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1. INTRODUCTION

In isolated power systems, like the ones operaiing
large islands, electric power is usually produced b
Diesel Units and Gas Turbines, resulting in higtso
due to fuel imports and transportation. In thessesys
the production of electric energy from wind present
particular interest, especially when important wind
energy potential exists. Significant displacemeiit o
conventional fuels can therefore be obtained bygh h
wind power penetration. In this case however, it is
important to ensure that the power system operatithn
not be adversely affected by an increased conmeofio
this volatile form of energy in the system.

In general, the main problems faced by isolated
electrical power systems are related to systemrisgcu
control of frequency and management of system
generation reserve [1]. A common aspect to alleghes
problems is the requirement to ensure thaficgerft
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reserve capacity exists within the system to corsgten
for sudden loss of generation at adequate speéds, T

excursions and dynamically unstable situations.
Moreover, frequency oscillations might easily tegghe
under-frequency protection relays of the wind parks
thus causing further imbalance in the system
generation/load.

In order to guard isolated power systems agaireseth
disturbances and retain acceptable security lewsls,
line dynamic security assessment functions neebeto
provided. Such functions have been developed within
the European JOULE project CARE and have been
integrated within an advanced control system itedal
on the island of Crete in Greece [2]. In this syste
dynamic security assessment (DSA) is taken caby af
number of modules based on advanced inductive
inference and statistical methods as well as ciifi
neural networks. More specifically, Decision Treesl
Regression Trees are used for dynamic security
classification, while Kernel Regression Trees and
Neural Networks emulate the degree of security,
evaluated by predicting the expected minimum vaiie
system frequency and the maximum rate of frequency
change for each selected disturbance. In the dontro
center software, the relevant security evaluation
functions can be activated “on call” by the operato
providing dynamic security monitoring. Initial valtion

of these functions has shown that timely and quite
accurate assessment of frequency deviations, dthing
dynamic disturbances recorded, is provided.



2. THE CRETE POWER SYSTEM

The power system of the island of Crete is thedsirg
autonomous power system in Greece with the highest
rate of increase in energy and power demand
nationwide. Its conventional generation system istss
of two major power plants with several types offoid
units. There are 18 thermal generating units withtal
capacity of 524 MW installed, including 6 Steam tgni
of total capacity 112 MW, 4 Diesel Units with 50 MW

7 Gas Turbines with 227,5 MW and one Combined
Cycle plant with 134,5 MWs. In 1998 the peak load
exceeded 380 MW, while the lowest load was aboQt 10
MW. A total of 11 Wind Parks (WPs) with a nominal
capacity of more than 80 MW are being installecua
planned to be installed in the near future. ThedesW
will be located at the eastern part of the islathdt
presents the most favourable wind conditions. As a
result, in case of faults on some particular litles
majority of the wind parks might be disconnected.
Furthermore, the protections of the WTs might be
activated in case of frequency variations, decnggsi
additionally the dynamic stability of the system.
Extensive simulations on the power system modelgusi
EUROSTAG software have shown that for the most
common wind power variations, the system remains
satisfactorily stable, if sufficient spinning reseris
provided [3]. On the other hand for various short-
circuits and conventional unit outages, the system
frequency might undergo fast changes and reach low
values that can activate load shedding. In any, dase
dynamic security of the system depends criticatiythoe
amount of spinning reserve provided by the
conventional machines and the response of theidspe
governors.

3. CREATION OF LEARNING & TEST SETS

The application of Automatic Learning techniques is
based on previous knowledge about the behavioneof t
system, obtained from a large number of off-line
dynamic simulations that define a data set. Thta dat

is split into a Learning Set (LS), used to derieewsity
evaluation structures, and a Test Set (TS) used for
testing the developed structures. The data seister

a large number
characterized by a vector of pre-disturbance ststatg
variables, called attributes. These can be directly
measured (powers, voltages etc.) or indirectlyudated
quantities (wind penetration, spinning reserve)etc.

For the creation of the data set, the initial OPs a
obtained by varying randomly the load for each load
busbar, the wind power for each wind park and threlw
margin. These variables are assumed to follow norma
distributions around three operating profiles:

Low-load with a total load P=100MW.

Medium-load with a total load,P=180MW.

High-load with a total load?. =280MW.

of operating points (OPs) each |,

For each of the 11 load busbars and each of the 4
aggregate wind parks in operation, a perturbatibn o
approximately+10% is applied around each of the
above operating profiles. A dispatch algorithm
approximating actual operating practices followedhe
control system of Crete is applied next in order to
complete the pre-disturbance OPs. For a given Rad
and wind power {g, the total conventional generatiog P
given by

Pc=R —-Ry 1)
is dispatched to the units in operation, depending
their type and their nominal power. This means that
Steam Units and the Combined Cycle plant cover the

base load, while the Gas Turbines mainly supply the
peak.

For each of the OPs, a number of disturbances d&s b
simulated using EUROSTAG. Two major disturbances
have been finally selected after studying extemgitree
behavior of the network. These are:

a) outage of a major gas turbine

b) three phase short-circuit at a critical bus near th
Wind Parks.

In fact, a unit disconnection is a frequent evemd a
three-phase fault, although rare, is a severe et
can occur during stormy conditions.

For each OP, the minimum value of system frequency
and the maximum rate of frequency change are
recorded. Both of these parameters are checkedsigai
the values that activate the under-frequency retags
protect the WPs, and the OPs are then labeled as
secure/insecure.

The list of attributes characterizing each OP, udebk
namely:

« Active and reactive power of all power sources
(Pci).

e Spinning reserve of the conventional units (SR).

Wind power penetration, expressed as ratio of the
total wind power to the load of the system (WP).

e Wind margin, expressed as the ratio of the
conventional units spinning reserve to the totaldwi
power.

Active and reactive loads (P

The security criterion exploits the minimum freqogn
of the system after the disturbance, accordinght® t
following rule:
If fmin <= 49 Hzthenthe OP is insecure
elseit is secure

Using this approach 2765 acceptable OPs have been
obtained, which were divided into the LS comprising
1844 OPs and the TS comprising 921 OPs. In this way
the capability of the security structures to evidua
correctly the security of unforeseen states can be
estimated on a more objective basis.



4. DESIGN OF
STRUCTURES

4.1 Decision Trees

SECURITY EVALUATION

The decision tree methodology is a non-parametric
learning technique able to produce classifiers al@ou
given problem in order to deduce information fomwne
unobserved cases. The construction of a DT sthttea
root node with the whole LS of pre-classified OPs.
These OPs are analysed in order to select thd tewtt
splits them “optimally” into a number of most “pfieid”
subsets. For the sake of simplicity, a two-clagsitjn

is considered. The test T is defined as:

T:A <t 2

where t is the optimal threshold value of the chose
attribute A.

The selection of the optimal test is based on mixig

the additional information gained through the t8ste
selected test is applied to the LS of the noddtisliit

into two subsets, corresponding to the two sucecesso
nodes. The optimal splitting rule is applied recuety

to build the corresponding subtrees. In order teataf
one node is terminal, i.e. “sufficiently” class puithe
stop splitting rule is used, which checks whethe t
entropy of the node is lower than a present minimum
value. If it is, the node is declared a leaf, otlise a test

T is sought to further split the node. If the na@danot

be further split in statistically significant wayt is
termed a deadend, carrying the two class probiasilit
estimated on the basis of the corresponding OPsetub
A more detailed technical description of the apptoa
followed is described in [4,5].

4.2 Kernel Regression Trees

The Kernel Regression Tree (KRT) is an hybrid
algorithm that integrates regression trees (RT)hwit
kernel regression (KR), dealing with continuous lgoa
variables (i.e. regression problems). Like in deadis
trees, the design of a RT consists in the extractib
interpretable security rules. The regression prble
consists on obtaining a functional model that edahe
output ywith the inputs g, &, ...,& (OP attributes),
where the outpuy (denominate as goal variable) is a
numerical value of the security index of the systee.
the minimum frequency - fmin (Hz).

Building the RT

The learning of a RT consists on the decomposibibn
the LS into disjoint regions where the severitysiyg

of a disturbancey(value) is as constant as possible. The
splitting rule of a node is defined by a dichotortest,

as described in (2), specified so as to minimizeMISE
(Mean Squared Error) of the security indeg. (The

Deriving Kernel regressors

Given a new operating poir, a prediction for its
security index,y(Q), can be obtained by applying a
regression model to the learning samples storetthen
RT leaf that verifies th€ operating conditions. Kernel
Regression models provide prediction by a weighted
average of the respongéfmin in our case) of the form:

safe;h[D(Q-OPi)]XYi
S, Iplo.or)

i=1
where D(Q,0R)- normalized distance function

measured in the attributes hyper-spate; bandwidth
value; K, [x]=K[x/h], K() is the Kernel function. The

prediction is obtained using the samples (also
denominated byeighbor$ that are "most similar" tQ,
beingthis similarity measured by the distance function.
The Kernel function estimates the weight of each
neighbor, giving more weight to neighbors that are
nearest t0Q. To a more detailed description of the
applied KRT approach see [9].

4.3 Artificial Neural Networks

y(@Q)= 3)

Two multi-layer ANNs were trained (one for each
disturbance) using an adaptive back propagation
algorithm described in [7]. For the two ANNs the
following structure was selected (Figure 1) oneuinp
layer with 22 attributes as inputs, one hidden rayi¢h

8 neurons and one output layer with the two segurit
indices as outputs.

input , —»|
P ANN +—fmin

22-8-2
— df/dt
input ,, —>

Figure 1— Structure selected for training the ANNs

5. NUMERICAL RESULTS

Regarding the security classification approachés, t
performance is evaluated by the following indices:
global classification error, false alarm and misatdm
errors, relatively toa priori classes. For the security
prediction, mismatches relatively to the targetpatit
valuesy, in this case the minimum frequencymin are
quantified by the mean absolute error and the mean
square error. These performance evaluation indimes
the short-circuit disturbance are shown in theofeihg
tables.

procedure continues splitting the created successor Figures 2 and 3 describe the DT and RT designed for

nodes, until it is not possible to reduce the M8ghker

in a statistically significant way or the variarttas been
sufficiently reduced. Finally, to avoid overfitting
problems a pruning algorithm is applied. A more
detailed description of the method can be foun@jin

the short-circuit disturbance. In these figureg tbtal
number of operating points in the learning set hgilog

to each node are presented aside the node nunter. T
contents of the box representing each node are
respectively:



 For DT - the ratio of the secure operating points
over the total number of LS OPs belonging to the
node and the splitting test for non terminal nodes;
Terminal nodes with a safety ratio larger than 0,5
correspond to mostly secure nodes;

e For RT - the mean value and the variance of the
security index (Hz) regarding the OPs belonging to
that node (for terminal nodes); For non-terminal
nodes the splitting test is included.

Table 2. — Performance evaluation of the DTs

Decision Tree — Disturbance ( Short-Circuit )
Classification Performance Evaluation

Global Error 2.17%
False Alarm 1.87%
Missed Alarm 2.58%

Table 3. —Performance evaluation of the KRTs

Kernel Regress. Tree — Dist. (Short-Circuit)

Classification Performance Evaluation

Global Error 2,39%
False Alarm 1,83%
Missed Alarm 3,20%

Numerical Performance Evaluation
Mean Absolute Error 0,0289
Root Mean Squared Error 0,1127
Table 4. —Performance evaluation of the NNs
Kernel Regress. Tree — Dist. (Short-Circuit)
Classification Performance Evaluation

Global Error 3,80%
False Alarm 4,40%
Missed Alarm 2,93%

Numerical Performance Evaluation

Mean Absolute Error 0,0330
Root Mean Squared Error 0,0654

In Regression Trees one can assign a given dedree o
security to each leaf according to the mean vafube
OPs that belong to the node. Tables 3 and 4 ernable
compare the performance of ANNs and KRT in
classification and prediction of security for the
considered disturbance. Extensive results from the
application of these procedures in the Crete nétwan

be found in [8].

From the results obtained with the three approaohes
can derive the following conclusions:

e When wused for security classification all 3
approaches lead to small classification errors.
e« KRTs have the advantage of producing

simultaneously a classification structure and gjvin
the degree of robustness of the system through the
predicted value offmin; KRT can still provide
interpretable classification and regression rules.

e All the security evaluation structures are able to
provide information on the system security in ayver
fast way.

e« The DTs present, in general, simpler classification
structures, which makes easier any interpretatfon o
the phenomena and the identification of the
influence of the relevant parameters.

6. IMPLEMENTATION

The CARE software comprises various modules for
short-term load and wind power forecasting, unit
commitment, economic dispatch and on-line security
assessment oriented to the needs of isolated power
systems with increased renewable power penetrf8jon
The security evaluation structures described irtiGed
were integrated as modules, activated “on call"thoy
operators. In the execution cycle, security assessm
follows the unit commitment and dispatch modules,
leaving to the operator the decision to activate th
module for validation of the proposed dispatch acen

In Figure 4 the Dynamic Security Assessment module,
as implemented in the EMS of Crete, is shown. Resul
for 48 hours ahead are displayed in the form @dithat
represent the frequency that is expected in cagbeof
considered disturbances under the predicted load

demand and wind power production, also displayed in
the same diagram. In this case the maximum frequenc
deviation appears within the specified securityiténfor
both disturbances.
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Figure 4. Man-Machine Interface of the Dynamic
Security Assessment Module.

7. EVALUATION

A pilot installation of CARE has been operating in
Crete, since May 1999. During this time, wind paoks

a total installed capacity of 32,5 MW have been
operating and 27 MW more were at the final stage of
their installation. During the evaluation perioke tmean
wind power penetration was 4,57% and the peak
penetration 14,7%. From the beginning of 1999 there
has been load shedding of 250 MWh, that corresponds
to the energy of the whole island with middle Idad
one hour. From the beginning of the year, 15 tops
conventional units with load shedding, 51 tripsuofts
without load shedding and 2 trips of Wind Parksaver
observed. As an example, Figure 4 shows the



information recorded during the trip of a 17 MW Gas
Turbine at Chania on the 93of June (taking place
between the 1% and 1%' hours). In Table 5 this is
compared to the security assessment output.

Table 5 — Data for Disturbance of'23une 1999.

Actual Data | CARE Security
from SCADA Assessment
TOTAL PRODUCTION 329,1 MW
DISTURBANCE Trip of a 17 Trip of a 25
MW Gas MW Steam Unit
Turbine with | with high droop
small droop
FREQUENCY 50.02 Hz to 49,4 Hz
49,46 Hz

Security Assessment on
23/6/1999
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Figure 5. Actual Frequency compared to Frequency
Deviation Assessment

From the above figure it can be seen that the &equ
drop predicted by the security assessment is Vesec
to reality considering the differences in the disance
assumed. It is clear, that enrichment of the sBcuri
structures with more disturbances will provide ol
security assessment of very satisfactory accuracy.

8. CONCLUSIONS

The paper describes the application of automatic
learning techniques to the evaluation of the dywoami
security of isolated power systems with increas@eiw
power penetration. These techniques have been
integrated in the dynamic security assessment reaaful
the advanced control system of the island of Crete,
helping to identify the operating conditions and
parameters, namely wind power penetration, that tea

a less robust operation of the system.
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Figure 2- Decision Tree obtained for the short-circuit dibance.
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Figure 3 — Regression tree obtained for the shortit disturbance




