
Design, Development and Characterisation of a
FPGA Platform for Multi-Motor Electric Vehicle

Control

Ricardo de Castro, Rui Esteves Araújo, Hugo Oliveira
Faculty of Engineering, University of Porto

Porto, Portugal
{sirpdc, raraujo, hugo.oliveira}@fe.up.pt

Abstract—Two three-phase squirrel-cage induction motors are
used as a propulsion system of an electric vehicle (EV). A simple
XC3S1000 FPGA is used to simultaneously control both electric
motors, with field oriented control and space vector modulation
techniques. To electronically distribute the torque between the
two electric motors, a simple, yet effective, strategy based on a
uniform torque distribution has been implemented. Experimental
results obtained with a multi-motor EV prototype demonstrate
the proper operation of the proposed system.

Keywords: Electric Vehicles; Motor Drives; Field-
Programmable Gate Arrays(FPGAs); Motion Control.

I. INTRODUCTION
Since the early of 1990's there has been resurgence in

Electric Vehicles (EVs) research. This trend has been
stimulated by various factors including rising in oil prices, the
environmental concerns, the cost reduction of power
electronics and motors drives, and with the constant
performance improvement in lithium-ion battery technology. It
is expected that in the near future EVs could have a leading
role in the transport sector and, in this context, it is necessary to
study and develop new advanced control systems (ACS) that
take advantage of all opportunities made available by electric
propulsion. The electric motors used by EVs, compared with
internal combustion engines, offer significant advantages: (i)
the reduced volume and weight of an electric motor allows the
inclusion of the motor inside the wheel, offering a new degree
of freedom, which can be exploited to improve vehicle
handling and safety using active torque distribution [1]; (ii) the
response times of torque generated by electric motor are much
faster (up to 10 times) than internal combustion engines and
hydraulic systems, which could increase the performance of
traction and anti-skiding systems [2]; (iii) other advantages
with motor inside the wheel it frees up space at the front of the
vehicle, which could be used to improve the absorption of
crash impact energy.

The typical structure used in an ACS for a multi-motor EV
is based on 3 control layers (see Fig.1):

1) The top layer is composed by two controllers, one for
lateral motion and the other for longitudinal movement. The
first ensures that the EV meets certain handling and safety
criteria involving the direct control of yaw rate and side-slip

(typical examples: electronic stability control and active torque
distribution). The second controller (longitudinal) maps in a
longitudinal force the driver requests for acceleration/braking,
taking into account the information received from navigation
and driving pattern, and including features such as cruise
control and collision avoidance from the active safety systems.
The output of the longitudinal controller represents the total
force that must be applied to the vehicle, while the lateral
controller generates a yaw moment reference that must be
translated into differential forces in the left/right wheels. The
integration of these two controllers, which must produce the
reference force for each wheel, is one of the main challenges in
multi-motor EVs [3].

2) To ensure the proper application of longitudinal forces,
taking into account the conditions of adhesion and the tire/road
non-linearities, a traction control layer is inserted (the Anti-lock

Figure 1. Typical control layers implemented in advanced control system for

multi-motor EV.

978-1-4244-2601-0/09/$25.00 ©2009 IEEE 145

Braking System (ABS) is a typical example). The traction
control layer manipulates the torque applied to each motor in
order to prevent the wheel lock during braking (or wheel slip
during acceleration), which could compromise the vehicle
steerability and increase the vehicle braking distance [4].

3) The bottom layer, motor controller, is composed by the
power electronics and pulse-width modulators that ensures the
generation of electromagnetic torque produced by electric
motors.

The integration of various control systems (motor, traction
and motion control) on a single and compact chip is the
ultimate goal of this work. The motor controller is the control
level that requires the most processing power (PWM
modulators, coordinates transformation, PI controllers, etc.). If
the EV has several electrical motors, for example one per
wheel, the processing requirements increases proportionately.
Traditional solutions, such as DSPs (Digital Signal Processors),
have some difficulties to control more than 2 motors
simultaneously, a consequence of its sequential processing,
which normally leads to the distribution of various DSPs (1 per
motor). The FPGAs (Field-Programmable Gate Arrays) do not
have these kind of limitations, and offer attractive features,
such as parallel processing, high calculation capacity,
modularity, etc., allowing the merging, in a single chip, of all
motors controllers (running in parallel) and, possibly, of all
control layers (motor, traction and motion). Furthermore, in
recent years FPGAs have been successfully applied to motor
controller applications, and, by reducing the execution times,
have improved the quality of the controlled variables [5]. This
technology has also received attention by some industrial
manufacturers, highlighting the AcceleratorTM platform

developed by International Rectifier [6], oriented to control
position in industrial applications, which requires high-
bandwidth control of torque and speed. This platform
subsequently has become an Application Specific Standard
Product (ASSP) [7]. Due to its high processing capacity a
FPGA platform was elected to implement ACS in a Multi-
motor EV. In this paper, only the motor controller (bottom
layer in Fig. 1) is described in detail, because it is the only layer
that is in an advanced stage of development. The other control
layers (traction and motion controller) are in an early phase and
will be addressed in futures works.

II. DESCRIPTION OF CONTROL SYSTEM
In Fig. 2 the propulsion system configuration is presented,

which is based on a single FPGA chip capable of
simultaneously controlling two induction motors. The energy
applied to the motors is regulated by a set of DC/AC
converters, supplied by four electrochemical batteries, and
controlled by a Xilinx Spartan 3 FPGA (XC3S1000) [8]. The
most important IP (Intellectual Property) Cores in the FPGA
are the two Motor Controllers (MC), coded in Verilog and
running in parallel, responsible for generating the PWM signals
for the inverter in order to track the torque demanded by the
driver. Additional modules for the interface with external
peripherals, like the encoders and the Analog to Digital
Converters, were also included. While the top level controllers,
such as traction and yaw rate control (see Fig. 1), are not
implemented, a uniform torque distribution strategy has been
used, with both motor controllers receiving the same torque
reference (Tleft = Tright), defined by the throttle position. This
strategy emulates the basic features of a single axis mechanical

Figure 2. Architecture of propulsion control chip, implemented on a FPGA.

146

open differential, widely used in conventional vehicles.
Typically, the open differential has 2 objectives: i) transfer
engine power to the driven wheels, applying the same torque to
both wheels; ii) allow the driven wheels to rotate at different
speeds (critical feature during the vehicle cornering). In the
case of multi-motor EV, the first feature can be easily emulated
by applying the same current/torque reference to both motor
controllers, and assuming that both motors have similar
characteristics. The second problem addressed by the
mechanical differential, related with different wheel speeds, is
not an issue in a multi-motor EV configuration. Note that in a
multi-motor configuration each motor is free to rotate at any
speed, and can be seen as an independent system: all motors
receive equal value of acceleration/braking torque, but the load
torque experience by each motor is different, especially during
cornering manoeuvres, which naturally leads to different wheel
speeds.

These observations are corroborated by the experimental
results obtained in the multi-motor prototype, presented in the
final section. Although simple, this “mechanical differential
emulation” strategy has some weaknesses. For instance, it does
not exploit all the merits offered by the multi-motor
configuration, like handling and safety benefits that the yaw
rate and side-slip control presents [3]. However, it remains a
valid approach, which allows us to experimentally validate the
motor controller layer, while the top level algorithms are not
fully developed.

III. IMPLEMENTATION DETAILS

In Fig. 3 it is represented a block diagram that characterizes
the interconnection of all modules implemented in the control
chip and gives an idea of the system complexity. The main
modules developed were:

1) Motor Controller - the classic Field Oriented Control
(FOC) theory, using the indirect method for rotor flux
orientation (λr), with the current PI controllers formulated on
the synchronous frame (dq coordinates) and the inverter
voltage modulation performed by a Space Vector PWM
(SVPWM) algorithm [9], was used as the main motor control
strategy. The FPGA chip includes 2 motor controllers, one for
the left motor and the other for the right. Note that the
parallelism offered by the FPGA allows additional motor
controller to be included in the chip, without compromising the
existing controllers already in place. The maximum numbers of
motors that the FPGA can handle are only restricted by the area
and multipliers available in the FPGA. In the current work a
simple XC3S1000 chip [8] was enough for simultaneously
control the 2 motors installed in the Electric Vehicle prototype.

2) ThrottleMap - this module implements a function that
translates the throttle signal, defined by the driver, in a current
reference (iq current, proportional to the torque) applied to the
motor controller. The ThrottleMap module is very useful to
improve the driving experience, for instance, generating
electric braking torque when the driver partially releases the
throttle, making the driving more pleasant and predictable.

3) Electronic protections - the controller has a set of
electronic protection against overcurrent, over and under-

Figure 3 – Detailed view of the propulsion control chip, including the main IP Cores developed.

147

battery voltage and thermal overloads. Traditional DSP based
controllers detects the overcurrent faults through an external
analog comparison, activating an interruption in the DSP to
stop the control process. In the FPGAs, the parallel processing
capabilities make the implementation of protections quite
effective: a dedicated protection module is continuously
monitoring the current levels, comparing the digital current
signal with the current preset limits, without disturbing the
performance of other control modules. Actually, the bottleneck
of the protection system is in the bandwidth of the current
sensor and the ADC conversion, and not in the FPGA chip (the
fault detection can be generated in a few tens of nanoseconds).

4) Global Manager - to manage the various modules of the
system, the controller has a global state machine. At the start of
system the module performs a series of initial validation tests
(check current and voltage sensors, throttle signal, etc), and
subsequently enables / disables the motor controller depending
on the mode of operation selected and the faults detected.

5) Auxiliary Modules – Additional modules are used to
make the interface with external peripherals: modules for
counting the pulses sent by the encoder, SPI communications
with the Analog to Digital converters, input deboucing, etc. To
configure the parameters in the propulsion chip, a distributed
structure of an 8-bit registers (32 registers for write and 32
register for read) are accessible by a RS232 link. The evolution
of the variables in the propulsion chip is stored in Flash
memory, accessible via SPI by a datalogger module developed
for this purpose. The data stored during the system operation
are useful to characterize the performance of the vehicle and
the controller itself.

IV. “POWER IP CORE” DESIGN EXAMPLE
In this section the Space Vector PWM module, which is

reused by the two AC Motor Controllers instantiated in the
FPGA (see Fig. 3), is described in detail. The SVPWM
modulator is one of the components that can benefit from the
flexibility and parallel capabilities offered by the FPGAs.
Compared with other platforms (such as DSPs), the
implementation of the modulator in FPGA can facilitate the
incorporation of advanced techniques, such as dead-time
compensation [11] and overmodulation operation [12], and
allow multiple-motor control with a single chip [13]. In this
work, the last feature was explored to control a multi-motor
electric vehicle.

A. Introduction
The SVPWM is one of the main techniques used to control

three phase inverters, allowing a 15% increase in the linear
zone of operation and a low current distortion, compared with
carrier-based modulation technique, and was the modulation
method used in this work. The module receives the normalized
voltage vector reference, defined in polar coordinates (m, θ),
and generates six PWM signals to be applied to the power
semiconductors. The modulus of the normalized voltage vector
is normally defined as modulation index, given by:

dc

m

V

v
m

π
2

1= (1)

where v1m is the fundamental output voltage and Vdc is the DC
Bus voltage. The three-phase inverter is capable of generating 8
voltage combinations (100, 110, 010, 011, 001, 101, 000 and
111 where 1 represents that the top switch is on and lower
switch is off, and 0 mean the opposite) . These 8 vectors, 6
active and 2 null vectors, form a hexagon (see Fig. 4a) on the
stationary reference frame and can be defined as:

⎪⎩

⎪
⎨
⎧

=

==
−

7 0 0

6,...,1
32

)1(
3

,, n

n,em
nj

n

ππ
 (2)

The principle behind the SVPWM is based on the
modulation of adjacent space vector for each sector. For
instance, if the voltage vector reference lies in the first sector,
during a switching period of time the inverter must apply the
vector m1 and m2 during t1 and t2 and m0 and m7 during t0 and t7
times. A more detailed description of the SVPWM techniques
can be found on reference [9].

The detailed view of SVPWM implementation is presented
on Fig 4b. The SVPWM module starts by detecting the sector
in which the voltage vector lies and then rotate it to the first
sector. Subsequently, the times t1 , t2 and t0 are calculated based

a)

b)

Figure 4 - a)Space Vector representation of three-phase converter; b) Space
Vector PWM (SVPWM) implementation details (all variables have fix point
(signed) format, represented by the notation Qx.y - x bits for the integer part

and y bits for the fraction part).

148

on simple trigonometric relations, which are then used to
determine the duty cycles values for each arm of the inverter.
Finally, the duty cycles are adjusted by a pulse dropping
function, compared with a triangular wave to generate the
PWM signals, and corrected with the insertion of dead-times.
In the next sections, the sub-modules of the SVPWM block are
briefly described.

B. Sector Identification and Vector Rotation
To simplify the calculations, only the formulas valid in the

first sector are implemented. The identification of the sector (1
to 6) in which the voltage vector lies is straightforward because
the voltage angle (θ) is known and the sector can be easily
detected, comparing the angle of the voltage vector with the 6
sector limits:

⎪
⎪
⎩

⎪
⎪
⎨

⎧

≤<

≤<
≤<

=

ºθº

n

360300 , 6
...

12060º , 2
º600º , 1

θ
θ

 (3)

Next, an equivalent first sector voltage vector (m1s, θ1s) is
calculated, rotating the input vector to the first sector, which is
performed subtracting the original voltage angle by (n-1)*60
degrees, and maintaining the voltage modulus:

() º60 1 1

1

−=
=

n
mm

s

s

θθ
 (4)

Note that, because the voltage vector is in polar
coordinates, both the sector identification and voltage rotation
are much simpler to perform than if the voltage vector was
defined in the Cartesian coordinates.

C. Times Calculation
With the voltage vector in the first sector, the times t1, t2

and t0, which defines the “on time” of the 2 active voltage
vectors and the zero voltage, are calculated with the help of a
simple trigonometric relationships, valid for the first sector [9]:

()
()

() 2/

sin
º60s

32

2170

12

11

1

ttTtt

Kt
inKt

TmK

s

sg

sg

ssg

−−==

=

−=

=

θ
θ

π
 (5)

where Kg is an auxiliary variable, Ts = 1/(2fs) and fs is the
switch frequency (in practice, the Ts variable is replaced by a
digital equivalent value, identified as PWM_TOP, and
calculated as fclk/2fs, where fclk is the FPGA clock value). The
formulas presented in (5) need four multiplications: 2 for Kg
and 2 for t1 and t2 calculations. Because the FPGA used in this
work (XC3S1000) has a limited number of multipliers (24),
compounded by the fact that multiple instances of SVPWM
module are implemented to simultaneously control several

electric motors, a multiplier sharing strategy was developed to
multiplex the use of this resource (Fig. 5a). The sharing
strategy is based on a single multiplier, managed by a control
unit, which is “time-shared” to execute the 4 multiplications
needed by (5). For instance, to obtain the gain Kg, two steps are
performed. First, the control unit selects the m and π/32
values as the multiplier inputs and stores the results in a
temporary register (tmp). Second, the temporary register and
the Ts values are used as the multiplier inputs, producing the Kg

a)

b)

Figure 5 - Detailed view of: a) times calculation; b) duty cycles (CRi)
calculator module. (all variables have fix point (signed) format, represented

by the notation Qx.y - x bits for the integer part and y bits for the fraction part)

TABLE 1 MATRIX M DEFINITION

 Sector
 1 2 3 4 5 6

M (n)
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

111
011
001

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

111
001
101

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

011
001
111

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

001
101
111

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

001
111
011

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

101
111
001

149

value at the multiplier output, which is stored in an internal
register to be used in next calculations (the times t1 and t2 are
obtained in the same manner and described for the Kg variable).
This sharing strategy enables us to reduce the use of dedicated
multipliers from 4 to only 1, for each SVPWM instantiation.
The sine function needed in (5) was implemented with a simple
ROM (Read Only Memory) table, with the address bus
specifying the sine angle, and the data bus returning the
function result.

D. Duty Cycle Calculation and PWM generation
The t1, t2 and t0 times must be transformed in duty cycles to

be applied to each arm in the inverter. The duty cycles, which
depends on the ti times, but also on the voltage vector sector,
are stored in the Compare Registers (CRi), compactly defined
by:

()[]Ttttn
CR
CR
CR

210

3

2

1

 M=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
 (6)

Because the coefficients of matrix M(n) are restricted to
zeros and ones (see Table 1), (6) can be efficiently
implemented with 6 conditional sums (see Fig. 5b). The values
of t1 and t2 are added, or not, depending on the value of the
element Mij (i row, j column of M). The conditional sum is
controlled by introducing a AND function in the adder inputs:
if the element Mij is 0, ANDing t1 (or t2) with Mij generates a
zero value in the adder entry, disabling the summation. On the
other hand, if Mij is 1, the AND output is equal to t1 (or t2),
enabling the summation. A small ROM table stores the various
versions of the matrix M as a function of the voltage vector
(the address bus specifies the sector and the data bus contains
the elements of the matrix M). Note that the elements Mi1 are
always 1 (see Table 1), which means that t0 is added to all
Compare Registers, represented by the second group of adders
in Fig. 5b.

Before generating the PWM signals, the CRi registers are
shaped with a pulse elimination method [10], dropping pulses
less than a minimum width (2 times the inverter deadtimes) to
ensure the proper operation of the inverter when high
modulation indexes are used. The final step in the SVPWM is
comparing the CRi registers with a triangular wave, generated
with an Up/Down counter, and apply the dead-times to the
PWM signals.

E. Simulation Results
To minimize the number of resources used in the FPGA, it

was decided to use variables with reduced resolution. All the
calculations performed in the module use fixed point arithmetic
with 13 bits resolution. The modulation index m is normalized
between 0 and 1 and has a resolution of 13 bits, 2 for the
integer part and 11 bits for the fraction part, i.e. Q2.11. The
vector angle θ is normalized with 2π, in Q1.11 format. The
registers [CR1 CR2 CR3] and [t0 t1 t2] have 13 bits of
resolution, interpreted as integers and without signal, and the
sine ROM table has a 2π/211 radians resolution in the angle,
and generates the sine function with Q2.11 format.

In Fig. 6 some simulations results for this module are
presented. It can be seen the evolution of the CR1 register for a
fixed value of the voltage vector module m (defined as |V*|)
and a variation from 0 to 4π in the vector angle θ (defined as
theta). In the zoom box it is shown a fragment of the triangular
wave, operating at 10kHz, and the output PWM signals, which
demonstrates the correct operation of the developed SVPWM.
These simulation results were obtained with the ModelSim
program, which provides a useful environment to develop test-
benches and conduct several tests to validate the correct
function of the developed modules.

V. EXPERIMENTAL RESULTS

A. Platform Description
The Faculty of Engineering of the University of Porto, in

cooperation with some Portuguese firms, and under financial
support of FCT (Foundation for Science and Technology),
developed a multi-motor electric vehicle, named uCar (Fig. 7a).
In the context of this research a conventional MicroCar, Virgo
model, was transformed in a multi-motor electric vehicle,
composed with two, low voltage, 2.2 kW three-phase cage
induction motors (26V, Δ, 63A and 1410 rpm), coupled to the
front wheels through fixed ratio (7:1) transmission. The energy
source consists of 4 lead-acid batteries, connected in series
(48V), with a stored energy of 5.28kWh. Without passengers,
the vehicle weighs 600kg, with most of the mass concentrated
at the rear of the vehicle (45% front, 55% to rear), motivated by
200kg of batteries installed in the trunk of the vehicle. To
control the 2 DC/AC converters a single FPGA XC3S1000,
based on the Digilent Spartan 3 Starter Kit, has been used (Fig.
7b). The FPGA board contains a set of useful peripherals
(50MHz clock, expansion pins, Flash and RAM memory, etc.)
and was expanded with 2 additional circuit boards. These
boards contain ADCs peripherals (TIADS7818 and
TIADS7848) to digitalize analog signals, such as currents,
voltage, throttle signal, etc., which are essential for the control

Figure 6. SVPWM simulation results, with fixed modulation index (m=0.5)
and variable theta (bottom).

150

algorithms, and logic converters for 3.3V/5.0V and 5.0V/3.3V
conversion. Experimental results, demonstrating the basic
operation of the motor controller and the uniform torque
distribution strategy, were acquired with the FPGA embedded
datalogger, which records the evolution of mechanical
variables (motor speed), energy source status (voltage and
current) and the FOC controller variables (iq, id, motor slip, and
modulation index m) throughout the tests.

B. Acceleration/Braking Performance
In Fig. 8 it can be seen the motor controller performance

during a straight line test (shown only results for one motor, the
other has similar results). During the initial acceleration the
driver requests maximum torque and the currents iq and id are
maintained in their maximum values, producing an acceleration
of 2.2km/h/s. When de EV reaches 18km/h the motor voltage
saturates at 83% and id current (“flux” current) is reduced to
allow the vehicle to operate in the constant power zone. During
this period each motor consumes, approximately, 2.5kW. After

reaching 30km/h the driver requests a reduction in the vehicle
speed and a negative iq current (“torque” current) is applied to
produce regenerative braking. During this period, each motor
convert 500W from kinetic to electrical energy, emphasizing
one of the most promising features in EV: energy recovering
during braking.

C. Cornering Performance
The basic operation of the uniform torque distribution

strategy, with both motors receiving the same torque reference
(iq current), is depicted in Fig. 9. During straight line
maneuvers, which can be identified when the vehicle steer
angle δ is close to zero, the wheels speeds are equal, but during
the cornering maneuvers different wheel speeds emerge. A
simple kinematic model (see (9) in Appendix) was used to
predict the speed difference of the front wheels. Figure 9
shown that the kinematic model output Δωmodel is almost

a)

b)
Figure 7 - Multi-Motor prototype: a) Chassis overview with, 2 AC Motors coupled to front wheel; b) FPGA Control System based on a simple XC3S1000.

855 860 865 870 875 880

-20

-10

0

10

20

30

40

50

60

70

80

s

iq(A)
speed(km/h)
id(A)
fslip(Hz)
m(%)

ACC FW REG

855 860 865 870 875 880

-20

-10

0

10

20

30

40

50

60

70

s

V
dc

(A)

I
dc

(A)

10*Power(kW)

ACC FW REG

Figure 8. Experimental results during acceleration, field weakening and regenerative braking (left motor only);

151

overlapped with the experimental measure, Δω, confirming the
correct operation of the proposed uniform torque distribution.

VI. CONCLUSIONS
In this paper an FPGA platform was used to control a multi-

motor EV. The high processing capabilities and reduced
processing times make the FPGAs an attractive solution for
control several motors with a single chip. A simple XCS31000
was used to implement 2 induction motor controllers, base on
Field Orientation Control and Space Vector PWM techniques.
To validate the developed motors controllers a simple uniform
torque distribution strategy was implemented. Experimental
results obtained with a multi-motor EV prototype demonstrates
the basic operation of the propose propulsion system during
accelerating, braking, straight line and cornering manoeuvres.
In future works the developed FPGA platform will be used to
implement higher control layer, targeting improvements in
vehicle safety and handling, with traction control systems and
active torque distribution algorithms.

APPENDIX - VEHICLE KINEMATIC MODEL
The vehicle behavior at low speed operation was modeled

using a simple kinematic model, assuming zero slip angles at
all wheels and a small vehicle side slip angle. In this situation,
the vehicle yaw rate (ψ) can be approximated by [14]:

FL
v δψ tan≈ (7)

where v is the vehicle longitudinal speed, L is the vehicle
wheelbase and δF is the front wheel steering angle. Using the
additive superposition of the yaw rate and vehicle speed, the
speed of the front left and right wheels (vFL and vFR) can be
obtained through the “differential radii” method [15]:

⎪
⎩

⎪
⎨

⎧

+≈

−≈

2

2
Cvv

Cvv

FR

FL

ψ

ψ
 (8)

where C is the vehicle track width. Finally, combining (7) and
(8), the speed difference of the front wheels can be obtained:

⎟
⎠
⎞

⎜
⎝
⎛=−=Δ F

FLFR
el L

C
r
v

r
vv δω tanmod (9)

where r is the radius of the wheel. Feeding the vehicle speed v
and the steering angle δF in (9), a prediction for the speed
difference of the front wheels can be obtained and compared
with the experimental results. (Note: the electric vehicle uCar
(Fig. 7a) has the following parameters: r = 0.26m; C =1.2m and
L = 1.6m).

REFERENCES
[1] Y. Furukawa and M. Abe, “Advanced Chassis Control Systems for

Vehicle Handling and Active Safety”, Vehicle System Dynamics, Vol.
28. No. 2, 1997

[2] Y. Hori, “Future Vehicle Driven by Electricity and Control—Research
on Four-Wheel-Motored ‘UOT Electric March II’”, IEEE Transactions
on Industrial Electronics, Vol. 51, No. 5, Oct, 2004

[3] A. Goodarzi and E. Ezmailzadeh, “Design of a VDC System for All-
Wheel Independent Drive Vehicles”, IEEE Transactions on
Mechatronics, Vol. 12, No. 6, Dec. 2007

[4] L. Li, F. Wang and Q. Zhou, “Integrated longitudinal and lateral
tire/road friction modelling and monitoring for vehicle motion control”,
IEEE Transactions on Intelligent Transportation Systems, Vol. 7, No. 1,
2006

[5] M. Naouar, E. Monmasson, A. Naassani, I. Slama-Belkhodja and N.
Patin, “FPGA-Based Current Controllers for AC Machine Drives – A
Review”, IEEE Transactions on Industrial Electronics, Vol. 54, No.4,
Aug. 2007

[6] “Accelerator Drive Design Platform - IRACS201 datasheet”,
International Rectifier, 2003

[7] T. Takahashi and J. Goetz, “Implementation of complete AC servo
control in a low cost FPGA and subsequent ASSP conversion”,
Nineteenth Annual IEEE Applied Power Electronics Conference and
Exposition, 2004

[8] “Spartan 3 FPGA Family –Complete Datasheet”, Xilinx, April, 2008
[9] M.P. Kazmierkowski, R. Krishnan and F. Blaabjerg, Control in Power

Electronics – Selected Problems. Academic Press, 2002
[10] A.M. Hava, R.J. Kerkman and T.A.Lipo, “Carrier-based PWM-VSI

overmodulation strategies: analysis, comparison and design”, IEEE
Transactions on Power Electronics, Vol. 13, No. 4, 1998

[11] S. Berto, S. Bolognani, M. Ceschia, A. Paccagnella and M. Zigliotto,
“FPGA-based random PWM with real-time dead time compensation”,
IEEE 34th Annual Power Electronics Specialist Conference, 2003

[12] Z. Zhaoyong, L. Tiecai, T. Takahashi and E. Ho, "Design of a universal
space vector PWM controller based on FPGA," Nineteenth Annual IEEE
Applied Power Electronics Conference and Exposition, 2004

[13] K. Tazi, E. Monmasson and J.P. Louis, “Description of an entirely
reconfigurable architecture dedicated to the current vector control of a
set of AC machines”, The 25th Annual Conference of the IEEE
Industrial Electronics Society, 1999.

[14] R. Rajamani, Vehicle Dynamics and Control. Springer, 2006
[15] U. Kiencke and L. Nielsen, Automotive Control Systems For Engine,

Driveline, and Vehicle, 2nd Edition. Springer, 2005

210 215 220 225
-20

-10

0

10

20

30

40

50

60

70

80

s

Iq,right=Iq,lef t(A)

ωright(rad/s)

ωleft(rad/s)

Δω(rad/s)
Δωmodel(rad/s)

δ(º)

Cornering

Straight Line

Figure 9. Experimental results during straight line straight line and cornering

manoeuvres. (ωright ωleft = angular speed of the right and left front wheels; Δω
= ωright-ωleft; δ = front wheel steering angle)

152

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Table of Contents

