Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > Micro-mechanical analysis of composite materials using Phase-Field models of brittle fracture
Publication

Micro-mechanical analysis of composite materials using Phase-Field models of brittle fracture

Title
Micro-mechanical analysis of composite materials using Phase-Field models of brittle fracture
Type
Article in International Scientific Journal
Year
2023
Authors
Macías, J
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Otero, F
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Camanho, PP
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Reinoso, J
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Journal
Vol. 102
ISSN: 0997-7538
Publisher: Elsevier
Indexing
Publicação em ISI Web of Knowledge ISI Web of Knowledge - 0 Citations
Publicação em Scopus Scopus - 0 Citations
Other information
Authenticus ID: P-00Y-T58
Abstract (EN): Failure in fiber-reinforced composites is a complex phenomenon where different damage mechanisms interact and evolve through various scales. Micro-mechanical analysis using the finite element method has become an important alternative to study such failure phenomena and their interactions, by modeling explicitly the fiber, matrix, and fiber-matrix interface. In this work, the predictive capabilities of the finite element method together with the Phase-Field (PF) method for fracture has been assessed. The study compares different PF formulations, energy splits and numerical parameters, using Representative Volume Elements (RVEs) of different sizes, fiber distributions and with different Boundary Conditions (BCs). It is found that even though good approximations can be obtained and meso-scale failure envelopes for transverse loading generated, these are highly dependent on the modeling assumptions and PF parameters. The AT2 formulation combined with Amor's energy split provides the best predictions when compared with an analytical failure surface. The best fit is found for transverse shear-dominated loading, while larger differences are found for compressive loading, whose strength predictions are strongly affected by the PF formulations and energy splits. It is demonstrated that meso-scale strength is conditioned by interface properties as interface damage is the dominant failure initiation mechanism under tensile-dominated loading. On the other hand, PF parameters have a stronger influence on compressive-dominated loading. Finally, it is shown that assuming a perfect fiber-matrix interface has a strong effect on the expected meso-scale strength, as failure is markedly delayed. Accordingly, based on the present results, especial care should be taken in properly assessing all the variables involved in the modeling methodology to draw conclusions from computational micro-mechanical analyses based on the PF approach.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 13
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

Static and free vibration analysis of cross-ply laminated plates using the Reissner-mixed variational theorem and the cell based smoothed finite element method (2017)
Article in International Scientific Journal
Pramod, ALN; Natarajan, S; Ferreira, AJM; Carrera, E; Cinefra, M
Size-dependent analysis of FG-CNTRC microplates based on modified strain gradient elasticity theory (2018)
Article in International Scientific Journal
Chien H. Thai; A. J. M. Ferreira; T. Rabczuk; H. Nguyen-Xuan
Second-order homogenisation of crystal plasticity and martensitic transformation (2023)
Article in International Scientific Journal
Lopes, IAR; de Carvalho, MV; da Silva, JAM; Coelho, RPC; F.M. Andrade Pires

See all (10)

Recommend this page Top
Copyright 1996-2024 © Faculdade de Economia da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z  I Guest Book
Page created on: 2024-09-28 at 04:18:11 | Acceptable Use Policy | Data Protection Policy | Complaint Portal
SAMA2