = P(Z > s,T ≤ t)
P(Z > s)

p22(s, t) = P(T > t ∣ Z < s,T > s) = P(Z ≤ s,T > t)
P(Z ≤ s,T > s)

p23(s, t) = P(T ≤ t ∣ Z < s,T > s) = P(Z < s,s < T ≤ t)
P(Z ≤ s,T > s)
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Multi-state models

Transition probabilities

Landmark estimators

p̂LM11 (s, t) = Ŝ(s)Z (t)

p̂LM12 (s, t) = Ŝ(s)T (t) − Ŝ(s)Z (t)

p̂LM13 (s, t) = 1 − Ŝ(s)T (t)

where S(s)Z and S(s)T are the survival functions of the first
sojourn time and total time, respectively; computed from the
sample {i ∶ Z̃i > s}.

p̂LM22 (s, t) = Ŝ[s]T (t) p̂LM23 (s, t) = 1 − Ŝ[s]T (t)

where S[s]T is the survival functions of the total time computed
from the sample {i ∶ Z̃i ≤ s, T̃i > s}.
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Multi-state models

Transition probabilities

Landmark estimators

Variance estimates:
Greenwood estimator can be used for almost all transition
probabilities.
A simple bootstrap can be used to obtain variance
estimates.

A presmoothed version of the landmark estimator - PLM
(Meira-Machado 2016) can be used to reduce variability of the
estimator when:

Sample size is small.
Censoring is high.
Higher values of s.
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Multi-state models

Transition probabilities

Landmark estimators: occupation probabilities

Pj(t) = pij(0, t), j = 1,2,3.

P̂1(t) = p̂11(0, t) = ŜZ (t)

P̂2(t) = p̂12(0, t) = ŜT (t) − ŜZ (t)

P̂3(t) = p̂13(0, t) = 1 − ŜT (t)

The estimators are very simple and intuitive. They are equivalent to
Pepe’s estimator (Pepe 1991).
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Multi-state models

Including Covariate Information

Also of interest is the estimation: phj(s, t ∣X); CIFj(t ∣X); Fj(t ∣X).

Estimators based on a Cox’s model fitted marginally to
each type of transitions, with the corresponding baseline
hazard function estimated by the Breslow’s method.

Nonparametric regression estimators can be introduced
where local smoothing is done by introducing kernel
weights that are based on Nadaraya-Watson regression.

A single-index model is one effective tool to avoid the curse
of dimensionality.
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Multi-state models

Including Covariate Information

Testing the Markov Assumption

Markov assumption: future depends only on the present state
and does not depend on past history.

Why is important: (i) to determine whether the AJ or a
non-Markov approach is more appropriate; (ii) to choose best
multi-state regression approach.

How is usually checked: by including covariates in the
modelling process. This can be done by fitting a model

α23(t ;Z) = α23,0(t)exp(βZ)

where Z is the time spent in state 1. Then we need to test
H0 ∶ β = 0, against the general alternative, H1 ∶ β ≠ 0.
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Multi-state models

Including Covariate Information

Testing the Markov Assumption

More recent methods based on the comparison of the transition
probabilities were introduced:

Rodriguez-Girondo and dUA (2012, 2016): based on a local
Kendall’s tau, measuring the future-past association along time.

Titman and Putter (2000): introduce methods that were
developed by considering summaries from families of log-rank
statistics where patients are grouped by the state occupied of
the process at a particular time point.

Soutinho and Meira-Machado (2022): introduce methods based
on measuring the discrepancy of the non-Markov estimators of
the transition probabilities to the Markovian Aalen-Johansen
estimators.



Challenges and Strategies for Analyzing Complex Survival Data

Multi-state models

Extension to interval censoring

State Occupation Probabilities: assuming the illness-death
model where only the intermediate state may observe interval
censored observations. Then,

P̂1(t) = P̂(Z > t) = Ŝtb
1 (t)

P̂3(t) = P̂(T ≤ t) = 1 − Ŝkm(t)

P̂2(t) = P̂(Z ≤ t ,T > t) = 1 − P̂1(t) − P̂2(t)
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Multi-state models

Extension to interval censoring

State Occupation Probabilities: an alternative estimator for
P2(t):

P̂2(t) =
n
∑
i=1

Wi I(T̃i > t)x̂ t
i

where Wi are the Kaplan-Meier weights; and

x̂ t
i = 1 − Ŝ1(L1i ∨ t) − Ŝ1(R1i ∨ t)

Ŝ1(L1i) − Ŝ1(R1i)

where a ∨ b stands for the maximum between a and b.
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Multi-state models

Extension to interval censoring

State Occupation Probabilities:

P̂2(t) =
m
∑
j=1

pj × ŷ t
j × ât

j

where pj are the Turnbull weights related to the so-called
Turnbull intervals I = {(u1,v1], . . . , (um,vm]}; and

ŷ t
j =

Ŝ(uj ∨ t) − Ŝ(vj ∨ t)
Ŝ(uj) − Ŝ(vj)

and where

ât
j =

1
n

n
∑
i=1
{1 − Ŝ1(L1i ∨ t) − Ŝ1(R1i ∨ t)

Ŝ1(L1i) − Ŝ1(R1i)
}δij

where δij = I{(ui ,vi] ⊆ (L2i ,R2i],R1i ≤ s}
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Existing software

1 msm - time-homogeneous Markov models.
2 mstate - computes and displays the transition probabilities

for the landmark Aalen-Johansen estimator.
3 p3state.msm - enables the user to perform inference in the

illness-death model. The main feature of the package is its
ability for obtaining non-Markov estimates for the transition
probabilities.

4 TPmsm - computes and displays the transition probabilities
for several methods.

5 markovMSM - provides methods for checking the Markov
condition in multi-state survival data.

6 survidm - for inference and prediction in an illness-death
model.
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The survidm package

Features of the package

Can be used in 3-state models.
1 Can be used to:

Perform multi-state regression (Cox-based models)
Estimate the Transition Probabilities
Estimate the Cumulative Incidence Functions
Estimate the Sojourn Distributions

2 Can be estimated conditional on covariates.
3 Confidence bands are provided for all methods.
4 Numerical and graphical output is provided for all methods.
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The survidm package

Main functions in the package

survIDM - Create a survIDM object.
coxidm - Fit proportional hazards regression model in each
transition.
tprob - nonparametric estimation of transition probabilities.
CIF - nonparametric estimation of the Cumulative Incident
Functions.
sojourn - nonparametric estimation of the Sojourn time
distributions.
summary, print and plot functions.
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The survidm package

A shiny app called Survapp

Shiny Apps in Survival Analysis: Shiny apps simplify complex
data exploration, offering real-time model fitting and
visualization. With intuitive interfaces, these apps enhance
insights, streamline analysis, and foster collaborative
decision-making across diverse fields.

https://emanuel-vieira.shinyapps.io/survapp/

https://emanuel-vieira.shinyapps.io/survapp/
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Example of Application

Colon cancer data

Available as part of the R survival package.
929 patients underwent a curative surgery for colorectal
cancer.
468 developed recurrence - 414 died; 38 died without
recurrence.
States: “Alive and Disease-Free”; “Recurrence”; “Death”.
Covariates: Age (years)
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Example of Application

Colon cancer data

Some numbers ...

s State 1 ∆1 = 1 ∆ = 1 %Cen State 2 ∆ = 1 %Cen
90 894 471 417 53.36 28 28 0
180 828 405 354 57.25 77 74 3.9
365 699 276 231 66.95 152 143 5.92
730 556 134 100 82.01 162 142 12.35

1095 502 80 54 89.24 124 96 22.58
1460 473 53 34 92.81 82 47 42.68
1825 437 28 17 96.11 74 31 58.11
2190 290 9 7 97.59 51 11 78.43

Table: Number of patients (and censoring percentages) in State 1
and 2.
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Example of Application

Colon cancer data

Multi-state regression

library(survidm)
data(colonIDM)
fit.cmm <- coxidm(survIDM(time1, event1, Stime, event) ∼ age
+ sex + nodes, data = colonIDM)
summary(fit.cmm)

age - important predictor on the mortality transitions (with and
without recurrence) but not on the recurrence incidence;
sex - only revealed a significant effect on the mortality
transition after recurrence.
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Example of Application

Colon cancer data

res <- tprob(survIDM(time1, event1, Stime, event) ∼ 1, s = 365,
method = "LM", conf = TRUE, data = colonIDM)
summary(res, time=365*1:6)
plot(res)
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Figure: Estimates of the transition probabilities pij(365, t).
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Example of Application

Colon cancer data

Testing the Markov Assumption

500 1000 1500 2000 2500 3000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (days)

p2
3(

36
5,

t)

Figure: Estimates of the transition probabilities p22(365, t) for AJ and
LMAJ. Colon cancer data.
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Example of Application

Colon cancer data
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Example of Application

Colon cancer data

Table: Probability values of the local test for several fixed values of s
(measured in days). Rejection proportions for the global tests also
included. Colon cancer data.

Global
Trans. Prob. Method 90 180 365 730 1095 1460 AUC / LR Cox

p̂12(s, t) AUC(s) 0.012 0.007 0.002 0.154 0.135 0.857 0.014 0.154
p̂23(s, t) LR(s) 0.006 0.026 0.036 0.685 0.981 0.509 0.018 0.154

AUC(s) 0.003 0.004 0.003 0.155 0.118 0.714 0.013 0.154

LR - Tests based on the based on the log-rank statistics (Titman and Putter, 2000)
Global AUC test - achieved by combining the results obtained from local tests over different times (percentiles 5, 10,
20, 30 and 40 of the sojourn time in State 1).
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