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Abstract

Human Papillomavirus cause a number of diseases most notably cervical cancer. K14-
HPV16 transgenic mice expressing the HPV16 early genes in squamous epithelial cells
provide a suitable experimental model for studying these diseases. MicroRNAs are small
non-coding RNAs that play an important role in regulating gene expression and have been
suggested to play an important role in cancer development. The role of miR-155 in cancer
remains controversial and there is limited evidence linking this miRNA to HPV- associated
diseases. We hypothesized that miR-155 expression modulates each tissue’s susceptibility
to develop HPV-associated carcinogenesis. In this study, we analyzed miR-155 expression
in ear and chest skin samples from 22-26 weeks old, female K14-HPV16 transgenic
(HPV16+/-) and wild-type (HPV-/-) mice. Among wild-type mice the expression of miR-155
was lower in ear skin compared with chest skin (p = 0.028). In transgenic animals, in situ
carcinoma was present in all ear samples whereas chest tissues only showed epidermal hy-
perplasia. Furthermore, in hyperplastic chest skin samples, miR-155 expression was lower
than in normal chest skin (p = 0,026). These results suggest that miR-155 expression may
modulate the microenvironmental susceptibility to cancer development and that high
miR155 levels may be protective against the carcinogenesis induced by HPV16.
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Introduction

Human papillomaviruses (HPVs) are the most common sexually transmitted agents [1]. High-
risk human papillomavirus, such as HPV16 and HPV18, are the causative agents of virtually all
cases of cervical cancer and a significant proportion of other anogenital cancers, as well as
some head and neck cancers [2-4].

The K14-HPV16 transgenic mouse model is particularly useful to study the development
of HPV-associated squamous cells carcinomas. In this model, the expression of HPV16 early
region genes (E2-E8) is driven by the cytokeratin 14 (K14) promoter/enhancer, specifically tar-
geting epithelial basal cells [5]. Basal cells are mitotically active and thus may develop further
mutations in response to a proliferative stimulus, and the expression of K14 has been shown to
persist in well-differentiated squamous carcinomas [6]. The expression of the HPV oncogenes
E6 and E7 induces epithelial carcinogenesis through multiple premalignant stages [7]. Accord-
ingly, the K14-HPV 16 transgenic mice develop epidermal hyperplasia that progresses to dyspla-
sia and in situ carcinoma (CIS) lesions and, ultimately, to invasive cancer. This animal model
simulates the multistep carcinogenesis process and thus facilitates the study of epigenetic and
the genetic factors that coordinate malignant conversion and regulate neoplastic progression.

MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression promoting
inhibition of messenger RNA (mRNA) translation or its degradation [8]. In normal cells, miR-
NAs control several processes including proliferation, differentiation and apoptosis. These
molecules are also described as key regulators in many diseases including neurological disor-
ders, cardiovascular diseases, viral infections and cancer [9]. During carcinogenesis, some miR-
NAs are lost whereas others are upregulated, and in fact, previous data indicates that miRNAs
may be important to distinguish subtypes of cancers, where the histological diagnosis is com-
plex and difficult [10].

MicroRNA-155 (miR-155) plays a role in many of the above oncogenic processes. This
microRNA is overexpressed in many types of cancer cells and accumulating evidence shows that
miR-155 is an oncogenic microRNA. However, recent studies claim that miR-155 may display
anti-oncogenic properties or promote an adequate immunological response to cancer [11,12].
MiR-155 has emerged as an essential regulator of cellular physiology, particularly important in
the mammalian immune system [13-15]. Thus, a possible link between miR-155 and inflamma-
tion in cancer has been reported [16]. Moreover, miR-155 transgenic mice develop B-cell lym-
phoma [15], and miR-155-knock-out mice exhibit impaired immune function [17].

In HPV-associated cancers, the interplay between miR-155 and HPV genes remains elusive
and poorly understood. The tumor microenvironment associated to miRNAs plays an increas-
ingly appreciated role in cancer [18], but the microenvironment of normal tissues and its role
in tumorigenesis remains poorly studied.

In this study, we aimed to evaluate the expression of miR-155 in skin samples with or with-
out the presence of integrated HPV DNA and with different HPV-associated lesions. For this
purpose, we have used K14-HPV16 transgenic mice, [19], to analyze miR-155 expression in
ear and chest skin samples, evaluating its correlation with tissue microenvironment and HPV-
induced carcinogenesis.

Materials and Methods
Transgenic mice

Generation of K14-HPV mice has been previously reported [19]. K14-HPV16 mice on a FVB/n
background were generously donated by Drs. Jeffrey Arbeit and Douglas Hanahan, from the
University of California, through the USA National Cancer Institute Mouse Repository. The
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Table 1. Primer sequences.

Primer Target/Name Sequence Amplicon
Mouse B-globin

MBG_fwd 5-CCAATCTGCTCACACAGGATAGAGAGGGCAGG-3 494 bp
MBG_rev 5-CCTTGAGGCTGTCCAAGTGATTCAGGCCATCG-3

HPV16-E6

HPV16_E6fwd
HPV16_E6rev
HPV16-E2

HPV16_E2fwd
HPV16_E2rev

5-AAAGCCACTGTGTCCTGA-3’ 130 bp
5-CTGGGTTTCTCTACGTGTTTC-3

5-TTTAGCAGCAACGAAGTATCC-3’ 184 bp
5-AGTCTCTGTGCAACA ACTTAG-3

doi:10.1371/journal.pone.0116868.t001

animal experiments were approved by the University of Tras-os-Montes and Alto Douro Ethics
commiittee, University of Tras-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5001-801,
Vila Real, Portugal. Adequate environmental enrichment was provided for each cage and health
checks were performed daily. Before collecting the samples, all animals were anesthetized by
using sodium pentobarbital, followed by intracardiac punction and exsanguination, as indicated
by the Federation for Laboratory Animal Science Associations (FELASA). After one week quar-
antine, the animals were maintained and bred in accordance with Portuguese (Portaria 1005/92
dated October the 23™) and European (EU Directive 2010/63/EU) legislation, under controlled
conditions of temperature (23+2°C), light-dark cycle (12 h light/12 h dark) and relative humidity
(50£10%), using hardwood bedding. A standard diet (4RF21 GLP, Mucedola, Italy) and water
were provided ad libitum. A total of 15 female mice from consecutive litters were selected for
the study.

Genotyping of HPV16-E6 and E2

The animals were genotyped at weaning, using tail tip samples. Tissue lysis was performed by
adding 300uL of MagnaPure DNA Tissue Lysis Buffer (Roche, Indianapolis, USA) and 20 pL
of Proteinase K and incubating overnight (aproximately 16h) at 65°C. Nucleic acids were
extracted using the High Pure Viral Nucleic Acid kit (Roche, Indianapolis, USA) following

the manufacturer’s instructions. DNA quality was assessed by measuring the absorbance at

260 nm, using an UV/Visible spectrophotometer. DNA purity was assessed by the ratio of the
absorbance values at 260/280 nm, using the NanoDrop spectrophotometer v3.7 (Thermo
Scientific, Wilmington DE, USA). The presence of amplifiable genomic DNA was tested by poly-
merase chain reaction (PCR) amplification of mouse B-globin using specific primers (Table 1)
[20]. The PCR reaction was performed in a 50 pl solution with 1x Taq buffer, 2.0 mM MgCL2,

0.2 mM DNTP’S, 0.50 uM of each primer, 1 U de Taq DNA Polimerase and 0.2 ug of genomic
DNA. The amplification conditions were as following: denaturation of DNA template at 94°C for
3 min, followed by 35 cycles at 94°C for 30 s 60°C for 45 s, 72°C for 90 s, and a final extension step
at 72°C for 10 min. The amplified fragment of 494 base pairs (bp) was analyzed by electrophoresis
in 1.5% (w/v) agarose gels stained with ethidium bromide and visualized under UV light.

The presence of integrated HPV was assessed by amplification of HPV16-E6 and HPV16-
E2 genes with specific primers (Table 1), which amplify a region of 130 bp and 184 bp, respec-
tively, (adapted from a protocol described by Canadas et al. and Ribeiro et al [21,22]). The PCR
amplification reaction with HPV16-E6 and HPV16-E2 primers was carried in a 50 pl reaction
mixture with 1x PCR Buftfer, 2.5 mM MgCl2, 0.2 mM DNTP’S, 0.30 uM of each primer, 1 U of
Taq DNA polymerase and 0.2 ug of genomic DNA. Thermal cycling was performed as follows:
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Table 2. Association between the characteristic phenotype of HPV-associated lesions and
genotype of HPV E6/E2 DNA of mice.

Mouse Phenotype Genotype
1 NEGATIVE NEGATIVE
2 NEGATIVE NEGATIVE
3 NEGATIVE NEGATIVE
4 NEGATIVE NEGATIVE
5) POSITIVE POSITIVE
6 NEGATIVE NEGATIVE
7 POSITIVE POSITIVE
8 NEGATIVE NEGATIVE
9 NEGATIVE NEGATIVE
10 POSITIVE POSITIVE
11 POSITIVE POSITIVE
12 POSITIVE POSITIVE
13 POSITIVE POSITIVE
14 POSITIVE POSITIVE

doi:10.1371/journal.pone.0116868.t002

initial denaturation of DNA template at 94°C for 2 min, followed by 35 cycles at 94°C for 1
min, 60°C for 1 min, and 72°C for 1 min and a final extension step at 72°C for 5 min. The
amplified fragment was analyzed by electrophoresis in 1.5% (w/v) agarose gels stained with
ethidium bromide and visualized under UV light.

The resulting genotypes were compared with the respective phenotypes (Table 2).

Sample collection

Seven hemizygous (+/-) and seven wild-type (-/-) females were sacrificed at 22 to 26 weeks of
age. Ear and chest skin samples from each animal (14 samples from transgenic and 12 samples
from wild-type animals) were collected into TriPure reagent (Roche Applied Science), macerat-
ed, and kept at —80°C until processing. Matched samples were collected into 10% neutral buft-
ered formalin for routine histological processing. Histological sections (2 pm-thick) were
stained with haematoxylin and eosin (H&E) for examination on light microscopy. Samples
were classified as normal skin, epidermal hyperplasia and epidermal CIS by two independent
researchers (CL and RGC), as previously described [19].

mMiRNA expression analysis

Extraction of total RNA from samples preserved in TriPure reagent was performed using the
High Pure Viral Nucleic Acid kit (Roche, Indianapolis, USA), according to manufacturer’s
instructions. RNA quality was assessed using NanoDrop spectrophotometer v3.7 (Thermo
Scientific, Wilmington DE, USA).

Mmu-miR-155_002571 and snoRNA-202_001232 were analyzed using two-step real-time
PCR protocols with TagMan MicroRNA Assays (Applied Biosystems, Foster CA, USA). The
conversion of miRNA to cDNA was performed using TagMan MicroRNA Reverse Transcrip-
tion Kit (Applied Biosystems, Foster CA, USA) in a 15 uL of total volume reaction mix with:

7 uL of a master mix containing 1x RT buffer, 1.0 mM of total ANTPs, 50U MultiScribe Reverse
Transcriptase Enzyme and 0.25U of RNase inhibitor; 3 uL of RT primers (Applied Biosystems,
Foster CA, USA); and 5pL of RNA sample. The amplification conditions were as follows:
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30 min at 15°C, 52 min at 42°C and finally 10 min at 85°C. All reverse transcriptase reactions
included two non-template controls using double distilled water to replace template RNA.
qPCRs were performed on a StepOne Real-time PCR System (Applied Biosystems, Foster
CA, USA) with a 20 pl final volume: 1x TagMan Universal PCR Master Mix II (Applied
Biosystems, Foster City, California USA); 1x MicroRNA Assay (Applied Biosystems, Foster
City, California USA); and 2 pL cDNA from RT snoRNA-202 was used as endogenous control.
Thermal cycling conditions were: 10 min at 95°C followed by 45 cycles of 15 s at 95°C and
1 min at 60°C. All reactions included two-template controls using double distilled water to re-
place template cDNA.

Statistical Analysis

Data analysis was performed using the computer software IBM SPSS Statistics for Windows
(Version 20.0). The t-Student test was used to evaluate statistical differences in the normalized
expression of the miR-155. In order to analyze the normalized relative expression (-ACt) of the
different groups, we considered the results corresponding to a 99% representation of the popu-
lation (X + 2SD).

Results
Genotyping/phenotyping and histological analysis

We observed the presence of HPV16 integration in 7 out of 14 animals (Table 2 and Fig. 1).
While wild-type mice did not develop any skin lesion, all mice with integrated HPV DNA dem-
onstrated, phenotypically, various degrees of persistent epidermal squamous hyperplasia and
hyperkeratosis, characteristic lesions associated with HPV infection as previously described
[19] (Fig. 2). After histologic evaluation, we observed that, in all cases with integrated HPV 16,
the ear tissues presented CIS, while the chest tissues showed only epidermal hyperplasia, while
wild-type mice showed normal skin histology (Fig. 3).

MiRNA-155 expression profile in tissues from wild-type mice

In order to study the miR-155 expression profile in normal tissues, we quantified its expression
in the ear and chest skin samples of the wild-type mice. We observed that the ear tissues had
lower expression levels when compared to chest tissues (p = 0.028) (Fig. 4A).

Mir-155 expression profile in tissues of transgenic mice

In order to study miR-155 expression in tissues from transgenic mice, we analyzed the samples
from ear and chest skin. We observed no statistical significant difference in miR-155 expression
levels between these groups (histologically presenting with CIS vs hyperplasia) (p = 0.538)

(Fig. 4B).

MiRNA-155 expression profile in normal chest skin versus hyperplastic
skin

In order to explore the possible influence of HPV16 on miR-155 during the early phases of
skin carcinogenesis, we studied its expression levels in wild-type (histologically normal) and
HPV16-transgenic (hyperplastic) chest skin samples. When comparing wild-type with trans-

genic chest skin, we observed that, transgenic skin had lower expression levels of miR-155 than
normal skin (p = 0,026) (Fig. 5A).
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494 bp —3

184 bp =———>

Figure 1. Mice genotyping. The presence of integrated HPV was assessed by amplification of HPV-E2 (b)
and HPV-EB6 (c) genes by polymerase chain reaction methodology (PCR) in-house. Samples 1 and 3 are
HPV+; sample 2 is HPV-. Mouse-B-globin gene was used as endogenous control (a). M: molecular weight
size marker: (a)100 bp, (b,c)50 bp; C-: negative control.

doi:10.1371/journal.pone.0116868.9001

MiRNA-155 expression profile in normal ear skin versus CIS

We also compared the relative miR-155 expression levels on ear tissues of transgenic (showing
CIS) and wild-type (showing normal skin histology) mice. Our data showed no statistical sig-
nificant difference in miR-155 expression levels between these groups (p = 0.484) (Fig. 5B).

Discussion

A large number of different biomarker microRNAs have previously been reported to be con-
nected to cellular transformation. Deregulation of miRNAs is intimately associated with the de-
velopment and progression of cancer [23,24].

In this context, microRNA profiling studies indicate that deregulation of miR-155 is fre-
quently linked with a wide range of malignancies, including various forms of lymphoma and
carcinomas of breast, lung, pancreas, head and neck, and kidney [25-28]. Furthermore, miR-
155 is detected during the immune response in activated mature B and T lymphocytes [29],
germinal centers B cells [17], and monocytes [16]. BIC/miR-155 knock-out mice exhibited im-
paired immune response and cytokine production [17], further supporting the vital role of
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Figure 2. Wild-type (--) and K14-HPV16 transgenic (+/-) mice. Transgenic mice show a hunched position,
partial thoracic and cephalic alopecia, together with extensive hyperkeratosis and auricular erythema.

doi:10.1371/journal.pone.0116868.9002

miR-155 in immunology. Much of the current research in the field has implicated miR-155 in
promoting oncogenesis. Controversially, recent studies report anti-oncogenic effects of miR-
155 [11,12]. Interestingly, these authors found that miR-155 knockdown in myeloid cells facili-
tated breast cancer development in mice. Some novel concepts that arose from the analysis of
these papers were that miR-155 is not only a promoter of some cancers, but may also act to pre-
vent cancer by promoting proper immune function.

It is accepted that HPV infection is the most important factor for transition from normal
cervical epithelium to cervical preneoplastic lesions, intraepithelial neoplasia and, subsequent-
ly, to invasive cervical cancer [30,31]. The influence of others factors, including the host micro-
environment, remains poorly defined. Specifically, in cervical cancer, the most important
HPV-associated tumor, no conclusive evidence concerning the relation between HPV and
miR-155 expression has been reported. There have been studies on miRNA expression in head
and neck cancers reporting miR-155 to be upregulated in oral cancer compared to normal oral
tissue [32-34]. However, when compared HPV-positive with HPV-negative squamous cell car-
cinoma of the head and neck cell lines, this miRNA was downregulated in the presence of
HPV-16 DNA [35].

K14-HPV16 transgenic mice are a useful experimental model for studying progressive,
multistep HPV-induced carcinogenesis. The FVB/n mouse strain has been shown to be partic-
ularly prone to HPV-driven carcinogenesis, as other mouse strains (e.g. Balb/c, C57Bl/6, SSIN/
SENCAR) bearing an identical transgene, failed to develop invasive carcinomas [5]. This early
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Figure 3. Histology of wild-type and transgenic mice. a) Wild-type (-/-) female FVB/n mouse. Chest skin
showing normal histology. H&E, 200x bar = 50um b) K14-HPV16 transgenic (+/-) female FVB/n mouse. Chest
skin showing epidermal hyperplasia and orthokeratotic hyperkeratosis. Note increased number of epidermal
strata with conserved orderly squamous differentiation. ¢) K14-HPV16 transgenic (+/-) female FVB/n mouse. Ear
skin showing in situ carcinoma. Note loss of epidermal stratification and progressive differentiation, presence of
suprabasal mitotic figures and anisocytosis and abrupt parakeratotic keratinization with hyperkeratosis. The
underlying stroma exhibits intense mixed inflammatory cell infiltration and neovascularization.

doi:10.1371/journal.pone.0116868.9003

observation already highlighted the key role of host factors in the development of HPV-
induced cancers. Thus, the characterization of miRNA expression levels in this model animals
may be a useful strategy for understanding the mechanisms carcinogenesis associated with
HPV.
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Figure 6. Overview of genotyping, histological and miR-155 profiling results. MiR-155 levels are
significantly higher in normal chest skin compared with ear skin samples. Targeted expression of HPV-16
oncogenes to basal keratinocytes leads to multistep skin carcinogenesis—transgenic ear skin samples
showed CIS while chest samples showed epidermal hyperplasia. Hyperplastic (chest) skin samples showed
a significant miR-155 downregulation compared with matched wild-type samples. No differences were
observed between wild-type and transgenic ear samples or between transgenic ear and chest samples.

doi:10.1371/journal.pone.0116868.9006

Cutaneous squamous cell carcinoma develops in multiple locations through well-defined
steps. In the present study 22-26 weeks-old transgenic animals (HPV16+/-), showed CIS in all
ear skin samples, whereas chest skin samples only showed epidermal hyperplasia. This provid-
ed an opportunity to study miR-155 expression levels in different phases HPV16-induced car-
cinogenesis. Our results (Fig. 6) indicate that, among wild-type mice (HPV-/-), the expression
of miR-155 is lower in ear skin tissue compared with chest skin (p = 0.028). Also, we observed
that hyperplastic chest skin presented lower levels of miR-155 compared with normal chest
skin (p = 0,026). Based on these results, miR-155 expression levels appear to be a significant
microenvironmental factor involved in the development of HPV-associated lesions. Specifical-
ly, these results suggest that downregulation of miR-155 may be involved in HPV16-driven
early hyperplastic lesions.

In agreement with our findings, a recent study reports that miR-155 acts as a tumor sup-
pressor in human Caski cervical cancer cells (carrying HPV16 DNA). Moreover, it was demon-
strated that p53 expression is upregulated by miR-155 overexpression [36]. Recent study
indicates that miR-155 overexpression results in decreased cyclin D1 to p21 ratio, suggesting a
role in inhibiting cell proliferation [37,38].

Previous reports concluded that interleukin 10 (IL-10) downregulates miR-155 expression
post-transcriptionally [39]. Also, women who are genetically programmed to produce high or
moderate levels of IL-10 are more likely to develop cervical cancer, compared to individuals ge-
netically predisposed to present low IL-10 production [40]. Our results are in accordance with
these reports, suggesting that miR-155 may direct HPV16-induced pathological processes to-
wards hyperplasia rather than malignant transformation.

Other study indicates that miR-155 acts as a positive regulator of interferon gamma (IFN-v)
production [41] and the increase of IFN-y enhances susceptibility of cervical cancer cells to
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lysis by tumor-specific cytotoxic T cells [42]. Also, previous reports concluded that miR-155
targets important oncogenes such as B-cell lymphoma 2 (BCL2), which regulates apoptosis
[43]. These data may explain the relation between low miR-155 expression levels and
cancer development.

Our results showing the decrease of miR-155 expression levels in hyperplastic skin com-
pared with normal chest skin may be explained in the light of these previous reports, including
the loss of p53 and the increased of p21 and BCL2, the upregulation of IL-10 and the decrease
of IFN-v levels, promoting an epidermal hyperplasia.

Despite the acknowledged functions of miR-155 in various cancers, further studies are
needed to clarify its contribution of theses miRNAs in immunomodulation, and its interaction
with cell signaling pathways. Our results suggested that it might be related to the induction of a
microenvironment less favorable for HPV-induced carcinogenesis. In conclusion, the data dis-
cussed in this article relates a possible anti-oncogenic effect of miR-155. These findings are im-
portant in determining the possible role of miR-155 expression in differential tissue
predisposition to cancer development.
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