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Abstract 

Nowadays, satellite radar altimetry plays an essential role in the monitoring of the sea level rise, 

consequences of the climate changes that society presently faces. The determination, at a global scale, 

of the sea surface height (SSH), by means of this remote sensing technique, requires a set of corrections 

that impact directly this SSH estimation, as any error in the required fields can be wrongly interpreted 

as SSH variation. Among the required corrections of the altimeter observations, this thesis addresses 

the tropospheric corrections – dry tropospheric correction (DTC) and wet tropospheric correction 

(WTC), aiming at analysing and developing improved methodologies for their estimation, namely 

over coastal zones and inland waters, where their handling is still problematic. 

The accurate determination of the DTC is quite simple, while the estimation of the WTC over 

these regions of interest is more challenging. The most accurate way to measure the WTC is from 

microwave radiometers (MWR) on board altimetry satellites. Since the algorithms to retrieve the 

WTC from these instruments are only tuned for open ocean observations, their retrievals deteriorate 

towards the non-oceanic surfaces and become invalid over coastal and continental waters. 

Due to this limitation, alternative methods are required to estimate the WTC in these regions, e.g., 

by combining WTC measurements from external sources, which may be acquired at different 

altitudes. Thus, the combination of these observations requires an additional step: the conversion of 

the different WTC to the same reference altitude. Additionally, the WTC retrieval algorithms from 

MWR observations require regular updates and a specific tuning for each mission. 

The general goal of this study is the development of enhanced methodologies to retrieve the DTC 

and WTC over coastal and continental water zones.  In this context, the main objectives of this thesis 

are firstly the modelling of the WTC altitude dependence, to better combine the different WTC, and 

secondly the development of an improved WTC retrieval algorithm from MWR measurements with 

a focus on the Sentinel-3 mission. 

Concerning the first objective, an improved modelling of the WTC vertical distribution was 

developed, considering exponential functions with decay coefficients dependent on geographic 

location and period of the year, by means of 3-D fields provided by an atmospheric model. 

Independent comparisons reveal that, with respect to the use of a single coefficient, the error 

reduction with the proposed modelling can be larger than 1 cm. Regarding the second objective, an 

improved WTC retrieval algorithm has been developed, better tuned for MWR on board Sentinel-3 

satellites, showing a significant decrease in the WTC retrieval error, which can reach almost 1 cm over 

some regions. Both developments are a significant contribute to improve the accuracy of the WTC of 

altimetric satellites. 

An additional set of studies have been conducted, aiming at the general goal of improving the 

tropospheric corrections for altimeter observations. These include the inspection of the tropospheric 

corrections of CryoSat-2 over inland waters, the comparison between Global Navigation Satellite 

Systems (GNSS) and MWR-derived WTC in coastal regions and the estimation of the WTC from the 

most recent atmospheric models. It has been shown that i) the accurate determination of the DTC is 
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straightforward, however some wrong procedures relative to its altitude dependence are still 

common, leading to significant systematic errors in current satellite products; ii) the comparison 

between GNSS and MWR shows the distance from coast (10-30 km) where MWR-derived WTC 

becomes invalid and iii) despite its improved temporal resolution (1h), the most recent atmospheric 

model (ERA5) is still not able to map WTC short space and time scales. 

The overall contribution of this thesis is a better estimation of the sea surface height from satellite 

altimetry, both in open ocean and in coastal zones and inland waters, by means of proper 

methodologies and improved algorithms for the retrieval of tropospheric corrections, with direct 

impact on the SSH determination. Thus, improved water surface monitoring brings a better 

knowledge of the oceans and continental waters. 
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Resumo 

Atualmente, a altimetria radar por satélite desempenha um papel essencial na monitorização da 

subida do nível do mar, consequências das alterações climáticas que a sociedade enfrenta atualmente. 

A determinação global da altitude da superfície do mar (sea surface height, SSH), por meio desta técnica 

de deteção remota, requer um conjunto de correções que afetam diretamente esta estimação da SSH 

(qualquer erro nos campos necessários pode ser erradamente interpretado como uma variação da 

SSH). Entre as correções das observações altimétricas necessárias, esta tese aborda as correções 

troposféricas – a correção devida à componente seca (dry tropospheric correction, DTC) e a correção 

devida à componente húmida da troposfera (wet tropospheric correction, WTC), com o objetivo de 

analisar e desenvolver metodologias melhoradas para as suas estimativas, nomeadamente sobre 

zonas costeiras e águas interiores, onde os procedimentos ainda são problemáticos. 

A determinação da DTC com grande exatidão é bastante simples, enquanto a determinação da 

WTC sobre estas regiões de interesse é mais desafiante. A forma mais precisa de medir a WTC é a 

partir de radiómetros de micro-ondas (microwave radiometer, MWR) a bordo dos satélites altimétricos. 

Uma vez que os algoritmos para determinar a WTC a partir destes instrumentos apenas são ajustados 

para observações sobre oceano aberto, as correspondentes correções deterioram-se em direção às 

superfícies não oceânicas e tornam-se inválidos sobre águas costeiras e continentais. 

Devido a esta limitação, métodos alternativos são necessários para determinar a WTC nestas 

regiões, por exemplo, combinando medições de WTC de fontes externas, que podem ser adquiridas 

a diferentes altitudes. Assim, a combinação destas observações requer uma etapa adicional: a 

conversão das diferentes WTC para a mesma altitude de referência. Além disso, os algoritmos de 

determinação da WTC a partir das observações dos MWR requerem atualizações regulares e um 

ajuste específico para cada missão. 

O objetivo geral deste estudo é o desenvolvimento de metodologias melhoradas para determinar 

a DTC e a WTC sobre zonas de águas costeiras e continentais. Neste contexto, os objetivos principais 

desta tese são, em primeiro lugar, a modelação da dependência da WTC com a altitude, para melhor 

combinar as diferentes WTC e, em segundo lugar, o desenvolvimento de um algoritmo melhorado 

para a determinação da WTC a partir de medidas de MWR, com foco na missão Sentinel-3. 

Relativamente ao primeiro objetivo, foi desenvolvida uma modelação melhorada da distribuição 

vertical da WTC, considerando funções exponenciais com coeficientes de decaimento dependentes 

da localização geográfica e do período do ano, utilizando campos 3-D fornecidos por um modelo 

atmosférico. Comparações independentes revelam que, em relação ao uso de um único coeficiente, a 

redução do erro com a modelação proposta pode ser superior a 1 cm. Em relação ao segundo objetivo, 

foi desenvolvido um algoritmo melhorado para a determinação da WTC, ajustado para o MWR a 

bordo dos satélites da missão Sentinel-3, mostrando uma diminuição significativa no erro da WTC, 

que pode chegar a quase 1 cm em algumas regiões. Ambos os desenvolvimentos são uma contribuição 

significativa para melhorar a precisão da WTC dos satélites altimétricos. 
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Um conjunto adicional de estudos foi realizado, tendo como objetivo geral melhorar as correções 

troposféricas para as observações altimétricas. Estes incluem a análise das correções troposféricas do 

CryoSat-2 em águas interiores, a comparação entre a WTC obtida com Sistemas Globais de Navegação 

por Satélite (Global Navigation Satellite Systems, GNSS) e a derivada do MWR em regiões costeiras e o 

cálculo da WTC a partir dos modelos atmosféricos mais recentes. Foi demonstrado que i) a 

determinação precisa da DTC é simples, no entanto alguns procedimentos errados relativos à sua 

dependência com a altitude ainda são comuns, levando a erros sistemáticos significativos nos 

produtos de satélite atuais; ii) a comparação entre GNSS e MWR mostra a distância à costa (10-30 km) 

onde a WTC obtida com MWR se torna inválida e iii) apesar da sua resolução temporal melhorada 

(1h), o modelo atmosférico mais recente (ERA5) ainda não é capaz de mapear as pequenas escalas 

espaciais e temporais da WTC. 

A contribuição geral desta tese é uma melhor determinação da altitude da superfície oceânica a 

partir de altimetria por satélite, tanto em oceano aberto como em zonas costeiras e águas interiores, 

por meio de metodologias adequadas e algoritmos melhorados para a determinação das correções 

troposféricas, com impacto direto na determinação da SSH. Assim, uma melhor monitorização da 

superfície da água traz um melhor conhecimento dos oceanos e das águas continentais. 
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1. Introduction 

Nowadays, climate change is one of the most pressing issues for the society. The global climate 

system is complex and the Earth’s dynamic processes, at a variety of scales, are fundamental in 

ensuring suitable conditions for the humankind. However, whether by natural fluctuations of the 

climate system or human activity, the Earth is changing. The extent and speed of climate changes, 

and consequently, the need for urgent climate action, plays a serious and imperative challenge for 

the human security. 

To address the current climate crisis, several international organizations have been attentive to 

various climate change indicators. The World Meteorological Organization (WMO) report on the 

State of the Global Climate uses key indicators to describe the climate change, such as the 

temperature, the ocean heat, the sea level, the glacial mass, and the sea ice (WMO, 2020). On the other 

hand, to address the global challenges that humanity presently faces, including those related to 

climate and environmental degradation, United Nations (UN) defined clean water, climate action and 

life below water as some of the Sustainable Development Goals (UN, 2020). 

Concerning the climate change and the environmental degradation, the global warming and the 

consequent global sea level rise are clear indicators of the alarming changes in the Earth (IPCC, 2019). 

Currently, satellite radar altimetry is a powerful space technique, which allows a wide range of 

applications, with particular and first interest in the global sea level measurement and monitoring 

(Chelton et al., 2001; Escudier et al., 2017). Over the last 28 years, different altimeter missions 

combined with each other have been the human's eyes on the oceans, guaranteeing a continuous and 

permanent monitoring. Thus, this technique can give crucial information, at global scale, about 

several climate indicators mentioned above (Hamlington et al., 2020), required by the scientists and 

dedicated international institutions. 

 

1.1. Satellite Radar Altimetry 

Satellite radar altimetry is a remote sensing technique, originally designed to map the ocean 

surface topography (Chelton et al., 2001). Consequently, several important geophysical phenomena 

impacting the ocean surface topography can also be observed by means of this Earth observation 

technique, providing essential information on Earth and ocean dynamics (Oziel et al., 2020). 

Each space altimeter mission is composed of various instruments, which measurements, together 

with auxiliary data, modelling and several methodologies in a combined measurement system allow 

the determination of sea surface heights (SSH). While the principle of this determination is quite 

straightforward (Chelton et al., 2001; Escudier et al., 2017), measuring the SSH with an accuracy of a 

few centimetres (1-3 cm) is challenging, due to the complex observation system. Since the SSH 
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measurement is not simply the output of a single instrument, a wide variety of intermediate 

methodologies, data combination and processing are required. 

The primary sensor of an altimetry mission is the radar altimeter. This active instrument emits a 

radar pulse in the nadir direction and analyses the return signal reflected in the water surface. This 

way, the altimeter determines the distance (R) from the satellite to the water surface (altimeter range) 

by measuring the satellite-to-surface round-trip time of the radar wave. The satellite’s orbit altitude 

(S) above a reference Earth ellipsoid is known at each along-track point through precise orbit 

determination and the SSH is the difference between this altitude and the altimeter range, determined 

from the round-time of the altimeter signal (SSH = S - R). According to this altimetry principle, 

illustrated in Fig. 1, water surface height is determined above the same reference ellipsoid. 

 

 

Figure 1. Satellite altimetry principle (image from AVISO). 

 

Additionally, the processing of the return signal, known as retracking (Passaro et al., 2018), also 

allows to determine other geophysical parameters over the oceans, such as the significant wave 

heights (SWH) (Timmermans et al., 2020) and the modulus of the wind speed at sea surface, derived 

from the altimeter backscattering coefficient (σ0) (Lillibridge et al., 2014). This altimeter-derived 

parameter is a measurement of the power of the return signal, containing information about the wind-

induced sea surface roughness (Goddijn-Murphy et al., 2012). Calm waters generate high values of 

σ0, while rough waters generate low values of this altimeter-measured parameter. 

Almost three decades of radar altimeter observations, combined with improvements in data 

processing, modelling and external data, allowed reaching a centimetric accuracy on SSH 

determination and demonstrated the capability to observe a global mean sea level (GMSL) rise of 

about 3 mm/year since 1993 (Ablain et al., 2019; Cazenave et al., 2018). This altimetry-based GMSL 

rise is shown in Fig. 2 (for more details see (Cazenave et al., 2018)). 
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Figure 2. Global mean sea level (GMSL) time series based on satellite altimetry data (Cazenave et al., 2018). 

This retrieval of water surface heights with centimetric accuracy from satellite observations 

requires the knowledge of all terms involved in the altimeter measurement system with the same 

level of accuracy (Benveniste et al., 2019; Vignudelli et al., 2019). Thus, to obtain accurate SSH from 

altimeter observations, several accurate measurements and corrections in a proper data processing 

are required. The following corrections are taken into account: 

i. range corrections – to account for the delay in the radar pulses propagating in the 

atmosphere (atmospheric corrections) and for the interaction with the sea surface (sea state 

bias); 

ii. geophysical corrections – to account for the sea level variability due to tides and 

atmospheric pressure; 

iii. instrumental corrections (relative positioning of antennas, internal delays, etc.). 

The interaction of the altimeter signals with the atmosphere (troposphere and ionosphere) 

induces a delay in the signal propagation, due to the atmospheric refractivity (Fernandes et al., 2021). 

This effect is treated separately for the dry troposphere, wet troposphere and ionosphere, by means 

of the dry tropospheric correction (DTC), wet tropospheric correction (WTC) and ionospheric 

correction (IC), respectively, in the altimetric equation that calculates SSH. These corrections take into 

account the delay in the altimetric signal due to dry gases in the troposphere (DTC), water vapour 

and cloud liquid water in the troposphere (WTC) and electrons in the ionosphere (IC). 

Concerning the ionospheric correction, it is determined using dual-frequency altimeters, since 

this effect is strongly dependent on frequency. The IC has mean values of 2–8 cm and a standard 

deviation of 1–3 cm for the frequencies and altitudes at which the current altimeters operate 

(Fernandes et al., 2021). 

Among the range corrections, DTC and WTC are the focus of this thesis. These radar altimeter 

atmospheric path delays are significant error sources that must be properly accounted for (Vignudelli 
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et al., 2019), otherwise they may be the main source of uncertainty in the water surface level 

determination from radar altimetry (Fernandes et al., 2014).  

Satellite radar altimetry was originally designed for ocean application. For this reason, the 

instrument data processing and every intermediate methodology were primarily tuned for ocean 

surfaces. However, this space technique started to be used over coastal and inland waters (Tong et 

al., 2016), where its application is more challenging than over open ocean. Concerning the 

tropospheric corrections, their determination over these regions of interest can be less accurate and 

require additional efforts. The specificity of each one, both in terms of determination and in terms of 

particular problems over non-ocean surfaces, will be addressed separately in the next sub-sections. 

 

1.1.1. Dry Tropospheric Correction (DTC) 

The dry tropospheric correction is the largest range correction in satellite altimetry, accounting 

for nearly 90% of the total delay caused by the troposphere. It accounts for the delay in the signal 

propagation due to the existence of dry neutral gases in the atmosphere and is proportional to the 

surface pressure (DTC in cm is roughly 0.23 times the surface pressure in hPa) (Chelton et al., 2001). 

While the sea level pressure (SLP) ranges approximately from 980 to 1035 hPa, the DTC has an 

absolute value at sea level of about 2.3 m and a range of about 0.2 m.  

For the lower troposphere, DTC has an almost linear height dependence (nearly 1 cm per each 40 

m) and it is determined with high accuracy from surface atmospheric pressure (in situ measurements 

or from a Numerical Weather Model (NWM)). Previous studies (Fernandes et al., 2014; Fernandes et 

al., 2013) have showed that the DTC can be computed from NWM with an accuracy better than 1 cm 

globally. In particular, over coastal and inland waters, the same accuracy can be achieved if the 

correction is computed at surface height, taking into account adequate procedures and accurate 

surface elevations. 

The most common sources of atmospheric pressure used in the context of tropospheric corrections 

of altimeter observations are the atmospheric models from the European Centre for Medium-Range 

Weather Forecasts (ECMWF). Fernandes et al. (2013) showed that DTC can be estimated with an 

accuracy of a few millimetres from global grids of atmospheric pressure at sea level and an 

appropriate digital elevation model (DEM). 

Fig. 3 shows an example of the DTC for pass 13 (cycle 10) of Sentinel-3A (S3A). The top left panel 

represents the DTC in meters, while the bottom left panel illustrates the corresponding altitude in 

meters. The right panel shows the planimetric representation of this S3A pass, where the background 

colour represents the surface pressure in hPa. The dry correction is that present in the S3A products 

(estimated from ECMWF model) and the altitude from Altimeter Corrected Elevations 2 (ACE2) DEM 

is also available in the same products. The corresponding surface pressure is that provided by ERA5. 

This example shows the main characteristics of the DTC: 

i. An absolute value at sea level of about 2.3 m; 

ii. Low variation at sea level; 
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iii. A direct dependence on surface pressure (DTC is proportional to surface pressure); 

iv. A strong and almost linear dependence with altitude (an increase of 2500 m in altitude is 

equivalent to a decrease in the absolute value of the DTC of about 60 cm, roughly 1 cm in 

DTC for every 40 m in altitude). 

 

 

Figure 3. DTC in m (top left), altitude in m (bottom left) and planimetric view (right) of the S3A pass 13, cycle 

10. Background colour of the right panel represents the surface pressure in hPa provided by ERA5. 

 

Due to the strong height dependence of the DTC, some state-of-the-art methodologies (and 

altimeter products) fail to provide the DTC appropriate for coastal and inland water studies, due to 

inadequate handling of its height dependence (Fernandes et al., 2014). Since satellite altimetry is 

primarily designed for studies over the ocean, over this surface this dependence does not exist, and 

the methodologies are not suited for non-ocean surfaces. The DTC present in some altimetric products 

may have significant errors in coastal and inland water regions, which have been reported by several 

authors (Fernandes et al., 2014). 

The main issue of this range correction is the adoption of the correct altitude of the measurement 

point, since once it is adopted, the DTC is easily determined with centimetric accuracy for altimeter 

observations. Despite being the largest range correction in satellite altimetry, if an adequate handling 

of its height dependence is adopted, errors below 1 cm are expected for this correction, either for open 

ocean or coastal zones. 

More details about DTC are given in Sections 2.1 and 2.2, namely about its determination from 

global grids provided by an atmospheric model. 
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1.1.2. Wet Tropospheric Correction (WTC)  

The wet tropospheric correction can be a major source of uncertainty in the determination of SSH 

from radar altimetry (Fernandes et al., 2015). It accounts for the delay in the signal’s propagation in 

the atmosphere due to the water vapour and cloud liquid water. With an absolute value less than 50 

cm, the WTC is highly variable, both in space and time (Vieira et al., 2019). This correction mainly 

depends on the integrated amount of atmospheric water vapour. The WTC also depends on the 

integrated amount of liquid water, however with a very small contribution (Fernandes et al., 2021). 

Typical values of this contribution are less than 5 mm, almost negligible compared to the dominant 

contribution from the integrated water vapour (Escudier et al., 2017). 

 

 

Figure 4. Mean (top panel) and standard deviation (bottom panel) of the WTC computed at surface level from 

an atmospheric model, considering 1 year of data. 
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Due to this major dependence on the integrated amount of water vapour, the spatial patterns of 

the WTC are very similar to those of the atmospheric humidity. Fig. 4 shows the mean (top panel) 

and standard deviation (bottom panel) of the WTC over an entire year (2017). While the maximum 

absolute mean values are around 35 cm for low latitudes, the standard deviation can reach 12 cm in 

the tropics, as represented in the bottom panel of Fig. 4. Unlike the DTC, the WTC has smaller absolute 

values (mean values in the range 0-35 cm) and much larger variability, up to 50% of the signal 

(Fernandes et al., 2021). 

The WTC can be estimated using several sources, however considering the high spatial and 

temporal variability of the WTC, the most accurate way to retrieve the WTC over open-ocean is from 

collocated measurements from Microwave Radiometers (MWR) deployed on-board the altimetry 

satellites. Since WTC plays a major role in the altimeter error budget, dedicated retrieval techniques 

are required. Currently, for ocean altimetry missions, only microwave radiometers providing WTC 

retrievals collocated with the altimeter measurements can meet the stringent requirements (Legeais 

et al., 2014; Stum et al., 2011). 

Despite this crucial role of the MWR-derived WTC over open-ocean, the MWR retrievals are not 

valid over non-ocean surfaces, as it will be stated below. Other alternatives exist for the determination 

of the WTC. It can also be derived from an NWM, this being the best approach for continental regions 

in the absence of alternative dedicated measurements (Fernandes et al., 2014; Legeais et al., 2014). 

Global Navigation Satellite Systems (GNSS) derived tropospheric delays are also alternative accurate 

data sources (Fernandes et al., 2013; Sibthorpe et al., 2011), namely in coastal zones and generally over 

the continents. 

While MWR retrievals refer to sea level, the WTC derived from an atmospheric model are 

available at the level of the model orography, a smoothed DEM. The corresponding corrections from 

GNSS are computed at station height. Due to these different reference surfaces, the modelling of the 

height dependence of the WTC is a crucial step to combine these different data for satellite altimetry 

studies over these regions, where the difference between orography and water levels induces large 

WTC errors (Fernandes et al., 2014). The only known formula for the height dependence of the WTC 

available in the literature is an empirical expression by (Kouba, 2008) with various limitations, since 

it was derived from data over a single point and only between two heights. 

Regarding the WTC from MWR, this retrieval uses the MWR measured top of the atmosphere 

(TOA) brightness temperatures (TB) at various frequencies around the 22.235 GHz water vapour 

absorption line. Every instrument on board the different altimetry satellites has a common 23.8-GHz 

channel (water vapour channel) that captures the major contribution of the water vapour to the WTC 

estimation. A higher frequency band is also used to capture the contribution of the cloud liquid water. 

This second channel, known as cloud liquid channel, ranges from 34 to 37 GHz, depending on the 

mission. Some radiometers use a third channel at 18.7 GHz that includes additional information about 

the surface contribution in the TBs measurements. These three MWR frequencies have shown to be 

the most well-suited for measuring the wet path delay (Keihm et al., 1995). 
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The lack of the third frequency in some radiometers brings the need of using other additional 

parameters in the retrieval algorithm as a proxy for the surface information (Obligis et al., 2006, 2009; 

Picard et al., 2015; Thao et al., 2015). More details are given in Section 4.2. 

The conversion of raw MWR measurements into altimeter wet tropospheric corrections can be 

divided into three levels of processing (as illustrated in Fig. 5): 

1. the antenna temperature calibration (Ruf et al., 1995), where the raw MWR data are 

converted into antenna temperatures; 

2. the antenna pattern correction (APC), where the brightness temperature is derived from 

the antenna temperature (Janssen et al., 1995); 

3. the retrieval algorithm, where the brightness temperatures at each MWR frequency are 

converted to wet tropospheric corrections (Ruf et al., 1996). 

This thesis addresses this third step, illustrated in Fig. 5 with dark colours (where the previous 

steps are represented with light colours). The estimation of the WTC from the TBs is complex and 

cannot be solved by a purely physical approach. The retrieval needs an empirical inversion to 

establish the relation between TBs and WTC. Different methods exist in the building of the database, 

the empirical method used for the inversion, and the design of the retrieval algorithm. More details 

are given in Section 4.2. 

 

 

Figure 5. Processing chain of the WTC retrieval from MWR measurements. 

The WTC derived from the measured brightness temperatures of the various MWR channels 

depends on the instruments and retrieval algorithms that can be different in each altimetric mission. 

Originally designed for the ocean, these algorithms are only tuned for ocean observations. In the 

presence of other surfaces, such as land or ice, the MWR measurements become invalid. This problem 

in coastal regions and high latitudes has been addressed by several authors and various algorithms 

have been designed for improving the WTC in these regions, e.g. (Brown, 2010; Fernandes et al., 2010, 

2016). For a review of these methods see (Cipollini et al., 2017) and (Fernandes et al., 2021). 

Requirements on accuracy and long-term stability of the WTC measurements are particularly 

challenging since altimetry missions require centimetric accuracy in WTC and a temporal stability 

better than 0.3 mm/year (Ablain et al., 2009). 

More details about the WTC are given in the following sections, namely about its determination 

from global grids provided by an atmospheric model, GNSS and MWR measurements for radar 

altimetry. 
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1.2. Objectives 

The focus of this thesis is the determination of tropospheric corrections for satellite radar altimetry 

over coastal regions and inland waters by developing improved techniques for retrieving these 

corrections and consequently improving the water surface height measurements in these regions. 

In this context, the main objectives of this thesis are: 

1. to model the altitude dependence of the wet tropospheric correction in coastal zones and 

inland waters and develop adequate methods for computing these corrections for satellite 

altimetry measurements over these regions; 

2. to exploit and develop an improved algorithm for the retrieval of the WTC from MWR 

measurements, namely for two-band radiometers such that of Sentinel-3 (S3), by a suitable 

learning and appropriate handling of the contribution of the surface in the MWR 

measurements (a weakness in the 2-band MWR such as that of S3). 

These topics are complementary, since a better modelling of the height dependence of the 

tropospheric corrections will improve data combination from different sources (MWR, GNSS and 

NWM), while the improvement of MWR retrieval algorithms will directly lead to more accurate 

surface heights in the target regions. Moreover, with the advent of more accurate high rate data sets 

from the new instrument modes, there is an increase demand for the retrieval of high rate range 

corrections using appropriate methodologies, both concerning the MWR retrieval and the handling 

of the height dependence of the tropospheric corrections. 

Although the challenges posed by the coastal and inland water zones are the main motivation for 

the first objective, some of the potential improvements can be extended also to open-ocean. On the 

other hand, the second objective relative to the open ocean allows some initial exploitations and 

developments, useful for future WTC retrieval algorithms from MWR over coastal regions 

(ocean/land transition), known by their additional challenges. 

The determination of altimeter-derived water surface heights either in open ocean or in e.g. rivers, 

lakes or enclosed seas with a better accuracy (by means of better tropospheric corrections) will 

support a proper use and management of the water resources, with effect in the climate changes and 

their impacts. 

This thesis was carried out at FCUP, in the scope of various European Space Agency (ESA) funded 

projects, which aimed at developing methodologies for improving the CryoSat-2 (CS-2) and S3 data, 

mainly over coastal and inland water zones. The outcome of this thesis was a significant contribution 

to the improvement of the tropospheric corrections of these satellites over those regions. 

 

1.3. Thesis Outline 

The core of this thesis is a collection of five articles (at present, four already published and one 

under review) as described in what follows. Section 2, composed by the first three articles, describes 

the work mainly with a component of analysis and application. This section addresses the analysis of 
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tropospheric corrections over inland waters, the assessment of the land contamination in the MWR-

derived WTC retrievals over coastal zones, as well as the study of the inability of the recent 

atmospheric models in mapping the small scales of the WTC, despite their increasing quality. After 

these analyses, Sections 3 and 4 (fourth and fifth articles, respectively) present the work performed 

in the scope of this thesis, with a component of development. These two sections correspond to the 

two main objectives of this thesis. 

Overall, the research performed in the first three articles (Section 2) allowed the consolidation of 

the state-of-the-art and the identification of the current problems, the maturation of the objectives, as 

well as the motivation for the subsequent work described in Sections 3 and 4.  

1.3.1. Articles 1-3 

Section 2.1 contains the first article published in Advances in Space Research (ASR) on 9 

September 2017. This analysis, carried out in the scope of the ESA-funded Sentinel-3 Hydrologic 

Altimetry Processor prototypE (SHAPE) project, focuses on both tropospheric corrections over inland 

waters. 

Different regions of interest (ROI) have been selected in the scope of this project, in order to assess 

the tropospheric corrections of the altimeter observations over these regions. The objectives of this 

study were firstly the analysis of the errors present on the DTC and WTC provided in the CryoSat-2 

(CS-2) products and secondly the implementation of methodologies to derive improved corrections, 

aiming at getting improved products for CS-2. This analysis was conducted on five ROI: Amazon and 

Danube rivers, Titicaca and Vanern lakes and the Caspian Sea. 

Different methodologies and data processing have been used, in order to compare the DTC and 

WTC from the CS-2 products with corrections computed from an ECMWF model at various levels 

(model orography, a DEM and mean sea/lake or river profile). Additionally, a validation of the 

corrections has also been performed by local comparisons with independent observations: DTC 

computed from in-situ surface pressure measurements and WTC derived from GNSS tropospheric 

path delays, according to the availability of these data over each region of interest. 

Results of this paper showed that the tropospheric corrections present in CS-2 products are not 

referred to the correct surface elevation. Different reference altitudes may depart from the mean river 

profile or mean lake/sea heights (the levels of interest) by hundreds of meters, resulting on systematic 

errors, always with the same sign and magnitude for a given location (impacting directly the 

determination of the absolute water level). This paper also identifies the best reference surfaces for 

use in the DTC and WTC estimations from an atmospheric model, i.e., the corrections should be 

referred to the mean lake/sea level or to the mean river profile. Once this is ensured, the 

corresponding errors are expected to be less than 1 cm for the DTC and less than 2 cm for the WTC. 

Focusing on the analysis of the tropospheric corrections over inland waters, where atmospheric 

models may be the only source available, the contribution of this article is the recommendation of a 

set of procedures for the proper handling of these corrections over these regions. Selecting the correct 

approach, large errors still present in the tropospheric corrections are easily avoidable. 

https://www.sciencedirect.com/science/article/pii/S027311771730635X
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Section 2.2 presents the second article published in IEEE Transactions on Geoscience and Remote 

Sensing (TGRS) on 5 October 2018. After analysing the tropospheric corrections over inland waters 

and ensuring a proper determination as far as an atmospheric model allows, this work addressed 

only the WTC over coastal zones, since the DTC estimation over these regions is not problematic and 

it is performed with enough accuracy (as in open ocean).  

The contribution of this article is a complete coastal assessment of the MWR-derived WTC on 

board the various altimeter satellites. The GNSS-derived WTC is a useful independent source to 

inspect the land effects on MWR observations and to monitor the long-term stability of these 

instruments, very relevant for climate studies. This study determines the distance from coast at which 

the WTC retrievals become invalid and should not be used (10 to 30 km, depending on mission, due 

to their different frequencies, footprint sizes and different MWR retrieval algorithms). For this 

purpose, reference tropospheric delays are computed at a network of 60 global GNSS stations, from 

which WTC are derived. The comparison between the MWR-derived wet tropospheric correction and 

the GNSS-derived WTC at the nearby coastal stations, clearly illustrates the effect of land 

contamination in the MWR measurements. Aiming at inspecting the long-term stability of the MWR 

measurements, these comparisons with GNSS show negligible differences and drifts smaller than 0.3 

mm/year. Another important contribution of this paper is to show the ability of the GNSS-derived 

path delay Plus (GPD+) algorithm developed at the University of Porto, to remove the land 

contamination in the WTC and to improve its retrieval.  

Motivated by the new and improved temporal resolution of the latest ECMWF reanalysis model, 

an assessment of its impact in the WTC computation for satellite altimetry is the topic of the third 

article in Section 2.3 also published in IEEE TGRS on 9 August 2019. 

This article concerns the analysis of the performance of the recent ECMWF reanalysis, ERA5, in 

the estimation of the WTC, namely a global assessment of the impact of the different temporal 

resolutions of ERA5 in the WTC computation. Despite the promising temporal high resolution (1h), 

this study revealed that the latest ECMWF reanalysis cannot also map the WTC short space and time 

scales, like its predecessor with a coarser temporal resolution (6h). 

Results show that the RMS of the differences between MWR-derived WTC and ERA5 is 1.2 cm, 

showing that the global quality of the recent models has been increasing significantly, particularly 

this recent ECMWF reanalysis. However, the effect of using 1h instead of 6h intervals (the temporal 

resolution of the previous ECMWF reanalysis) is very small and hourly intervals do not have a 

significant impact on the WTC from ERA5. This work shows that ERA5 is currently the best ECMWF 

model and that a temporal resolution of 3h is high enough to ensure the same accuracy as 1h. 

Despite the increasing quality of the atmospheric models, due to the high variation of the 

atmospheric humidity, valid retrievals of MWR and other observations are required to correct the 

altimetric measurements. This analysis reinforces the need of having observations from collocated 

MWR, since atmospheric models are not able to map the small space and time scales of the high 

variable water vapour. 

https://ieeexplore.ieee.org/document/8482488
https://ieeexplore.ieee.org/document/8482488
https://ieeexplore.ieee.org/document/8793218
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1.3.2. Article 4 

Section 3 contains the fourth article published in MDPI Remote Sensing on 11 December 2019. 

This work corresponds to the first main objective of this thesis and it is the first work with a 

component of development. 

In the scope of the WTC retrievals, such as the GPD+ methodology, there is a need to combine 

observations from different sources and reference surfaces. For this purpose, a conversion of WTC 

values between different altitudes is required. This paper presents the modelling of the WTC altitude 

dependence, a crucial step to better combine these different WTC values in coastal and continental 

waters and thus, better determine water surface heights from satellite altimetry over these regions. 

The only expression available for this altitude reduction, developed by Kouba (2008), is 

irrespective of geographic location and time. The objective of this paper is to develop improved 

expressions for this purpose. This modelling was performed from WTC vertical profiles computed 

globally from ERA5, using global 3-D fields of atmospheric temperature and humidity at pressure 

levels over 4 years (2010–2013). A thorough inspection of the shape of the WTC vertical profiles 

revealed that the most suitable adjusting function was an exponential, similar to that proposed by 

Kouba. Following this expression, the decay coefficient of this exponential function was modelled 

using least squares, considering a dependence on geographic location and period of the year. 

The output of the developed modelling consists of three sets of decay coefficients: 

• UP-01 – a single coefficient for each point (non-time-dependent), computed as the mean 

at each point; 

• UP-04 – four seasonally averaged coefficients for each location; 

• UP-12 – twelve monthly averaged coefficients for each point. 

Despite a clear annual signal in the coefficients in some regions, suggesting the inclusion of a 

temporal dependence, the most striking feature of the time evolution of the coefficients at each 

location is the high variation of these coefficients, making this modelling a very difficult task. Due to 

the high WTC vertical variability, the adjustment of the WTC vertical profiles to a mathematical curve 

becomes inaccurate, particularly over regions with large WTC space-time variability. This is 

particularly difficult when the WTC at the height of interest (for example sea level) is much more 

variable than the WTC at the known altitude (for example station location). 

An assessment using ERA5 data (not used in the modelling) and an independent validation of the 

proposed modelling was carried out, showing significant improvements when UP coefficients 

instead of Kouba are used. The most significant improvement appears when only spatially dependent 

coefficients are selected.  

The motivation for this modelling was its inclusion in algorithms and methodologies to generate 

improved WTC that combine different WTC data sources for satellite altimetry application, mainly 

over coastal and continental waters. The contribution of the models developed in this study is a better 

determination of WTC over these challenging regions, and thus a better retrieval of water surface 

heights over these regions of interest. 

https://www.mdpi.com/2072-4292/11/24/2973
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1.3.3. Article 5 

Section 4 pertains the fifth article, presently under review in Journal of Geodesy (JOGE), 

submitted on 9 November 2020. This study addresses the second main objective of this thesis and it 

also involves a component of development. 

The exploitation of the WTC retrieval algorithms from microwave radiometer observations is of 

particular interest for the Sentinel-3 mission for several reasons. Since the MWR on board Sentinel-3 

does not possess a third band near 18 GHz, to account for the surface contribution in the MWR 

measurements, the design of the corresponding algorithms is more challenging and needs additional 

inputs to overcome this instrumental limitation. Moreover, preliminary results indicate that 

improvements are required in the MWR-derived WTC present in S3 products, suggesting that the 

corresponding current retrieval algorithms are not well tuned for this mission. After exploiting these 

algorithms adopted in the Sentinel-3 products, this paper describes an improved algorithm for the 

retrieval of the wet tropospheric correction from MWR measurements over open-ocean, specifically 

tuned for Sentinel-3. This is carried out considering a suitable learning, temporally closer to the S3 

mission period and better accounting for the contribution of the surface in the MWR measurements 

(a weakness in the 2-band MWR such as that of S3), by means of including dynamic inputs, instead 

of seasonal tables as adopted in S3 products. 

Adopting dynamic inputs interpolated from an atmospheric model, accounting for the 

contribution of the surface in the WTC retrieval, it was found that the fifth input currently used in 

the S3 algorithm becomes unnecessary. The proposed algorithm uses four inputs: the two brightness 

temperatures at 23.8 GHz and 36.5 GHz, the Ku-band backscattering coefficient (σ0) and sea surface 

temperature fields from ERA5. Comparisons with reference and independent WTC show a significant 

improvement of this algorithm over the current algorithms (firstly designed for EnviSat). The same 

comparisons show that the global RMS of the WTC differences between the independent source and 

the proposed algorithm is lower than 1 cm. Moreover, the improvement of this algorithm over those 

adopted in Sentinel-3 products is globally more significant for distances from coast between 30 and 

250 km. 

The contribution of the work described in this paper is a significant improvement in the quality 

of the WTC derived from the algorithm here developed over those adopted in the Sentinel-3 data 

records. Hence, this paper proposes the use of a new WTC retrieval algorithm, tuned for Sentinel-3, 

providing improved wet tropospheric corrections for this mission, as well as for the GNSS-derived 

Path Delay Plus algorithm which extends the validity of this crucial range correction to all surface 

types. 

 

The sum of contributions of this thesis ends in a better and more accurate determination of water 

surface heights from satellite radar altimetry, by means of using improved tropospheric corrections. 

The main contributions of this thesis are therefore: 

https://www.springer.com/journal/190/?gclid=EAIaIQobChMIvtqZhd-Z7gIVkO5RCh0JKwdVEAAYASAAEgKCAPD_BwE
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• Improve procedures for the computation of the DTC and WTC from atmospheric models 

over inland waters, adopting adequate formulae and ensuring their computation at correct 

water surface heights. 

• Understand the land contamination in the MWR-retrieved WTC and the determination of 

threshold values of distance from coast where it appears, useful in the identification of 

invalid WTC values. 

• Exploit the GNSS-derived WTC to assess the long-term stability of on-board MWR. 

• Assess state-of-the-art NWM: recent atmospheric models are still not able to model the 

small scales of the WTC variability and are unable to produce WTC as accurate as that 

derived from MWR over open-ocean. 

• Develop an improved climatology of the WTC vertical variation, considering its space-

time dependence, generating an improved WTC estimation over regions where that 

derived from MWR is invalid, by means of a better combination of the available valid 

WTC. 

• Implement an enhanced algorithm for retrieving the WTC of Sentinel-3 over open-ocean, 

based on the S3 on-board MWR observations, with additional dynamic inputs.  

 

 

Since this thesis is a collection of five articles and each one has been published individually, the 

reader will find repeated information and ideas in different sections, mainly in the introductions of 

each article. Apart from the references and number of sections, which were unified throughout the 

whole document, the text in each article was kept in its original form. 
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2. Tropospheric Corrections  

of Satellite Altimetry observations  

over inland waters and coastal zones 

 

2.1. Analysis and retrieval of tropospheric corrections for 

CryoSat-2 over inland waters (Article 1) 

Abstract – The application of satellite altimetry over inland waters requires a proper modelling 

of the various error sources involved in the determination of precise surface water heights above a 

reference ellipsoid or above the geoid. 

The objectives of this study are firstly the analysis of the errors present on the dry tropospheric 

correction (DTC) and on the wet tropospheric correction (WTC) provided in the CryoSat-2 (CS-2) 

products and secondly the development of methodologies to derive improved corrections, aiming at 

getting improved products for CS-2. This study is conducted on selected regions of interest, such as 

the Amazon and Danube rivers, Titicaca and Vanern lakes and the Caspian Sea. Since CS-2 has a 

geodetic orbit, its ground tracks allow the retrieval of precise surface water heights over regions not 

covered by any other satellite. 

The DTC and WTC present in the CS-2 products have been compared against corrections 

computed from the European Centre for Medium-Range Weather Forecasts (ECMWF) operational 

model at various levels: (i) the level of ECMWF model orography; (ii) the level of the Altimetry 

Corrected Elevations 2 (ACE2) digital elevation model and (iii) the level of mean lake/sea or river 

profile. 

An independent assessment of the corrections has also been performed by comparison with DTC 

derived from in situ surface pressure measurements and WTC retrieved from Global Navigation 

Satellite Systems (GNSS) data. 

Results show that the model-derived corrections present on CS-2 products seem to be referred to 

the model orography, except for the Caspian Sea where corrections seem to be referred to mean sea 

level (zero level). Model orography can depart from the mean river profile or mean lake/sea heights 

by hundreds of meters. Overall, ACE2 DEM is a better altimetric surface than ECMWF orography, 

however height errors up to hundreds of meters exist in ACE2. Height errors induce DTC errors that 

can reach several centimetres (11 cm in the Danube River) and WTC errors up to 2–3 cm. These errors 
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are systematic, having always the same sign and magnitude for a given location, thus affecting the 

retrieval of the absolute water level. 

For rivers, the mean profile is the best representation of the surface height in the river basin and 

is also the best reference surface for use in the DTC and WTC estimations from an atmospheric model. 

The same happens with lakes or closed seas, where the corrections should be referred to the mean 

lake/sea level. 

Results show that, once computed at the correct mean river profile or mean lake/sea level, the 

DTC has a small variation, with a standard deviation going from 0.5 cm in the Amazon River to 3.0 

cm in the Danube River. The DTC absolute values go from 1.48 m in Lake Titicaca to 2.32 m in the 

Caspian Sea. With a larger variability, once computed at mean river profile or mean lake/sea level, 

the standard deviation of the WTC goes from 2.7 cm in Lake Titicaca to 5–6 cm in all other regions 

and absolute values from only 6 cm in Lake Titicaca to 31 cm in the Amazon River. 

Once computed at the correct surface elevation the corresponding errors are expected to be less 

than 1 cm for the DTC and less than 2 cm for the WTC. 

 

2.1.1. Introduction 

Satellite altimetry provides global information about sea and inland water levels and their 

variability. The principal objective is to measure the range from the satellite to the water surface 

(Chelton et al., 2001) and consequently to measure the sea surface height above a reference ellipsoid. 

Satellite altimetry was originally designed for applications over the ocean, however it has been used 

for applications over inland waters, which have a profound influence on human culture and society. 

The majority of the global population lives along the river system primarily due to easy access to 

water resources. Knowledge and prediction of the quantities of water flowing in rivers is of great 

importance in order to improve water allocation efficiency or to mitigate floods and droughts 

(Calmant et al., 2008). 

The application of satellite altimetry over continental water surfaces, such as rivers, lakes or 

closed seas, has been addressed by several authors (Birkett, 1995; Calmant et al., 2006; Cazenave et 

al., 1997; Crétaux et al., 2006). Some important examples of these applications over inland water 

regions are the assessment of lake-level variation, such as the Lake Chad basin and the Caspian Sea 

(Coe et al., 2004; Sharifi et al., 2013), the inland water bodies monitoring over the Indian region 

(Chander et al., 2014) and the estimation of the Amazon and Ganges-Brahmaputra rivers discharges 

(Papa et al., 2010; Zakharova et al., 2006). 

(Villadsen et al., 2016) addressed the application of SAR altimetry data from CryoSat-2 over 

inland waters, namely the improvement of water levels using different (empirical and physical) 

retrackers. The authors present a selection of papers on inland water altimetry which include 

comparisons between water levels obtained with altimetry and with in situ gauges. This provides an 

independent assessment of the water levels obtained over inland waters with satellite altimetry, 

considering all errors sources involved. 
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Depending on the way how these water levels are derived with satellite altimetry (retracking 

algorithms, corrections used, etc.), these studies allow to give an independent indicator of the 

accuracy of these water levels. For instance, the most recent study mentioned above indicates a root 

mean square error (RMSE) from comparison of altimeter-derived water levels with in situ gauges 

below 4 cm for two lakes and a value of 15.3 cm for a river. Results over rivers vary much more due 

to several reasons, such as land contamination (caused by topography and shape of the river) or a 

lower number of observations due to river widths. 

As over the ocean, the accuracy of the estimation of the water level for inland water bodies 

depends directly on the accuracy of the several corrections required to correct the measured range 

for various effects. For hydrological studies using satellite radar altimetry, various range and 

geophysical corrections, due to effects such as dry and wet troposphere, the ionosphere, solid earth 

tides, etc., should be taken into account. A proper modelling of the various corrections is a crucial 

step for satellite altimetry applications. 

Many authors (Birkett et al., 2011; Crétaux et al., 2011; Fernandes et al., 2014) have reported 

various problems in the corrections present on the current standard altimeter products for several 

missions, namely on the tropospheric corrections. However, previous studies show that the agencies 

did not always take these reports into account and the tropospheric path delays present in these 

products are often not suitable for use in inland water regions (Fernandes et al., 2014). These studies 

show that the main errors in model-derived corrections, present in altimeter products, over inland 

water regions are on the tropospheric corrections – dry tropospheric correction (DTC) and wet 

tropospheric correction (WTC), due to the height dependence of these range corrections. Altimeter 

products often fail to provide valid tropospheric path delays over these water bodies, since DTC and 

WTC are provided at other level instead of at surface height. To overcome these problems, alternative 

sources of corrections have been used, namely in continental waters. For the DTC in situ data of 

surface pressure can be adopted, while for the wet correction, Global Navigation Satellite System 

(GNSS)-derived WTC from local stations can be used, when available (Birkett et al., 2010). 

The focus of this study is the analysis of errors present in the dry and wet tropospheric corrections 

of the CryoSat-2 (CS-2) products over inland water bodies and the development of new improved 

corrections for this mission. Despite of the fact that this study is performed with CS-2 data, results 

can be applied to other altimetric missions, namely Sentinel-3. 

The primary payload of this satellite is the Synthetic Aperture Radar Interferometry Radar 

ALtimeter (SIRAL). Conceived to measure and monitor the changing thickness of ice in polar regions, 

CryoSat-2 does not carry an on-board microwave radiometer (MWR), being the baseline wet 

tropospheric correction applied to the radar altimeter data a model based one, provided by the 

European Centre for Medium-Range Weather Forecasts (ECMWF) Operational model. The loss of 

Envisat in 2012 fostered the development of techniques for exploiting CS-2 data over ocean and inland 

water regions (Fernandes et al., 2016). This mission has a geodetic orbit with a 369 day repeat cycle 

and a sub-cycle close to 30 days (Francis, 2007). Thanks to its very long repeat cycle, this mission 

allows to cover many regions, namely inland waters, where CS-2 is operating in the Synthetic 

Aperture Radar (SAR) and SAR Interferometric (SARIn) modes, rarely covered by other missions, 
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such as the reference missions (see Fig. 1). With an inter-track spacing at the equator of 7.5 km 

(Francis, 2007), this mission allows to obtain measurements over small rivers and lakes. 

 

 

Figure 1. Representation of the spatial coverage over Lake Titicaca of the various altimetric missions: 10-day 

repeat reference missions (yellow), 35-day ERS-1, ERS-2, ENVISAT and SARAL (black), Sentinel-3 (red) and 

CS-2 (blue). Light blue polygon represents Lake Titicaca. 

Previous studies (Fernandes et al., 2014; Fernandes et al., 2013) show that the DTC can be retrieved 

from atmospheric models with accuracy better than 1 cm globally. In particular, over inland waters, 

the same accuracy can be achieved if the correction is computed at surface height using adequate 

procedures and accurate surface elevations. 

For the WTC, over ocean surfaces and central parts of large lakes the best source of information 

is the on-board microwave radiometer, with an accuracy close to 1 cm. Over rivers, small lakes and 

whenever the water body is small compared to the radiometer footprint size (10–40 km, depending 

on the instrument and frequency), the best source for the WTC retrieval is an atmospheric model such 

as the ECMWF operational (Miller et al., 2010), after 2004, or the ERA Interim (Dee et al., 2011), before 

2004 (Fernandes et al., 2014; Legeais et al., 2014). Over these regions, even if a few radiometer 

measurements can be retrieved in the central parts of large river basins, they will be surrounded with 

noisy measurements due to land contamination and it will be almost impossible to discriminate 

between the good and bad measurements. For this reason the adoption of model-based WTC over 

rivers is recommended. 

Alternative and accurate data source for WTC retrieval are GNSS-derived path delays, accurate 

to better than 1 cm (Fernandes et al., 2013). 

It is important to note that these accuracies better than 1 cm for both DTC and WTC mentioned 

above neglect the effect of their height dependence. 

Aiming at inspecting the errors in the tropospheric corrections present on CS-2 altimetry products 

over inland waters, some regions of interest (ROI) have been selected – Amazon and Danube Rivers, 

Titicaca and Vanern Lakes and the Caspian Sea. These regions have been chosen to be representative 

of the different variability conditions for the DTC and the WTC. 
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The assessment of the errors in the tropospheric corrections present in CS-2 products is performed 

by means of two complementary analyses. First, the errors related with the height dependence of the 

DTC and WTC are examined by comparing the corrections present in CS-2 products with those 

computed at ECMWF model orography and at surface height, as modelled by a digital elevation 

model (DEM) and by a previously determined mean river profile or mean lake/sea level. This allows 

assessing the effect of the altitude variation in the DTC and WTC at each ROI. Secondly, the 

assessment of the absolute errors present in model-derived corrections, once computed at the correct 

surface height, is achieved by comparison with those derived by independent sources: in situ surface 

pressure at barometric stations for the DTC and GNSS-derived wet path delays at GNSS permanent 

stations for the WTC. Altogether, these analyses provide a full assessment of the model-derived 

tropospheric path delays present in CS-2 products of the selected ROIs. 

Section 2.1.2 presents a description of each tropospheric correction (DTC and WTC) and the data 

and methodology used to compute these path delays from an atmospheric model, at different surface 

heights. In Section 2.1.3, tropospheric path delays computed as described in Section 2.1.2 are used to 

assess the corresponding corrections provided on CS-2 products. Aiming at quantifying the errors 

related with the height dependence of the corrections, detailed altitude analysis has been performed 

for all regions of interest. Once the height variations in each region were quantified, the 

corresponding DTC and WTC errors were analysed. Secondly, an independent assessment of each 

correction is presented, with comparisons between model-derived tropospheric corrections from the 

ECMWF operational model, at surface height, using state-of-the-art methodologies and those 

computed from independent data (DTC from surface pressure and WTC from GNSS). Finally, Section 

2.1.4 summarizes the main conclusions of this research. 

 

2.1.2. Data and Methods 

As mentioned above, previous studies show that the main errors in the altimeter products over 

inland water regions are on the tropospheric corrections, DTC and WTC. On the other hand, for 

consistency and due to data availability, model-derived tropospheric corrections, properly computed 

at surface height, are most suitable over inland water regions. 

This Section describes both DTC and WTC and the way to compute these corrections from 

atmospheric model fields at different levels, since the altitude dependence of each correction is an 

important factor affecting their estimation. A description of the data used and the methodology 

adopted in the assessment of the tropospheric path delays in the various ROIs are also presented here. 

 

2.1.2.1. Dry tropospheric correction 
The dry tropospheric correction accounts for the delay in the signal propagation due to the 

existence of dry neutral gases in the atmosphere and it is the largest range correction in satellite 

altimetry. This correction, with an absolute value at sea level of about 2.3 m, accounts for nearly 90% 

of the total delay caused by the troposphere. It has an almost linear height dependence (nearly 2.5 cm 

per each 100 m) and it is usually modelled with high accuracy from in situ measurements of surface 



  20  

 

pressure or from an atmospheric model (Fernandes et al., 2014; Fernandes et al., 2013), for example 

from the ECMWF, using the modified Saastamoinen model (Davis et al., 1985), according to Eq. (1) 

as described in (Fernandes et al., 2014). 

 

 
𝐷𝑇𝐶 = −

0.0022768𝑝𝑠
1 − 0.00266 cos2𝜑 − 0.28 × 10−6ℎ𝑠

 (1) 

 

In Eq. (1), DTC results in meters, ps is the surface pressure in hPa, φ is the geodetic latitude and hs 

is the surface height above the geoid in meters. Surface pressure is computed from sea level pressure 

p0 using Eq. (2) that represents the pressure variation with altitude. 

 

 
𝑝𝑠 = 𝑝0exp [−

𝑔𝑚(ℎ𝑠 − ℎ0)

𝑅𝑇𝑚
] (2) 

 

In Eq. (2), R is the specific constant for dry air, Tm is the mean temperature in K of the layer between 

heights h0 and hs and gm is the mean gravity, given by Eq. (3). Tm can be estimated as the mean value 

of temperatures T0 and Ts at heights h0 and hs, respectively, given by a climatology such as the Global 

Pressure and Temperature (GPT) model (Boehm et al., 2007). 

 

 𝑔𝑚 = 9.784(1 − 0.00266 cos 2𝜑 − 0.28 × 10−6ℎ𝑠) (3) 

 

Using this methodology and the expressions above, DTC can be estimated from an atmospheric 

model with an accuracy of a few millimetres, provided accurate surface heights are used. Although 

model-derived DTC errors are negligible, altitude-related errors depend directly on the surface 

elevation used, the latter having an almost linear height dependence (an error in altitude of about 100 

m induces an error in DTC of about 2.5 cm). 

2.1.2.2. Wet tropospheric correction 
Unlike the DTC, the wet tropospheric correction that accounts for the path delay due to the 

presence of water vapour in the atmosphere has an absolute value less than 0.5 m, but it is highly 

variable, both in space and time. Due to this high variability, the most accurate way to model this 

effect is through the measurements of microwave radiometers on board the altimetric missions. Due 

to contamination on the MWR measurements of the surrounding lands, valid MWR observations are 

available only over the ocean and in the central parts of large lakes. In inland water regions such as 

small lakes or rivers, these valid measurements are not available. For the case of CryoSat-2, MWR 

measurements are inexistent, since this mission does not carry a microwave radiometer on board. 

For regions with permanent GNSS stations in the surrounding areas, GNSS-derived WTC can be 

obtained with the same accuracy as MWR-derived WTC (Fernandes et al., 2010). This source of WTC 

is particularly useful for small lakes, where the measurements at a single station can be representative 

of the whole lake (Crétaux et al., 2013). 
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In the absence of GNSS-derived WTC or MWR measurements, such as for CryoSat-2 mission or 

regions with invalid measurements, the WTC can be calculated from global grids of two single-level 

parameters provided by global atmospheric models, such as the ECMWF. These two parameters are 

the total column water vapour (TCWV, expressed in mm or, the equivalent, kg/m2) and two-meter 

temperature (T0) that is the near-surface air temperature (Bevis et al., 1992, 1994). 

 

 
𝑊𝑇𝐶 = −(0.101995 +

1725.55

𝑇𝑚
)
𝑇𝐶𝑊𝑉

1000
 (4) 

 

Eq. (4) represents the expression to compute the WTC in meters from global grids of atmospheric 

models, where Tm is the mean temperature of the troposphere in Kelvin, which can be modelled from 

T0 according to Eq. (5) also in Kelvin (Mendes et al., 2000). 

 

 𝑇𝑚 = 50.440 + 0.789𝑇0 (5) 

 

Eqs. (4) and (5) allow to compute the WTC at the same level of the atmospheric parameters, which 

is the model orography. The orography heights can depart from the actual surface heights by 

hundreds of meters, depending on the region, so this first model-derived WTC can be affected by an 

error due to the use of a wrong altitude. With an appropriate height reduction, WTC can be computed 

at the surface level using an accurate DEM. 

Due to its large variability in space and time, the dependence of water vapour with height is not 

easy to model. (Kouba, 2008) developed an empirical expression to model this dependence, 

represented in Eq. (6). 

 

 𝑊𝑇𝐶(ℎ𝑠) = 𝑊𝑇𝐶(ℎ0)𝑒
ℎ0−ℎ𝑠
2000  (6) 

 

In Eq. (6), h0 and hs are the orthometric heights in meters of the model orography and surface, 

respectively. This altitude modelling of the WTC still has some limitations, namely it should not be 

used to perform WTC height reductions larger than 1000 m (Kouba, 2008). This equation for the 

altitude modelling of the WTC needs further developments due to its limitations. In spite of its 

limitations, it is very relevant, namely over inland waters. Tropospheric corrections over these 

regions are often provided at orography level, so this reduction is crucial to compute the WTC at 

correct altitude over continental waters. 

2.1.2.3. Data description 
The analyses for each region of interest were performed using various data sources: CS-2 altimetry 

data, global grids of various parameters from an atmospheric model, mean lake levels and mean river 

profiles derived from satellite altimetry, a digital elevation model and a geoid model. 
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For all ROIs except for the Caspian Sea, the CS-2 L1B data were processed by isardSAT in the 

scope of the ESA funded SHAPE project, spanning the year 2015 or 2016, depending on the ROI. 

These are SAR mode data for the Amazon basin and Lake Vanern and SARIn mode reduced to SAR 

for Danube and Titicaca. This SAR L1B product has been produced using FBR Baseline C as input. 

These are pass files at 20 Hz containing data over and around each river or lake of interest. For 

simplification and reference to other data sets, when referring to these CS-2 pass files the sub-cycle of 

27 or 29 days and pass number are used, as defined in the Radar Altimeter Data Base System (RADS). 

In the Caspian Sea, CS-2 1 Hz data from the CS-2 Geophysical Ocean Products available at the ftp 

server 131.176.221.36, under the scope of the ESA project CryoSat IPF/COP Maintenance and 

Evolution Support were used for the year 2014. 

ECMWF operational model at 0.125° × 0.125° spatial sampling and 6-h intervals was adopted 

(Miller et al., 2010). The following fields were used: sea level pressure (SLP) in the computation of the 

DTC and total column water vapour (TCWV) and 2-metre temperature (T0) in the computation of the 

WTC. 

The Altimeter Corrected Elevations 2 (ACE2) digital elevation model, at its highest spatial 

resolution (3”) was adopted (Berry et al., 2008). This DEM is provided in tiles of 15° × 15°, so according 

to the location of each ROI some procedures are required, as merging and clipping. The European 

Improved Gravity model of the Earth by New techniques (EIGEN-6C4) geoid model, complete up to 

maximum degree and order 2190, has been selected (Förste et al., 2014). 

For the river ROIs, mean river profiles have been derived and provided by Along-Track (ATK). 

For the Amazon basin ROI, this is a high water level profile for the year 2014. It has been derived 

from inter-calibrated, edited and filtered Jason-2 and SARAL data for distances between 400 km and 

2100 km from the ocean. The remaining section, between 0 km and 400 km, has been extrapolated. 

Points along the profile were interpolated every 10 km using a 2nd order spline (Bercher et al., 2016). 

For the Danube ROI, a mean river profile has been derived for the years 2010–2015 from edited 

and filtered Jason-2, SARAL and CryoSat-2 data for distances between 0 km and 2500 km from the 

river mouth in the Black Sea. It is important to note that the Danube profile is different from the 

Amazon one. While for the Amazon it is just a polyline along the central part of the river, for the 

Danube it is a set of points covering the main river path, also modelling river width. 

For the lakes and closed sea regions, polygons from the Natural Earth dataset 

(http://www.naturalearthdata.com/) have been used to decide whether the along-track point was 

inside or outside the lake/sea. 

Atmospheric pressure data from The International Surface Pressure Databank (ISPD) have been 

used for comparison with model-derived DTC, in the analysis of the dry tropospheric correction. 

GNSS-derived zenith total delays (ZTD) from the International GNSS Service (IGS) and from the 

EUREF Permanent Network (EPN) have been used to estimate GNSS-derived WTC for comparison 

with model-derived WTC. 
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2.1.2.4. Methodology 
Considering the height dependence of the tropospheric corrections, the analysis of the DTC and 

WTC errors requires a proper inspection of the height variations within each ROI. 

For this purpose, for each CS-2 measurement point in a given ROI, three altitudes have been 

considered and inspected: (i) the mean water level profile (hprofile) or mean lake/sea level (hmean), 

for a river or lake/sea, respectively; (ii) the interpolated altitude from the ACE2 DEM at its highest 

resolution (hdem) and (iii) the interpolated altitude from the ECMWF orography (horo). hprofile and 

hmean have been determined from altimeter data as described in Sections 2.1.2.3 and 2.1.3.1, 

respectively. 

For this analysis, according to each river and the corresponding profile, CS-2 points up to 20 km 

and 2 km from the nearest point in the profile of the Amazon and the Danube, respectively, are 

considered, while for lakes/seas only points inside the water body are analysed. For each one of these 

examined CS-2 points, hprofile is equal to the height of the closest point in the river profile, hmean 

assumes the same value for all CS-2 measurements inside the lake or sea and hdem and horo are 

obtained with a bilinear interpolation from the ACE2 DEM and ECMWF orography, respectively. 

For the computation of the tropospheric path delays, the expressions mentioned in Section 2.1.2.1 

for the DTC and in Section 2.1.2.2 for the WTC were adopted. Both tropospheric corrections are 

computed at three different levels (hprofile or hmean, hdem and horo). 

For the DTC, surface pressure grids are obtained from SLP grids using Eq. (2) at these three levels 

and for each model grid node, and these grids are then used to compute the DTC at the corresponding 

levels using Eq. (1). With these grids of DTC, for each CS-2 measurement, three DTC are interpolated 

in space and then interpolated at the measurement time instant using the two closest in time model 

grids, six hours apart. At each ROI and for each CS-2 point four DTC are analysed: 

(i) DTC alt – provided in the CS-2 altimetric data products; 

(ii) DTC oro – computed from SLP at orography level (horo); 

(iii) DTC hdem – computed from SLP at ACE2 DEM height (hdem); 

(iv) DTC profile – computed from SLP at hprofile level (for rivers) or DTC mean – at the mean 

water level (for lakes and Caspian Sea). 

For the WTC, for each model grid node, the correction is firstly computed at the orography height, 

using Eqs. (4) and (5). With Eq. (6), WTC is computed by a height reduction at the other levels (hdem, 

hprofile or hmean). For each CS-2 measurement, various WTC are interpolated in space and time. 

Thus, for each CS-2 point, four WTC are analysed: 

(i) WTC alt – as provided in the CS-2 altimetric products; 

(ii) WTC oro – computed from TCWV and T0, at the level of model orography (horo); 

(iii) WTC hdem – computed from TCWV and T0, reduced to the ACE2 DEM height (hdem); 

(iv) WTC profile – computed from TCWV and T0, reduced to hprofile (for rivers) or WTC 

mean – reduced to the mean water level height (hmean), for lakes and Caspian Sea. 
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Firstly, the assessment of the errors due to the height dependence of the tropospheric corrections 

present on CS-2 products is performed through the comparison between the various corrections, 

computed at different levels. 

Secondly, once these errors are corrected for, remaining errors in the tropospheric corrections are 

assessed through their comparison with tropospheric corrections derived from in situ independent 

observations, providing an independent assessment of model-derived corrections, once computed at 

the correct surface elevation. 

At barometric stations available at each ROI, measurements of in situ surface pressure allow to 

derive the DTC at each station location using Eq. (1). DTC from SLP model fields is computed at each 

in situ measurement location by bilinear interpolation in space followed by linear interpolation in 

time. DTC computed from ECMWF at sea level is then reduced to surface elevation, allowing the 

comparison with DTC computed from in situ pressure data at station height, using directly Eq. (1). 

On the other hand, GNSS-derived WTC at GNSS stations in the vicinity of each ROI, when 

available, are compared with the corresponding correction from ECMWF computed at the GNSS 

station height. The quantity estimated at each GNSS station is the zenith tropospheric delay (ZTD) at 

station level, which corresponds to the sum of the zenith hydrostatic delay (ZHD) and the zenith wet 

delay (ZWD). The quantity of interest for the altimetry over inland water regions is the zenith wet 

correction, which can be obtained from the ZTD at station level by computing the dry tropospheric 

correction or ZHD from SLP fields using Eq. (1) and reducing this DTC to the same station level. With 

both (ZTD and ZHD) estimated at the same level, ZWD or GNSS-derived WTC can be estimated with 

the same accuracy and compared to the corresponding correction computed from ECMWF, reduced 

to the same level. 

Note that these independent comparisons are performed at stations within each ROI, but not 

exactly located over a river or over a lake. However, this is valid in this context. In this independent 

assessment the objective is to compare DTC/WTC computed from ECMWF and the corresponding 

corrections computed with in situ data, at the same level, to evaluate the model-derived DTC/WTC 

errors. Since as all corrections are computed at the same surface level, no altitude related errors will 

occur. 

 

2.1.3. Assessment of tropospheric corrections present on CS-2 products 

After introducing the application of satellite radar altimetry over inland water regions, with focus 

on the tropospheric corrections in Section 2.1.1 and the data and methodology to derive these 

corrections from an atmospheric model in Section 2.1.2, this section presents the assessment of the 

tropospheric corrections present on CS-2 products. 

Firstly, a comparison between DTC and WTC present on CS-2 products and the corresponding 

corrections computed using the methodology presented in Section 2.1.2 is performed. Secondly, for 

the DTC a comparison with in situ pressure data is presented, while for the WTC a comparison with 

GNSS-derived WTC is performed, for the regions where GNSS data are available. 
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Tropospheric corrections present in altimeter products are often provided at sea level or at the 

height of the orography of the adopted atmospheric model. Over inland water regions, model 

orography can depart from the actual surface level by hundreds of meters, which induce DTC errors 

of several cm (2.5 cm per each 100 m). Thus, the analysis of the tropospheric corrections errors 

requires a proper inspection of the height variations in each region of interest. For this purpose, an 

analysis of the altitudes is performed within each ROI. 

2.1.3.1. Altitude analysis 
For an accurate retrieval of model-derived tropospheric corrections over continental water 

surfaces, which are initially computed at model orography level, the modelling of the height 

dependence of both tropospheric corrections is a crucial step. The altimetric level of interest over 

inland waters is the surface altitude of lake, reservoir or river, so the tropospheric corrections should 

be computed at this level, for a proper application of satellite altimetry over these regions. When the 

corrections are derived from atmospheric models, they are computed at model orography height, 

being the orography a smoothed representation of the surface relief. The orography is originally in 

the spectral domain, so it is obtained by means of a transformation between the spectral and the 

physical space domains. This transformation, when used to represent fields with sharp spatial 

gradients or discontinuities, such as the topography, can originate Gibbs oscillations in the vicinity 

of the discontinuities (Navarra et al., 1994). 

Since any error in altitude has a direct impact in the corresponding corrections, particularly for 

the DTC, the altitude variations in each region of interest have been inspected by using three different 

altitudes, as mentioned in the methodology: the model orography, the ACE2 DEM and the mean river 

profile or mean lake/sea level. 

Using data from Envisat and Saral/AltiKa for the period 2002.7 to 2016.2, extracted from RADS, 

mean lake levels of 3809.5 ± 0.6 m, 44.9 ± 0.3 m and −26.7 ± 0.4 m have been obtained for the Titicaca 

and Vanern lakes and the Caspian Sea, respectively. 

Figs. 2-6 represent the five ROIs analysed in this study – Amazon and Danube rivers, Titicaca and 

Vanern lakes and Caspian Sea, respectively. The background field represents the altitude above geoid 

of the ACE2 DEM, at resolution of 5 arcminutes (left or top panel), or the altitude above geoid of the 

ECMWF model orography (right or bottom panel), while black points/lines represent the mean river 

profile or lake/sea borders. For each ROI, the colour scale is different, being saturated at certain 

values, in order to better observe the river, lake or sea and the surrounding relief. Note that the 

ECMWF operational model orography undergoes temporal changes, coincident with model updates 

(Miller et al., 2010). In the analyses performed in this study, the orography of the last model update, 

in May 12, 2015, has been used. Note that although in the figures a lower resolution version of the 

ACE2 DEM has been selected, in the analyses the model at its highest resolution (3”) has been 

adopted. 
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Figure 2. Altitudes in meters above geoid of the ACE2 DEM 5′ (left panel) and of the ECMWF model orography 

(right panel), over the Amazon basin. Black points represent the mean river profile and white points represent 

pass 20 of CS-2 sub-cycle 62. 

 

 

 

Figure 3. Altitudes in meters above geoid of the ACE2 DEM 5′ (top panel) and of the ECMWF model orography 

(bottom panel), over the Danube river. Black points represent the mean river profile and pink points represent 

the pass 188 of CS-2 sub-cycle 62. 
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Figure 4. Altitudes in meters above geoid of the ACE2 DEM 5′ (left panel) and of the ECMWF model orography 

(right panel), over Lake Titicaca. Black line represents the lake border. 

 

 

 

Figure 5. Altitudes in meters above geoid of the ACE2 DEM 5′ (top panel) and of the ECMWF model orography 

(bottom panel), over the Vanern lake. Black line represents the lake border. 
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Figure 6. Altitudes in meters above geoid of the ACE2 DEM 5′ (left panel) and of the ECMWF model orography 

(right panel), over the Caspian Sea. Black line represents the sea border and pink and white points represent 

passes 489 of CS-2 sub-cycles 51 and 52, respectively. Note that on the right panel Gibbs effects mentioned above 

can be observed on the ECMWF orography inside the Caspian Sea. 

Fig. 7 shows examples of the analysis performed to inspect the altitudes of the ACE2 DEM (hdem) 

and of the ECMWF orography (horo) in comparison with the mean river profile (hprofile) or the mean 

lake/sea level (hmean). Altitudes above geoid in meters along the Amazon River profile are 

represented in the left panel, function of the distance to the ocean in kilometres. ACE2 DEM heights 

(blue) are closer to the mean river (red) profile heights, than the ECMWF orography (green) heights, 

however height errors up to 120 m exist in ACE2 in a narrow strip at about 700 km from the ocean, 

which corresponds to a region between longitudes 54°W and 55°W (see Fig. 2). Apart from this 

narrow strip, the standard deviation of the differences between hdem and hprofile is about 2.3 m, 

while for the differences between horo and hprofile the same value is almost 8 m. 

 

 

Figure 7. Various altitudes (hdem – blue, hprofile and hmean – red, horo – green) above geoid, in meters, along 

the Amazon river profile (left) and along CS-2 sub-cycle 51, pass 489 over the Caspian Sea (right). In the right 

panel, larger altitude values exist close to the sea border: −24 m for hdem and 61 m for horo. 
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The right plot of Fig. 7 represents the altitudes for CS-2 sub-cycle 51, pass 489, over the Caspian 

Sea (see Fig. 6). It is evident the proximity between hmean and hdem, with a constant difference of 

0.1 m, apart from some CS-2 measurements close to the sea border. This altitude difference 

corresponds to an insignificant error in the tropospheric corrections. The altitudes interpolated from 

ECMWF orography (shown by the green points) over the Caspian Sea do not have a constant value 

and are noisy, due to the Gibbs effects mentioned above. 

The overall results show a close proximity (0.1–0.5 m) between hdem and hmean over the Caspian 

Sea and lakes, apart from CS-2 points close to the lake/sea border. Considering only points inside the 

lake or sea, the standard deviation of the differences between hdem and hmean is 11, 4 and 1 m for 

Titicaca, Vanern and Caspian, while the same value of the differences between horo and hmean is 34, 

11 and 14 m for the same regions, respectively. Considering the same points inside the lake or sea, 

the maximum absolute value of the differences between hdem and hmean is 211 m, 93 m and 62 m 

for Titicaca, Vanern and Caspian, while the corresponding value of the differences between horo and 

hmean is 168 m, 66 m and 624 m for the same regions, respectively. It can be observed that, although 

the standard deviation of the differences may not be very large, the maximum absolute differences 

between the orography and the mean lake level reach several hundreds of meters. Therefore, it is 

expected that these height differences induce systematic DTC errors in the range from 2 to 10 cm. 

Table 1 shows the statistical parameters of the altitude differences over the Caspian Sea, 

considering only CS-2 points inside the sea polygon. Altitudes from ACE2 DEM are much closer to 

the hmean, than altitudes from ECMWF orography over these lakes and closed sea, so tropospheric 

corrections over these water bodies are impacted by height errors when computed at the level of the 

ECMWF orography. For the computation of the tropospheric corrections over lakes/seas, errors in 

ACE2 altitudes are insignificant, apart from the narrow zones close to the sea/lake borders, where 

errors in these altitudes can reach dozens of metres (e.g. 62 m in the Caspian Sea, as shown in Table 

1). Due to these facts, the best surface height to compute the tropospheric corrections for the lakes 

and the Caspian Sea is the mean water level derived from satellite altimetry measurements. 

 

Table 1. Statistical parameters (minimum (min), maximum (max) and mean values and standard deviation 

(std)) of the altitude differences, considering only CS-2 points inside the Caspian Sea. 

 Min (m) Max (m) Mean (m) StD (m) 

hdem-hmean -9.40 61.50 -0.37 0.82 

horo-hmean -59.70 623.40 0.95 13.91 

 

The altitude analysis is different for the river ROIs, since the width of each river is not constant 

and some CS-2 points outside the rivers, over the surrounding areas, can be incorrectly considered. 

Table 2 shows the statistics of the altitude differences, considering only points in the Danube River 

mean profile. Analysing Fig. 3, it can be observed that the Danube ROI has some very narrow regions, 

with high mountains surrounding the river banks, such as that seen at the 12°-16°E longitude range 

(Germany and Austria) and also at longitude around 22° (border between Romania and Serbia). 
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Therefore, over these regions, the altitude values given by the altimetric surfaces under consideration 

will vary greatly for the CS-2 measurements close to the river. Unlike lakes or closed seas, the best set 

of CS-2 measurements for assessing the tropospheric corrections over rivers is a difficult choice. While 

for the lakes or seas, the polygons allow to choose only the CS-2 points over the water surfaces, for 

rivers the mean profiles only allow to compute the distance of each CS-2 point to the mean river 

profile. 

 

Table 2. Statistical parameters of the altitude differences along the Danube River mean profile. 

 Min (m) Max (m) Mean (m) StD (m) 

hprofile-hdem -100.13 74.49 -0.86 6.24 

hprofile-horo -368.74 20.82 -57.85 58.24 

 

As observed in Table 2, for the Danube river, hdem are much closer to the hprofile than horo, 

however height errors in ACE2 DEM larger than 100 m can be observed. As for lakes and the Caspian 

Sea, altitudes from ECMWF orography should not be used to compute suitable tropospheric 

corrections for these rivers. Values of the standard deviation of the differences between hprofile and 

hdem and between hprofile and horo along the Danube river profile are around 6 and 58 m, 

respectively. The latter difference has an absolute mean value close to the standard deviation, which 

corresponds to a systematic error in the altitudes from ECMWF orography, relative to the altitudes 

of the Danube mean profile. Maximum absolute values for hprofile - hdem and for hprofile – horo 

are 100 m and 369 m, respectively, inducing DTC errors of 2.5 cm and 9 cm respectively. 

Overall, it can be concluded that altitudes from ACE2 DEM have systematic errors larger than 100 

m in some regions, namely those close to the sea or lake borders or in narrow river basins. These 

systematic errors in altitude can induce errors e.g. larger than 2 cm in the DTC. The orography level 

is not recommended to compute the tropospheric corrections over these regions of interest, since 

altitudes from the ECMWF orography do not follow closely the river, lake or sea mean level at each 

ROI. 

Despite the fact that the ACE2 DEM is a relatively good reference surface in the majority of the 

regions, considering the overall results, the best surface to compute the tropospheric corrections is 

the height of the closest point in the mean river profile, for rivers, and the mean level for lakes and 

seas. 

Alternatively, if accurate altimeter derived surface heights are available, from tuned retracking 

algorithms, uncorrected for tropospheric corrections, these can also be a valid altimetric source to 

derive the tropospheric corrections. 

 

2.1.3.2. Analysis of the DTC 
Once the height variations in each ROI have been examined, the corresponding DTC errors have 

been analysed and the results are presented in this section. 
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DTC height dependence errors 

The analysis of the DTC present on CS-2 products is here performed through the comparison with 

the corresponding correction computed at three different levels (hdem, horo and hmean for sea/lakes 

or hprofile for rivers), according to the methodology described in Section 2.1.2. This first analysis 

allows to inspect the DTC present in CS-2 products by comparing it with those computed at different 

levels, and therefore to understand the effect of the altitude errors in the DTC. For this purpose, the 

analysis over some individual CS-2 passes is first presented with two examples, followed by an 

overall analysis for the regions of interest, namely by means of the statistical parameters of the DTC 

differences. 

Fig. 8 represents examples of this DTC analysis for two ROIs. On the left, the various DTC are 

represented (bottom panel) along with the corresponding height levels (top panel), both in meters, 

function of distance to the first point of the pass in kilometres, for CS-2 sub-cycle 62, pass 188, over 

the Danube River (see Fig. 3). On the right, the same DTCs are represented for CS-2 sub-cycle 51, pass 

489, over the Caspian Sea (see also Fig. 6), function of latitude. 

 

 

Figure 8. Various DTC (bottom left panel) and height surfaces (top left panel) for CS-2 sub-cycle 62, pass 188 

(see also Fig. 3), over the Danube river. Various DTC in meters for CS-2 sub-cycle 51, pass 489 (see also Fig. 6), 

over the Caspian Sea (right panel). 

 

Analysing the track over the Danube River, that intersects the river in a narrow region (between 

45 and 50 km from the first point of the pass), it is possible to see the river width, where hdem (blue) 

is very close to hprofile (red). In the right panel, only points inside the Caspian Sea, for which hmean 

and hdem are very close (see right panel in Fig. 7) are considered. This analysis allows the inspection 

of the errors in the DTC related to its height dependence, which induce systematic errors, with 

varying magnitude depending on the zone. 

In the example for the Danube River, the DTC computed at the orography level (green) and the 

DTC included in the altimetric products (black) are very close. Over the river, the DTC derived at the 

DEM surface level (blue) and at the level of the mean river profile (red) are also very close, while a 

difference of about 9 cm is observed between DTC computed at river level and DTC alt. This 
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difference is due to the height difference between the ECMWF orography used in DTC alt and the 

altitude of the river profile use in DTC profile which will always be of the same magnitude, thus it 

will be systematic. Even if CryoSat-2 would be making measurements over this region for a long time 

and DTC alt is derived in the same way, the error will not decrease. 

Comparing the two panels on the left in Fig. 8, it is evident the well-known relation between 

altitude and DTC, according to Eqs. (1) and (2). It can also be observed that the DTC variation with 

height dominates the DTC signal, being much larger than the corresponding space/time variation. 

Since there is a quasi linear relationship between height errors and DTC errors, the results presented 

in the previous section for the height errors can be translated into the corresponding DTC errors. 

For the example concerning the Caspian Sea, all DTC are similar, apart from the DTC present in 

the CS-2 products (black). The right panel of Fig. 8 shows a clear systematic difference, although small 

(0.7 cm), between DTC alt and the other ones. 

Apart from the Caspian Sea, for the large majority of the tracks, as illustrated in the left panel in 

Fig. 8 for the Danube ROI, there is a close proximity between DTC alt and DTC oro, suggesting that, 

as expected, the DTC present in the CS-2 products is provided at the ECMWF model orography. On 

the contrary, for the Caspian Sea that has an altitude below sea level (−26.7 ± 0.4 m), the DTC present 

in the CS-2 products seems to be provided at the mean sea level (zero level), since the observed 

systematic differences in the DTC correspond to a difference in altitude of ∼27 m. 

For the overall analysis of the DTC and WTC differences, statistics are determined examining only 

points up to 20 km and 2 km from the river mean profile, for the Amazon and Danube rivers, 

respectively. For the Caspian Sea and lakes, only points inside the polygons are examined. 

Table 3 shows the statistics of the DTC differences for the Amazon basin, in centimetres, analysing 

measurements up to 20 km from the mean river profile, considered representative of the errors in the 

river basin, with possible overestimation. On the other hand, considering that for the Danube, the 

river profile consists of a mesh of points over the river and not just a polyline, as for the Amazon, the 

points over the Danube basin have been selected considering only points up to a short distance (2 

km) from the river profile. Table 4 shows the same statistics for the Caspian Sea, considering only CS-

2 measurements inside the sea. 

 

Table 3. Statistical parameters of the DTC differences considering CS-2 measurements up to 20 km from the 

Amazon mean river profile. 

 Min (cm) Max (cm) Mean (cm) StD (cm) 

DTCdem-DTCalt -3.51 2.91 -0.31 0.55 

DTCoro-DTCalt -2.02 1.34 -0.13 0.32 

DTCalt-DTCprofile -0.33 3.49 0.35 0.50 

DTCdem-DTCprofile -0.44 3.37 0.03 0.38 

DTCoro-DTCprofile -0.27 2.42 0.22 0.42 
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Table 4. Statistical parameters of the DTC differences considering only CS-2 measurements inside the Caspian 

Sea. 

 Min (cm) Max (cm) Mean (cm) StD (cm) 

DTCalt-DTCmean 0.56 6.16 0.73 0.18 

DTCdem-DTCmean -0.25 1.74 0.00 0.02 

DTCoro-DTCmean -1.64 15.29 0.03 0.37 

 

Statistical parameters shown in Table 3 and Table 4 reinforce the observations above. As observed 

in the analysis of individual plots, the overall statistics show that, apart from the Caspian Sea, the 

DTC present in CS-2 products is closer to the one computed at the ECMWF orography level than to 

the DTC computed at ACE2 DEM height. For the Caspian sea, the mean value of 0.73 cm in the 

differences between DTC alt and DTC mean is correlated with a variation in DTC of ∼27 m in altitude, 

suggesting that DTC alt for this closed sea is provided in CS-2 products at mean sea (zero) level. On 

the other hand, DTC hdem and DTC hmean are also very close, evidencing that the ACE2 DEM 

follows the lake/sea mean level or river profile altitude closely in most of the profiles. However, DTC 

computed at the level of ACE2 DEM height has large errors in some specific regions, namely close to 

lake borders and in certain narrow river basins. 

Overall, results show that the mean and standard deviation of the analysed DTC differences are 

always small for all ROI. However, these statistical parameters are not representative of the DTC 

errors in some of these regions, since these errors are systematic, always having the same magnitude 

and sign at a given location. Therefore, the maximum and minimum values or the maximum absolute 

value of the differences give a more realistic idea of the magnitude of the errors, even if they occur 

over a small percentage of points in each region. 

Although the overall results show that the DTC errors present in CS-2 products over the Amazon 

ROI are small, in some regions of interest they can reach several centimetres (e.g. 6 cm in the Caspian 

Sea). Differences between DTC computed at the level of the nearest point in the mean river profiles 

and corresponding correction computed at remaining levels are larger in the Danube, in comparison 

with the same analysis for the Amazon ROI. These larger values in the standard deviation of the 

differences are due to the large variation of the altitude within the 2-km buffer around the mean 

Danube river profile. Analysing the Danube ROI, as mentioned in Section 2.1.3.1, it is possible to 

identify two regions along the river where the altitude variations and consequently the DTC errors 

in the vicinity of the river are much larger. Although the mean and standard deviation of the 

differences are relatively small, the extreme values can be very large, reaching values larger than 10 

cm. 

For lakes Titicaca and Vanern, the errors in DTC alt can reach 6 cm, while the standard deviation 

of the differences is less than 1 cm. The ACE2 DEM errors cause DTC errors up to 4 cm in some 

narrow bands close to the lake or sea borders. Overall, both the DTC present in the CS-2 products 

and the DTC oro have errors in some parts of the lakes that may reach 2–6 cm. These are systematic 

errors that will affect all measurements over the same location in the same way. For the Caspian Sea, 
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a clear systematic error of about almost 1 cm is observed in the DTC provided in CS-2 products, 

related to the fact that in this ROI, these corrections are computed at sea level, when the surface 

altitude is −26.7 ± 0.4 m. 

Although the overall results show that the DTC errors present in CS-2 products are small (mean 

and standard deviation of the differences small), in some zones either in lakes/seas or rivers they can 

be larger than 5 cm, namely in the Danube ROI and in the Caspian Sea. 

For rivers, this analysis shows that the best altimetric practice for the computation of the DTC is 

the use of the river mean profile and the association of each measurement point to the height of the 

closest point in the river profile. If a river mean profile is available, this approach should produce 

DTC accurate to better than 1 cm. Although, overall the use of the ACE2 DEM leads to a better 

accuracy than the use of the model orography, large errors can occur in specific regions as for example 

in Amazon. Moreover, since these errors are height dependent they are systematic and will strongly 

affect the determination, for example, of water level time series (see e.g. Fig. 4 in (Fernandes et al., 

2014)). For lakes or closed seas, this analysis shows that the best altimetric source for the computation 

of the DTC is the mean lake level. By estimating the tropospheric corrections of the points inside the 

lake at the mean lake level, DTC accurate to better than 1 cm should be obtained. 

For the computation of the DTC at the level of the ACE2 DEM, two different ECMWF pressure 

fields have been used: (i) SLP followed by the height reduction from sea level to surface height; (ii) 

surface pressure followed by the height reduction from model orography to surface height. Results 

suggest that both ways of computing the dry path delay provide similar values. For this reason, the 

computation from SLP is usually preferred since it does not require the knowledge of the model 

orography, so all corrections at DEM level have been computed from this field. 

Comparison with in situ pressure data 

To evaluate the absolute errors of the dry path delay determined from ECMWF fields, the DTC 

derived from ECMWF using SLP, reduced to surface elevation, as provided in the ISPD data files, 

was compared with the DTC derived from pressure observations downloaded from The International 

Surface Pressure Databank, for the year 2013, the most recent epoch available in this data base. This 

comparison is performed at station location, for stations close to each ROI. Table 5 shows the root 

mean square, in centimetres, of these differences for each ROI. 

 

Table 5. Root Mean Square (RMS) of the differences between DTC computed from SLP (ECMWF) reduced to 

surface elevation and DTC computed from pressure data from ISPD, in centimetres. 

ROI RMS (cm) 

Amazon 0.7 

Danube 0.6 

Titicaca 0.5 

Vanern 0.1 

Caspian 0.8 
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RMS values of the differences between DTC computed from ECMWF SLP reduced to surface 

elevation and DTC computed from pressure data from ISPD are 0.1 cm, 0.5 cm, 0.6 cm, 0.7 cm and 0.8 

cm for Vanern, Titicaca, Danube, Amazon and Caspian regions, respectively. In the Danube ROI, a 

very small number of stations (<1%) were rejected for having erroneous data. 

These values indicate that the absolute errors in the ECMWF pressure fields and corresponding 

errors in the DTC are negligible in these regions. 

Overall DTC assessment 

Table 6 presents, for all analysed ROIs, the statistical parameters (mean and standard deviation, 

std) of the dry tropospheric correction once computed at the mean river profile or mean lake/sea level, 

as well as the maximum absolute errors present in CS-2 products related with the height dependence 

of the corrections. The third column represents the maximum absolute difference between DTC alt 

and DTC mean or DTC profile. This table does not intend to compare the errors in DTC alt related to 

the height dependence of the DTC with the mean and standard deviation of this correction computed 

at mean level (DTC profile or DTC mean), but rather to summarize a set of relevant statistics for each 

ROI. It summarizes the space–time variability of DTC computed at correct surface elevation within 

each ROI and the errors present in this correction provided in CS-2 products, which is the focus of 

this paper. 

 

Table 6. Mean (in meters) and standard deviation (in centimetres) of the DTC computed at the level of mean 

river or mean lake (DTC profile or DTC mean) and maximum absolute error present in the DTC provided in 

CS-2 products, due to height dependence. The third column represents the maximum absolute difference 

between DTC alt and DTC mean or DTC profile. 

ROI Mean DTC (m) StD DTC (cm) Max DTC error (cm) 

Amazon -2.30 0.5 3.5 

Danube -2.30 3.0 10.8 

Titicaca -1.48 0.5 5.5 

Vanern -2.29 2.7 1.5 

Caspian -2.32 1.8 6.2 

 

Results show that, once computed at the correct mean river profile or lake mean level, the DTC 

has a small space–time variation, with a standard deviation of 0.5 cm in the Amazon River and Lake 

Titicaca, 1.8 cm in the Caspian Sea, 2.7 cm in Lake Vanern and 3.0 cm in the Danube River. The DTC 

absolute values go from 1.48 m in Lake Titicaca to 2.32 m in the Caspian Sea. 

Regarding the DTC uncertainties, comparison of Tables 5 and 6 demonstrate that the errors due 

to the height dependence of the correction are still significant, varying from a few cm up to 11 cm, 

while the corresponding errors for the corrections properly computed at surface height, using 

accurate surface height information, are smaller than 1 cm. 

Statistics presented in Table 6 are related to different sets of CS-2 measurements according to each 

ROI and the corresponding spanning period. For the case of the Caspian ROI this period is the full 
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2014 year. Fig. 9 represents daily and monthly means of the DTC computed at mean sea level over 

the Caspian Sea function of time. It is important to note that, due to its geodetic orbit, over small 

regions of the Earth such as these ROIs, there are some days without any CS-2 measurements and 

other ones with a very few measurements. A challenge with CS-2 is the geodetic orbit, which makes 

time series of inland water difficult. For this reason, some noise is observed in daily means (blue 

points), however an annual signal in the DTC is clearly observed, mainly in monthly means (red 

points). Only 12 red points are observed, due to the spanning period, however they are enough to 

observe the annual signal of the DTC. 

 

Figure 9. Daily (blue points) and monthly (red points) means of the DTC computed at mean sea level over the 

Caspian Sea, spanning the year 2014. 

 

Note that in the representation of Fig. 9, as well as in the statistics in Table 6, only CS-2 

measurements inside the Caspian Sea have been considered, all computed at the same level. 

2.1.3.3. Analysis of the WTC 
This section presents the analysis of the wet tropospheric corrections present in the CS-2 products 

over the analysed regions of interest. 

WTC height dependence errors 

As for the DTC, aiming at quantifying the errors in the wet tropospheric correction present in CS-

2 products, a comparison with the corresponding WTC computed at different height levels has been 

performed, as mentioned in the methodology, and is presented in this section. For this and as for the 

DTC, an analysis over individual CS-2 passes is first presented, followed by an overall analysis for 

the various regions. 

Fig. 10 illustrates two examples of the individual analysis of the WTC. In the left panel, various 

WTC are represented for CS-2 sub-cycle 62, pass 20, over the Amazon basin, function of distance to 

river profile (see Fig. 2). In the right panel, the same WTC are represented for CS-2 sub-cycle 52, pass 

489, function of latitude, for the Caspian Sea (see Fig. 6). Unlike the DTC, there is no clear relation 

between WTC and altitude in these passes. As modelled by Eq. (6), the height dependence of the WTC 

is function not only of the surface elevation but also of the WTC itself. For the example in the Amazon, 

it is possible to identify the river, where the ACE2 DEM closely follows the mean river profile, 
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approximately for points with distances less than 20 km from the profile, where the WTC profile and 

WTC dem are very close. In the same example WTC alt is closer to WTC oro, than WTC dem. Over 

the Amazon River, there is a maximum difference between WTC alt and WTC profile of about 1.3 cm. 

In the example for the Caspian, all WTC are very close. The profile over the Caspian is a good 

illustration of the space time variability of the WTC over the closed sea, opposite to what happened 

for the DTC (Fig. 8, right panel). 

 

Figure 10. Various WTC for CS-2 sub-cycle 62, pass 20, over the Amazon river (left panel) function of distance 

to river profile and for CS-2 sub-cycle 52, pass 489, over the Caspian Sea (right panel), function of latitude. To 

represent both sides of the river, negative distances have been considered in one side of the Amazon. 

Table 7 shows the statistical parameters of the WTC differences considering CS-2 measurements 

up to 2 km from the Danube river profile, while Table 8 shows the statistics considering only CS-2 

measurements inside the Caspian Sea. 

 

Table 7. Statistical parameters of the WTC differences considering CS-2 measurements up to 2 km from the 

Danube river profile. 

 Min (cm) Max (cm) Mean (cm) StD (cm) 

WTCdem-WTCalt -1.66 1.10 -0.07 0.27 

WTCoro-WTCalt -0.87 1.04 0.10 0.20 

WTCalt-WTCprofile -0.40 1.84 0.16 0.31 

WTCdem-WTCprofile -0.13 2.00 0.09 0.22 

WTCoro-WTCprofile -0.14 2.38 0.25 0.31 

 

Table 8. Statistical parameters of the WTC differences considering only CS-2 measurements inside the Caspian 

Sea. 

 Min (cm) Max (cm) Mean (cm) StD (cm) 

WTCalt-WTCmean -0.82 1.92 0.10 0.16 

WTCdem-WTCmean -0.05 0.21 0.00 0.00 

WTCoro-WTCmean -0.38 4.79 0.01 0.08 
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Statistical parameters in Table 7 reinforce the observations of Fig. 10, since overall results show 

that the WTC present in the CS-2 products is closer to WTC oro than to WTC dem. Considering the 

plots and the statistics presented above, the WTC errors related with the height dependence of the 

correction are larger in rivers than in lakes or Caspian Sea. On the other hand, these WTC errors are 

smaller in the Amazon than in the Danube, due to the fact that in the Danube region the height 

variations are higher than those in the Amazon region. When the zones with high altitude variation 

are rejected in the Danube, the extreme values of these values only reach 1.6 cm while for these zones 

the extreme values reach 2.4 cm. 

In the left panel of Fig. 10, the step nature of the WTC present on CS-2 L1B products used in this 

analysis can be observed, most probably due to the fact that these corrections have been obtained by 

interpolation from 1 Hz observations. 

Overall, results show that WTC errors of altitude are globally small, with standard deviations 

below 1 cm, however these errors can be larger than 1 and 2 cm in Amazon and Danube, respectively. 

The overall analysis of the WTC in the rivers allows to conclude that the WTC computed at the level 

of the closest point in the river profile shall minimize the errors due to the height dependence of the 

correction. 

For the lakes Vanern and Titicaca, the four WTC are very similar with very small errors, lower 

than 0.6 cm. For the Caspian Sea, the four WTC are also very close, however WTC dem and WTC 

mean are much closer than all others. Although the values for the mean and standard deviation of 

the differences are lower than 0.2 cm, these errors can reach 2 cm (see Table 8). 

For rivers, when computed at the level of the river mean profile it is expected to obtain WTC with 

negligible errors (<1 cm) related to the height dependence of the correction. Considering that the 

mean profile is the best representation of the surface height in the river basin, it is also the best 

reference surface for use in the WTC estimations from an atmospheric model (Eqs. (4)-(6)). For the 

lakes, errors in WTC present in CS-2 products due to height dependence are negligible. For the 

Caspian Sea, although values of mean and standard deviation of the differences are negligible, the 

maximum error can reach 2 cm, so the WTC should be computed at mean level derived from satellite 

altimetry measurements. 

Comparison with GNSS-derived WTC 

The comparison between GNSS-derived and ECMWF-derived WTCs is performed only for the 

Danube, Vanern and Caspian ROIs, since in the Amazon and Titicaca regions no GNSS stations are 

available. For this purpose, 25, 4 and 1 GNSS stations in the vicinity of the Danube river, Vanern lake 

and the Caspian Sea, respectively, have been selected. While for the Vanern and Caspian ROIs only 

a few GNSS stations exist, for the Danube River they have a good spatial distribution. 

For the period of the CS-2 mission (2010–2016), WTC computed at two different altitudes are 

considered and two types of differences are computed: (i) differences between WTC obtained from 

GNSS and from ECMWF, both at station level (RMS of differences given by RMS1) and (ii) differences 

between WTC from GNSS at station level and WTC from ECMWF at orography height (RMS2). The 

obtained results are shown in Table 9. RMS2 indicates the error of the ECMWF-derived corrections 
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when reported at the orography level, while RMS1 shows the error in the model-derived WTC when 

reduced to surface height using Eq. (6). Considering the three regions, RMS1 is in the range from 0.7 

to 1.5 cm, while RMS2 is in the range from 0.7 to 2.3 cm. 

 

Table 9. Statistical parameters of the differences between ECMWF and GNSS-derived WTC, in centimetres. 

ROI No. of stations RMS1 (cm) RMS2 (cm) 

Danube 25 0.8-1.5 0.8-2.3 

Vanern 4 0.7-0.9 0.7-0.9 

Caspian 1 1.1 1.1 

 

These results are independent indicators that, for these regions, while the accuracy of model-

derived WTC is 1–3 cm when referred to the orography model, when these WTC are reduced to 

surface height, even using a coarse expression such as Eq. (6), errors are reduced to values below 1.5 

cm. 

Overall WTC assessment 

Table 10 presents, for all analysed ROIs, the statistical parameters (mean and standard deviation) 

of the wet tropospheric correction once computed at the mean river profile or mean lake level, as well 

as the maximum absolute errors present in CS-2 products related with the height dependence of the 

corrections. The third column represents the maximum absolute difference between WTC alt and 

WTC mean or WTC profile. As in Table 6, Table 10 does not intend to compare errors in the WTC due 

to height dependence with the mean and standard deviation of the same correction computed at 

mean level. It summarizes each ROI in terms of WTC errors in CS-2 products and space–time 

variability of the wet correction. 

 

Table 10. Mean (in meters) and standard deviation (std, in centimetres) of the WTC computed at the level of 

mean river or mean lake (WTC profile or WTC mean) and maximum absolute error present in the WTC 

provided in CS-2 products, due to height dependence. The third column represents the maximum absolute 

difference between WTC alt and WTC mean or WTC profile. 

ROI Mean WTC (m) STD WTC (cm) Max WTC error (cm) 

Amazon -0.31 4.5 1.3 

Danube -0.11 5.3 1.8 

Titicaca -0.06 2.7 0.6 

Vanern -0.09 5.0 0.4 

Caspian -0.11 5.6 1.9 

 

With a larger space–time variability when compared with the DTC, once computed at mean river 

profile or lake level, the standard deviation of the WTC goes from 2.7 cm in Lake Titicaca to 5–6 cm 
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in all other regions and absolute values vary from only 6 cm in Lake Titicaca, 9 cm in Lake Vanern, 

11 cm in the Danube River and the Caspian Sea and 31 cm in the Amazon River. 

Tables 9 and 10 demonstrate that for the WTC, unlike what happens with the DTC, the 

uncertainties due to the height dependence of the correction are of the same order of the 

corresponding absolute errors due to intrinsic model uncertainties of other origin, both in the range 

of 1–2 cm. 

As in the previous DTC analysis, Fig. 11 represents daily and monthly means of the WTC 

computed at mean sea level, over the Caspian Sea. For the same reasons, some noise is observed in 

daily means (blue points), however a clear annual signal is also observed, mainly in monthly means 

(red points). 

 

Figure 11. Daily (blue points) and monthly (red points) means of the WTC computed at mean sea level over the 

Caspian Sea, spanning the year 2014. 

Any time series over inland waters using CS-2 measurements will be ever affected by spatial 

sampling, due to CS-2 geodetic orbit. 

 

2.1.4. Conclusions 

This study presents the analysis of the tropospheric corrections present on CS-2 products in five 

different regions of interest – Amazon and Danube rivers, lakes Titicaca and Vanern and the Caspian 

Sea. 

Results indicate that, as expected, the CS-2 tropospheric corrections are referred to the ECMWF 

model orography, except for the Caspian Sea where corrections seem to be referred to mean sea level 

(zero level), with associated errors due to the uncertainties of this orography. Depending on the 

region, these height errors go from tens of meters to several hundreds of meters. These induce DTC 

uncertainties that can reach several centimetres (e.g. 11 cm in the Danube River) and WTC errors up 

to 2 cm. In the quantification of these uncertainties, small values for the mean and standard deviation 

are obtained, since large errors occur in a small percentage of points, e.g. in regions where the water 

body is surrounded by rough terrain. However, the errors related with the height dependence of the 

corrections are systematic, for a given location having always the same sign and magnitude, with a 
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stronger effect on the DTC. These systematic errors will affect the retrieval of the absolute water level 

(see e.g. Fig. 4 in (Fernandes et al., 2014)). Therefore, the adoption of adequate procedures to mitigate 

these errors is of major importance. 

For rivers, considering that the mean profile is the best representation of the surface height in the 

river basin, it is also the best reference surface for use in the estimation of DTC and WTC from an 

atmospheric model. The same happens with lakes, where the corrections should be referred to the 

mean lake level. While mean lake level can easily be retrieved from satellite altimetry, the 

determination of mean river profiles can benefit from the use of water masks determined with 

external data such as satellite imagery. 

For lakes or seas, the computation of model-derived corrections at mean lake level, previously 

determined from satellite altimetry, is recommended. For rivers, in the absence of an accurate mean 

river profile, an accurate DEM such as ACE2 can be used. Alternatively, if accurate altimeter derived 

surface heights are available, these can also be a valid altimetric source to derive the tropospheric 

corrections at each measurement point. 

Results also show that, once computed at the correct mean river profile or lake mean level, the 

DTC has a small variation, with a standard deviation of 0.5 cm in the Amazon River and Lake Titicaca, 

1.8 cm in the Caspian Sea, 2.7 cm in Lake Vanern and 3.0 cm in the Danube River. The DTC absolute 

values vary from 1.48 m in Lake Titicaca to 2.32 m in the Caspian Sea. 

With a larger variability, once computed at mean lake level, the standard deviation of the WTC 

varies from 2.7 cm in Lake Titicaca to 5–6 cm in all other regions, with absolute values ranging from 

6 cm in Lake Titicaca, 8 cm in Lake Vanern, 11 cm in the Danube River and the Caspian Sea to 31 cm 

in the Amazon River. 

Results show that DTC errors in CS-2 products related with the height dependence of the 

correction are still significant, reaching 10 cm in certain regions. Dry path delays computed at surface 

level using accurate river profiles and mean lake levels are accurate to better than 1 cm, i.e. as accurate 

as those computed over open ocean. 

For the analysed regions of interest, WTC errors of 1–2 cm were found, both related with its height 

dependence and due to model uncertainties of other origin. However, in regions with larger WTC 

variability, slightly larger errors may be found for the wet path delay. 

Note that the systematic errors in the tropospheric corrections reported in this study are small 

compared to errors related to retracking and potential biases introduced by empirical retrackers. They 

are, however important to obtain accurate absolute water levels. 

The fact that this study has been performed with CS-2 data, allowed the quantification of 

tropospheric path delay uncertainties present in altimetric products over continental water surfaces, 

with a spatial coverage only possible by geodetic missions such as CS-2. Despite that, results can be 

extended to other altimetric missions, namely Sentinel-3. 
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2.2. Independent Assessment of On-Board Microwave 

Radiometer Measurements in Coastal Zones Using 

Tropospheric Delays from GNSS (Article 2) 

Abstract — Zenith tropospheric delays (ZTDs) computed at a network of 60 global navigation 

satellite system (GNSS) stations have been used to assess microwave radiometer (MWR) 

measurements from eight altimeter missions in coastal zones, where some of these observations 

become invalid. Results show that ZTDs are determined with an accuracy of a few millimetres; 

however, jumps are detected in some stations in standard products. The comparison between the 

MWR-derived wet tropospheric correction (WTC) and the GNSS-derived WTC at the nearby coastal 

stations illustrates the effect of land contamination in the MWR measurements and yields the distance 

from coast at which this contamination appears. This distance is different for the analysed altimetric 

missions, due to their different footprint sizes and different MWR retrieval algorithms, varying from 

10 to 30 km. The root mean square of the differences between GNSS and MWR-derived WTC, at the 

closest distance at which no land contamination occurs, is in the range of 1.6–1.9 cm for all missions. 

This coastal assessment also shows the ability of the GNSS-derived path delay plus algorithm to 

remove this land contamination and to improve the WTC retrieval. Aiming at inspecting the long-

term stability of the MWR measurements, the comparisons with GNSS show nonsignificant 

differences and drifts less than 0.3 mm/year. Therefore, the GNSS-derived WTC is a useful 

independent source to inspect the land effects on MWR observations and to monitor the stability of 

these instruments, thus contributing to the retrieval of precise water surface heights from satellite 

altimetry. 

 

2.2.1. Introduction 

In the last years, satellite radar altimetry has become a crucial remote sensing technique to 

monitor the ocean and continental waters at global and regional scales. The principal objective of this 

technique is to measure the range from the satellite to the water surface (Chelton et al., 2001). The 

difference between the orbit altitude of the satellite and the corrected range measurement from the 

altimeter allows one to derive the water surface height above a reference ellipsoid. These 

measurements have become essential in the understanding of the impact of climate change on water 

level evolution at global and regional scales, particularly in the coastal areas of the world (Willis et 

al., 2012). 

Precise water surface height measurements (of 1–3 cm accuracy) are currently achieved globally 

over open-ocean using the state-of-the-art measuring techniques and accurate modelling of several 

effects. Various range and geophysical corrections are required to account for the effects in the radar 

pulse and echo backscatter due to the interaction of the signal with the dry and wet troposphere, the 

ionosphere, and the sea surface, and due to geophysical phenomena (dynamic atmospheric 

correction, tides), which must be accounted for in order to separate them from the signals of interest 

(Fernandes et al., 2015, 2016). A proper determination of the various corrections involved is of major 
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importance, in order to ensure the best final accuracy of the water levels derived from satellite radar 

altimetry, either over open-ocean or inland waters and coastal regions. 

Amongst these corrections, the path delay induced by the presence of water vapor and liquid 

water in the troposphere, or wet tropospheric correction (WTC), is still one of the major error sources 

in satellite altimetry. The WTC has an absolute value up to 0.5 m, and it is highly variable in space 

and time. Due to its high variability, the most accurate way to account for this effect over open-ocean 

is through the measurements of microwave radiometers (MWRs) on-board the altimetric missions 

(Fernandes, et al., 2013). 

On the contrary, MWR measurements over coastal, inland, and polar zones often fail to provide 

accurate wet corrections, due to the presence of surfaces, such as land, vegetation, or ice, which 

contaminate the MWR-derived WTC retrievals. The algorithms that compute the WTC from MWR 

observations were designed for water surfaces; thus when other surfaces are present in the MWR 

footprint, the corresponding measurements become invalid (Fernandes et al., 2015). For instance, as 

the MWR approaches the coast, the radiometrically warm land signal begins to fill the MWR field-of-

view and consequently the retrieval errors increase. 

The problem in the MWR measurements described above does not allow a proper direct use of 

these data in these regions, so alternative sources of data have been used, such as atmospheric models 

and global navigation satellite system (GNSS) stations distributed around the world, in combination 

with MWR measurements at valid points or third-party data scanning imaging MWR (SI-MWR) on-

board other remote sensing satellites. 

Various studies have been conducted aiming to develop improved methodologies for the 

computation of the WTC for coastal altimetry (see (Cipollini et al., 2017) for a review). Among these 

methods, in the context of this paper, two are of particular relevance, the GNSS-derived path delay 

plus (GPD+) algorithm (Fernandes et al., 2010, 2015, 2016) and the mixed pixel algorithm (MPA) 

(Brown, 2010). 

Being the WTC one of the corrections applied to the altimeter range, any error or drift in this 

correction will directly impact sea level estimations. Thus, the independent monitoring of the MWR 

measurements is especially important for retrieving accurate global sea level from several altimetry 

missions either for open-ocean or mainly for coastal zones, where WTC from MWR becomes invalid. 

Various methods are commonly used to validate or monitor the stability of radiometers on-board 

the altimeter missions such as the use of coincident radiosonde measurements (Obligis et al., 2006), 

ground-based water vapor radiometers (Somieski et al., 2006), the use of the hottest and coldest 

brightness temperatures (TBs) (Brown et al., 2004), and GNSS (Desai et al., 2004; Haines et al., 1998; 

Sibthorpe et al., 2011), with particular relevance in the context of this paper. 

GNSS-derived tropospheric delays have been used in coastal altimetry studies for getting 

information about MWR performance. Drifts at the level of 1 mm/year in the TOPEX/Poseidon 

radiometer were detected using comparisons with WTC derived at terrestrial GNSS stations (Haines 

et al., 1998). On the other hand, systematic jumps in the Jason-1 radiometer of 4 mm were also detected 

using data from terrestrial stations (Desai et al., 2004). Estimates of tropospheric delays at coastal 
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GNSS stations have also been used to validate the WTC measurements from Jason-2 radiometer 

(Sibthorpe et al., 2011). 

Building upon these studies, data from GNSS stations in coastal zones can be used to analyse the 

WTC derived from the on-board MWR of several altimetry missions and, therefore, to gather relevant 

information about these instruments, in particular, to evaluate their stability in these regions and to 

inspect the effect of land contamination on their measurements. 

The main objectives of this paper are: 1) to exploit the potential of GNSS data to monitor the 

stability of the MWR measurements of the various altimetric missions in coastal regions and 2) to 

study the impact of land contamination on the MWR observations of these missions. 

In spite of the high accuracy of a few millimetres (Pacione et al., 2011) and great potential of 

application of GNSS-derived zenith tropospheric delays (ZTDs), they may suffer from discontinuities 

(Bock et al., 2010) due to changes in parameter modelling (e.g., changes in the adopted reference 

system and parameters related with receiver corrections). For this reason, in this paper, ZTDs have 

been computed for a set of stations with a good spatial distribution, using the state-of-the-art 

methodologies, this way ensuring both their accuracy and long-term stability. 

The various data sources involved in this paper are detailed in Section 2.2.2, while Section 2.2.3 

presents the computation and analysis of the ZTD for a previously established network and the 

corresponding GNSS-derived WTC. Section 2.2.4 presents the application of the WTC derived from 

these ZTD to extract relevant information about the MWR measurements of eight altimetry missions: 

the so-called reference missions — TOPEX/Poseidon (TP), Jason-1 (J1), and Jason-2 (J2), the three 

European Space Agency (ESA) missions—ERS-1 (E1), ERS-2 (E2), and ENVISAT (EN), GeoSat Follow-

On (GFO), and SARAL/AltiKa (SA). Since CryoSat-2 (C2) does not possess an on-board MWR, a WTC 

derived using only third-party data was also assessed in this section. Finally, Section 2.2.5 

summarizes the main results and conclusions of this paper. 

 

2.2.2. Data set description 

Originally designed for applications over the ocean, WTC retrieved from MWR measurements 

becomes invalid close to the coast, over regions where plenty GNSS-derived tropospheric delays are 

available. 

In this section, the various WTC sources used in this paper are detailed. First, the MWRs and the 

various missions that possess these instruments are described as well as the way how the wet 

correction can be derived from GNSS and atmospheric models. Second, an algorithm that combines 

various data sources to improve the WTC retrieval in coastal zones, where MWR observations are 

missing or invalid, is detailed. 

2.2.2.1. MWR-Derived WTC 
The passive MWR on-board the altimetric missions retrieve the WTC from the instantaneous 

measured TBs, at the nadir, in various channels (Fernandes et al., 2014). The accuracy of the MWR-

derived WTC, namely, in coastal zones, depends on the MWR instrumental characteristics and on the 

algorithms that retrieve this tropospheric correction from MWR measurements. 



  45  

 

Two main types of MWRs have been deployed in the altimetric satellites: three-band in the 

reference missions and two-band in the ESA missions (Fernandes et al., 2015). 

In the reference missions, three channels are operated at frequencies of 18, 21, and 37 GHz for 

TOPEX/Poseidon and 18.7, 23.8, and 34 GHz for Jason-1 and Jason-2. The primary water vapor 

sensing frequency is at 23.8 GHz. Measurements at the 18.7 and 34 GHz frequencies primarily account 

for sea surface wind effects and cloud liquid content, respectively. The ESA missions (ERS-1/2 and 

EN), GFO, and SA two-band radiometers have been used: 23.8 and 36.5 GHz for the ESA missions 

(Fernandes et al., 2015), 22 and 37 GHz for GFO, and 23.8 and 37 GHz for SA. 

The footprint of these radiometers is of the order of 20–45 km, depending on the instrument and 

frequency (Tournadre, 2006), except for AltiKa on-board SARAL, which is about 10 km (Tournadre 

et al., 2009). 

The algorithms used to retrieve the WTC from the measured TBs of the various MWR channels 

assume surface emissivity values typical of water conditions. In the presence of surfaces with a 

different emissivity, such as land, vegetation, or ice, the MWR measurements become invalid. This is 

the case example of coastal and high-latitude regions. 

2.2.2.2. WTC from GNSS 

Another source to derive WTC is terrestrial GNSS stations, from which ZTD can be determined 

with an accuracy of a few millimetres (Pacione et al., 2011). GNSS-derived tropospheric delays have 

been used in applications such as the monitoring and validation of MWR measurements (Desai et al., 

2004; Haines et al., 1998; Sibthorpe et al., 2011) and in the computation of the tropospheric path delays 

for coastal altimetry (Fernandes et al., 2010, 2016). 

The total path delay caused by the troposphere in the zenith direction (ZTD) can be separated 

into the sum of the hydrostatic component, the zenith hydrostatic delay (ZHD) and the wet 

component, the zenith wet delay (ZWD), the equivalent to the WTC, according to the following 

equation: 

 

 𝑍𝑇𝐷 = 𝑍𝐻𝐷 + 𝑍𝑊𝐷 (1) 

 

The hydrostatic component, due to the dry gases in the troposphere, accounts for nearly 90% of 

the total path delay, while the wet component accounts only for the remaining nearly 10% of the total 

delay. ZHD corresponds to an absolute mean value of 2.3 m at sea level and is usually modeled with 

high accuracy from surface pressure. Global grids of sea level pressure (SLP) provided by various 

atmospheric models [e.g., those from the European Centre for Medium-Range Weather Forecasts 

(ECMWF)] allow the estimation of the ZHD with an accuracy of 1–3 mm at global scale (Fernandes 

et al., 2013). 

On the contrary, despite its low absolute value (lower than 50 cm), the wet component due to the 

presence of water vapor in the troposphere is much more variable both in space and time and, 

therefore, more difficult to determine (Fernandes et al., 2013). 
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Since the wet path delay is also a significant error source in GNSS measurements, it is common 

practice in GNSS processing to consider this component an additional unknown to be estimated. In 

GNSS processing, the tropospheric delay is determined according to (2), where STD is the measured 

slant total delay, E is the elevation angle of each GNSS satellite, and mfh and mfw are the mapping 

functions for the hydrostatic and wet components, respectively. 

 

 𝑆𝑇𝐷(𝐸) = 𝑍𝐻𝐷𝑚𝑓ℎ(𝐸) + 𝑍𝑊𝐷𝑚𝑓𝑤(𝐸) (2) 

 

The mapping functions are known and relate the zenith delays with those in the slant direction. 

In (2), apriori ZHD is evaluated from the Vienna mapping functions 1 (VMF1) (Boehm et al., 2006). 

ZHD is equivalent to dry tropospheric correction (DTC). 

In (2), ZWD is the unknown and the quantity given with high accuracy is indeed a combined ZTD 

value, as the sum of the apriori ZHD and the estimated ZWD. Thus, to get an accurate ZWD, an 

accurate ZHD (more accurate than the apriori value) needs to be subtracted from ZTD, using (1). 

Accurate ZHD can be estimated from surface pressure data given by an atmospheric model, as 

described in Section 2.2.2.3. 

In summary, for each observation with a precise determination of ZTD from GNSS and ZHD 

derived from an atmospheric model (replacing the apriori value adopted in the GNSS processing), 

the corresponding ZWD (equivalent to WTC) is obtained from (1). All these values are referred to the 

GNSS station height. For application in satellite altimetry, they must be reduced to sea level. 

2.2.2.3. Model-Derived Tropospheric Corrections 
In the absence of wet path delay observations, the WTC from global meteorological models must 

be used (Fernandes et al., 2014). They can also be used in combination with other WTC data sources 

such as MWR valid measurements and coastal GNSS stations. The overall accuracy of WTC from 

meteorological models is worse than the corresponding values from MWR or GNSS; however, the 

quality of the recent models has been increasing significantly (Miller et al., 2010), particularly for the 

reanalysis product from ECMWF, the ERA Interim model (Dee et al., 2011). 

For use in satellite altimetry, tropospheric corrections can be calculated from global grids of some 

single-level parameters provided by global atmospheric models. 

DTC can be estimated with an accuracy of a few millimetres from surface atmospheric pressure 

ps using the modified Saastamoinen model (Davis et al., 1985), according to (3), as described in 

(Fernandes et al., 2014) 

 

 
𝐷𝑇𝐶 = −

0.0022768𝑝𝑠
1 − 0.00266 cos 2𝜑 − 0.28 × 10−6ℎ𝑠

 (3) 

 

In (3), from which DTC results in meters, ps is the surface pressure in hPa, 𝜑 is the geodetic 

latitude, and hs is the surface height above the geoid, in meters (Fernandes et al., 2014). Surface 
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pressure (ps) can be computed from SLP (p0) using (4) that represents the pressure variation with 

altitude. Since p0 is the SLP, then h0 = 0 

 
𝑝𝑠 = 𝑝0𝑒𝑥𝑝 [−

𝑔𝑚(ℎ𝑠 − ℎ0)

𝑅𝑇𝑚
] (4) 

 

In (4), R is the specific constant for dry air, Tm is the mean temperature in kelvin of the layer 

between heights h0 and hs, and gm is the mean gravity, given by the following equation. Tm can be 

estimated as the mean value of temperatures T0 and Ts at heights h0 and hs, respectively. 

 𝑔𝑚 = 9.784(1 − 0.00266 cos2𝜑 − 0.28 × 10−6ℎ𝑠) (5) 

 

Using (3)–(5), ZHD (or DTC) can be computed from an atmospheric model with high accuracy 

and then used to replace the a priori value adopted in the GNSS processing. 

For the WTC, two parameters are used: total column water vapor (TCWV, expressed in mm or, 

the equivalent, kg/m2) and near-surface air temperature in kelvin (two-meter temperature, T0) (Bevis 

et al., 1992, 1994) 

 
𝑊𝑇𝐶(ℎ𝑠) = −(0.101995 +

1725.55

𝑇′𝑚
)
𝑇𝐶𝑊𝑉

1000
 (6) 

 

Equation (6) allows the computation of WTC in meters at height hs, using global grids of T0 and 

TCWV from an atmospheric model. T’m is the mean temperature in kelvin of the troposphere, which 

can be modelled from T0 according to (7) (Mendes et al., 2000) 

 𝑇′𝑚 = 50.440 + 0.789𝑇0 (7) 

 

WTC computed from T0 and TCWV using (6) and (7) is referred to the atmospheric model 

orography level. An empirical expression represented in (8) allows determining WTC at other 

heights, where h0 and hs are the orthometric heights of the model orography and surface, respectively 

(Kouba, 2008). 

The determination of this expression was performed using a very small data set (1.5 years data 

set of 11 globally distributed GNSS stations), so it has some limitations; namely, it should not be used 

to perform WTC height reductions for heights above 1000 m (for more details see (Kouba, 2008)); 

however, at present, this equation is the only available in the literature 

 𝑊𝑇𝐶(ℎ𝑠) = 𝑊𝑇𝐶(ℎ0)𝑒
ℎ0−ℎ𝑠
2000  (8) 

 

The model orography may depart from the real surface height by hundreds of meters. For 

instance, a height difference of about 100 m corresponds to a variation in DTC of about 2.5 cm, so 

tropospheric corrections should be obtained by an appropriate height reduction, which is a crucial 

step for coastal and inland water studies (Fernandes et al., 2014). 
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2.2.2.4. GNSS-Derived Path Delay Plus (GPD+) Algorithm 
In the last years, the University of Porto, Porto, Portugal, has been developing methods for 

improving the WTC retrieval by addressing the various error sources inherent to the MWR-derived 

WTC, namely, the land contamination in these measurements. These methods are based on data 

combination through space–time objective analysis of various wet path delay observations 

(Fernandes et al., 2016). 

The GPD+ algorithm, the latest version of these methods, is based on a statistical technique that 

interpolates the wet path delay values from the nearby (in space and time) observations. This is 

performed at each altimeter ground-track point, when the MWR measurement is invalid. This 

algorithm can be applied not merely to missions with an MWR aboard the respective spacecraft, but 

also to those which do not possess an on-board MWR. 

Hence, the GPD+ is wet path delay based on: 1) MWR-derived WTC measurements whenever 

they exist and are valid and 2) new WTC values estimated by data combination of all available 

observations in the vicinity of the estimation point (valid MWR measurements, GNSS-derived WTC 

at coastal and island stations, and WTC from SI-MWR), whenever the previous are considered 

invalid. 

Moreover, the GPD+ version of these products corresponds to WTC calibrated with respect to the 

special sensor microwave imager (SSM/I) and the SSM/I sounder (SSM/IS) imaging radiometers, 

known for their stability and independent calibration (Wentz, 2013). 

More details about this algorithm to improve the WTC retrieval, particularly in coastal zones, can 

be found in (Fernandes et al., 2010, 2015, 2016). 

 

2.2.3. WTC derived from ZTD UPorto 

In this paper, a network of coastal and island GNSS stations with long observation periods and 

ensuring a good geographical distribution have been chosen for calculating the ZTD (designated ZTD 

UPorto) at their locations, using the GPS analysis package developed at Massachusetts Institute of 

Technology (GAMIT) software (Herring et al., 2006). 

ZTD available online from EUREF (European reference frame) permanent network (EPN) and 

International GNSS Service (IGS) are also available and have been compared to ZTD UPorto, allowing 

the assessment of the precision of the latter, in the absence of independent external information. 

After this, the way how GNSS-derived WTC, at sea level, is derived from ZTD UPorto is 

described. 

2.2.3.1. Computation of ZTD UPorto 
ZTD UPorto has been computed for a set of 60 coastal GNSS stations with global distribution (Fig. 

1) to cover regions with different variability patterns of the tropospheric and oceanic conditions. The 

period covered by these observations is from 1995 to 2016. 
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Figure 1. Spatial representation of the three subnetworks (UPorto-1—red triangles, UPorto-2—blue points, and 

UPorto-3—green squares). 

 

In this calculation, phase measurements were used (double differences), at 30-s intervals, IGS 

precise satellite orbits and clock parameters, a cutoff elevation angle of 7°, and the VMF1 (Boehm et 

al., 2006). As a priori ZHD, the values present in the VMF1 grids were used. Atmospheric parameters 

were estimated at 30-min intervals using the “metutil” GAMIT routine. 

The calculation time increases with the square of the number of stations included in the GAMIT 

network. At the time of the calculations, it was decided to build subnetworks, in order to optimize 

the computation time. This is a common strategy to handle, in an operational way, large networks of 

permanent stations. For this purpose, three subnetworks were created, designated hereafter by 

UPorto-1, UPorto-2, and UPorto-3, represented in Fig. 1, by red triangles, blue points, and green 

squares, respectively. This procedure ensures a good geographic distribution and similar observation 

periods within each subnetwork. Moreover, for validation purposes, three stations common to all 

networks were considered. 

Hence, ZTD UPorto is a set of ZTDs for the UPorto network shown in Fig. 1, for each station 

covering the maximum period for which observations are available for that station, estimated as 

described above, at 30-min intervals. 

2.2.3.2. Intercomparison of ZTD From Different Subnetworks 
Aiming at assessing the uncertainties of ZTD UPorto retrievals, out of the 60 stations of the initial 

network, three were chosen simultaneously in different subnetworks (FALE in UPorto-1 and UPorto-

2, while ALBH and TOW2 are present in all three subnetworks). These common stations allow the 

comparison between the ZTD of the same station computed in different subnetworks. On the other 

hand, this procedure allows observing the influence of network geometry on the estimated 

tropospheric parameters. 

Fig. 2 represents differences in millimetres between ZTD computed at distinct subnetworks for 

the ALBH station, function of time. In Fig. 2 (top), ZTD differences between UPorto-1 and UPorto-2 

are represented, where a similar behaviour is observed for the whole analysed period. ZTD 

differences UPorto2–UPorto3 and UPorto1–UPorto3 are shown in Fig. 2 (middle and bottom), 
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respectively. Contrary to the first observed differences, a similar behaviour of the differences is not 

observed during the whole period, being the ZTD differences much larger in the initial part of the 

analysed period. The same happens for the TOW2 station. Note that the vertical axes are saturated in 

the range [−80, 80] mm. 

 

Figure 2. ZTD differences for the ALBH station between ZTD computed in different subnetworks. (Top) 

UPorto1–UPorto2. (Middle) UPorto2–UPorto3. (Bottom) UPorto1–UPorto3. 

To inspect the origin of these large ZTD differences, the number of GNSS observations in the third 

subnetwork versus time has been examined. Fig. 3 shows the number of observations per day (blue, 

left axis) and the corresponding number of stations per day (red, right axis) for the UPorto- 3 

subnetwork. A small number of stations and consequently observations are clearly observed during 

the period of the large reported differences. The ZTD UPorto-3 computation in the initial part of the 

period is affected by the small number of stations, an indicator of an inadequate network geometry. 

The same problem does not occur in UPorto-1 and UPorto-2 subnetworks, for which a sufficiently 

large number of stations with global distribution exist for the whole period. 

 

Figure 3. Number of observations and stations per day since beginning of 1995 to end of 2016 for the UPorto-3 

subnetwork. (Left axis) (blue) Number of observations per day. (Right axis) (red) Number of stations per day. 

While the influence of network geometry on station coordinates has been evaluated already (see 

(Ineichen et al., 1999)), the effect on tropospheric parameter estimation was recognized but had not 



  51  

 

yet been quantified in detail (Brenot et al., 2014). Results present in Figs. 2 and 3 show the profound 

influence of the network geometry in the uncertainties of tropospheric delays retrieved from GNSS. 

When the number of stations becomes small, with poor spatial distribution, all stations observe the 

same satellite with similar viewing angles. Therefore, the same atmospheric conditions are observed, 

the retrieved ZTD becomes highly correlated and the corresponding uncertainties increase. 

Since large ZTD differences obtained using UPorto-3 are observed at the beginning of the 

analysed period, due to its poor network geometry, ZTD UPorto-3 from 1995 to 1999 has been rejected 

and not used in the subsequent analyses performed in this paper. For the same analysis, in the 

common stations, only ZTD UPorto-1 was used. 

Table 1 shows the root mean square (RMS) of these ZTD differences, in millimetres. For 

comparisons with ZTD UPorto-3, two values are presented: one considering the whole period (1995–

2016) and other considering only the period from 1999 until the end of 2016. 

 

Table 1. RMS (mm) of the ZTD differences for the common stations used in different subnetworks (UPorto-1, 

UPorto-2, and UPorto-3) 

ZTD diffs (mm) Time span 
stations 

ALBH FALE TOW2 

UP1-UP2 1995-2016 2.5 3.4 3.5 

UP2-UP3 
1995-2016 9.2 - 12.7 

1999-2016 2.2 - 3.4 

UP1-UP3 
1995-2016 10.0 - 13.2 

1999-2016 2.4 - 3.6 

 

ZTD differences between distinct subnetworks affected by an inappropriate network geometry 

show RMS values that can reach 1.3 cm. Rejecting the period affected by poor network geometry in 

UPorto-3, these RMS values are lower than 4 mm. As referred by several authors, at present, ZTD can 

be determined at station location with an accuracy of a few millimetres. These results show the 

importance of using an appropriate network geometry in ZTD computation. 

2.2.3.3. Comparison of ZTD UPorto With IGS and EPN 
At present, tropospheric delays determined by GNSS at international data centres became a 

routine product, being available for any user. 

A way to evaluate the precision of ZTD estimates is by comparing tropospheric delays from 

different solutions, namely, IGS and EPN, when both are available. The comparisons were performed 

for stations where at least two solutions (UPorto, IGS, or EPN) were available. 

Fig. 4 shows an example representing the differences between the three solutions (UPorto–IGS 

and UPorto–EPN) for station MAS1 located in Maspalomas, Gran Canaria, Spain. This is a station of 

the first subnetwork (see red triangles in Fig. 1) for which both IGS and EPN ZTD are available. In 

Fig. 4 (top), differences between UPorto and IGS ZTD are represented, while Fig.4 (bottom) represents 
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the corresponding differences between UPorto and EPN products. Note that on Fig. 4 (top and 

bottom), the time axis represents the period 2010–2015, while the vertical axes are saturated in the 

range [−80, 80] mm. 

 

Figure 4. ZTD differences between UPorto and (Top) IGS and (bottom) EPN, in millimetres, for station MAS1, 

Gran Canaria, Spain. 

In Fig. 4 (bottom), a homogeneous pattern is observed over the whole period. ZTD differences 

between UPorto and EPN have a constant behaviour over the whole period. The RMS of these 

differences for the various stations varies from 2 up to 6 mm. Two very small gaps can be observed, 

due to a lack in the EPN tropospheric products. 

On the contrary, the top plot of Fig. 4 shows a clear jump of about 20 mm in the ZTD differences 

between UPorto and IGS from mid-2012 to mid-2013. Since the same jump is not observed in the 

differences with EPN (bottom graph), the origin of this jump is attributed to the ZTD from IGS. The 

same happens for other stations in different periods. Apart from some periods with jumps in ZTD 

IGS, the RMS of the ZTD differences between UPorto and IGS can reach a value up to 9 mm; however, 

in most stations, it is smaller than 5 mm. 

ZTD differences are affected by the spatial variation of the ZTD. Stations at high latitudes have 

small values of RMS differences while those at low latitudes, corresponding to regions of large WTC 

variability, show larger RMS. 

The results show that for some stations, ZTD provided by IGS has not been computed with a 

homogenous methodology over the whole period. The jumps observed in this comparison are due to 

changes and updates in the methodology adopted by IGS to estimate the ZTD. It should be noted that 

these jumps were present in some IGS stations at the time of the ZTD download. Later on, it was 

found that most of these stations have been reprocessed and the jumps have now been removed. 

These jumps are not observed when comparing UPorto and EPN ZTD. However, ZTD provided 

by EPN is geographically limited due to the fact that it is a regional network; therefore, they cannot 

be used to evaluate MWR globally. 



  53  

 

These results evidence the importance of having a global solution, derived by adopting a 

homogeneous procedure for the whole computation period. ZTD UPorto has been computed in order 

to ensure stable and homogeneous ZTD on a global network. 

2.2.3.4. Separation of ZHD and ZWD and Reduction to Sea Level 
ZTD UPorto has been computed at station height, while the required quantity for comparison 

with MWR-derived WTC is the corresponding ZWD (or WTC) at sea level. 

Using the methodology presented in Section 2.2.2.3, ZHD for the same UPorto instants have been 

interpolated from the ERA Interim model, at the station locations. This was done by using SLP from 

ERA Interim, reduced to station height using (4) and further used in (3) to derive the ZHD at station 

height. 

Due to the height dependence of the ZHD (DTC equivalent) (see (Fernandes et al., 2014)), ensure 

that all quantities referred to the same level (in this case station height) is crucial to avoid introduction 

of undesirable biases. 

After this, using the GNSS-derived ZTD UPorto and the model-derived ZHD, the corresponding 

ZWD (or WTC) was determined using (1), at station location. This WTC is then reduced to sea level 

using (8), hereafter referred as WTC GNSS UPorto or simply WTC GNSS. 

After these steps, the corresponding GNSS-derived UPorto WTC is given at sea level, for 

comparison with MWR-derived WTC. In Section 2.2.4, the GNSS-derived WTC values are those from 

the ZTD UPorto solution. 

 

2.2.4. Assessment of MWR-derived WTC 

As mentioned in Section 2.2.3, ZTD UPorto (and corresponding WTC GNSS) was computed using 

the same methodology throughout the whole period, so that they can be used as reference. Moreover, 

they were computed for a network with a good geographical distribution, in order to cover regions 

around the world with different atmospheric variability conditions. 

Therefore, WTC GNSS consists of a set of WTC measurements at each station location (see Fig. 1) 

for the whole period of observations available for that station. As mentioned above, to minimize the 

systematic effects related to the WTC height dependence, WTC GNSS has been estimated at sea level. 

These data are geographically limited to the network defined above and temporally limited to the 

period of each station. On the contrary, WTC from satellite altimetry data is global, covering the 

whole period of each mission. 

These WTC data sets allow the comparison between GNSS and MWR data, being this analysis 

possible only over coastal zones. It should be stressed that a collocated comparison is not possible, 

since there is no spatial overlap between terrestrial GNSS stations and valid ocean measurements 

from on-board MWRs. 

For this purpose, at a first step, altimetry measurements up to 120 km from the GNSS stations are 

selected. Here, a large set of about 800 coastal stations belonging to several global and regional 
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networks are used, in order to allow other comparisons, e.g., with WTC derived from ZTD IGS or 

EPN. However, in the subsequent analysis, only the WTC from the UPorto solution has been used. 

For instance, Fig. 5 represents altimetry measurements selected around the Iberian Peninsula for 

the EN orbit repeat cycle 73 (top) and Jason-2 cycle 10 (bottom). Red points represent the MWR 

measurements flagged as invalid. Fig. 5 shows only a representation of the selection of altimetry 

points for comparison with GNSS-derived WTC. The same procedure was applied to the eight 

altimetry missions, considering the whole period covered by each mission. 

 

 

Figure 5. Selected altimetry measurements around the Iberian Peninsula for (Top) EN cycle 73 and (Bottom) J2 

cycle 10. 

For the epoch of each selected altimetry point, a value of WTC GNSS is interpolated in time, at 

the station location. Thus, for the same epoch, there are two values of WTC—one from MWR 

observations at the along-track point and one WTC GNSS, at the station location. For each pair of 

WTC (MWR and GNSS-derived WTC, relative to the same instant), since they are derived at different 

locations, the distance between these two measurements as well as the distance from coast of each 

altimeter point are computed and considered in the subsequent analysis. 
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The distances from coast used for this analysis were computed from a global netCDF grid with 

distances to the nearest global self-consistent, hierarchical, high-resolution geography database 

shoreline (Wessel et al., 1996). 

This interpolation is performed for each GNSS station with surrounded altimetry measurements 

and then the whole set of stations is considered, in order to obtain representative results for the whole 

globe. 

In this analysis, for each altimetry point, a value of WTC derived from the GPD+ algorithm is also 

considered. Thus, the whole set of noncollocated WTC differences (GNSS–MWR and GNSS–GPD) 

are analysed below for each mission, function of distance from coast and function of time. 

2.2.4.1. Coastal Assessment 
Comparisons between GNSS-derived WTC and those from MWR on-board the several altimetry 

missions are first analysed, function of distance to coast. This analysis aims at inspecting the land 

contamination of each MWR and the ability of GPD+ algorithm to remove this contamination and 

improve the WTC retrieval, either very close to the coast or up to dozens of kilometres from the coast. 

In addition, it aims to obtain relevant information for each mission, e.g., the distance from coast where 

land contamination disappears, useful for algorithms like GPD+. 

For this purpose, the differences between GNSS-derived and MWR-derived WTCs and the 

differences between GNSS-derived WTC and WTC GPD+ are binned into classes of distance from 

coast of 5 km. For each class, RMS of these two differences as well as the number of measurements is 

computed. 

For this analysis, two different sets of measurements are considered, based on validation flags 

associated with the altimetry data used. Since GPD+ provides valid WTC values for all points, 

irrespective of their distance from coast, in the comparison with the WTC GPD+, all altimetry points 

have been used. On the contrary, for the comparison with MWR, only altimetry points flagged as 

valid were used, except for the flag that rejects the measurements located at a distance from coast less 

than a given threshold. In this way, the selected MWR observations include those contaminated by 

land, but exclude, for example, ice contamination and outliers. 

Figs. 6–13 represent the RMS (left axis) of the differences between WTC GNSS and MWR-derived 

WTC (red points) and the differences between WTC GNSS and GPD+ derived WTC (black points) for 

each class of distance to coast in kilometres. Red bars represent the number of measurements used to 

compute the RMS of the differences GNSS–MWR, while grey bars represent the number of points 

used to compute the RMS of the differences GNSS–GPD+. Note that left vertical axes are saturated in 

the range 1–3 cm, for all missions, and in some classes, grey bars are not observed because they are 

overlapped by red bars; however, grey bars are always higher than red bars. The axes of distance 

from coast are represented in the range 0–65 km. 
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Figure 6. (Left axis) RMS (cm) of the WTC differences and (Right axis) number of altimetry measurements used 

for the ERS-1 mission. 

 

 

Figure 7. (Left axis) RMS (cm) of the WTC differences and (Right axis) number of altimetry measurements used 

for the ERS-2 mission. 

 

 

Figure 8. (Left axis) RMS (cm) of the WTC differences and (Right axis) number of altimetry measurements used 

for the EN mission. 
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Figure 9. (Left axis) RMS (cm) of the WTC differences and (Right axis) number of altimetry measurements used 

for the SA mission. 

It is important to note that the RMS values represented in Figs. 6–13 are affected by the fact that 

this is a noncollocated comparison. Large distances from coast induce large WTC differences, since 

they correspond to two observations several kilometres apart. 

Figs. 6–8 represent these values for the ESA missions, ERS-1, ERS-2, and EN, respectively. Fig. 9 

represents the same values for the MWR on-board SA satellite. 

The results for ERS-2 are very similar to those for EN. Differences between GNSS and MWR are 

minimum for distances from coast at about 25–30 km, which indicates that land contamination on the 

MWR on-board ERS-2 and EN is observed only at distances from coast smaller than these values. The 

same behaviour is observed for SARAL at 15–20 km from coast which is in agreement with the 

footprint size, since this is smaller for the SARAL radiometer (about 10 km (Tournadre et al., 2009)) 

than for the MWR on-board the ESA missions (of the order of 20–45 km (Tournadre, 2006)). 

Although the plot is similar to those obtained for ERS-2 and EN, results for the MWR on-board 

ERS-1 (see Fig. 6) are not significant due to the small number of GNSS observations for the period of 

this mission, as observed by the bar plots. 

Very close to the coast, the RMS of the differences GNSS–MWR can be larger than 3 cm. On the 

contrary, the RMS of the differences GNSS–GPD+ is lower close to the coast and increase for larger 

distances due to the WTC spatial variation. In the first classes near the coast, where the differences 

are less affected by the WTC spatial variation, the RMS of the differences GNSS–GPD+ is not larger 

than 1.2 cm for the analysis using these four missions. It can be clearly observed that this algorithm 

is able to remove the land contamination in the MWR and the RMS values of the differences between 

GNSS and GPD+ are always lower than the corresponding values for the differences between GNSS 

and MWR. 

These results are in agreement with the fact that compared to ESA missions, which also possess a 

2-band MWR, SA has a smaller footprint size, showing land contamination up to a shorter distance 

from coast. The AltiKa radiometer is the MWR aboard altimetry missions with the best resolution (12 

km for the 23.8 GHz channel and 8 km for the 37 GHz channel) (Valladeau et al., 2015). 
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Figs. 10–12 represent the same analysis for the reference missions TOPEX/Poseidon, Jason-1, and 

Jason-2, respectively. Fig. 13 represents the differences for the radiometer on-board GFO satellite and 

also the RMS values for comparison GNSS–GPD+ for C2 satellite. 

 

Figure 10. (Left axis) RMS (cm) of the WTC differences and (Right axis) number of altimetry measurements 

used for the TOPEX/Poseidon mission. 

 

Figure 11. (Left axis) RMS (cm) of the WTC differences and (Right axis) number of altimetry measurements 

used for the Jason-1 mission. 

 

Figure 12. (Left axis) RMS (cm) of the WTC differences and (Right axis) number of altimetry measurements 

used for the Jason-2 mission. 
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Figure 13. (Left axis) RMS (cm) of the WTC differences and (Right axis) number of altimetry measurements 

used for the GFO mission. Blue points represent the RMS of the differences between GNSS and GPD+ for the 

C2 mission. 

As for the 35-day missions, the RMS values of the differences between GNSS and GPD+ are 

always lower than the corresponding values of the differences between GNSS and MWR. As observed 

in the bar plots, in the comparison for the TOPEX/Poseidon (see Fig. 10), the number of points is lower 

than those for other missions. For the first missions (ERS-1 and TOPEX/Poseidon), the number of 

measurements is small, due to a small number of GNSS stations and observations for the 

corresponding period in the UPorto network. 

For the reference missions (Figs. 10–12), the RMS values of the differences between GNSS and the 

corresponding MWR close to the coast are lower than 2.5 cm (less than 2 cm for Jason-2), which does 

not happen for the ESA, SARAL, and GFO missions. This reveals that land contamination is less 

pronounced in radiometers on-board reference missions. The same analysis reveals that land 

contamination is only observed up to 25–30 km from the coast for TOPEX/Poseidon and Jason-1 and 

up to 20–25 km for Jason-2. The values found for Jason-2 are smaller than those reported in (Sibthorpe 

et al., 2011) (40 km); a possible indication that the criteria adopted in the detection of contaminated 

MWR observations is efficient (Fernandes et al., 2016) and also due to the fact that the Jason-2 data 

used in this paper are already enhanced near the coast (Brown, 2010). 

As for ESA missions and SARAL, land contamination for GFO is more pronounced, with RMS of 

the differences between GNSS and MWR larger than 3 cm in the first class near the coast. For this 

satellite, the land contamination is observed up to 15–20 km from the coast. 

These analyses through a noncollocated comparison between GNSS-derived WTC and the 

corresponding correction derived from MWR measurements, using a GNSS network with a good 

geographical distribution, are useful to inspect the land contamination, as shown above for ESA and 

reference missions, SA, and GFO. It is important to note that this is an independent coastal assessment 

of the MWR measurements, performed globally, only over coastal zones, where GNSS is available. 

These results show that the GPD+ algorithm improves the retrieval of the WTC, mainly close to 

the coast, where MWR measurements are invalid due to land contamination. Fig. 13 also illustrates 

the RMS of the differences between GNSS-derived and GPD+ WTC (blue points) for C2. Since this 
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satellite does not carry any on-board MWR, the GPD+ WTC is solely based on third-party data. Thus, 

the RMS of the differences is slightly larger than those for GFO close to the coast, still within 1–2 cm. 

It should be noted that GPD+ includes GNSS-derived observations as input data; thus, the RMS 

of the differences between GNSS and GPD+ does not provide an independent assessment of the GPD+ 

WTC. In spite of that, these results clearly show that GPD+ is efficient in removing the land 

contamination in the MWR observations, ensuring the continuity of the WTC in the open-

ocean/coastal transition zone. 

2.2.4.2. Long-Term Stability 
In this section, the time evolution of the differences between GNSS-derived WTC and MWR-

derived WTC and the time evolution of the differences between GNSS-derived WTC and GPD+ WTC 

are examined. 

Due to a different time span and spatial coverage of each altimeter mission, a different set of 

altimetry measurements was used in the temporal analysis for each mission. Here, only MWR 

measurements flagged as valid have been considered, thus eliminating all possible error sources 

(contamination by land, ice, or rain and outliers). 

For this analysis of the differences GNSS–MWR and GNSS–GPD+, function of time, the mean 

values of WTC differences are computed for predefined intervals of time. For the ESA missions and 

SARAL, mean values of WTC differences are computed for 35 and 385 days, while for the reference 

missions and GFO, mean values of WTC differences are computed for 10 and 370 days. These periods 

have been chosen according to each satellite repeat cycle. In both cases, the larger window size 

corresponds to 1 year and is applied to remove signals with periods less than or equal to one year, 

thus obtaining smoothed differences in time. 

A linear fit has been applied to these nearly annual means (385 or 370 days). Values of slope in 

millimetres per year are computed, as well as the coefficient of determination. 

As previously observed in the coastal analysis, results for ERS-1 mission are not significant, due 

to the very small number of points in the corresponding period of comparison with GNSS, so results 

for this mission are not shown here. 

In the plots of these temporal analyses, vertical and horizontal axes are represented in the 

intervals [−8, 8] mm and [1995, 2017], respectively. In the same plots, averages of 35 or 10 days (small 

points), averages of 385 or 370 days (large points) and the linear lines fitted to the nearly annual means 

are represented. The same colour is used for each mission. 

Fig. 14 represents the time evolution (averages) of the differences between GNSS and MWR (top) 

and the differences between GNSS and GPD+ (bottom) for ERS-2 (blue points), EN (red points), C2 

(black points), and SARAL (green points). 
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Figure 14. Time evolution (averages) of the WTC differences (Top) between GNSS and MWR and (Bottom) 

between GNSS and GPD+ for ERS-2, EN, C2, and SA missions. 

C2 satellite does not possess an on-board MWR; however, GPD+ WTC is also computed for this 

mission using only third-party data. Time evolution of the differences between GNSS and GPD+ is 

also represented in Fig. 14 (bottom). 

Tables 2 and 3 show the values of the linear fit to the nearly annual means for the differences 

GNSS–MWR and GNSS–GPD+, represented in Fig. 14 (top and bottom), respectively, for ESA 

missions, C2, and SA. The values of slope in millimetres per year, coefficient of determination, and 

the time span used to determine these values for each mission are given. 

 

Table 2. Linear fitting values and time span for the 385-day averages of the GNSS–MWR differences for ESA 

missions and SA 

Mission Slope (mm/year) R2 Time span 

E2 0.03 0.01 1996.0-2003.5 

EN -0.30 0.73 2002.8-2012.3 

SA -0.86 0.98 2013.2-2016.9 

 

Table 3. Linear fitting values and time span for the 385-day averages of the GNSS–GPD differences for ESA 

missions, C2, and SA 

Mission Slope (mm/year) R2 Time span 

E2 -0.07 0.25 1996.0-2003.5 

EN -0.21 0.81 2002.8-2012.3 

C2 -0.05 0.08 2010.6-2016.0 

SA -0.40 0.98 2013.2-2016.9 
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Apart from SA, with a large absolute value of slope (0.86 and 0.40 mm/year, for GNSS–MWR and 

GNSS–GPD+, respectively) due to its small period of about three years, the remaining missions have 

absolute values of slope lower than 0.3 mm/year. The linear fit for SARAL mission has an R2 very 

close to 1; however, these values are not significant, since only three points (green) are obtained for 

the 385-day averages, as observed in Fig. 14. 

For the ERS-2 mission, these GNSS–MWR average differences are not well fit by a linear 

regression, showing a very small R2 value; however, there is no significant drift in time, as observed 

in Fig. 14 (top). For the EN mission, the 385-day averages of differences GNSS–MWR have a slope of 

−0.30 mm/year with a value of R2 larger than 0.70. 

Concerning the differences GNSS–GPD+ [Fig. 14 (bottom) and Table 3], all the absolute values of 

the slope are lower than 0.21 mm/year, except for the SARAL mission, due to the reason already 

described. In the comparison with Table 2, overall values in Table 3 show smaller values of slopes for 

differences GNSS–GPD+ than for differences GNSS–MWR, showing that GPD+ WTC estimates are 

more stable than MWR measurements, when compared to the WTC derived from GNSS UPorto. 

Comparing the two panels of Fig. 14, absolute mean values of differences GNSS–GPD+ (bottom) 

are smaller than absolute mean values of differences GNSS–MWR (top), in agreement with the results 

from previous coastal analysis. 

For each mission, both 385-day averages of WTC differences have absolute values lower than 5 

mm with a variation below 2 mm. Results shown in Fig. 14 also allow observing an alignment 

between consecutive missions, mainly between missions of the ESA group (ERS-2 and EN). 

 

Figure 15. Time evolution (averages) of the WTC differences (Top) between GNSS and MWR and (Bottom) 

between GNSS and GPD+ for the reference missions and GFO. 

Fig. 15 represents the time evolution (averages) of the differences GNSS–MWR (top) and GNSS–

GPD+ (bottom), for TOPEX/Poseidon (blue points), Jason-1 (red points), Jason-2 (black points), and 

GFO (green points). Small points represent averages of 10 days, while large points represent 370-day 

averages. Tables 4 and 5 show the values (slope and coefficient of determination) of the linear fit to 
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the 370-day averages for the differences GNSS–MWR and GNSS–GPD+, respectively, and the time 

span for each mission. 

Time evolution of the differences GNSS–MWR for the reference missions and GFO reveals 

absolute slopes lower than 0.28 mm/year. R2 of the linear fit for TOPEX mission is very small, thus 

indicating that annual means are not well fit by a linear regression; however, as shown in Fig. 15 (top), 

these differences vary in a range of about 2 mm (approximately between 2 and 4 mm). These 370-day 

averages of WTC differences between GNSS and MWR are always smaller than 5 mm. 

 

Table 4. Linear fitting values and time span for the 370-day averages of the GNSS–MWR differences for the 

reference missions and GFO 

Mission Slope (mm/year) R2 Time span 

TP -0.03 0.02 1996.0-2005.8 

J1 -0.28 0.81 2002.1-2012.2 

J2 -0.19 0.56 2008.5-2016.9 

GFO -0.19 0.44 2000.0-2006.5 

 

Table 5. Linear fitting values and time span for the 370-day averages of the GNSS–GPD differences for the 

reference missions and GFO 

Mission Slope (mm/year) R2 Time span 

TP -0.10 0.24 1996.0-2005.8 

J1 -0.21 0.74 2002.1-2012.2 

J2 -0.15 0.52 2008.5-2016.9 

GFO -0.13 0.49 2000.0-2006.5 

 

Concerning the time evolution of the differences GNSS–GPD+ for the reference missions and 

GFO, shown in Fig. 15 (bottom), slopes with absolute values lower than 0.21 mm/year are given in 

Table 5. Overall, differences GNSS–MWR are larger than differences GNSS–GPD+, as observed for 

the previous missions. 

The temporal analysis of the differences GNSS–MWR and GNSS–GPD+ for the eight altimetry 

missions shows an alignment between consecutive missions of the same group (reference or ESA 

missions) and also very similar WTC differences in the common period. With common objectives, 

this shows that altimetry missions of each group (35-day and 10-day) are aligned, constituting 

uniform intercalibrated data sets. 

For studies such as sea level variation, the long-term stability of all terms involved in the 

computation of the altimeter-derived sea level anomaly is of particular relevance. The recent 

requirements state that these terms, including the WTC, should be known to better than 0.3 mm/year 

(Ablain et al., 2015). This analysis reveals slopes with absolute values lower than 0.3 mm/year for the 
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time evolution of the differences between GNSS and MWR, with a bit smaller values for differences 

between GNSS and GPD+. 

It should be recalled that to ensure long-term stability of the corrections, all radiometers used in 

this paper have been calibrated with respect to the SSM/I and the SSM/IS (Fernandes et al., 2016). This 

paper reveals a good performance of this calibration, being the observed differences (at millimetre 

level) mainly due to the space–time collocation errors and to the atmospheric variability. 

It is important to note that in this analysis of the time evolution of the WTC differences, all 

altimetry contaminated measurements close to the coast were rejected, so the results presented in this 

section are not affected by land contamination, neither by other error sources such as ice 

contamination. 

Any comparison between GNSS and MWR, either function of distance from coast or function of 

time, provides an independent assessment. However, the disadvantage is the lack of a common 

spatial coverage, since noncollocated data were compared, being the results presented here global, 

but only relative to coastal zones. 

 

2.2.5. Conclusion 

This paper presents the application of ZTD computed at the University of Porto using the state-

of-the-art methodologies to assess the performance of MWR on-board several altimetry satellites over 

coastal zones. The computation of ZTD UPorto (and corresponding GNSS-derived WTC) was 

performed using a homogeneous methodology throughout the whole period of analysis. 

Results show the profound influence of the network geometry in the uncertainty associated with 

the retrieval of the tropospheric delays. Geographical distribution is of major importance in ZTD 

computation over a network of stations. An accuracy of a few millimetres (2–6 mm) in ZTDs from 

GNSS is achieved only if a good geographical distribution is guaranteed, in order to avoid effects of 

network geometry. 

Two types of independent comparisons between GNSS-derived WTC and MWR-derived WTC 

were performed: function of distance to coast and function of time. 

The first analysis allows clearly observing the land contamination in the MWR measurements of 

the various satellites, which is less pronounced in the MWRs on-board the reference missions. This 

coastal contamination is observed up to 20–30 km from the coast for the ESA and reference missions. 

For the GFO, this effect is observed up to 15–25 km from the coast. Due to its smaller footprint size, 

the same effect is observed only up to 10–20 km from the coast for SA. It can be observed that the 

effect of the MPA implemented in Jason-1 and Jason-2 by (Brown, 2010) has a pronounced effect in 

the reduction of the RMS of the differences between GNSS-derived and MWR-derived WTCs in the 

classes near the coast but not in the distance from coast up to which the contamination is depicted. 

Overall, the RMS of the differences between GNSS and MWR-derived WTC, for the closest 

distance at which no land contamination occurs, is in the range 1.6–1.9 cm, mainly due to the 

collocation errors and to the WTC variability. 
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Thus, GNSS-derived WTC is a useful independent source to inspect the land contamination on 

the MWR observations. 

In parallel with the comparison between WTC GNSS and WTC derived from MWR, the same 

comparison was performed between WTC GNSS and WTC GPD+. This comparison reveals clearly 

that this algorithm removes the land contamination and improves the WTC retrieval over the whole 

range of analysed distances to coast, ensuring the continuity of the WTC in the open-ocean/coastal 

transition zones and around islands. 

The temporal analysis reveals a long-term stability in the MWR measurements, with absolute 

values of slope with respect to GNSS lower than 0.3 mm/year. In agreement with the coastal analysis, 

differences between GNSS and GPD+ are slightly smaller than the corresponding differences between 

GNSS and MWR. 

For some altimetry missions, the analyses performed with the GNSS-derived WTC using WTC 

UPorto (60 stations distributed around the world) were also repeated using WTC derived from ZTD 

computed from a global set of hundreds of stations from international and regional networks (IGS 

and EPN). Similar results have been achieved, indicating that once a global set of stable stations with 

a good global distribution is selected, the results are not very different. These results are not shown 

since the analysis with the WTC GNSS UPorto is representative of a global network, including zones 

with a different spatial variability of the wet correction. 

In spite of the fact that GNSS-derived and MWR-derived WTCs are not collocated measurements, 

these results show that the former is a useful independent source to inspect the land effects on MWR 

observations and to monitor the stability of these instruments, thus contributing to the retrieval of 

precise water surface heights from satellite altimetry over coastal zones. 

 

2.3. Impact of the New ERA5 Reanalysis in the Computation of 

Radar Altimeter Wet Path Delays (Article 3) 

Abstract — Satellite altimetry allows the estimation of accurate water surface heights only with 

accurate determination of all involved terms, namely, the wet tropospheric correction (WTC) or its 

symmetric value, the wet path delay (WPD). WPD is best determined from onboard microwave 

radiometer (MWR) measurements; however, the corresponding WPD retrievals become invalid close 

to land (e.g., coastal and inland waters). Alternative WPD sources are numerical weather models 

(NWMs), e.g., from the European Centre for Medium-Range Weather Forecasts (ECMWF). NWMs 

provide the parameters at 6-h intervals; however, ERA5 (the latest ECMWF reanalysis) provides 

hourly atmospheric parameters at 0.25°×0.25°. The best spatial resolution is provided by the ECMWF 

operational model at 0.125°×0.125°. Motivated by this new and improved temporal resolution, the 

focus of this paper is the global assessment of the impact of different temporal resolutions of ERA5 

in the WPD computation. The same assessment is also performed concerning the spatial resolution 

of ERA5 and operational models. Aiming to identify the best compromise between spatial/temporal 

resolutions, accuracy, and computational time, WPDs computed using various combinations of these 
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resolutions were inter-compared and compared with MWR-derived WPD. The results show that the 

global root mean square (RMS) of the differences between MWR and ERA5 is 1.2 cm and the effect of 

using 1-h intervals instead of 6-h intervals is small, significant only for latitudes 30°–60° S and 30°–

60° N. Hourly intervals do not have a significant impact on the WPD from ERA5, being a temporal 

resolution of 3 h high enough to ensure the same accuracy of 1 h, showing that ERA5 cannot map the 

WPD short space and time scales. 

 

2.3.1. Introduction 

Satellite radar altimetry is a remote sensing technique, whose principal objective is to measure the 

range from the satellite to the water surface. The range can then be converted into the height of the 

water surface relative to the reference ellipsoid (Chelton et al., 2001), knowing the altitude of the 

satellite orbit relative to the same reference surface. These measurements allow the global 

determination of the water surface height and its monitoring, either at regional (Cipollini et al., 2017) 

or global scales (Legeais et al., 2018). This water-level measurement from satellite altimetry involves 

the determination of several parameters, namely, the effect of the atmosphere in the altimetric signals 

(Fernandes et al., 2014). Due to the presence of water (vapor and liquid) in the atmosphere, when the 

signal travels from the satellite to the earth’s surface, it suffers a delay designated by wet path delay 

(WPD). The corresponding correction that needs to be accounted for in the altimeter observations is 

its opposite value, the wet tropospheric correction (WTC). Otherwise, any water surface height 

measurement derived from satellite altimetry would be affected by this undesirable error. 

With a value of up to 50 cm, the WPD is highly variable, both in space and time (Vieira et al., 

2019). It has long been recognized that due to this high variability, the best and most accurate way to 

measure this effect over the open ocean is from collocated microwave radiometer (MWR) 

measurements, a passive instrument onboard most of altimetric missions. However, WPD retrievals 

from MWR measurements become systematically invalid and cannot be used over some regions, such 

as coastal zones (Fernandes et al., 2018; Vieira et al., 2019b) and inland waters (Fernandes et al., 2014; 

Vieira et al., 2018). On the other hand, some satellites (e.g., CryoSat-2) do not possess an MWR in their 

payload. For these reasons, alternative sources for the wet correction are required, such as those 

computed using numerical weather model (NWM) parameters (Fernandes et al., 2014; Legeais et al., 

2014). Although the overall accuracy of the WPD from NWM is worse than the corresponding path 

delays from MWR, in the absence of any other data source, the WPD from NWM must be used 

(Fernandes et al., 2014). 

WPD may be computed from global grids of single-level atmospheric parameters (Fernandes et 

al., 2014), at the corresponding NWM orography height, as described in Section 2.3.2, or from 3-D 

model fields (Collecte Localisation Satellites (CLS), 2011), the latter approach being much more 

computationally intensive. The difference between these two approaches (from 2-D or 3-D 

atmospheric parameters) to derive WPD from NWM at its orography height will be assessed and 

presented in Section 2.3.2. 
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Concerning the available NWM for the WPD computation, the European Centre for Medium-

Range Weather Forecasts (ECMWF) provides some products of interest that have been used in the 

context of tropospheric corrections for satellite altimetry. The quality of the models has been 

increasing (Miller et al., 2010), particularly for the ERA Interim (Dee et al., 2011) reanalysis model 

from ECMWF. ERA5, the latest reanalysis model (Copernicus Climate Change Service, 2018) 

produced by ECMWF, is the fifth major global reanalysis data set, after ERA Interim. Presently, only 

a first batch covering the period from 2000 to present was released and is freely available for any user 

via the Copernicus Climate Change Service (C3S) Climate Data Store (CDS) (Copernicus Climate 

Change Service, 2018). Compared to ERA Interim (available at 0.75°×0.75° spatial sampling and 6-h 

intervals), ERA5 has a much higher spatial (0.25°×0.25°) and temporal (1-h) resolutions and an 

improved troposphere modelling. It is the first ECMWF atmospheric model available at 1-h intervals. 

Another ECMWF product of interest is the operational model, which has the finest spatial 

sampling (0.125° × 0.125°). ERA Interim is more stable than ECMWF operational model (Legeais et 

al., 2014); however, the latter has been updated and improved several times, and for the latest years 

(after 2004), it provides similar or better results when compared with ERA Interim (Fernandes et al., 

2014). 

In the altimetry community, it was believed that the common temporal resolution of the available 

NWM (6 h) was poor for use in the context of the radar altimeter tropospheric corrections and a better 

temporal resolution was required. Motivated by the new and high temporal resolution of ERA5 

(Copernicus Climate Change Service, 2018), the focus of this paper is the assessment of the impact of 

1-h sampling atmospheric parameters used for the WPD computation, for application in satellite 

altimetry. The NWM-derived WPDs are mainly useful over non open-ocean surfaces, namely, coastal 

and continental waters. For this purpose, WPDs computed from ERA5 at different temporal 

resolutions are intercompared in Section 2.3.3. Similar comparisons are carried out concerning 

different spatial resolutions of ERA5 and ECMWF operational models, also presented in Section 2.3.3. 

All above-mentioned analyses are inter-comparisons that allow the assessment (not independent) 

of different spatial and temporal resolutions of the same atmospheric model. To perform an 

independent assessment of the WPD derived from ERA5 at different resolutions (both temporal and 

spatial), Section 2.3.4 presents the comparison between the ERA5-derived WPD and those retrieved 

from valid onboard MWR measurements. This independent comparison is carried out for MWR 

onboard ENVISAT and Jason-2 satellites. Finally, Section 2.3.5 summarizes the main achievements of 

this paper. 

 

2.3.2. WPD computation from NWM parameters 

This section presents the methodology used to derive WPDs from atmospheric fields provided 

by the ERA5 and ECMWF operational models. 

2.3.2.1. Computation from Single-Level Parameters 

NWM-derived WPD can be calculated from the global grids of two single-level parameters 

provided by the corresponding model: total column water vapor (TCWV) and the near-surface air 
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temperature (2-m temperature, T0). This computation is performed using (1), where TCWV is 

expressed in kg/m2 (or the equivalent precipitable water, in mm), and WPD results in meters (Bevis 

et al., 1992, 1994) 

 

 
𝑊𝑃𝐷 = (0.101995 +

1725.55

𝑇𝑚
)
𝑇𝐶𝑊𝑉

1000
 (1) 

 

In (1), Tm is the mean temperature of the troposphere, in kelvin at each point, which is modelled 

from T0, as given by (2), according to (Mendes, 1999) 

 

 𝑇𝑚 = 50.440 + 0.789𝑇0 (2) 

 

It is important to note that single-level parameters, such as TCWV, are provided at only one level 

(orography); however, TCWV is representative of the total column, from the top of atmosphere (TOA) 

down to the orography level. This total water vapor content is the same, which affects the path of the 

altimetric signals, from the satellite to the surface. 

The single-level parameters (as TCWV and T0 used for the WPD computation) available from an 

atmospheric model are relative to the height of the corresponding orography, usually a smoothed 

representation of a digital elevation model. Thus, WPDs computed using (1) and (2) are provided at 

the level of the same reference surface, the model orography. Apart from the comparisons with MWR 

in Section 2.3.4, all analyses presented in this paper were performed at the height of the corresponding 

atmospheric model orography in order to avoid the introduction of undesirable biases. 

 

 

Figure 1. WPD mean (cm) computed from ERA5 single-level parameters, at the corresponding orography 

height, for the period 2010–2014 at 3°×3° spatial sampling. 

As an example of the wet delay derived from an NWM (using single-level fields), Fig. 1 shows 

the global distribution of the WPD mean (cm), computed from (1) and (2), using TCWV and T0 

provided by ERA5. It was computed for the period 2010–2014, with grids every 6 h at 3°×3° spatial 
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sampling. Overall, the magnitude of the WPD is small over the polar regions and increases toward 

the equator (for more details about the WPD spatial distribution, see (Vieira et al., 2019)). 

Another approach to derive the WPD from NWM is from 3-D atmospheric parameters provided 

at vertical levels (Collecte Localisation Satellites (CLS), 2011). This method involves the numerical 

integration of these parameters (of humidity and temperature) along the vertical profiles, from the 

TOA down to the surface. This approach requires much more computational power. 

Section 2.3.2.2 will demonstrate that the use of WPD estimated from 2-D NWM parameters is 

adequate for the purpose of this study. 

2.3.2.2. Comparison Between WPD Computed from Single-Level and 3-D 

Parameters 
Two sets of WPD have been estimated from ERA5 for a time span of one year (2010). For each 

point on a grid 3°×3°every 6 h, two WPD values have been obtained at the height of the model 

orography: from 2-D and from 3-D parameters. The WPD computation from 3-D parameters is 

performed through numerical integration from the TOA down to the height of the model orography. 

This is performed using (3) as given in (Collecte Localisation Satellites (CLS), 2011), where PTOA and 

Poro are the corresponding pressures in hPa, respectively, q is the specific humidity in kg/kg, T is the 

temperature in kelvin, and WPD results in meters 

 

 
𝑊𝑃𝐷ℎ = (1.116454 × 10−3∫ 𝑞𝑑𝑝

𝑃𝑜𝑟𝑜

𝑃𝑇𝑂𝐴

+ 17.66543928∫
𝑞

𝑇
𝑑𝑝

𝑃𝑜𝑟𝑜

𝑃𝑇𝑂𝐴

) × (1 + 0.0026 cos 2𝜑) (3) 

 

The analysis of the differences between these two WPD values allows to inspect their magnitude 

and spatial distribution. Fig. 2 shows the mean values of these WPD differences in millimetres 

computed for 3°×3° tiles. These differences have a global mean of 0.1 mm and a standard deviation 

of 1.6 mm. 

 
Figure 2. WPD mean differences (mm) between 2-D and 3-D approaches at orography height for the year 2010. 
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Observing Fig. 2, there are some regions with absolute WPD mean differences larger than 6 mm; 

however, the map is mainly green and yellow corresponding to WPD mean differences in the range 

[-4, 4] mm. The root mean square (RMS) values of the same WPD differences reveal the maximum 

values of 1.1 cm in regions at low latitudes. The largest differences are in locations where WPD 

vertical variation is complex, namely due to its dependence on temperature, not well modelled by (1) 

and (2). The results show that although these WPD differences can exceed 1 cm, they are globally 

small. Therefore, in the interest of computational efficiency, the 2-D approach was adopted in this 

paper. 

 

2.3.3. Inter-comparisons of NWM-derived WPD 

The first analysis carried out in order to assess the impact of different resolutions in the WPD 

computation concerns the inter-comparisons of various NWM-derived WPDs. Using a time span of 

four years (2010–2014), several WPDs from ERA5 and ECMWF operational models, as shown in 

Tables 1 and 2, have been inter-compared. 

For the ERA5 model, WPDs interpolated from single level atmospheric parameters at 2, 4, and 6-

h intervals and at 0.6° × 0.6° and 1.2° × 1.2° spatial samplings have been considered. For the ECMWF 

operational model, WPDs interpolated from single-level atmospheric parameters at 0.25° × 0.25°, 0.50° 

× 0.50° and 0.75° × 0.75° spatial samplings have been compared. Other WPD values have been 

computed for the instants and grid points of the native resolution of each model (1 h and 0.3°×0.3° for 

ERA5 and 6 h and 0.125° ×0.125° for ECMWF operational model), without any temporal or spatial 

interpolation, to be used as a reference in these inter-comparisons. 

The ERA5 data have a native resolution of 0.28125° (31 km) and ECMWF recommends rounding 

the resolution to 0.25°. The ERA5 data used in this paper were requested in the NetCDF format with 

a spatial resolution of 0.3° ×0.3°, which is automatically interpolated to this regular grid (selected by 

the user). 

 

2.3.3.1. Using Different Temporal Resolutions 
For the inter-comparisons using different temporal resolutions, maintaining the same spatial 

resolution (0.3° × 0.3°), only ERA5 was adopted and the following methodology was used: 1) for each 

grid point of the ERA5 model, a reference WPD value is computed using the corresponding 

atmospheric parameters, at the model native resolution; 2) for the same grid point, another WPD 

value is derived using the corresponding atmospheric parameters of the grids 1 h before and 1 h after 

(2-h interval), interpolated in time to the instant of the actual 1-h resolution grid; 3) another WPD 

value computed as the latter, but using the grids 2 h before and after (4-h interval); and 4) another 

WPD value interpolated in time using the grids 3 h before and after (6-h interval). All interpolated 

WPD values are obtained from the WPD computed using the atmospheric parameters at full 

resolution. All these WPD values are summarized in Table 1. 
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Table 1. Temporal resolutions used to compute various WPDs from ERA5 model 

 Temporal resolution 

NWM ERA5 

Reference WPD (not interpolated) 1-h 

Interpolated WPD 

2-h 

4-h 

6-h 

 

Using these four global WPD values for a period of four years, three differences are calculated 

between the noninterpolated WPD and those interpolated using atmospheric parameters from ERA5 

at 2, 4, and 6-h intervals. These global sets of WPD differences have been binned into classes of 

latitude and an RMS value is calculated for each WPD difference and for each class of latitude. Fig. 3 

(top) shows these RMS values in cm for the latitude classes of 3°. Blue bars represent the rms of the 

differences between the non-interpolated WPD and those interpolated using ERA5 atmospheric 

parameters at 6-h intervals. Orange and green bars represent the corresponding values when 4 and 

2-h intervals are used, respectively. 

The same global sets of WPD differences were binned per day, computing daily weighted rms of 

the differences (weight function of the co-sine of latitude) for the whole globe. RMS of these daily and 

globally differences is shown in Fig. 3 (bottom) using the same colour code, allowing to observe the 

time evolution of the various WPD differences (rms) and providing a global rms for each difference. 

 

 
Figure 3. RMS (cm) of WPD differences function of latitude for classes of 3° (top) and function of time computed 

for weighted daily and global differences (bottom). WPD differences are between the reference values and those 

interpolated using different temporal resolutions, both from ERA5. 
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Fig. 3 shows that, as expected, the differences increase with the time interval between the 

consecutive WPD grids. These differences show the maximum values around latitudes ±45°, larger in 

the southern hemisphere (latitudes 30°–50° S), with a maximum rms value of about 1.0, 0.6, and 0.2 

cm for the 6, 4, and 2-h intervals, respectively. These values are indicators of the effect of the time 

sampling used to compute WPD from ERA5. Fig. 3 (bottom) shows a constant pattern and the global 

RMS values for the WPD differences of about 0.6, 0.4, and 0.2 cm when 6, 4, and 2-h intervals are 

used, respectively. 

To observe the spatial distribution of the differences between the reference (non-interpolated) 

WPD and the corresponding interpolated values using 6-h intervals (shown in blue in Fig. 3), Fig. 4 

shows the same rms values computed for 3° × 3° tiles. The largest differences observed in Fig. 3 (top) 

in the southern hemisphere are observed in Fig. 4 for latitudes around 45° S. Fig. 4 also shows the 

regions with rms values larger than 1 cm and zones where this value is small (such as South Atlantic 

Ocean close to the coast of Africa, South Pacific Ocean close to Peru and Chile and polar regions). 

 

Figure 4. RMS (cm) of the WPD differences when WPD is interpolated from ERA5 grids 6-h apart. 

These results show that when compared with WPD derived from ERA5 at its best temporal 

resolution, the use of atmospheric parameters at 6 h has an impact less than 1 cm (∼0.6 cm) in the 

global WPD computation [see Fig. 3 (bottom)]; however, in some regions, this value can reach 1 cm 

[see Fig. 3 (top)] or even be larger than 1 cm (see Fig. 4). 

The interpretation of these results needs some care. Since this is a comparison between different 

temporal resolutions, large differences can be associated with regions where the WPD is more 

variable in time or simply regions where the effect of using different temporal model resolutions is 

significant (irrespective of the WPD time variability). The identification of zones with latitudes 

around ±40° with the largest rms values (see Figs. 3 and 4) is mainly due to the second reason, as it 

will be confirmed and discussed in Section 2.3.4, after comparing with independent observations. 

When different temporal resolutions are compared, small differences mean that the different 

resolutions do not generate significantly different path delays. On the contrary, large differences 

mean that the different temporal resolutions generate different path delays, which can mean that one 

of them maps better the WPD than the other one, irrespective of its temporal variation. 

The significant impact of ERA5 at 1 h, instead of 6 h, observed in some latitude bands (not 

necessarily with the highest WPD temporal variability) can be associated with regions where there is 

a larger amount of input data to the ERA5 reanalysis data assimilation (Zhang et al., 2018). 
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2.3.3.2. Using Different Spatial Resolutions 
For the inter-comparison using different spatial resolutions, ERA5 and ECMWF operational 

models were examined. The following methodology was adopted: 1) for all grid points of each model, 

a WPD value is computed at the native resolution of the NWM using the corresponding atmospheric 

parameters, adopted as the reference WPD values; 2) for the same grid points, a WPD value is 

interpolated in space, from WPD values at the four neighbouring grid points, which are the corners 

of a square with centre in the previously mentioned grid points and with size twice the highest 

resolution of each model (0.6° × 0.6° for ERA5 and 0.25° × 0.25° for ECMWF operational); 3) another 

WPD value computed as the latter, but taking a square with a size of four times the models’ resolution 

(1.2°× 1.2° for ERA5 and 0.50° × 0.50° for ECMWF operational); 4) another WPD value computed as 

the latter, only for the ECMWF operational model, considering a square with a size of six times the 

model resolution (0.75° × 0.75°). All these WPD values obtained from different spatial resolutions are 

summarized in Table 2. 

 

Table 2. Spatial resolutions used to compute various WPDs from era5 and ECMWF operational models 

 Spatial resolution 

NWM ERA5 Operational 

Reference WPD (not interpolated)  0.3°x0.3° 0.125°x0.125° 

Interpolated WPD 

0.6°x0.6° 0.25°x0.25° 

1.2°x1.2° 0.50°x0.50° 

 0.75°x0.75° 

 

Using these global sets of WPD for the period from 2010 to 2014, differences have been calculated 

between the reference WPD and those interpolated using different spatial resolutions, as explained 

earlier. 

As in the analysis using different temporal resolutions, these WPD differences were binned into 

classes of latitude (3°) and, for each day, calculating the rms for each class. Fig. 5 (top) shows these 

values for ERA5, function of latitude. The maximum rms of about 1.3 and 0.8 cm for the differences 

between the reference WPD and those interpolated at 1.2°×1.2° (blue) and at 0.6° × 0.6° (orange), 

respectively, is observed in the equatorial region. Concerning the time evolution of the global and 

daily rms [see Fig. 5 (bottom)], the same differences have the global rms of about 0.8 and 0.4 cm, 

respectively. This time evolution also reveals the existence of an annual signal in these differences, 

with maximum values during boreal summer, due to the WPD seasonal variability. The largest 

differences are observed in periods of year where WPD reaches its maximum variability. 
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Figure 5. RMS (cm) of WPD differences function of latitude for classes of 3° (left) and function of time computed 

for each day (right). WPD differences are between the reference values and those interpolated using different 

spatial resolutions, both from ERA5. 

The same RMS values represented in blue in Fig. 5 were computed globally for 3°×3° tiles and 

shown in Fig. 6. Fig. 6 allows to observe the spatial pattern of these differences (rms). The most 

striking feature is the latitudinal dependence of these differences, in agreement with Fig. 5 (top). RMS 

larger than 1.0 cm is observed in some regions, with the highest values mainly over land and coastal 

zones at latitudes around 50° S–50° N. The significance of these values (represented in Figs. 5 and 6) 

will be discussed again in Section 2.3.4, after an independent assessment of the various spatial 

resolutions. 

 

Figure 6. RMS (cm) of the WPD differences when WPD is interpolated from ERA5 at 1.2° × 1.2° spatial sampling. 

Regarding the same analysis using WPD from the ECMWF operational model, Fig. 7 (top) shows 

the maximum rms values of about 1.6, 1.0, and 0.4 cm for WPD differences between the WPD 

reference values and those interpolated at 0.75° × 0.75°, 0.50°×0.50°, and 0.25°×0.25°, respectively. The 
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same differences calculated globally and daily [see Fig. 7 (bottom)] have the rms values of about 0.7, 

0.5, and 0.2 cm. 

 

 
Figure 7. RMS (cm) of (Top) WPD differences function of latitude for classes of 3° and (Bottom) function of time 

computed for each day. WPD differences are between the reference values and those interpolated using 

different spatial resolutions, both from ECMWF operational model. 

The results represented in Fig. 7 (bottom) show a jump in the beginning of 2010, after which the 

three WPD differences become larger. This jump occurs in the same instant of an upgrade in the 

ECMWF operational model (January 26, 2010), with a corresponding change in the model orography. 

This can mean that this change leads to a better modelling of the troposphere. When WPD differences 

between different spatial samplings are examined, low differences mean that the increase in spatial 

resolution does not conduct to significant improvement in the modelling of the WPD spatial 

variation. On the contrary, large differences indicate a better modelling of the WPD spatial variation, 

only depicted by the finest resolutions. 

The results of this section reveal the global WPD differences with rms smaller than 0.8 cm [see 

Figs. 5 and 7 (bottom)]; however, values larger than 1 cm exist in some regions [see Figs. 5 and 7 

(top)]. Concerning ERA5, when 0.6° × 0.6° spatial sampling is used, differences have a global rms of 

about 0.4 cm, being smaller than 0.8 cm over the equator. Regarding the ECMWF operational model, 

when 0.75° × 0.75° spatial sampling is considered, differences have a global rms of about 0.7 cm and 

rms values can reach 1.6 cm close to the equator. Concerning these differences using the 0.50° × 0.50° 

spatial sampling, the rms values are not larger than 1 cm. 

The focus of this study is the assessment of the impact of using different NWM resolutions in 

order to determine the best compromise between the accuracy of the NWM-derived WPD and also 

the corresponding computational time. Being the above-mentioned results related with the ability of 
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the atmospheric models to resolve the atmosphere, with respect to the water vapor distribution and 

variability, there is interest in the identification of regions with different WPD temporal and spatial 

variabilities (Stum et al., 2011). This is of great relevance for some existing algorithms to improve the 

WPD retrieval (Fernandes et al., 2010, 2015, 2016), allowing to improve the knowledge of WPD spatial 

and temporal correlations, crucial in the combination of different WPD sources. 

All the results presented in this section are provided by inter-comparisons between various 

NWM-derived WPD, using different temporal and spatial resolutions of the models. For a complete 

analysis, an independent assessment is required, namely using WPD retrieved from an external and 

more accurate source (e.g., measurements from MWR). 

 

2.3.4. Independent comparison between MWR and ERA5-derived WPD 

For an independent evaluation of the impact of using different resolutions of ERA5 in the WPD 

computation, this section presents a comparison with the measurements retrieved from MWR 

onboard ENVISAT and Jason-2. MWR provides WPDs over the open ocean with enough accuracy for 

satellite altimetry studies (errors of less than 1 cm) (Brown, 2010; Keihm et al., 1995). These altimetry 

data are provided by the Radar Altimeter Database System (RADS) (Scharroo, 2016). Using a time 

span of one full year (2010), WPDs from these MWRs have been compared with those computed from 

ERA5 considering different spatial and temporal model samplings. For each along-track 

measurement of MWR, three WPD values are interpolated from ERA5: 1) using 0.3°×0.3° and 1 h, the 

best resolutions; 2) 0.3° × 0.3° and 6 h, as the former, but degrading the temporal resolution; 3) 0.6° × 

0.6° and 6 h, as the second, but degrading the spatial resolution. For these comparisons, only MWR-

derived WPD measurements flagged as valid and with latitudes in the range [−60°, 60°] were used. 

The validity criteria consider only open-ocean points absent of land, ice, and rain contamination 

(Fernandes et al., 2016). Since MWR-derived WPD measurements are provided at sea level, for this 

comparison, all ERA5-derived WPD values are reduced to sea level using an empirical expression 

(Kouba, 2008). Anyway, note that over open ocean, the ERA5 orography is very close to the sea level 

(differences smaller than 1 m). 

The various WPD differences between the MWR-derived WPD and those interpolated from ERA5 

were binned into classes of latitude (3°), and rms values were calculated for each class. These rms 

values, function of latitude, for WPD differences between MWR onboard ENVISAT and ERA5 (left) 

and between MWR onboard Jason-2 and ERA5 (right) are shown in Figs. 8 and 10. Fig. 8 shows the 

effect of using the same spatial sampling (0.3° × 0.3°) and different temporal resolutions (1 or 6 h), 

while Fig. 10 shows the effect of using the same temporal resolution (6 h) and different spatial 

samplings (0.3° × 0.3° or 0.6° × 0.6°), when compared with an independent WPD source. 

2.3.4.1. Impact of the Temporal Resolution 
Concerning the use of different temporal resolutions, the results shown in Fig. 8 reveal that the 

rms of differences between the MWR- and ERA5-derived WPDs is in the range 0.6–1.7 cm, depending 

on the latitude band. However, a small effect is detected when WPD values are interpolated from 1-

h sampled parameters (green), instead of 6-h sampled parameters (orange). This small effect 
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corresponds to rms differences lower than 0.2 cm, only in some regions (approximately 30°–60° S and 

30°–60° N). These results are in agreement with those shown in Fig. 3 (top), where the WPD 

differences are larger in the same latitude bands. These regions do not necessarily represent the 

highest WPD temporal variability (Stum, 1994). On the contrary, the largest differences observed in 

Section 2.3.3 (see Figs. 3 and 4) are due to the effect of using different temporal resolutions of the 

ERA5, shown to be significant only for these regions. 

 

Figure 8. RMS (cm) of the WPD differences between (Left) MWR onboard EnviSat and (Right) Jason-2 and 

ERA5 at different temporal resolutions (1- and 6-h intervals), maintaining the same spatial resolution (0.3° × 

0.3°). 

To confirm the global results shown in Fig. 8, Fig. 9 shows an example of an ENVISAT partial 

track, where WPD derived from its MWR is represented in black, while WPD derived from ERA5 is 

represented in orange (6 h) and green (1 h). Fig. 9 confirms that overall, there are no large differences 

between the two WPD derived from ERA5, showing similar behaviour to the path delay retrieved 

from MWR. For high variations well detected by the MWR, as observed for latitudes close to 24° N, 

using 1-h intervals, the NWM-derived WPD is slightly closer to the WPD retrieved from the MWR 

than the corresponding 6-h interval values. However, even using the highest temporal resolution, the 

WPDs derived from ERA5 are not able to detect this large variation. It has long been recognized that 

the WPD computed from meteorological models has poorer accuracy than the MWR valid 

measurements, because such models often cannot map the atmospheric humidity small space and 

time scales (Stum, 1994). Thus, these results confirm the small effect of using 1-h intervals, instead of 

6-h intervals, and the inability of the ERA5 to detect short time scales of the WPD, even at 1-h 

resolution. 
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Figure 9. Example of the WPD (cm) from ENVISAT MWR (black) and interpolated from ERA5 at 0.3° × 0.3° and 

1-h (green) and 0.3° × 0.3° and 6-h (orange), showing only the effect of the temporal resolution. 

2.3.4.2. Impact of the Spatial Resolution 
Regarding the effect of the spatial resolution in the computation of the WPD from ERA5, when 

compared with independent measurements from onboard MWR (ENVISAT and Jason-2), Fig. 10 

shows very small differences between WPDs interpolated from ERA5 at 0.3° ×0.3° and 0.6° ×0.6°. The 

results show that there is no significant effect when WPD derived from ERA5 is interpolated at 0.6° × 

0.6°, instead of 0.3° × 0.3°, proving that ERA5 cannot detect the WPD short space scales, even with its 

finest spatial resolution. Fig. 10 shows that the rms of the differences between the MWR- and ERA5-

derived WPDs in all cases is in the range 0.7–1.7 cm, depending on latitude. 

 

Figure 10. RMS (cm) of the WPD differences between (Left) MWR onboard ENVISAT and (Right) Jason-2 and 

ERA5 at different spatial resolutions (0.3° × 0.3° and 0.6° × 0.6°), maintaining the same temporal resolution (6-h 

intervals). 

Fig. 11 shows an example for the same partial track of ENVISAT, where significant differences 

between WPDs interpolated at 0.3° × 0.3° or 0.6° × 0.6° are not observed, confirming the global results 

represented in Fig. 10 (left). These results indicate that to optimize the calculation time, 0.6° ×0.6° 

spatial sampling may be used, since a finer spatial resolution does not significantly improve the 
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ERA5-derived WPD. Note that a reduction of resolution from 0.3° × 0.3°to 0.6° × 0.6° corresponds to 

a data reduction of 1/4, very relevant in terms of computational effort. 

 

Figure 11. Example of the WPD (cm) from ENVISAT MWR (black) and interpolated from ERA5 at 0.3° × 0.3° 

and 6 h (orange) and 0.6° × 0.6° and 6 h (blue), showing only the effect of the spatial resolution. 

Globally, the three WPD differences represented in Figs. 8 and 10 have rms values around 1.2 cm, 

without very significant global differences between them. Depending on latitude, these rms values 

vary between 0.6 and 1.7 cm. These numbers are indicators of the actual accuracy of WPD derived 

from ERA5 when compared with a more accurate source (MWR). 

The previous analyses with NWM inter-comparisons show a global rms of about 0.6 cm when 6-

h intervals are used [see Fig. 3 (bottom)] and a global rms of about 0.4 cm when 0.6° × 0.6° spatial 

sampling is used [see Fig. 5 (bottom)]. These last two rms values (0.6 and 0.4 cm) are very low 

compared with the global RMS value of the differences between MWR and ERA5 (1.2 cm). For this 

reason, the effect of using different spatial (0.3° × 0.3° or 0.6° × 0.6°) and temporal (1-h or 6-h) 

resolutions to derive WPD from ERA5, when compared with that from MWR, is insignificant or very 

small. These results are explained by the fact that NWM is not able to model the smallest spatial and 

temporal scales of the WPD variability (Stum, 1994), showing that the same happens for the latest 

reanalysis from ECMWF. 

In general, models cannot represent variability on scales smaller than those defined by the spacing 

grid (0.25° × 0.25° for ERA5). In fact, models do not represent the grid scale very well, being the 

effective resolution of models somewhat larger than the grid scale. 

Defining the effective resolution as the smallest scale that the model can resolve fully, spectral 

analyses have been shown that the effective resolution is estimated as eight times the model grid 

spacing. Defining the effective useful resolution as the scale required to map at least 50% of the field 

variability of that scale, the same analyses show that the effective useful resolution is four times the 

grid resolution (Abdalla et al., 2013). Regarding the ERA5 reanalysis, these two definitions of effective 

horizontal resolutions are around 2.3° and 1.1° (considering the native resolution of 0.28125°). 

The analysis shown in Fig. 10 was extended to other spatial resolutions (1.2°, 1.8°, and 2.4°) using 

the same period of ENVISAT data, and the results (not shown) indicate that using 0.3°, 0.6°, or 1.2° 

spatial samplings, the ERA5 does not generate a significantly different WPD. Only using a spatial 

resolution worse than 1.2°, the differences with MWR measurements become significantly larger. This 
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value agrees with the definition of effective useful resolution, as described earlier (Abdalla et al., 2013) 

and explains the results shown in Figs. 10 and 11. 

This independent comparison with MWR-derived WPD also confirms that the results present in 

Section 2.3.3, shown in Figs. 5 and 6, do not have a physical meaning. Large differences observed may 

be only due to interpolation errors in areas of high WPD gradient, since the spatial resolutions of 

0.3°×0.3°,0.6°×0.6°, and 1.2°×1.2° do not generate WPD significantly different. 

Figs. 8 and 10 allow also to observe that, mainly for latitudes near ±60°, the differences between 

MWR onboard ENVISAT and ERA5 (left) are larger than the differences between MWR onboard 

Jason-2 and ERA5 (right). This is because missions as Jason-2 (the so-called reference missions) and 

those as ENVISAT (European Space Agency missions) have different spatial coverages, due to their 

orbit repeat cycles (10 and 35 days, respectively). 

The analysis presented in Section 2.3.3 is global (includes both ocean and land). On the contrary, 

the analysis presented in this section is only performed over open ocean (where valid MWR 

measurements exist), which is the regions of interest for satellite altimetry. For these reasons, the 

results of Sections 2.3.3 and 2.3.4 are not directly comparable. Thus, the same inter-comparisons 

shown in Section 2.3.3 were performed only for oceanic regions and the results similar to the global 

ones are achieved. Only the rms of the differences between various ERA5-derived WPDs computed 

for latitude bands is a bit different, but it remains smaller than the rms of the differences between 

MWR and ERA5 (0.6–1.7 cm). 

2.3.5. Conclusion 

This paper describes the impact of using atmospheric parameters from NWM (ERA5 and ECMWF 

operational models) at different spatial and temporal resolutions in the computation of the WPD for 

application in satellite altimetry, with a particular interest in the new and high temporal resolution 

of the ERA5 (1-h intervals). 

NWM-derived WPDs used in the analyses of this paper are those computed using single-level 

parameters; however, it is shown that the impact of using this approach instead of using atmospheric 

parameters on vertical levels (3-D) is small. This comparison shows the differences at the orography 

height with a global mean of 0.1 mm and a standard deviation lower than 2 mm, while the rms 

computed for 3° × 3° tiles is lower than 1.1 cm. 

Inter-comparisons between various NWM-derived WPD reveal differences with the global rms 

values of about 0.6, 0.4, and 0.2 cm, when 6-, 4-, and 2-h intervals, instead of the native 1-h values, are 

used in the WPD computation from ERA5, respectively. However, using 6-h intervals, the rms can be 

larger than 1 cm in some regions (mainly at latitudes around ±50° and in the southern hemisphere). 

For the spatial resolution, the same analysis reveals the WPD differences with a global rms of about 

0.4 cm when 0.6°×0.6° spatial sampling of ERA5 is used instead of the original 0.3° × 0.3° spacing, 

being the maximum of this rms smaller than 0.8 cm close to the equator. Using the ECMWF 

operational model, the results show the WPD differences with the global rms values of about 0.2, 0.5, 

and 0.7 cm when 0.25° × 0.25°, 0.50° × 0.50°, and 0.75° × 0.75° spatial samplings are used in place of 
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the original 0.125° × 0.125° spacing. However, the same values can reach 0.4, 1.0, and 1.6 cm in some 

regions (mainly over coastal zones at low latitudes, where spatial WPD variability seems to be large). 

Independent comparisons with WPD derived from MWR (onboard ENVISAT and Jason-2) show 

an insignificant effect when WPD is interpolated from ERA5 at 0.6° × 0.6°, instead of 0.3° ×0.3° spatial 

sampling, indicating that to optimize the computational time, 0.6°×0.6° spatial sampling may be used. 

This shows that the effective useful spatial resolution of the ERA5 is a bit worse than its native 

resolution. Concerning the temporal sampling, the effect of using 1-h intervals instead of 6-h intervals 

is significant only in some regions (latitude bands around 30°–60° S and 30°–60° N) and this effect is 

smaller than 0.2 cm in the rms values of the differences between MWR and ERA5. These results show 

that 1-h intervals do not have a significant effect on the WPD accuracy from ERA5, being a temporal 

resolution of e.g., 3 h enough to remove this small effect of only 0.2 cm in the rms and to ensure the 

same accuracy of using 1-h intervals. This is due to the inability of the model to represent the smaller 

scales of variability, both in space and time. 

Overall, the results indicate that the observed differences in the inter-comparisons of various 

ERA5-derived WPDs are small when compared with the differences between the WPD retrieved from 

MWR and those from ERA5, which were shown to have a global rms value of 1.2 cm, varying in 

latitude between 0.6 and 1.7 cm. 

As recognized for the previous atmospheric models, the results obtained from the independent 

comparisons show that ERA5 cannot map the WPD small space and time scales, evidencing the 

limitations of the latest ECMWF reanalysis, being the measurements from MWR, whenever valid, the 

most accurate way to measure the effect of the wet troposphere in satellite altimetry. 

Results of this paper provide relevant information to ensure that when NWM-derived WPDs are 

used in satellite altimetry, the best compromise is achieved between accuracy and computational 

time. 
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3. Modelling the Altitude Dependence  

of the Wet Path Delay for Coastal Altimetry  

Using 3-D Fields from ERA5 (Article 4) 

Abstract – Wet path delay (WPD) for satellite altimetry has been provided from external sources, 

raising the need of converting this value between different altitudes. The only expression available 

for this purpose considers the same altitude reduction, irrespective of geographic location and time. 

The focus of this study is the modelling of the WPD altitude dependence, aiming at developing 

improved expressions. Using ERA5 pressure level fields (2010–2013), WPD vertical profiles were 

computed globally. At each location and for each vertical profile, an exponential function was fitted 

using least squares, determining the corresponding decay coefficient. The time evolution of these 

coefficients reveals regions where they are highly variable, making this modelling more difficult, and 

regions where an annual signal exists. The output of this modelling consists of a set of so-called 

University of Porto (UP) coefficients, dependent on geographic location and time. An assessment 

with ERA5 data (2014) shows that for the location where the Kouba coefficient results in a maximum 

Root Mean Square (RMS) error of 3.2 cm, using UP coefficients this value is 1.2 cm. Independent 

comparisons with WPD derived from Global Navigation Satellite Systems and radiosondes show that 

the use of UP coefficients instead of Kouba’s leads to a decrease in the RMS error larger than 1 cm. 

 

3.1. Introduction 

The presence of water in the atmosphere plays a key role in the Earth’s climate, being crucial for 

human life. With economic and social impacts, remote sensing techniques have been developed to 

measure and monitor the water vapor content in the troposphere, namely its vertical distribution 

(Chaboureau et al., 1998). However, the water vapor content in the atmosphere is itself an undesirable 

factor for some remote sensing techniques, as satellite radar altimetry, whose final purpose is not to 

measure the atmospheric properties. 

Satellite altimetry’s main objective is the measurement of the sea surface height (SSH) above a 

reference surface (Chelton et al., 2001), allowing applications as the monitoring of the mean sea level 

(Ablain et al., 2015; Legeais et al., 2018), at global or regional scales. The SSH depends on the 

measurement of the range between the satellite orbit and the sea surface and on the satellite altitude 

above the same reference surface. Contrary to what happens in the vacuum, the propagation of the 

radar signals through the atmosphere is affected by its constituents (Fernandes et al., 2014). One of 

these effects is the path delay induced by the wet troposphere, which, in the context of satellite 

altimetry, is one of the atmospheric corrections to be considered: the wet tropospheric correction 
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(WTC). Since this delay leads to an additional path induced by the wet troposphere, the WTC is a 

negative value in the altimetric equations involved in the SSH estimation. Mainly due to the presence 

of water vapor in the troposphere, the WTC has a maximum absolute value of 0.5 m. Hereafter, for 

simplification, its absolute value, the wet path delay (WPD) is adopted. 

Accurate determination of SSH from satellite altimetry, either over the ocean or continental 

waters, depends on the accuracy of all terms involved in its computation, namely the WPD. It is 

known that the water vapor concentration is highly variable in the atmosphere, both in space and 

time, and its greatest concentration is near the ground and in the tropics (Vieira et al., 2019). Due to 

this complex 4-D variation, for altimetry applications over open-ocean, the WPD is best determined 

from collocated measurements provided by Microwave Radiometers (MWR), passive instruments on 

board most of altimetric missions (Brown, 2010). Satellite altimetry has been used over coastal 

(Cipollini et al., 2017; Fernandes et al., 2018; Handoko et al., 2017) and inland waters (Fernandes et 

al., 2014; Vieira et al., 2018), however the WPD retrievals from MWR measurements become invalid 

and cannot be used over these regions (Vieira et al., 2019b). The current algorithms that compute the 

WPD from MWR measurements have been tuned to conditions only over ocean surfaces (Thao et al., 

2015). When different surfaces (e.g., land) are present in the footprint of the MWR, the algorithms will 

return the corresponding ocean-like WPD, resulting in invalid values over e.g., coastal and 

continental waters. 

Alternative sources to provide valid WPD values for these zones can be the Global Navigation 

Satellite Systems (GNSS) ground stations (Fernandes et al., 2013; Vieira et al., 2019b) and Numerical 

Weather Models (NWM) (Fernandes et al., 2014; Legeais et al., 2014), e.g., those from the European 

Centre for Medium-Range Weather Forecasts (ECMWF). These different WPD sources have been 

used together in order to develop improved WPD products for satellite altimetry, with significant 

impacts over coastal zones (Fernandes et al., 2010, 2015, 2016). Since these WPD sources are different 

in terms of spatial coverage, temporal sampling, reference surface and accuracy, appropriate 

procedures are required to handle the different observations and to retrieve the best WPD estimation 

(Stum et al., 2011). 

Designed for applications over the ocean, altimetric missions are mainly focused on the sea 

surface and, for this reason, MWR-derived WPD measurements refer to the sea level. On the contrary, 

WPD derived from an NWM are computed at the level of its orography (usually a smoothed 

representation of a digital elevation model), which can depart from the actual surface by hundreds of 

meters (Fernandes et al., 2014). The path delays derived from GNSS are available at each station 

height (Fernandes et al., 2013), which for some coastal and island stations can be larger than 2000 m. 

Due to the differences between these three data types (MWR, NWM, and GNSS), namely their 

reference surfaces, the modelling of the height dependence of the WPD is crucial information to better 

combine these different WPD sources for altimetry application over coastal and inland waters. Over 

coastal zones, all measurements must refer to the sea level, while over continental waters they must 

refer to the level of the corresponding water body. Therefore, an expression to reduce the WPD from 

GNSS station height and orography level to sea level (over coastal zones) and to water body height 

(over inland waters) is required. 
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At present, there is an expression for the altitude reduction of the WPD developed by Kouba 

(Kouba, 2008), however this equation has some limitations due to the complex 4-D variation of the 

WPD, since it assumes that this altitude dependence is the same over the whole globe. 

For real-time applications like aircraft navigation and positioning, similar approaches for the 

modelling of this height dependence that provide WPD (or equivalent values) without meteorological 

measurements are used (Böhm et al., 2015; W. Li et al., 2018; Yao et al., 2018). As these approaches 

were not developed for altimetry applications, they have precisions of various centimetres. 

The focus of this research is the modelling of the height dependence of the WPD, aiming to derive 

improved expressions to account for its complex 4-D variation, required for regions of interest, as 

coastal and continental waters. These expressions are crucial for the retrieval of accurate WPD 

measurements over the latter regions, such as rivers and lakes, very important for obtaining accurate 

absolute water levels. 

For this modelling, global WPD estimations at vertical profiles are required, which can be 

obtained from various sources, such as NWM, GNSS tomography, or radiosondes (RS). The RS 

network is the primary in-situ observing system for monitoring the atmosphere, giving unique 

information on the distribution and variability of water vapor in the troposphere. RS measurements 

provide vertical profiles of the meteorological variables required for the WPD retrieval (pressure, 

temperature, and humidity), as well as the geopotential height. Usually, radiosondes are expected to 

measure WPD with an uncertainty up to 1.2 cm (Niell et al., 2001). However, the use of radiosondes 

is restricted by their high operational costs, decreasing sensor performance in cold dry conditions, 

and their poor spatial coverage (Z. Li et al., 2003). 

GNSS is an operational tool for measuring the atmospheric water vapor, allowing the estimation 

of WPD at the station height with an accuracy of some millimetres (Fernandes et al., 2013). The 

advantages of GNSS are that it makes continuous measurements possible and the spatial density of 

the current GNSS networks is higher than that of the radiosonde network. Concerning the GNSS 

tomography in which the 3-D water vapor content is estimated, it takes advantage of observing the 

wet delays in the slant direction. If a network of GNSS stations is available, a vertical discretization 

of the water vapor content can be achieved. The disadvantage of the GNSS tomography is its spatial 

coverage (a regional portion of the troposphere, covered by the GNSS network) (Benevides et al., 

2017; Flores et al., 2000). 

Only NWM provide global data at a regular temporal sampling. For this reason, WPD vertical 

profiles computed from NWM were selected. For this purpose, the latest reanalysis model from 

ECMWF (Copernicus Climate Change Service, 2018), ERA5, was used. This new reanalysis provides 

hourly atmospheric fields at 0.25°×0.25° spatial sampling on 137 vertical levels (from the surface up 

to an altitude around 80 km). 

This study is performed in three main steps. First, the errors introduced when applying the Kouba 

expression globally (using a constant coefficient) are assessed. This provides a quantification of the 

magnitude of the errors and their spatial distribution. For this, global WPD vertical profiles from 

ERA5 are computed and analysed. Exploiting the knowledge acquired in the first step, improved 
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expressions for the vertical variation of the WPD are determined in the second step, from WPD at 

ERA5 vertical levels, considering regional and temporal dependent coefficients. The last step of this 

study is an assessment (selecting ERA5 data not used in the modelling) and a validation (using 

radiosondes and GNSS data). This allows to inspect the significance of this improved modelling in 

the handling of wet path delays for satellite altimetry in regions such as coastal and inland waters. 

Section 3.2 presents the different data and methodologies adopted in this study, both for the WPD 

computation and for the modelling of its vertical distribution, while Section 3.3 presents the results 

and the discussion of this work. Finally, Section 3.4 summarizes the main achievements of this 

research and its impact on the wet tropospheric correction for coastal altimetry. 

3.2. Data and Methods 

The modelling described in this paper was performed using global atmospheric variables on 

vertical levels from ERA5 every 3h, for a time span of 4 years (2010–2013). Data from the same model 

for a different time span (2014) were used for its assessment. For validation purposes, GNSS and 

radiosondes data over the year 2014 were used. This section describes these data and the 

methodologies used to derive WPD from them, both at vertical profiles and at a single vertical level 

(e.g., GNSS station altitude or ERA5 orography height), as well as the methods used for the modelling 

of the WPD altitude dependence. 

3.2.1. Data Sources for WPD Estimation 

In this section, the computation of WPD from atmospheric fields provided by NWM is described. 

The same computation is also performed using in-situ atmospheric measurements from radiosondes. 

The methodology to derive WPD from GNSS data is also addressed. Together with radiosonde 

measurements, they are used as independent observations to validate the modelling proposed in this 

paper. 

3.2.1.1. Numerical Weather Models (NWM) 
The computation of wet delays from NWM for application in satellite altimetry is commonly 

performed from products provided by ECMWF, as the operational model with a spatial resolution of 

0.125°×0.125° and temporal sampling of 6h or the ERA Interim reanalysis (Dee et al., 2011) with the 

same temporal resolution and a slightly worse spatial sampling (0.75°×0.75°). ERA Interim is more 

stable than the ECMWF operational model (Legeais et al., 2014), however the latter has been updated 

and improved and after 2004 it provides similar or better results than ERA Interim (Fernandes et al., 

2014). More recently, ECMWF released the fifth and the latest major global reanalysis ERA5 

(Copernicus Climate Change Service, 2018), which is freely available for any user via the Copernicus 

Climate Change Service (C3S) Climate Data Store (CDS). In this study, the ERA5 reanalysis was 

adopted. 

When compared with its predecessor (ERA Interim), ERA5 has higher spatial (0.25°×0.25°) and 

temporal (1h) resolutions and an improved troposphere modelling. It is the first ECMWF model 

available at 1h intervals. Previous studies (Vieira et al., 2019a) show that this new and improved 

temporal resolution has a small impact in the WPD computation for satellite altimetry, when 
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compared with the common temporal resolution of 6h. As recognized for the previous atmospheric 

models, ERA5 also cannot map the WPD small space and time scales, evidencing the limitations of 

the latest ECMWF reanalysis, even with atmospheric variables at 1h intervals (Vieira et al., 2019a). In 

spite of these limitations, when compared with its predecessor ERA Interim, ERA5 shows a global 

reduction of the WPD Root Mean Square (RMS) error of 0.2 cm. For some latitude bands, the 

improvement can reach 0.4 cm, illustrating the considerable impact of the new reanalysis in the 

computation of radar altimeter wet path delays. 

The WPD retrieval from an NWM such as ERA5 can be performed from two types of data: single 

level (SL) variables provided at surface level and those provided at vertical levels (3-D). The first ones 

are variables available at a single vertical level (the orography height of the corresponding NWM). 

Some of these fields are representative of the total atmospheric column (integrated variables). The 

single level variables are provided at global regular grids and allow the computation of the WPD for 

the same spatial and temporal resolutions, at the corresponding NWM orography height. WPD 

values for along-track satellite altimeter observations must be obtained interpolating in space and 

time the gridded products, further reduced to the height of interest (e.g., sea level or water body 

height). 

The computation from SL variables can be performed from two atmospheric fields—Total 

Column Water Vapor (TCWV) and two-meter temperature (T0), according to Equations (1) and (2): 

 

 
𝑊𝑃𝐷 = (0.101995 +

1725.55

𝑇𝑚
)
𝑇𝐶𝑊𝑉

1000
 (1) 

 

Equation (1) proposed by (Bevis et al., 1992, 1994) allows the computation of WPD in meters, 

using TCWV in kg.m-2. TCWV is a measure of the total water vapor contained in a vertical column of 

atmosphere, part of the altimetric signal path. Using the density of water equal to 1000 kg.m-3, TCWV 

is equivalent to the height of a column of water expressed in millimetres (1 kg.m-2 = 1 mm), designated 

as precipitable water. Thus, TCWV corresponds to the height the water would occupy if the vapor 

was condensed into liquid and spread evenly across the column. Typically, with maximum values 

around 75 kg.m-2 for low latitudes (or 75 mm of precipitable water), TCWV is related with WPD 

through the simple relation: WPD = 6.4×TCWV, with TCWV and WPD in the same length units (Bevis 

et al., 1992; Stum et al., 2011). For the TCWV maximum value of 7.5 cm, the corresponding WPD is 

around 48 cm. However, this relation is not accurate enough. 

The term Tm in Equation (1) is the mean atmospheric temperature, in Kelvin, which can be 

obtained from the near-surface temperature (T0), by means of a linear relation according to e.g., 

Equation (2) proposed by (Mendes, 1999). 

 

 𝑇𝑚 = 50.440 + 0.789𝑇0 (2) 
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In Equations (1) and (2), T0 and Tm are in Kelvin, TCWV in millimetres and the WTC results in 

meters. Adopting these two equations, WPD can be derived from an NWM single level variable, the 

so-called 2-D approach, leading to a less intensive computation. Note that thanks to the use of the 

integrated TCWV field, the estimated WPD value is representative of the total signal path. The 

disadvantage of this approach is the fact that it only allows the WPD computation at a single vertical 

level (the NWM orography height). 

The second type of data provided by NWM for WPD computation are the atmospheric variables 

available at vertical levels (3-D fields). At each grid point, irrespective of its altitude, ERA5 provides 

atmospheric variables on 137 model levels (ML), from the surface up to 0.01 hPa (around an altitude 

of 80 km). These variables are also interpolated to standard levels, such as pressure levels (PL), which 

correspond to 37 levels (1, 2, 3, 5, 7, 10, 20, 30, 50, 70, 100, 125, 150, 175, 200, 225, 250, 300, 350, 400, 

450, 500, 550, 600, 650, 700, 750, 775, 800, 825, 850, 875, 900, 925, 950, 975, and 1000 hPa), from an 

altitude around 45–50 km (1 hPa) down to the surface at 1000 hPa. Unlike model levels, which, for 

each point, correspond to different pressure values, the pressure levels are always the same, 

irrespective of the location or the corresponding surface height. For regions where the surface height 

is above the lowest pressure level, the atmospheric variables for PL below the surface height are 

extrapolated. 

As an example, Figure 1 shows the temperature (T) and the specific humidity (q) at the location 

with coordinates 00°, 120°E provided by ERA5 on 1 January 2010, at 00:00 UTC. Blue points are the 

variables provided on model levels (137), while orange points represent the variables on pressure 

levels (37). Pressure in hPa is represented in the vertical axes, for which the 1000 hPa level is close to 

the surface, while pressures of 500 and 200 hPa correspond to altitudes around 6 and 12 km, 

respectively. These values are approximate, since the correspondence between pressure and altitude 

depends on the geographic location. 

 

Figure 1. Atmospheric variables provided by ERA5 on 1 January 2010, at 00:00 UTC on model levels (blue) and 

on pressure levels (orange): (a) temperature (T) in Kelvin and (b) specific humidity (q) in kg/kg at location 00°, 

120°E. 
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Observing Figure 1b, the specific humidity has a complex vertical distribution and becomes 

negligible for levels above 300–200 hPa (~10 km). On the contrary, Figure 1a shows a linear 

temperature decrease with altitude up to an height of about 10 km, with a mean temperature lapse 

rate of -6.5 K/km (Boehm et al., 2007; Lagler et al., 2013). Figure 1 shows that the pressure levels 

(orange), even being less (37) than the ML (137), are enough to describe the atmospheric vertical 

profiles well. These characteristics are common for the entire globe. The results shown in Section 3.3 

demonstrate that the use of PL, instead of ML, provides similar global results, without significant 

WPD differences. Moreover, the estimations with PL are much more computationally efficient. 

The WPD retrieval from these 3-D variables (either on ML or on PL) can be accomplished from a 

numerical integration of these two variables (temperature and specific humidity), according to 

Equation (3) (Collecte Localisation Satellites (CLS), 2011). This numerical integration is performed 

from the level at the top of atmosphere (TOA), with pressure PTOA, down to the level at surface (with 

pressure Psurf). In Equation (3), q and T are the specific humidity in kg/kg and the temperature in 

Kelvin, respectively, ' is the latitude, the pressures are given in hPa, and the WPD at the lowest 

(surface) level results in meters. 

 

 
𝑊𝑃𝐷 = (1.116454 × 10−3∫ 𝑞𝑑𝑝

𝑃𝑠𝑢𝑟𝑓

𝑃𝑇𝑂𝐴

+ 17.66543928∫
𝑞

𝑇
𝑑𝑝

𝑃𝑠𝑢𝑟𝑓

𝑃𝑇𝑂𝐴

) × (1 + 0.0026 cos 2𝜑) (3) 

 

For a less intensive computation, ERA5 data on levels up to 200 hPa (approximately 20 pressure 

levels) are adequate, since the specific humidity of the upper levels is negligible and the 

corresponding WPD is null. 

The WPD from the so-called 3-D approach was computed using Equation (3) from ERA5 data on 

vertical pressure levels in a global grid of 5°×5°. Figure 2 shows examples of WPD profiles at three 

different locations (only PL above the surface were considered). Grey points represent all WPD 

vertical profiles, every 3h, over one complete year (2010) and the solid line represents the 

corresponding annual mean profile. Mean profiles for January (squares with dashed line) and for July 

(circles with dotted line) are also shown, representative of winter and summer conditions, 

respectively. 
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Figure 2. Wet path delay (WPD) vertical profiles at (a) 10°N, 90°W; (b) 00°, 100°E; (c) 25°S, 65°E. Grey profiles 

represent those every 3h over the year 2010, solid line represents the annual mean profile, squares with dashed 

line and circles with dotted line represent the mean profiles for January and July, respectively. 

Considering three distinct locations and two different months (opposite seasons), Figure 2 

illustrates different WPD vertical distributions, varying both with the geographic location and period 

of the year. WPD has a seasonal variability with largest values in the boreal summer (Vieira et al., 

2019), which can be observed in Figure 2. WPD is larger in July than in January at the location in the 

northern hemisphere (a) and, on the contrary, it is larger in January than in July at the location in the 

southern hemisphere (c). The profiles shown in Figure 2 could also be obtained from ML variables. 

The impact of using different (ML or PL) levels is presented in Section 3.3. 

Figure 2 allows to observe the typical curves of the WPD change with altitude, varying with the 

geographic location and period of the year, suggesting the need for inclusion of temporal and spatial 

dependent terms in the modelling of the WPD variation with altitude. Figure 2 also shows the WPD 

exponential decrease with altitude, according to the water vapor vertical distribution, with its greatest 

concentration near the ground. 

3.2.1.2. Radiosondes (RS) 
At present, there are several methods to obtain the atmospheric humidity from observations, 

usually divided into two types: ground and space-based measurements. Among these observations, 

radiosondes and satellites are two common platforms supporting sensors to measure the vertical and 

horizontal distribution (3-D) of water vapor in the troposphere. 

The vertical variables provided by atmospheric models, as above described, are also derived from 

radiosondes. These are balloon-borne instruments, which measure these variables in-situ, but with a 

limited spatial coverage. Radiosondes have provided detailed measurements of global atmospheric 

water vapor since 1905 (many years before the first altimetry mission). At present, there are over 2700 

stations distributed all over the world. These provide essential variables to study the characteristics 

of atmospheric humidity for weather prediction and global climate change, as well as for different 

validation purposes, namely space-based measurements of total column water vapor (Kalakoski et 
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al., 2016). However, radiosondes measurements inadequately resolve the temporal and spatial 

variability of atmospheric water vapor, which occurs at scales much finer than the spatial and 

temporal variability of e.g., temperature or winds (Anthes, 1983). 

Radiosondes data used in this paper are from the National Climatic Data Centre Integrated Global 

Radiosonde Data (IGRA) version 2 (Durre, 2016). IGRA consists of radiosonde and pilot balloon 

observations at globally distributed stations. Observations are available at standard and variable 

pressure levels. Variables include pressure, temperature, geopotential height, relative humidity, dew 

point depression, wind direction and speed, and elapsed time since launch (Durre et al., 2018). The 

variables of interest for this study are the temperature, humidity, altitude, and pressure. For 

validation purposes, WPD vertical profiles were computed from these in-situ vertical measurements 

at each radiosonde location and at each sounding time, using Equation (3). 

There are many ways to express atmospheric humidity values. Radiosondes usually measure 

relative humidity (RH). These are the observations provided by IGRA, while those required in 

Equation (3) are specific humidity values. The methodology used to convert the RH radiosondes 

measurements into specific humidity can be found in (Nievinski et al., 2010). 

Usually, radiosondes are expected to retrieve WPD with an uncertainty up to 1.2 cm and better 

than 0.6 cm for low ranges of wet delay (Niell et al., 2001). WPD is calculated for each radiosonde 

profile, assuming that the measured pressure, temperature, and humidity were obtained along a 

vertical ascent (although the horizontal motion of almost all radiosonde trajectories is significant). 

Moreover, there is a decreasing sensor performance in cold dry conditions (increasing altitude) (Z. Li 

et al., 2003). For these two reasons, the uncertainty of the RS-derived WPD is expected to increase 

with altitude. On the other hand, the WPD decreases exponentially with altitude, so in terms of 

absolute values this increasing uncertainty can be small. 

Figure 3 shows the spatial coverage of the radiosondes from IGRA, where blue points represent 

the 2788 radiosondes since 1905 until 2018. Green diamonds represent the 93 radiosondes with valid 

measurements of temperature and humidity, as reported in the original sounding, over the year 2014. 

Within this subset of RS with valid measurements of interest for this study, 20 sites were selected 

(represented by red triangles) for the validation task. This selection aimed at ensuring a good 

geographic distribution allowed by the available RS represented by green squares, at low latitudes. 

Here the WPD is more variable and, thus, the effect of this modelling can be more significant. 
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Figure 3. Spatial representation of the radiosondes (RS) network from Integrated Global Radiosonde Data 

(IGRA). Blue points represent all RS since 1905, green squares represent the RS with valid measurements of 

temperature and humidity over the year 2014, and red triangles represent those selected for the validation. 

3.2.1.3. GNSS Stations 

In the context of the tropospheric corrections for satellite altimetry, despite their poor spatial 

resolution, GNSS data have been widely used to derive these corrections (Fernandes et al., 2013; 

Vieira et al., 2019b). The increasing number of GNSS stations in coastal zones has been useful for the 

retrieval of tropospheric corrections in these zones, where the WPD retrieval from MWR 

measurements become invalid and cannot be used (Vieira et al., 2019b). The GNSS-derived WPD have 

been adopted for assessment, validation, and monitoring purposes (Desai et al., 2004; Haines et al., 

1998; Kalakoski et al., 2016; Sibthorpe et al., 2011; Vieira et al., 2019b) and also to develop improved 

methodologies to provide valid WPD measurements in regions where MWR-derived WPD are 

invalid (Fernandes et al., 2010, 2015, 2016). 

The WPD is not a direct estimation from GNSS. The quantity derived from this technique is the 

zenith tropospheric delay (ZTD), which is the total tropospheric delay in the zenith direction due to 

the dry and wet troposphere. The dry component of the total delay can be computed from surface 

pressure fields provided by atmospheric models with high accuracy (Fernandes et al., 2013). Using 

the total delay from GNSS and subtracting the dry delay computed from NWM, both with high 

accuracy, the WPD can be obtained. This way, at the location of each GNSS station and for each 

instant, a WPD with an error less than 1 cm is estimated. In terms of vertical reference, these WPD 

estimations are relative to the corresponding GNSS station height, which is not the level of interest 

for coastal satellite altimetry application. After the WPD derivation from GNSS, the corresponding 

estimations must be reduced to the altitude of interest (sea level or water body height), this being a 

crucial step. Therefore, the modelling of the vertical dependence of the WPD is an important 

procedure to ensure a better use of GNSS-derived WPD in satellite altimetry. 

For more details about the estimation of WPD from GNSS see e.g., (Fernandes et al., 2013; Vieira 

et al., 2019b). 
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3.2.2. Modelling the Altitude Dependence of the WPD 

There is, presently, only one expression available for modelling the WPD vertical dependence, 

which is the one proposed by Kouba (Kouba, 2008). This expression has many limitations since it 

considers the same dependence, irrespective of geographic location and WPD variability. Building 

upon this expression and considering the complex WPD variation, this section presents the developed 

methodology in view to derive improved expressions, taking into account the different patterns of 

the WPD vertical variation function of location and time. 

3.2.2.1. The Kouba Formulation 
To compare wet delays at different heights and in the absence of a convenient transformation, 

Kouba (Kouba, 2008) developed an exponential decay function to transform wet delays between 

different altitudes, at the same planimetric point: 

 
𝑊𝑃𝐷𝑖 = 𝑊𝑃𝐷0𝑒

ℎ0−ℎ𝑖
2000  (4) 

 

where WPD0 is the known wet delay at height h0, and WPDi is the wet delay to be calculated at height 

hi. The Kouba empirical decay coefficient (1/2000) was obtained from the WPD values spanning 1.5 

years at a single location (22.13°N, 159.66°W) and at only two levels (ellipsoidal heights 18 and 1168 

m). This dataset, considered adequate in the context of the Kouba’s study, is not enough to 

characterize the complex 4-D WPD variation. 

From the analysis of this expression, the following values can be withdrawn: for a WPD of 30 cm 

at an altitude of 0 m, reducing this value with the Kouba expression to an altitude of 1000 m, the 

corresponding WPD is 18.2 cm. For empirical decay coefficients of, for example, 1/1500 or 1/2500, the 

corresponding WPD is 15.4 or 20.1 cm, respectively. Therefore, the effect of using different decay 

coefficients can lead to WPD differences of several centimetres. 

3.2.2.2. Modelling Using ERA5 Data on Pressure Levels 
After analysing the sensitivity of the Kouba expression concerning its decay coefficient and given 

the high 4-D WPD variation, new decay coefficients will be modelled in this section. Hereafter, for 

simplification, instead of a decay coefficient (which for Kouba is 1/2000), an inverse decay coefficient 

(α) is introduced. 

In a 5°×5° grid, WPD vertical profiles were computed from atmospheric variables on PL from 

ERA5, over 4 years, as described in Section 3.2.1.1. A temporal sampling of 3h was used, considered 

to be adequate for the WPD computation (Vieira et al., 2019a). At each location and for each WPD 

vertical profile, an α coefficient is determined using least squares, setting the initial coefficient to the 

Kouba value (2000). Since the main application of this modelling is satellite altimetry over coastal and 

inland waters, only the altitudes below 4000 m are of interest. For this reason, only pressure levels 

with altitudes below 4000m were considered. On the other hand, only the pressure levels above 

surface were selected, as those below the surface are generated by extrapolation. For regions where 

the surface height is larger than 4000 m (e.g., Himalayas region), the corresponding vertical profiles 

will be empty and the initial coefficient (2000) was considered for these cases. 
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Thus, for each point in a 5°×5° grid, an α coefficient was determined every 3h, from the beginning 

of 2010 to end of 2013. Analysing the time series of these coefficients at each point and observing that 

some regions exhibit an annual signal, as will be addressed in Section 3.3, three sets of coefficients 

were developed: 

• UP-01: a single coefficient for each location (non-time-dependent), computed as the mean at 

each point; 

• UP-04: four seasonally averaged coefficients for each location; 

• UP-12: 12 monthly averaged coefficients for each location. 

The computation of the UP-04 and UP-12 coefficients was performed by binning the coefficients 

into classes of time intervals (3 months and 1 month, respectively), spanning the four analysed years. 

Results in Section 3.3 will show that using data for only one year, the obtained coefficients are very 

similar, without significant differences from those obtained using the 4-year dataset. For this reason, 

the time span used for this modelling (4 years) is considered appropriate, since additional years do 

not generate different coefficients. 

3.2.2.3. Assessment and Validation 
After introducing Kouba’s expression and developing the UP modelling, the proximity of the 

WPD vertical profiles computed from ERA5 data on PL and those derived from WPD at only one 

vertical level, followed by different altitude reductions (both Kouba and UP) was analysed. For this 

purpose, ERA5 data on PL for a different period, i.e., for a time span not used in the UP modelling 

was selected. 

Two WPD vertical profiles were considered, at each 5°×5° grid point, every 3h: the first one 

computed from ERA5 data on pressure levels from Equation (3) and the second one estimated at 

ERA5 orography level from Equations (1) and (2), further reduced to the upper pressure levels using 

the different modelling approaches (Kouba, UP-01, UP-04, and UP-12). The differences between the 

computed WPD vertical profiles from ERA5 data (temperature and humidity fields) and those 

reduced from the values at surface level will provide a global quantification of the ability of the 

different modelling approaches to describe the WPD vertical distribution, knowing only one WPD 

value at surface level. 

The validation of the various expressions was performed by means of independent data from 

radiosondes and GNSS stations. 

For the validation from radiosondes, a similar procedure used in the assessment with ERA5 was 

adopted. Two WPD vertical profiles were selected. The first one was computed from temperature 

and humidity data from radiosondes on their vertical levels and the other one from the WPD at the 

lowest RS level and then reduced to the upper levels using the different coefficients. This validation 

was performed by means of independent in-situ atmospheric measurements up to an altitude of 4 

km, however it was spatially limited to the network coverage of the RS with valid temperature and 

humidity measurements. 

For the validation using GNSS data, two single level WPD values were selected: one derived from 

GNSS at the corresponding station level, and the other one computed at ERA5 orography level from 
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Equations (1) and (2) further reduced to the corresponding station height, using the different altitude 

reductions. This validation was performed at only one level, while the validation with radiosondes 

was carried out along various vertical profiles in a range of altitudes up to 4 km, so the significance 

of the validation from RS data is larger than that from GNSS. Moreover, the validation with GNSS 

data is only useful for GNSS stations with altitudes significantly different from the altitude of the 

ERA5 orography at the location of the corresponding GNSS station. The validation with GNSS is also 

limited to the corresponding network spatial coverage. The assessment with ERA5 is the only method 

that allows a global inspection of the different vertical modelling. 

3.3. Results and Discussion 

This section provides a description of the experimental results at each step of this study, as well 

as the corresponding interpretation and the corresponding discussion. 

3.3.1. Comparison between WPD Computed Using Different ERA5 Data 

As described above, ECMWF provides 3-D variables both at model and pressure levels and the 

first ones lead to a significantly larger computational effort. Before adopting the second ones in this 

study, an assessment was carried out to inspect the impact of this choice, both in terms of accuracy 

and computational time. For this purpose, the following WPD were compared at the level of the ERA5 

orography: the WPD computed using Equation (3) from temperature and humidity variables 

provided at pressure and model levels (37 and 137 vertical levels, respectively). For completeness, the 

WPD retrieved from single level variables using Equations (1) and (2) was also considered. Thus, for 

a time span of one complete year (2010), three WPD were considered for each point, at the level of 

ERA5 orography. 

To consider the three values at the same vertical reference (ERA5 orography level), when the 

orography height is between two consecutive pressure levels, the corresponding WPD value from PL 

data was interpolated to the orography level using the WPD at the corresponding consecutive 

pressure levels. When the orography height was below the lowest pressure level, the WPD value from 

data on PL was extrapolated to the orography height. The same procedures were not required for the 

ML, since the corresponding vertical levels were always above the orographic surface. Thus, the three 

WPD values computed at each point using different ERA5 data (SL, ML, and PL) under comparison 

were relative to the same altitude, avoiding the introduction of biases. 

Statistical parameters (mean and standard deviation in centimetres) of the differences between 

these three WPD values were calculated. These statistics reveal very small differences, with standard 

deviation values not larger than 2 mm and an absolute mean up to 1 mm. Concerning the differences 

between the two computations using 3-D variables (on model and pressure levels) the mean is null, 

and the standard deviation is 1 mm, showing an insignificant effect. As suggested by Figure 1, these 

results indicate that there is no significant impact when the WPD is computed using data on ERA5 

pressure levels, instead of denser data on model levels. For this reason and in the interest of 

computational time, the estimation from data on PL was adopted in this study. 



  96  

 

Regarding the differences between the WPD retrieval from single level variables (SL) and those 

using 3-D variables, there is a small bias (absolute mean of 1 mm). For the case of data on PL, this 

should be due to the interpolation and extrapolation errors, while for the data on ML, this is due to 

the altitude of the lowest model level. Computing the global differences between the ERA5 orography 

height and the altitude of the lowest model level (the first level, closest to the surface), the absolute 

mean is 9.7 m. This indicates that the lowest model level is systematically 9.7 m above the ERA5 

orography height, leading to a very small bias (1 mm). 

Considering a compromise between accuracy and computational time, the ERA5 data on pressure 

levels were selected for this modelling. 

3.3.2. Modelling 

Using the pressure levels above the surface and up to an altitude of 4 km, WPD vertical profiles 

have been estimated globally, every 3h, for a time span of 4 years. Building upon these vertical 

profiles, the α coefficient (derived from the empirical decay coefficient in the expression proposed by 

Kouba (Kouba, 2008)) was computed every 3h at each grid point using least squares. Figure 4 

represents the time evolution of these α coefficients at three different locations: (a) one point in the 

northern hemisphere with coordinates 10°N, 90°W; (b) one point in the equator with coordinates 00°, 

100°E; (c) one point in the southern hemisphere with coordinates 25°S, 65°E. Three geographic 

locations, the same as in Figure 2, were chosen to be representative of the global distribution and 

variability of the α coefficients (which describe the WPD vertical variation). The location in the 

equator (b) shows a low variability, while the other two locations show high variability. 

Analysing Figure 4, the most striking feature is the clear annual signal observed in the coefficients, 

more pronounced at locations not over the equator, as illustrated in Figure 4a,c. The signals shown 

in these panels are not in phase, since they are relative to locations at different hemispheres. The first 

one is maximum when the second one is minimum. Another striking feature is the high variation of 

the α coefficients, even for small periods, evidencing the high vertical variation of the WPD. This 

variability represents an additional difficulty in this modelling. 

The three UP modelling approaches (UP-01, UP-04 and UP-12), as described in Section 3.2, are 

represented in Figure 4 by orange lines, purple squares, and green circles, respectively. Figure 4a,c 

shows that the use of a single non-time-dependent coefficient (UP-01) is not enough to account for 

the variability that the coefficients determined every 3h show. 

Assuming an additional temporal dependence (UP-04 and UP-12), the corresponding modelled 

coefficients can still be very different from those determined every 3h, evidencing again the difficulty 

of this modelling. 
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Figure 4. Time evolution of the α coefficients at locations: (a) 10°N, 90°W; (b) 00°, 100°E; (c) 25°S, 65°E. Grey 

points represent the α coefficients every 3h, orange line represents the overall mean (UP-01) and purple squares 

and green points represent the seasonally averaged (UP-04) and monthly averaged coefficients (UP-12), 

respectively. 

Considering only the spatial dependence of this modelling, Figure 5 shows the spatial 

representation of the α coefficients derived as the mean for each point, non-time-dependent (UP-01). 

The colour scale of the α coefficient is saturated in the range [1500–2500] in order to have a scale 

cantered in 2000 (white), however the minimum and maximum coefficients are 1165 and 2705, 

respectively. The most striking feature of this spatial representation is that there are many regions 

where the α coefficient is very different from that proposed by Kouba. To understand the impact of 
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having different coefficients, taking the example given in Section 3.2, for a WPD of 30 cm at the zero 

level, the reduced values at an altitude of 1000 m are 12.7 and 20.7 cm using an α coefficient of 1165 

and 2705, respectively. The two WPD at the example level of interest corresponding to the minimum 

and maximum α and maximum α coefficients found in the results of this modelling have a difference 

of 8 cm, a very significant value regarding the accuracy of the WPD derived from the different 

sources. These values are important indicators of the need of having a vertical modelling of the WPD, 

dependent on geographic location. 

 

Figure 5. Spatial representation of the α coefficient, computed as the mean for each point (UP‐01) in a 5°x5° 

grid. 

In Figure 5, regions represented in white are those where the α coefficient derived from ERA5 3-

D PL data is close to that suggested by Kouba. These regions are mainly over the poles, where the 

WPD at surface level is small and, for this reason, there is a narrow range of WPD variation, from a 

small value at surface height (a few cm) up to zero at a certain altitude. The same happens over high 

regions and for altitudes above 4 km, where the Kouba value is assumed by default in the UP 

modelling. The WPD is more variable in low latitude regions due to the complex wet equatorial 

climate, with larger temperatures than in the poles, generating a high evaporation rate and large 

concentrations of water vapor in the troposphere. 

The spatial representation of the α coefficient in Figure 5 gives some information about the 

atmospheric water vapor concentration. Since this coefficient describes the exponential decrease of 

the WPD with altitude, according to Equation (4), a small α coefficient makes the WPD vanish more 

rapidly with altitude, while a large coefficient represents a slower decrease. This means that, when 

compared with the total atmospheric column at each point, a small α coefficient indicates a larger 

near-surface water vapor concentration, than a large α coefficient. Thus, regions represented in blue 

in Figure 5 have larger near-surface water vapor concentrations than regions represented in red. 

In summary, UP modelling consists of three sets of α coefficients in a 5°×5° grid: UP-01, a single 

coefficient for each point (2701 coefficients represented in Figure 5); UP-04, four seasonally averaged 

coefficients for each point (10,804 in total); UP-12, 12 monthly averaged coefficients for each point 

(32,412 in total). 
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A larger number of coefficients (both in space and time) would certainly lead to a better modelling 

of the vertical distribution of WPD, however, it is important to find a compromise between accuracy 

and computational effort. An increasing number of coefficients means an increasing time of 

computation in the handling of the WPD provided from different sources. The significance of using 

the different modelling approaches here presented will be addressed below, in view to assess and 

validate the impact of using the various improved procedures. 

3.3.3. Assessment with ERA5 Data 

The assessment carried out using ERA5 data on PL allows a global inspection of the impact of 

adopting different sets of coefficients in the WPD estimation, when compared with the corresponding 

WPD retrieved from the original ERA5 PL fields. Five global sets of WPD vertical profiles were 

considered: one computed at pressure levels adopting the corresponding variables from ERA5 and 

the other four computed at only one level (ERA5 orography level) further reduced to the various PL 

using the Kouba and each of the three UP models. 

Figure 6 represents the RMS, in centimetres, of the differences between these two WPD vertical 

profiles (up to 4 km), considering ERA5 data over the year 2014, selecting for the altitude reduction 

only the α coefficient proposed by Kouba (2000). The largest differences, where the performance of 

the Kouba coefficient is worst, are observed for low latitudes, represented by dark blue. The 

maximum RMS value of 3.2 cm is observed at 5°S, 150°E (Papua New Guinea region). The Indonesia 

region, together with the central Pacific, are the regions where the Kouba coefficient has the largest 

errors, when compared with WPD retrieved from ERA5 data on PL. The coastal zones, as the 

Indonesia region (Handoko et al., 2017) and the central America, are the critical regions where better 

vertical modelling is required. 

 

Figure 6. Root Mean Square (RMS) (cm) of the WPD differences between 3-D (WPD retrieved from the original 

ERA5 PL fields) and 2-D with Kouba reduction, using profiles every 3h in a 5°×5° grid over the year 2014. 

Figure 7 represents the same as Figure 6, but using UP-01 coefficients for the altitude reduction, 

instead of Kouba. The clearest observation is the RMS decrease when a spatially dependent coefficient 

(UP-01) is used, in place of a single coefficient (Kouba). This RMS decrease is clearer over the 
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Indonesia region. To the maximum RMS difference of 3.2 cm observed at 5°S, 150°E in Figure 6 (with 

the Kouba approach) corresponds a value of 1.2 cm in the UP-01 modelling, leading to an RMS 

decrease of 2 cm at this location. Using UP-01, the maximum RMS WPD difference is 2.5 cm at the 

location with coordinates 25°N, 90°E, where the corresponding Kouba value is 2.7 cm. 

The most significant impact of this modelling observed in the Indonesian region, considering only 

a dependence on geographic location and neglecting the dependence on time (UP-01), is due to the 

low temporal variability of the WPD over this region. Despite its large absolute values, over this 

region WPD has a small temporal variability, when compared with the surrounding regions (Vieira 

et al., 2019) (see the vertical profile of Figure 2b, representative of the WPD variability in this region). 

 

Figure 7. RMS (cm) of the WPD differences between 3‐D and 2‐D with UP‐01 reduction, using profiles every 3h 

in a 5°×5°grid over the year 2014. 

Figure 8 illustrates the same assessment using the UP modelling which considers a temporal 

dependence of the α coefficients (UP‐04 and UP‐12), in the left and right panels, respectively. Here, 

the decrease in the analysed statistical parameter is not so clear, however the maximum values are 

2.2 and 2.1 cm, using UP‐04 and UP‐12, respectively. Moreover, in the region where the additional 

temporal modelling has the most significant impact (25°N,90°E, Bay of Bengal region), the RMS errors 

are 2.7, 2.5, 1.7, and 1.4 cm when Kouba, UP‐01, UP‐04, and UP‐12 are used, respectively. When 

compared with Kouba, the UP seasonally and monthly coefficients lead to an RMS decrease of 1 and 

1.3 cm, respectively, at this location. When compared with a single, non‐time‐dependent coefficient 

(UP‐01), there is an RMS decrease of 0.8 and 1.1 cm when the two time‐dependent modelling 

approaches are adopted, respectively. 
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Figure 8. RMS (cm) of the differences between WPD computed with 3‐D approach and that computed at surface 

level and then reduced with UP‐04 (left) and UP‐12 (right) coefficients 

It is important to highlight again that the ERA5 data selected for this assessment are not used in 

the UP modelling, since they refer to different time spans. However, the evaluation presented here is 

affected by the fact that the various analysed WPD are not completely independent and they are not 

observations. For a complete analysis, a validation by means of independent WPD values from in situ 

observations is required. This is presented in the next subsection, selecting measurements from 

radiosondes and GNSS. However, it is important to highlight that the assessment using ERA5 data 

allows a global analysis, not possible with the data from these independent sources. 

3.3.4. Validation with RS and GNSS 

Figure 9 shows the RMS in cm of the differences between WPD computed using data from RS at 

vertical levels (temperature and humidity) and those using only the WPD at the lowest level of each 

RS and then reduced to the upper levels through the different modelling approaches: Kouba (blue), 

UP-01 (orange), UP-04 (purple), and UP-12 (green). These differences are exclusively due to the 

altitude reduction, since the initial WPD is the same at the lowest level of the RS vertical profile. 

 

Figure 9. RMS (cm) of the differences between WPD computed with 3-D approach using atmospheric variables 

from IGRA and those computed at lowest level and then reduced with Kouba (blue bars), UP-01 (orange bars), 

UP-04 (purple bars), and UP-12 (green bars) coefficients. 

The horizontal axis of Figure 9 represents a set of 20 radiosondes selected among the available 

sites with valid temperature and humidity data. Observing Figure 9, the most significant decrease in 

the RMS error occurs from Kouba (blue bars) to UP-01 (orange bars), corresponding to the use of 
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spatially dependent coefficients instead of a single coefficient. This effect is significant in radiosondes 

FMM, PSM, and RMM in the region of Indonesia and in the last two USM in Hawaii, as illustrated in 

Figure 3. This is in agreement with the results shown in Figure 6 and Figure 7, where the most 

significant impact of spatially dependent coefficients (UP-01), in comparison with Kouba, is mainly 

over the Indonesia region and central Pacific. 

Moreover, in some regions the additional modelling of the temporal dependence (UP-04 and UP-

12) also has a significant impact, when compared with UP-01, as observed mainly in radiosondes 

RQM, USM00072201, and USM00072202 in central America. The small differences observed in some 

radiosondes are due to the small WPD values at surface level (e.g., USM00070316 in the northern 

hemisphere, with a latitude larger than 50°). 

These independent in situ data show that the RMS error decrease can be larger than 1 cm in some 

regions, when using the UP coefficients instead of Kouba’s single coefficient. 

A similar validation was performed using GNSS stations, however this is limited in terms of 

vertical levels, since it was carried out at only one level, the altitude of each station. Moreover, the 

differences achieved in this comparison are due to the altitude reduction but also due to the 

differences between GNSS and ERA5. On the other hand, this validation is significant only for GNSS 

stations with altitudes very different from the ERA5 orography, at the corresponding GNSS location. 

Figure 10 shows the RMS in cm of the differences between WPD derived from GNSS and that 

computed from ERA5 data at the corresponding orography level and then reduced to the altitude of 

the station, adopting the different modelling approaches represented by the same colours. The results 

given in Figure 10 are very similar to those given in the validation with radiosondes. This comparison 

with GNSS does not give additional significant information. It is important to note that WPD derived 

from ERA5 have an accuracy worse than those derived from GNSS. The WPD value (from ERA5) is 

the same in the different altitude reductions, so even with an improved methodology the initial value 

has a low accuracy. The results shown in Figure 10 are affected by this issue, which does not happen 

in the validation using RS. 

 

Figure 10. RMS (cm) of the differences at Global Navigation Satellite Systems (GNSS) station height between 

WPD derived from GNSS and those computed at ERA5 orography level using single level atmospheric 

variables and then reduced with Kouba (blue bars), UP-01 (orange bars), UP-04 (purple bars), and UP-12 (green 

bars) coefficients to the height of each GNSS station (identified by its four characters). 
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The global assessment with ERA5 data and mainly the validation with in situ radiosondes at 

vertical levels show the significant impact of the modelling presented in this study, when compared 

with the only modelling available so far (Kouba, 2008). The new UP models must be adopted to 

reduce WPD values at undesirable altitudes, e.g., those provided at the level of NWM orography in 

some altimetry products (Fernandes et al., 2014; Vieira et al., 2018). One of the applications of these 

models will be the integration in the GNSS-derived Path Delays Plus (GPD+) algorithm (Fernandes 

et al., 2010, 2015, 2016), which provides valid WPD measurements whenever the corresponding path 

delay derived from MWR is invalid or inexistent. This method combines different data sources (e.g., 

GNSS) in the vicinity of each along-track point with invalid or inexistent MWR-derived WPD. These 

new models will be implemented in this algorithm to better combine the different data sources, 

properly referring the wet correction to the levels of interest for satellite altimetry application (e.g., 

sea level in coastal oceanic regions (Liu et al., 2012; Roblou et al., 2011; Vignudelli et al., 2019)). 

The modelling proposed in this study was performed using global 3-D WPD estimations from 

ERA5. It has long been recognized that the WPD derived from meteorological models has worse 

accuracy than observations from dedicated instruments (Vieira et al., 2019a), however, atmospheric 

models provide global data to compute 3-D WPD and the quality of the recent models has been 

increasing significantly. 

The option to follow the expression proposed by Kouba for this modelling, deriving improved 

decay coefficients dependent on geographic location and time (period of the year), was based on the 

observed exponential variation of the WPD with altitude, as represented in Figure 2. Other types of 

modelling approaches/functions can be attempted in future work, however, due to the highly WPD 

vertical variation, as depicted in Figure 4, the development of improved models, namely using 

piecewise functions, will be difficult. Moreover, models with a larger number of coefficients will 

result in WPD altitude reduction procedures computationally more intensive. 

 

3.4. Conclusions 

This study presents the modelling of the altitude dependence of the WPD, crucial to better 

combine the different WPD sources in coastal and continental waters. This way, improved WPD 

estimations lead to improved water surface height retrievals from satellite altimetry. 

This modelling was performed from ERA5, the latest ECMWF reanalysis, shown to be 

considerably better than ERA Interim in the computation of radar altimeter wet path delays. When 

compared to ERA Interim, ERA5 leads to a global reduction of the WPD RMS error of 0.2 cm, with 

values up to 0.4 cm for some latitude bands. 

Following the unique expression available for this altitude reduction, the decay coefficient of this 

exponential expression was modelled, considering a dependence on geographic location and period 

of the year. This was performed by means of WPD vertical profiles, computed globally, from 

temperature and humidity 3-D fields provided by ERA5. This modelling consists of an exponential 

function with variable coefficients. Three models were developed, with different sets of coefficients: 

UP-01, a single coefficient for each point (non-time-dependent), computed as the mean at each point; 
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UP-04, four seasonally averaged coefficients for each location, and UP-12, 12 monthly averaged 

coefficients for each point. 

Analysing the time evolution of the coefficients at each location, the first striking feature is the 

large variation of these coefficients, due to the high WPD vertical variability, which makes this 

modelling difficult. In some regions, a clear annual signal in the coefficients is observed, suggesting 

the inclusion of a temporal dependence. 

After the modelling, a global assessment using ERA5 data for a different time span was carried 

out. When compared with an invariable coefficient (Kouba), the most significant RMS error decrease 

appears when only spatially dependent coefficients (UP-01) are used. This assessment also shows that 

for the location where the Kouba coefficient has the maximum RMS error of 3.2 cm (around the 

Indonesia region), this value is reduced to 1.2 cm when UP coefficients are adopted. The most 

significant impact of this modelling is an RMS decrease of 2 cm. In some regions (e.g., Bay of Bengal), 

the modelling of the additional temporal dependence (UP-04 and UP-12) has an impact when 

compared with UP-01. In the region where this temporal modelling has the most significant impact, 

the RMS error is 2.7, 2.5, 1.7, and 1.4 cm when Kouba, UP-01, UP-04, and UP-12 are considered, 

respectively. Selecting UP-04 and UP-12 instead of UP-01, the RMS decrease is 0.8 and 1.1 cm, 

respectively. This assessment also reveals many regions where the additional temporal coefficients 

have no impact (e.g., European region). 

Finally, independent comparisons with radiosondes and GNSS data show that the RMS error 

decrease can be larger than 1 cm, when UP coefficients are used instead of Kouba. The validation 

with in-situ measurements obtained from radiosondes is more significant than that with GNSS, since 

the former are available at various vertical levels and only the altitude reduction is evaluated. On the 

contrary, the validation with GNSS data was performed at only one vertical level (GNSS station 

height) and the comparison is affected by the altitude reduction and the expected differences between 

GNSS and ERA5 derived WPD. 

In order to better combine the different WPD data sources (e.g., in the GPD+ algorithm) for 

satellite altimetry application over coastal and inland waters, the models developed in this study may 

be adopted, thus contributing to a better retrieval of water surface heights over these regions of 

interest. 

 

 

 

 

 

 

 

 

 



  105  

 

 

 

 

4. An enhanced Neural Network-based retrieval 

of the Wet Tropospheric Correction 

for Sentinel-3 (Article 5) 

Abstract – Sentinel-3 (S3) mission is currently composed of two operating satellites (S3A and S3B), 

equipped with Microwave Radiometers (MWR), performing brightness temperature (TB) 

measurements at 23.8 and 36.5 GHz to determine the Wet Tropospheric Correction (WTC) of the 

altimeter observations. The two MWR-derived WTC present in S3 products, retrieved from 3- and 5-

input neural network algorithms, suggest that improvements are required. This paper aims at 

developing an enhanced WTC retrieval algorithm for open-ocean, considering a suitable learning for 

the S3 and a better accounting for the contribution of the surface to the WTC retrieval. Adopting a 

purely empirical approach, the learning database has been built using 1-year (2017) of valid S3A 

measurements, ERA5-derived WTC, and sea surface temperature (SST) interpolated from ERA5. 

Results show that, instead of seasonal tables as adopted in S3, SST from ERA5 introduces relevant 

information on the surface contribution to the WTC, becoming the fifth input (vertical temperature 

decrease) redundant. The proposed algorithm is a 4-input neural network: TB at 23.8 and 36.5 GHz, 

altimeter backscattering coefficient and SST. Comparisons with reference and independent WTC 

sources show that WTC derived from the proposed algorithm (instead of those available in the S3 

products) leads to a decrease in the RMS values of the WTC differences with respect to these 

independent WTC by about 1 mm globally, while this decrease can reach almost 1 cm locally. This 

study proposes a new algorithm for Sentinel-3, which proved to be a significant enhancement over 

the current algorithms (firstly designed for EnviSat). 

4.1. Introduction 

Sentinel-3 is a land and ocean mission from the European Space Agency (ESA) currently 

composed of two operational satellites: Sentinel-3A (S3A) launched on 16 February 2016 and Sentinel-

3B (S3B) launched on 25 April 2018. Two other satellites (Sentinel-3C and Sentinel-3D) are planned 

for the future to overlap with S3A and S3B, in order to generate a coherent and consistent earth 

observation dataset (Quartly et al., 2020). Thus, this multi-instrument mission provides remote 

sensing data continuity for the ESA missions ERS-1, ERS-2, EnviSat and CryoSat-2. 

Sentinel-3 has been planned with multiple objectives, including the measurement of the global 

sea surface topography. This supports oceanic studies such as the global monitoring of the sea level 

rise (Cazenave, 2018) associated with the climate changes, important for the evaluation and 

anticipation of its impacts (Bronselaer et al., 2018; Garner et al., 2018). For this purpose, each Sentinel-

3 satellite makes use of various sensing instruments, namely a dual-frequency Synthetic Aperture 
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Radar (SAR) ALtimeter (SRAL) and a 2-channel Microwave Radiometer (MWR). Other instruments 

are part of the mission payload, e.g. sensors for sea and land surface temperature, as well as for land 

and ocean colour, supporting an additional environmental and climate monitoring (Donlon et al., 

2012). 

Focusing on the SRAL and MWR instruments, together they form the Sentinel-3 Surface 

Topography Mission (STM) in the frame of the European Commission Copernicus program. These 

two instruments (combined with auxiliary data and modelling) collect data and allow the mapping 

of the global sea surface heights (SSH). 

According to the straightforward measuring principle of satellite altimetry, the SSH above a 

reference ellipsoid is obtained at each along-track point by subtracting the range measured by the 

SRAL from the satellite altitude above the same reference ellipsoid (Chelton et al., 2001). 

The SSH measurement is not merely the output of a single instrument, but it is derived from a 

measurement system. An accurate determination of the sea surface heights from satellite radar 

altimetry (e.g. from SRAL and MWR on board Sentinel-3 satellites) needs a set of corrections to be 

used together with the range measured by the altimeter and the orbit altitude (Chelton et al., 2001). 

Therefore, ensuring a proper determination of these corrections and combining them with the range 

measurement and the precise location of the spacecraft makes it possible to determine SSH globally 

with an accuracy of a few centimetres over the open oceans. Satellite altimetry has been also used 

over coastal regions, however over these zones the determination of accurate SSH is still challenging 

due to errors in altimeter waveform retrievals and in most of the corrections and auxiliary data 

(Vignudelli et al., 2019). 

Among these corrections, the effect of the wet troposphere in the SRAL pulses is of particular 

interest for this study. When these radar pulses travel from the instrument on the satellite to the 

targeted surface, they suffer the effect of the atmospheric refractivity. This effect is due to the 

interaction of the pulses with the atmospheric constituents in the dry troposphere (dry gases), wet 

troposphere (water vapor and cloud liquid droplets) and ionosphere (electrons). 

Concerning the wet troposphere, this effect causes a delay due to the presence of atmospheric 

water vapor and liquid water, designated by Wet Path Delay (WPD) (Fernandes et al., 2014; Legeais 

et al., 2014; Vieira et al., 2019). In the computation of the corrected SSH, this delay is considered as 

the Wet Tropospheric Correction (WTC), which is the opposite and negative value of the WPD (WPD 

= |WTC|). In this way, any error in the wet tropospheric correction (as well as in any other altimetric 

term) directly impacts the water level determination from satellite (Thao et al., 2014). If not taken 

properly into consideration, errors in WTC can be wrongly interpreted as SSH variations. 

WPD is mostly owing to the water vapor in the troposphere, so its value is maximum (WPD up 

to 50 cm) for the largest water vapor content. Additionally, this water vapor amount increases with 

increasing atmospheric temperature. Thus, WTC depends on atmospheric vertical profiles of 

humidity, temperature and pressure (Obligis et al., 2006). 

The sensing of atmospheric water vapor is a difficult task, due to its high variation, both in space 

and time. For this reason, the WPD has the same high variation (Vieira et al., 2019), becoming its 
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accurate measurement a challenge. Globally WPD (absolute value of WTC) ranges in a small interval 

(0-50 cm), however its standard deviation ranges from 10 to 15 cm in the tropics (Fernandes et al., 

2021). 

In the altimetry context, the most accurate way to determine the WPD is from dedicated MWR 

measurements. Due to the WTC variation, the best way to determine this correction is by means of 

MWR measurements collocated with the altimeter instrument. However, WTC is still considered one 

of the main contributors to the error budget of the SSH estimation (Ablain et al., 2019), contributing 

to 50% of the global mean sea level error budget (Ablain et al., 2009). 

For satellite altimetry applications, WTC has also been derived from other sources, e.g. coastal 

and island Global Navigation Satellite Systems (GNSS) stations (Fernandes et al., 2013; Sibthorpe et 

al., 2011; Vieira et al., 2019b) and Numerical Weather Models (NWM) (Legeais et al., 2014; Vieira et 

al., 2019a). Since the state-of-the-art WTC retrieval algorithms from MWR measurements are tuned 

only for atmospheric states over oceanic surfaces, the corresponding retrievals become invalid over 

other surfaces (e.g. land and ice) (Vieira et al., 2019b) and cannot be used. For this reason, the 

alternative WTC sources mentioned above gain relevance over these regions. At the moment NWM 

cannot map the WTC short space and time scales (Vieira et al., 2019a) and, for this reason, their 

accuracy is worse than that from MWR. However, over some regions (e.g. inland waters (Vieira et al., 

2018)) NWM can be the only source available and should be used (Fernandes et al., 2014, 2021). 

Moreover, the quality of the atmospheric models commonly used to compute the tropospheric 

corrections has been increasing over time, by means of improved data and assimilation 

methodologies. 

Vertical integral of atmospheric water vapor (Total Column Water Vapor, TCWV) products from 

scanning imaging MWR on board remote sensing satellites are other data of extreme importance for 

the estimation of altimeter WTC. Data from some of these sensors (e.g. the Special Sensor Microwave 

Imager (SSM/I), SSMI/I Sounder (SSM/IS), Along Track Scanning Radiometer (ATSR-E) and Global 

Precipitation Measurement (GPM) Microwave Imager (GMI)), known by their stability and 

independent calibration, have been used combined with altimeter MWR (Fernandes et al., 2016), as 

well as for purposes of validation, monitoring and calibration of the MWR-derived WTC. 

Concerning the MWR measurements, two different instruments have been deployed on the 

altimetry missions, with three or just two frequencies (e.g. MWR on board Sentinel-3 satellites, which 

perform brightness temperature (TB) measurements, at 23.8 and 36.5 GHz). The 3-channels MWR, 

used in the reference missions (TOPEX/Poseidon (TP), Jason-1 (J1), Jason-2 (J2) and Jason-3 (J3)),  have 

been shown to be near-optimum for measuring the wet troposphere delay (Keihm et al., 1995). 

Regarding the 2-frequency MWR, the lack of a third frequency has been addressed with improved 

methodologies and additional parameters (Eymard et al., 1996; Obligis et al., 2006, 2009; Picard et al., 

2015). 

The WTC retrieval from these collocated TB measurements is itself a complex step, since the 

brightness temperatures are nonlinearly related to the water vapor content. The retrieval of 

geophysical parameters from radiometric measurements is commonly difficult, mainly because of 
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this nonlinearity of the relation between the brightness temperatures and the geophysical parameters 

of interest (Obligis et al., 2006). 

This nonlinear relation between TB and WTC has been empirically established using statistical 

regression methods, such as parametric methods (Brown, 2010; Keihm et al., 1995) and neural 

network (NN) techniques (Obligis et al., 2006, 2009; Picard et al., 2015). NN are particularly well 

suited for addressing nonlinear problems, while the parametric regression lacks flexibility and 

robustness to optimally adjust the data. It has been shown that the neural network methods are better 

suited for the retrieval of the wet tropospheric correction than the traditional parametric regression 

(Thao et al., 2015). 

The neural network algorithm, first developed for Envisat (Obligis et al., 2006) and later improved 

(Obligis et al., 2009) is now used in Sentinel-3. In this way, two MWR-derived WTC are present in the 

S3 products: one derived from three inputs (Obligis et al., 2006) and another one from five inputs 

(Obligis et al., 2009). The three inputs are the brightness temperatures at 23.8 and 36.5 GHz and the 

Ku-band ocean backscatter coefficient (not corrected for the atmospheric attenuation). The five inputs 

are these three inputs plus the sea surface temperature and the atmospheric temperature decrease 

rate between the surface and 800 hPa pressure level. 

Previous studies (Fernandes et al., 2018) indicate that the MWR-derived WTC present in current 

Sentinel-3 products is worse than that of the reference missions and EnviSat, suggesting that there is 

scope for improvement of this range correction. 

The objective of this article is to exploit the S3-derived WTC (and the corresponding retrievals) 

and to develop an improved algorithm for the WTC retrieval from MWR measurements over open 

ocean, better tuned for Sentinel-3. This is performed mainly in two steps: 1) considering a suitable 

learning, temporally closer to the S3 mission period and 2) better account for the contribution of the 

surface in the MWR measurements (a weakness in the 2-band MWR such as that of S3). The second 

point is addressed by means of computing the inputs from atmospheric model fields (instead of a 

static climatology or seasonal tables as adopted in S3 products) and testing of new/alternative inputs 

and different combinations of inputs in order to fix a better algorithm. Once the contribution of the 

atmospheric water vapor and cloud liquid water in the WTC is properly accounted for by TB at 23.8 

and 36.5 GHz, respectively, the effect of the surface (emissivity and temperature) in these TB 

measurements is carefully handled by means of including additional inputs, such as σ0 or wind speed 

(with information on changes in the surface emissivity owing to wind-induced sea surface roughness) 

and sea surface temperature. 

Section 4.2 presents an overview of the different WTC retrieval algorithms used in the various 

altimetry missions, with a focus on those used in the Sentinel-3 products (inherited from the previous 

ESA missions). Building upon these state-of-the-art retrieval schemes, an improved algorithm is 

developed and described in Section 4.3, while the performance of this proposed algorithm against 

that adopted in S3 products is shown in Section 4.4 (using independent data). Finally, Section 4.5 

summarizes the main findings and conclusions of this paper. 
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4.2. MWR-derived WTC retrieval algorithms 

Satellite-borne microwave radiometers have been widely used to acquire information about 

several atmospheric and surface properties for different applications. This includes the sensing of 

atmospheric water vapor and cloud liquid water, as well as the wet path delay for satellite altimetry 

(mainly dependent on atmospheric water vapor) over ocean surfaces, to correct the altimeter range 

for the excess path delay due to the wet troposphere. 

Satellite remote sensing of atmospheric water vapor is not a straightforward procedure. At 

present, microwave brightness temperature measurements are used to retrieve the water vapor in the 

atmosphere, as well as other related geophysical parameters, by a retrieval technique. For this reason, 

the payload of the altimetric satellites includes a microwave radiometer to measure the range delay 

of the altimeter signal mainly due to the water vapor in the troposphere. 

The microwave radiation measured by a nadir-looking radiometer can be expressed as a 

brightness temperature (or blackbody temperature) which corresponds to the sum of three 

contributions (frequency dependent): atmosphere, surface and the cosmic background (Grody, 1976). 

Resulting from these contributions, the TB measurements by a satellite-based downward-looking 

MWR depend on the atmospheric (temperature and absorption) and surface (temperature and 

emissivity) properties. In the microwave region of the spectrum, the scattering is negligible for cloud 

droplets, ice and snow particles in the atmosphere (De Angelis et al., 2016). 

On the other hand, the atmospheric absorption profiles depend on three atmospheric 

components: oxygen (well determined from atmospheric pressure and temperature), water vapor 

and liquid water. Therefore, the MWR measurements depend on two surface (temperature and 

emissivity) and four atmospheric profiles (temperature, pressure, water vapor and liquid water) 

properties. In addition, changes in the surface emissivity due to wind-induced roughness of the sea 

surface make the surface emissivity dependent on surface wind speed. An altimeter-derived 

parameter related to the wind-generated roughness of the sea surface is described later. 

The ability to retrieve these properties from satellite measurements is determined by the 

atmospheric properties and the consequent interaction with different signals in the selected spectral 

band. Due to these properties, the WPD can be retrieved from brightness temperatures measured 

near the 22.235 GHz water vapor absorption line. The reference missions (TP, J1, J2 and J3) have a 

three-channel radiometer (18, 21 and 37 GHz for TP and 18.7, 23.8 and 34 GHz for J1, J2 and J3) while 

the ESA missions (including Sentinel-3 and SARAL) only have two frequencies (23.8 and 36.5 

GHz).The brightness temperatures that an MWR measures at 18-37 GHz when it receives the 

upwelling emitted radiance ranges from ∼125–150 K (over calm water surfaces) to ∼300 K (over near 

blackbody land surfaces, such as the Amazon rainforest) (Brown et al., 2004). 

The three MWR frequencies of the reference missions have shown to be the most well-suited for 

measuring the wet path delay. These three channels contain mainly information on the surface, 

atmospheric water vapor and cloud liquid water, respectively. Thus, the combination of these three 

channels ensures an accurate retrieval of the WPD in all non-heavy precipitation weather conditions 

(Brown et al., 2004). The atmospheric opacity and absorption increase with increasing frequency, so 
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the atmosphere is more transparent for the low frequencies and a better sensing of the surface is 

performed with the ~18 GHz channel (not available in Sentinel-3). The opposite happens for ground-

based MWR, where the high frequencies are more sensitive to changes in the lower troposphere and 

close to the ground (Sahoo et al., 2015). 

Since the wet tropospheric delay is largely due to the atmospheric water vapor, the 23.8 GHz 

channel (near the water vapor absorption line) has the major contribution in the WPD retrieval. The 

other two frequencies (window channels) are less sensitive to atmospheric water vapor, so they have 

a lower weight in the same retrieval. 

In order to quantify this weight in the WTC retrieval, the lack of the 37 GHz channel (not able to 

correct for the effects of cloud liquid) increases the uncertainties in the WPD (and consequently in the 

WTC) to 2 cm, while the lack of the 18 GHz (not able to correct for the effects of the surface) increases 

these uncertainties to about 1.5 cm (dependent on surface emissivity) (Keihm et al., 1995). These 

figures show the small contribution of each window channel, compared with that of the band near 

the 22.235 GHz water vapor absorption line. 

4.2.1. From MWR measurements to WTC 

The conversion of raw MWR data into altimeter wet tropospheric corrections can be divided into 

three levels of processing (Brown et al., 2004). Firstly, in the antenna temperature calibration (Ruf et 

al., 1995), the raw data are converted into antenna temperatures. Secondly, in the antenna pattern 

correction (APC) (Janssen et al., 1995), the antenna temperatures are corrected for contributions from 

the sidelobes of the antenna pattern. The brightness temperature is derived from the antenna 

temperature by quantifying and removing all undesirable contributions, such as the side lobe 

contamination and a small contribution from the cosmic background (cold space). And thirdly, the 

brightness temperatures at each MWR frequency are converted to wet tropospheric corrections by a 

retrieval algorithm (Ruf et al., 1996). This paper addresses this third step. 

Concerning the last step of this processing chain, two methods are generally used to retrieve the 

WTC from the brightness temperature measurements: statistical procedures (traditional parametric 

regression or neural networks) and physical retrieval methods (Desportes et al., 2010; Hermozo et al., 

2019). 

The first approach is based on a statistical relationship established between the measured 

brightness temperatures (in some cases plus other additional inputs) and the WTC values. The second 

method uses a radiative transfer model (RTM) in an iterative procedure to modify an assumed WTC 

until the simulated TB match the observations within the observational uncertainty (Cadeddu et al., 

2013). This is performed by means of an assimilation scheme, combining atmospheric state data (from 

a model) and measurements. 

For operational purposes, the wet tropospheric correction is widely retrieved using statistical 

methods. The computational expense of the physical methods is several orders of magnitude larger 

than the statistical ones. Moreover, the estimation errors of these methods were found to be of the 

same magnitude as those obtained from statistical retrievals, confirming the reliability of the 
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statistical procedures (Cadeddu et al., 2009). From here onwards, this paper focuses on the statistical 

methods. 

Regarding the statistical approaches, two regression methods have been applied in the context of 

altimeter wet tropospheric corrections: log-linear regression in the reference missions (three-band 

MWR) and neural networks in the ESA missions (two-channel MWR). Previous studies show that, 

for the WTC retrieval using the same inputs, the neural networks are better suited than the log-linear 

regression (Thao et al., 2015). 

4.2.2. Algorithms used in the reference missions 

The WTC retrieval algorithm from MWR measurements for the reference missions was firstly 

developed for TOPEX/Poseidon (Keihm et al., 1995) and then adopted for the next reference missions 

(Brown, 2010; Brown et al., 2004). This retrieval is based on a two-step statistical inversion algorithm 

(Keihm et al., 1995). It was designed to be globally applicable and to consider the sea surface 

emissivity and wind speed effects on the WTC retrieval and the nonlinearities between the water 

vapor and the 3-channel brightness temperatures. 

This statistical algorithm determines coefficients dependent on stratified values of wind speed 

and initial estimates of WTC, becoming this procedure more robust and flexible for the nonlinear 

problems. A second (and final) estimation of the WTC is determined using coefficients stratified in 

the initial WTC. 

The algorithm makes use of a global data base archive: radiosonde, sea surface temperature, wind 

speed and corresponding collocated simulated brightness temperatures (ensuring a global 

representation of atmospheric and surface scenes over open ocean). 

In spite of some limitations due to large errors for anomalous conditions, the first algorithm 

developed for TP was established, predicting an overall WTC accuracy of 1.2 cm (Keihm et al., 1995), 

while the uncertainty of the follow on Jason-1 was demonstrated to be less than 0.9 cm (Brown et al., 

2004). 

The coefficients for the MWR algorithms are determined prelaunch and require a posterior on-

orbit adjustment. 

4.2.3. Sentinel-3 Algorithm 

For the first ESA missions (ERS-1/2), the corresponding MWR algorithms were established using 

a direct log-linear function of the two radiometer TB measurements and the altimeter-derived wind 

speed (Eymard et al., 1996). The lack of a third band in the radiometers on the ESA missions has been 

overcome using additional inputs in the corresponding algorithms, as the altimeter wind speed 

(Eymard et al., 1996) or the altimeter backscatter coefficient (Obligis et al., 2006). 

One of the altimeter measurements is the power of the returned signal, designated as 

backscattering coefficient (σ0), related to the wind-generated sea surface roughness. The roughness 

of the sea surface increases with increasing wind speed, making the power of the returned signal 

weaker, since a greater fraction of the radiation that reaches the sea surface is reflected away from the 

antenna. Thus, σ0 is inversely related to wind speed. In this way, the estimation of wind speed from 
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altimeter is performed by means of measurements of σ0 and possibly significant wave height 

(Lillibridge et al., 2014). For nadir-viewing, σ0 is not dependent on the wind direction, so wind 

direction cannot be derived from altimeters, only the wind speed is inferred from the backscatter 

coefficient. 

Due to the nonlinear relation of the measurements, neural networks have been extensively 

adopted to retrieve geophysical parameters from satellite-based measurements. A neural network for 

regression purposes is itself a statistical algorithm, however it is easy to implement, is robust and is 

able to represent the nonlinear relations without a priori information (Obligis et al., 2006). 

According to these advantages of the NNs relative to the traditional parametric approaches, an 

innovation of the ERS MWR algorithms was performed for the retrieval of EnviSat MWR products, 

showing a significant improvement with respect to the previous ESA missions (Eymard et al., 1996). 

On the one hand, to better account for the nonlinear relation between TB and WTC, instead of a log-

linear combination, a neural network approach was adopted. On the other hand, in order to avoid 

uncertainties coming from the wind speed retrieval (Witter et al., 1991), the altimeter backscatter 

coefficient (σ0) in the Ku band (not corrected for the atmospheric attenuation) is used as the third 

input, in place of the wind speed (Obligis et al., 2006). Thus, this algorithm is based on a neural 

network with three inputs, both EnviSat MWR TBs and the backscatter coefficient. Hereafter, this 

algorithm is mentioned as 3I. 

Previous studies have shown that some specific regions of the globe have atmospheric 

temperature profiles systematically different from the global mean, characterized by a strong 

temperature inversion and an accumulation of water vapor near the surface (Sun, 1993). This means 

that the same column water vapor content (and consequently the same WTC), but with different 

vertical distributions can originate distinct TB measurements. Aiming at better accounting for these 

effects, a new algorithm was developed (henceforth designated as 5I) and described in (Obligis et al., 

2009). Similar to the previous algorithm, this incorporates two extra inputs: the sea surface 

temperature and the atmospheric temperature lapse rate (γ800), describing the linear decreasing of 

atmospheric temperature with altitude, between the surface and the 800 hPa pressure level. In the 

formulation of the 5I algorithm, these two extra fields are used from four seasonal tables at 2°x2° 

spatial resolution (for SST) and from a climatological table at 1°x1° spatial resolution (for γ800). 

The two wet tropospheric corrections provided in the Sentinel-3 products seem to be derived from 

these algorithms (3I and 5I), originally designed for EnviSat, without a proper tuning for Sentinel-3. 

(Thao et al., 2015) show that the best results are obtained when the brightness temperature at 18 

GHz is used instead of the backscattering coefficient, which is not possible for the ESA missions, 

including Sentinel-3. This fosters the need to develop improved algorithms, in view to overcome this 

instrumental limitation. Additionally, the same studies show that better results are achieved when a 

neural network algorithm is used instead of a log-linear regression (Thao et al., 2015). Thus, for this 

paper only the neural network formalism will be addressed. 

The statistical retrieval algorithms adopted in the ESA missions are formulated on a database that 

contains estimated values of WTC from an atmospheric model and corresponding collocated 
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simulated brightness temperatures, being these simulations performed over a range of atmospheric 

states provided by 3D fields from an atmospheric model. The uncertainty of this semi-empirical 

method comes from the database and the radiative transfer model (modelling component). 

Other retrieval configurations have been tested by other authors, such as a purely empirical 

relationship (Picard et al., 2015), where measured brightness temperatures and altimeter backscatter 

coefficient are used instead of simulated ones. This configuration avoids bias and errors due to 

differences between simulated and measured parameters. The uncertainty of a purely empirical 

method comes from the database and measurements (instrumental component). The configuration 

using measurements instead of simulations proved to have performances closed to what it was 

initially expected using simulations (Picard et al., 2015). The simulations are critical in the prelaunch 

phase, since no on-orbit measurements are available. 

Thus, accurate retrieval of the path delay correction requires firstly well calibrated brightness 

temperatures and any additional inputs and secondly a precise inversion algorithm to establish the 

relation between these parameters and the WTC. 

Both current algorithms (either parametric or neural networks) are derived for pure ocean 

surfaces (based on sea surface emissivity conditions), so they do not consider the very strong and 

variable land radiation. Between 18 and 34 GHz, the ocean has an emissivity around 0.4-0.5, while 

land typically has an emissivity above 0.9 at these frequencies. 

 

4.3. A new Sentinel-3 WTC retrieval algorithm 

Building upon the current WTC retrieval algorithms used in Sentinel-3, several algorithms have 

been implemented for this mission, which are described in this section. Two main aspects have been 

addressed. On a first step, a suitable learning database has been established. After this, different input 

configurations have been tested in order to find a better suited retrieval algorithm for the Sentinel-3 

mission. 

4.3.1. Learning Database 

The learning database for this study was created as follows: 104030 S3A points randomly were 

chosen over the year 2017, ensuring a good distribution in time and geographic location. The 

following criteria were used: surface type equal to zero (ocean measurements), quality flags of TB23.8, 

TB36.5 and σ0 equal to zero (valid measurements), latitude between 50°N and 50°S (to avoid sea ice) 

and distance from coast larger than 30 km (to avoid land contamination) (Fernandes et al., 2018). S3A 

data here used were released in 2020 (latest processing Baseline 4) (EUMETSAT, 2020). 

Here, a purely empirical approach has been adopted (Picard et al., 2015), considering valid 

measurements of TBs and σ0 from S3A, instead of simulations given by a radiative transfer model 

(semi-empirical approach). 

For each point of the learning database mentioned above, a WTC value at sea level was 

computed/space-time interpolated from the state-of-the-art NWM ERA5 global fields at pressure 

levels, at 3h intervals and 0.25°x0.25° spatial sampling (Copernicus Climate Change Service (C3S), 
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2018a). This computation is performed from vertical integration of temperature and humidity 

profiles, as adopted in (Collecte Localisation Satellites (CLS), 2011; Vieira et al., 2019a, 2019c). 

For the same learning dataset, additional parameters were obtained. Sea surface temperature at 

single level from ERA5 (Copernicus Climate Change Service (C3S), 2018b) at 6h intervals and 

0.5°x0.5° spatial resolution was also interpolated for locations and instants of the learning points. 

On the other hand, making use of the atmospheric temperature provided by ERA5 at pressure 

levels (Copernicus Climate Change Service (C3S), 2018a), global grids of γ800 were computed every 

6h, at 0.5°x0.5° spatial sampling. For each grid point, γ800 is estimated by adjusting a linear fit to the 

temperature in the 9 lowest ERA5 pressure levels (between 1000 and 800 hPa). From these grids, γ800 

is also interpolated for the S3A points in the learning database. 

Since the backscatter coefficient only describes the modulus of the wind speed (not the direction) 

and it is used not corrected for the atmospheric attenuation, an alternative input can improve the 

WTC retrieval. On the other hand, the quality of the atmospheric models has been increasing, so the 

wind speed from ERA5 (Copernicus Climate Change Service (C3S), 2018b) is also considered as an 

additional input, in place of the backscatter coefficient. 

To fully describe the horizontal wind speed, ERA5 provides two fields: u10 and v10, the eastward 

and northward components of the 10 m wind, respectively. Both components are available at a height 

of ten meters above the sea surface, in meters per second. Together, these parameters give the speed 

and direction of the horizontal wind. Hence, u10 and v10 are also interpolated for the S3A points in 

the learning database. 

In summary, 8 values are associated to each S3A point in the learning dataset: TB23.8, TB36.5 and 

σ0 (valid measurements from S3A products), SST, γ800, u10, v10 and WTC computed and 

interpolated from ERA5. As described in section 4.2, each of the inputs accounts for the different 

effects in the upward emitted radiance received by an on-board MWR: atmospheric water vapor 

(TB23.8), atmospheric cloud liquid water (TB36.5), changes in the surface emissivity owing to wind-

induced sea surface roughness (σ0 or wind speed) and sea surface temperature. In addition, γ800 

accounts for the effects of the vertical atmospheric changes in the TB measurements (Obligis et al., 

2009). 

Fig. 1 represents the absolute value of these WTC (WPD) versus each S3A measurement: TB23.8 

(top left), TB36.5 (top right) and σ0 (bottom). Fig. 2 shows the same WPD values versus the various 

additional parameters obtained from ERA5: SST (top left), γ800 (top right), u10 (bottom left) and v10 

(bottom right). 
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Figure 1. WPD computed from ERA5 versus S3A valid measurements stored in the learning database. 

Figs. 1 and 2 allow to observe the nonlinear relation between the different geophysical parameters, 

as stated above, evidencing that the WTC retrieval from the different parameters is a difficult 

procedure, requiring robust statistical techniques. The most striking observation from Fig. 1 is the 

correlation between WTC and TB23.8, since this frequency is more sensitive to atmospheric water 

vapor and it has the highest weight in the WTC retrieval. 

 

Figure 2. WPD computed from ERA5 versus additional inputs computed/interpolated from ERA5 stored in the 

learning database. 
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According to the radar equation (Chelton et al., 2001), σ0 depends on the radar scattering 

characteristics of the sea surface, i.e. on the wind-induced sea surface roughness. As shown in the 

bottom panel of Fig. 1, a typical altimetric measurement of σ0 is about 10 dB. This parameter ranges 

from about 20 dB at low wind speed to about 5 dB at high wind speed (Chelton et al., 2001). 

Concerning the wind speed, bottom panels of Fig. 2 show that the absolute values of each component 

range from 0 up to around 20 m/s, which means a wind speed up to about 30 m/s. 

It is important to note that, since the near-surface wind speed is estimated from altimetric 

measurements of σ0, these two quantities are equivalent for the WTC retrieval, providing redundant 

information about the sea surface roughness (and consequently changes in the sea surface emissivity). 

Fig. 3 illustrates the spatial representation of the three S3A measurements included in the learning 

database. This corresponds to mean values for 2017, computed for 2°x2° tiles of TB23.8 in K (top 

panel), TB36.5 in K (middle panel) and backscatter coefficient in dB (bottom panel). As described 

above, only S3A points over open-ocean (distance from coast larger than 30 km) and between 

latitudes 50°S and 50°N were selected. 

 

 

 

Figure 3. Spatial representation of mean values of TB23.8 (top panel), TB36.5 (middle panel) and σ0 (bottom 

panel) from Sentinel-3A measurements considering the 104030 points over the year 2017 in the learning dataset. 

Brightness temperatures are in K, while σ0 is in dB. 

 

 

 



  117  

 

Fig. 4 represents the annual mean (2017) of WTC in centimetres over the ocean, computed at sea 

level from integration of temperature and specific humidity profiles provided from ERA5 on pressure 

levels. The absolute WTC annual mean ranges from a few centimetres (at high latitudes) to about 35 

cm in the western tropical Pacific Ocean and eastern tropical Indian Ocean, as illustrated in Fig. 4. 

As observed in the top left panels of Fig. 1 and Fig. 3, the TB measurement at 23.8 GHz  has a very 

similar spatial pattern as the one of the WTC (Fig. 4), due to the dominant contribution of the water 

vapor to the WTC. Therefore, the TB23.8 (more sensitive to this atmospheric gas) becomes the input 

with the largest contribution to the WTC retrieval. 

 

 

Figure 4. Annual mean of WTC in cm computed from vertical integration of temperature and humidity profiles 

from ERA5 on pressure levels, at 6h intervals and 0.5°x0.5° spatial sampling over the year 2017. 

 

The top panel of Fig. 5 shows the annual mean of SST for the year 2017, where the most evident 

feature is the clear dependence on latitude. This global representation was performed using SST from 

ERA5, at 6h intervals and 0.5°x0.5° spatial resolution. The sea surface temperature as input for the 

WTC retrieval algorithm without TB measurements at ~18 GHz is an additional and alternative 

information, due to the dependence on the surface (temperature and emissivity) properties. 
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Figure 5. Mean (top panel) and standard deviation (bottom panel) for the year 2017 of SST in K from ERA5 at 

single level, every 6h, at 0.5°x0.5° spatial sampling. 

 

The bottom panel of Fig. 5 shows the standard deviation of the SST, considering the same data as 

in the top panel of the same figure. The pattern of the SST variation shows the regions where fine 

temporal resolution SST information can improve the WTC retrieval (where SST is more variable). 

Over these regions, SST from four seasonal tables at 2°x2° spatial resolution, as used in (Obligis et al., 

2009), cannot be enough to describe the effect of the SST temporal variation in the MWR 

measurements. This point will be discussed later on. 

Fig. 6 illustrates the annual mean (top panel) and standard deviation (bottom panel) of the γ800 

(year 2017). This is computed using the global temperature field provided by ERA5 at pressure levels, 

using only the levels between surface and 800 hPa. The top panel of Fig. 6 clearly shows the regions 

of the globe where the atmospheric temperature profiles are systematically different from the global 

mean. Considering the data used in Fig. 6, the global mean of the atmospheric temperature decreasing 

with altitude (between the surface and the level at 800 hPa) is -4.8 K/km. However, over some specific 

regions, this value can be positive, i.e., the temperature increases with altitude, from the surface up 
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to 800 hPa. These regions are mainly some coastal zones of America and Africa (California, Peru, 

Mauritania and Namibia) as previously identified (Obligis et al., 2009). 

 

 

 

Figure 6. Mean (top panel) and standard deviation (bottom panel) for year 2017 of γ800 in K/km computed 

using temperature from ERA5 at pressure levels, every 6h, at 0.5°x0.5° spatial sampling. 

 

The bottom panel of Fig. 6 shows the spatial pattern of the temporal variation of the γ800, 

evidencing a strong positive correlation with temperature. γ800 is more variable where the SST is 

also more variable. Additionally, the SST is more variable (bottom panel of Fig. 5) where the SST itself 

is low in the extratropical regions (top panel of Fig. 5). Thus, a strong correlation between SST and 

γ800 exists. 

Fig. 7 represents the annual mean of the zonal component of horizontal speed of air moving 

towards the east (u10) in m/s, where a strong pattern is visible, with westward winds at low latitudes 

(mainly blue) and eastward winds at high latitudes (mainly red). 
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Figure 7. Mean for the year 2017 of u10 in m/s from ERA5 at single level, every 6h, at 0.5°x0.5° spatial sampling. 

Fig. 8 illustrates the annual mean of the horizontal speed of air moving in the north-south 

direction (v10), in metres per second. The untypical regions observed in Fig. 6, are the same where 

the meridional component of the wind (Fig. 8) has a strong pattern. Winds towards the equator can 

be observed, both from north (blue) and from south (red), due to the Hadley cell tropical atmospheric 

circulation, which makes the air to rise near the Equator (Zhou et al., 2020), evidencing the strong 

correlation between SST and γ800. 

 

Figure 8. Mean for the year 2017 of v10 in m/s from ERA5 at single level, every 6h, at 0.5°x0.5° spatial sampling. 

The values shown in Figs. 5 to 8 were computed using single level fields from ERA5, at 6h 

intervals and 0.5°x0.5° spatial resolution (1460 global grids for each component over the year 2017). 

Figs. 3-8 show patterns that will help to discuss the results in section 4.4. 

Considering this learning database, the following can be pointed out: TB23.8 ranges from 137 to 

277 K (mean 179 K); TB36.5 ranges from 151 to 279 K (mean 172 K); differences between the two WTC 

values provided in the Sentinel-3 products (computed from 3I and 5I algorithms) and that computed 

from ERA5 have RMS values of 1.50 and 1.43 cm, respectively. Therefore, the non-significant 
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difference between both WTC suggests that the corresponding algorithms are not well tuned for 

Sentinel-3. Additionally, contrary to other missions such as Jason-3, Sentinel-3 wet tropospheric 

corrections do not show an improvement over a correction only derived from third-party data 

(Fernandes et al., 2018).  

Near-surface air temperature from the latest ECMWF reanalysis (Copernicus Climate Change 

Service (C3S), 2018b) reveals that the increase in global temperatures over the last three decades is 

about 0.2°C per decade. This temperature increase induces an increase in global atmospheric water 

vapor of about 0.35 mm/decade (roughly 2.2 mm/decade for the WTC). This means that the global 

absolute mean increase of the WTC over the altimetry era (since 1991) is almost 1 cm. These figures 

allow to note the impact of the climate changes in the WTC, evidencing the importance of having a 

learning dataset for the WTC algorithms temporally close to the mission of interest. 

Due to the climate changes and the corresponding impacts in the atmosphere, algorithms (and 

the corresponding adjusted coefficients) obtained some time ago may not be valid for current and 

future missions. The same happens for some auxiliary data, e.g. seasonal and climatological tables 

for SST and γ800. It is thus important to keep the algorithms and the auxiliary data up to date. 

4.3.2. Learning of different Algorithms 

The retrieval algorithm adopted in this study is a neural network with a single hidden layer of 

eight neurons similar to the architecture adopted by (Obligis et al., 2006, 2009). The transfer function 

for each input is the sigmoid function, while the output is linked with a linear function. The retro-

propagation algorithm is the Levenberg–Marquardt algorithm. 

After establishing the architecture configuration, the learning procedure applied over the learning 

database estimates the weight and bias values associated to each connection and neuron, respectively. 

In the scope of the research described in this paper, different networks (with the same 

architecture) have been established with different combinations of input parameters: 

• UP3S0: TB23.8, TB36.5 and σ0, same as in the 3I algorithm (Obligis et al., 2006); 

• UP4S0: TB23.8, TB36.5, σ0 and SST; 

• UP5S0: TB23.8, TB36.5, σ0, SST and γ800, same as in the 5I algorithm (Obligis et al., 2009); 

• UP3WS: TB23.8, TB36.5, u10 and v10; 

• UP4WS: TB23.8, TB36.5, u10, v10 and SST; 

• UP5WS: TB23.8, TB36.5, u10, v10, SST and γ800; 

UP3WS, UP4WS and UP5WS consider as inputs 4, 5 and 6 parameters, respectively, since wind 

speed from ERA5 is described through two components (two separated fields). For a direct 

comparison between using wind speed (two inputs) instead of backscatter coefficient (one input), this 

terminology has been assumed. Thus, UP3WS, UP4WS and UP5WS are as UP3S0, UP4S0 and UP5S0, 

respectively, using wind speed from ERA5 instead of σ0. 

Contrary to the WTC provided in Sentinel-3 products, where climatological tables are adopted  

(Obligis et al., 2006, 2009), here any additional input (u10, v10, SST and γ800) is interpolated from 

ERA5 at 6h intervals and 0.5°x0.5° spatial sampling. Hence, some improvements are expected, since 
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small space and time scales (as far as ERA5 allows) of these geophysical parameters are expected to 

be resolved. 

In summary, six algorithms with different combinations of inputs (UP3S0, UP4S0, UP5S0, 

UP3WS, UP4WS, UP5WS) have been tuned and can be applied to any set of along-track S3 points. 

Their operational implementation requires the geographic coordinates and instants from the S3 

products and the additional inputs are interpolated from global grids provided by ERA5. 

 

4.4. Evaluation of the different Sentinel-3 Wet Tropospheric 

Corrections 

For the purpose of assessment and validation, the same Sentinel-3A data used in the learning 

phase (latest processing Baseline 4) are used to apply the different retrieval algorithms. In order to 

ensure a temporal independence, while data over the year 2017 were used in the learning step, S3A 

data over the year 2018 are used for the analysis of the performance of each algorithm. 

For this evaluation, eight WTC are analysed: 3I and 5I (as available in the S3 products and 

described in section 4.2), UP3S0, UP4S0, UP5S0, UP3WS, UP4WS and UP5WS (output from the 

different algorithms tuned in the scope of this paper and described in section 4.3). 

4.4.1. Comparison with Scanning Imaging MWR 

A comparison has been performed using independent WTC derived from Scanning Imaging 

MWR (SIMWR). SIMWR-derived WTC is computed from the corresponding TCWV products (Stum 

et al., 2011). These data are known for their stability and independent calibration, suitable to be 

adopted as reference. All independent SIMWR as described in (Lázaro et al., 2020), available for this 

comparison are used (dependent on temporal and spatial overlapping between SIMWR and S3). For 

more details about these data see e.g. (Fernandes et al., 2016; Lázaro et al., 2020). 

For each S3A along-track point, measurements from SIMWR have been selected in its vicinity 

(whenever available). For each pair of non-collocated WTC (one from MWR and other from SIMWR), 

distance and time difference between them are available. For this comparison, only SIMWR points 

with distances to S3A points smaller than 25 km and time difference lower than 30 minutes have been 

used, ensuring a closer proximity, both in location and time. In this way, WTC differences due from 

the non-collocation are minimized and these reference WTC can be considered collocated with S3. 

Considering a full year (2018) and the same criteria as mentioned in Section 4.3 for the selection 

of S3A points, differences have been computed between the SIMWR-derived WTC and those derived 

from the tuned algorithms, as well as those available in the Sentinel-3 products (3I and 5I). Fig. 9 

illustrates the global RMS values of these differences. 
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Figure 9. Global RMS of the WTC differences between SIMWR and the various S3 MWR retrievals. 

Globally, when the retrievals of the algorithms tuned in the scope of this study are used instead 

of those available in the S3A products (3I and 5I), an RMS decrease of about 1 mm is observed, when 

compared with SIMWR (1.4 mm for 5I versus UP5S0). No significant difference is achieved when 

wind speed interpolated from ERA5 (two components) is used instead of the altimeter σ0. Relative 

to the 3 inputs algorithms (green bars), when only the SST is included (blue bars), the decrease of the 

RMS values is globally almost 1 mm. Concerning the algorithms used in the S3 products, when 5I is 

used instead of 3I, only an RMS decrease of 0.5 mm is observed. The inclusion of additional inputs 

(not derived from altimetry) is more significant in the UP algorithms than in the 3I/5I algorithms. Any 

UP algorithm is globally better than the two currently available in S3 products, when compared with 

SIMWR. 

Still regarding the use of wind speed from ERA5 instead of σ0, although the global difference is 

not significant, an important result is observed from Fig. 9. Concerning the 4 and 5-input algorithms 

(blue and orange bars, respectively), the RMS value when σ0 is used is slightly smaller than the RMS 

value when WS is used. The same does not happen for the 3-input algorithms (green bars), where the 

RMS of the differences SIMWR-UP3S0 is larger than that of the differences SIMWR-UP3WS, i.e. the 

use of WS instead of the backscatter coefficient improves the WTC retrieval (which does not happen 

using 4 and 5 inputs). This suggests that when the two components of wind speed are used as input 

without SST, the contribution of surface in the MWR measurements is better estimated in regions 

where u10 has a strong pattern (see Fig. 7), where the SST is more variable (Fig. 5). When the SST is 

included as input, this contribution is already present in the SST and the use of WS instead of σ0 does 

not incorporate additional information on the surface contribution. This observation will be 

confirmed below in a spatial analysis. 

The RMS of WPD differences were spatially and globally computed for 5°x5° tiles and are 

represented in Fig. 10. In order to evaluate the reduction of RMS of WPD differences when different 

algorithms are used, differences between the corresponding RMS values were computed. 
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Figure 10. Differences (in cm) between RMS of WPD differences for 3I-UP3S0 (top panel), 3I-UP3WS (middle 

panel) and UP3S0-UP3WS (bottom panel). 

Fig. 10 shows the RMS differences for 3I-UP3S0, 3I-UP3WS and UP3S0-UP3WS in the top, middle 

and bottom panels, respectively. Thus, when compared with SIMWR, positive differences (red) mean 

that UP3S0 is better than 3I (top panel), UP3WS is better than 3I (middle panel) and UP3WS is better 

than UP3S0 (bottom panel). A slight zonal band around 50°S in blue in the top panel of Fig. 10 is less 

pronounced in the middle panel of the same figure, showing the very small effect of using the two 

components of WS without SST, as described above. This impact is not observed in the bottom panel, 

because it is very small. 

Fig. 11 represents the same as Fig. 10, concerning the 5-input algorithms. The top and middle 

panels of Figs. 10 and 11 show clearly the improvement of the UP algorithms over those used in the 

S3A products, with a pattern mainly red (RMS of the differences SIMWR-UP smaller than the RMS 

of the differences SIMWR-3I/5I). The very few regions with negative differences (RMS of the 

differences SIMWR-UP larger than the RMS of the differences SIMWR-3I/5I) are depicted with blue 

colour, most of them with a very light blue (differences very close to zero). 

Although the global improvement in the RMS of WPD differences is small, around 1 mm (Fig. 9), 

when UP retrievals are used instead of 3I and 5I, the RMS decrease when compared with SIMWR can 

reach 0.8 and 0.9 cm over some regions, respectively (Figs. 10 and 11). 

Once SST is used as input, the effect of using wind speed (two components) instead of backscatter 

coefficient is very small and negligible, not showing any spatial pattern (bottom panel of Fig. 11), as 

observed in the global RMS values (Fig. 9). 
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Figure 11. Differences (in cm) between RMS values for 5I-UP5S0 (top panel), 5I-UP5WS (middle panel) and 

UP5S0-UP5WS (bottom panel). 

Another important observation from Figs. 9 and 11 is the insignificant effect when the fifth input 

(γ800) is included in the UP algorithms. There is no significant difference between UP4 and UP5 

algorithms, when compared with SIMWR. Fig. 12 shows the RMS differences for UP3S0-UP4S0 (top 

panel) and UP4S0-UP5S0 (bottom panel), showing the effect of the inclusion of the SST and γ800 as 

inputs, respectively. 

 

Figure 12. Differences (in cm) between RMS values for UP3S0-UP4S0 (top panel) and UP4S0-UP5S0 (bottom 

panel). 

The regions where the inclusion of the SST has a significant impact in the improvement of the 

WTC retrieval are represented with red colour in the top panel of Fig. 12. The inclusion of the SST 

interpolated from global grids every 6h, will improve the retrieval where the SST is temporally more 
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variable. This improvement can reach 0.9 cm in some regions, i.e. the entire improvement from 5I to 

UP5S0. For this reason, the top panel of Fig. 12 has the same spatial pattern of the bottom panel of 

Fig. 5 (standard deviation of the SST considering grids at 6h intervals over one complete year). 

The bottom panel of Fig. 12 illustrates the effect of the fifth input, when compared with the 

algorithm with four inputs. Once the SST variability is accounted for and included, the addition of 

the γ800 does not improve the WTC retrieval, as shown in Fig. 9 and in the bottom panel of Fig. 12. 

The temporal variation of the γ800 (bottom panel of Fig. 6) and the same variation of SST (bottom 

panel of Fig. 5) have a very similar spatial pattern. This means that the variability of the SST already 

includes information on the vertical decrease rate of the atmospheric temperature, becoming the 

addition of the fifth input redundant to the learning. Since the sea surface temperature plays an 

essential role in the Hadley Cell changes, the temperature vertical profiles directly depend on the 

temperature at sea level. 

It is important to note again the predominant contribution of the TB at 23.8 GHz in the WTC 

retrieval. Any other input (accounting for information on atmospheric cloud liquid water and surface) 

has a small contribution, when compared with TB23.8. This reinforces some of these results, regarding 

small impacts when different inputs or combinations of inputs are used. 

When the spatial patterns of the improvements of the UP retrievals over those provided in the S3 

products (top and middle panels of Figs. 10 and 11) are analysed, a pronounced improvement over 

some near coastal regions is observed. The RMS values computed as explained before but considering 

only along-track points with distances from coast between 30 and 250 km are represented in Fig. 13. 

While the global improvement from 3I/5I to UP retrievals (when compared with SIMWR) represented 

in Fig. 9 is about 1 mm, this improvement can reach 2.4 mm when only regions with distances from 

coast in this range are considered. 

 

Figure 13. RMS of the WTC differences between SIMWR and the various MWR retrievals, considering only S3A 

along-track points with distances from coast in the range 30-250 km. 
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Fig. 13 reveals a pattern very similar to Fig. 9, however the differences between RMS values (3I/5I 

versus UP) are more pronounced. On the other hand, the small effect observed in Fig. 9 when 5I is 

used instead of 3I is not observed. Fig. 13 reinforces again that 3I and 5I algorithm are not well tuned 

for Sentinel-3, since the inclusion of two additional inputs does not improve the WTC retrieval (3I 

and 5I with the same RMS value when compared with an independent source). Fig. 13 also shows 

that any UP algorithm is better than 3I or 5I and, once SST is included, the addition of the fifth input 

has no impact (the same RMS of 0.98 cm). 

Aiming to identify a better compromise between accuracy and input parameters, this comparison 

with independent SIMWR data reveals that the best algorithm is UP4S0. Thus, this paper proposes a 

WTC retrieval algorithm with 4 input parameters: TB23.8, TB36.5, σ0 and SST interpolated from 

ERA5. 

 

Figure 14. RMS of the WTC differences between SIMWR and 3I (green), 5I (orange) and UP4S0 (blue) function 

of distance from coast. 

Fig. 14 illustrates the RMS values, function of distance from coast, of the WPD differences between 

SIMWR and three S3A algorithms: 3I (green points), 5I (orange points) and UP4S0 (blue points). These 

RMS values (the same as represented in Figs. 9 and 13) are computed for classes of distance from 

coast of 50 km, between 30 and 500 km. As illustrated in Fig. 14, the improvement of UP algorithm 

over 3I and 5I is more pronounced at distances from coast in the band 30-150 km (almost 3 mm in 

RMS). For distances from coast in the range 30-250 km (Fig. 13), the 5I algorithm does not seem to be 

better than the 3I. A slightly improvement of the 5I algorithm relative to the 3I is noticeable only for 

distances from coast larger than 250 km. This suggests that the tables for the additional inputs used 

by the 5I algorithm are not suitable, mainly for distances from coast smaller than 250 km. The low 

performance of the 5I over 3I at distances from coast between 30 and 250 km can be due to the coarse 

spatial resolution (2°x2°) of the seasonal tables used for SST. 

Fig. 14 reinforces the better performance of the UP4S0 algorithm globally, over those adopted in 

Sentinel-3 products, with a global RMS of the WPD differences between SIMWR and UP4S0 smaller 

than 1 cm. 
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4.5. Conclusion 

After analysing the current algorithms adopted in the Sentinel-3 products, this paper describes 

an improved algorithm for the retrieval of the wet tropospheric correction from MWR measurements 

over open ocean, better tuned for Sentinel-3. 

Originally designed for EnviSat mission, S3 products provide two different MWR-derived WTC, 

retrieved from 3- and 5-input neural network algorithms (3I and 5I, respectively), where the second 

should be an improved version of the first one. Since the MWR on board Sentinel-3 (and other ESA 

missions) does not possess a third band near 18 GHz to account for the surface contribution in the 

MWR measurements (as is the case of the reference missions), these algorithms with additional inputs 

appeared to overcome this instrumental limitation. The main point of these algorithms is the use of 

parameters able to include the contribution of the sea surface (emissivity and temperature) in the 

MWR measurements, such as the altimeter σ0 (describing the changes in the sea surface emissivity 

due to wind-induced sea surface roughness) and sea surface temperature. Moreover, a fifth input is 

also used, describing the atmospheric temperature vertical decrease (γ800). 

In the scope of the research described in this paper, various neural network algorithms have been 

tested with the same architecture (a single hidden layer of eight neurons) and different combinations 

of input parameters. These new WPD retrieval algorithms have been tuned specifically for the 

Sentinel-3 mission, by adopting a suitable learning for this mission. Additionally, in order to better 

account for the contribution of the surface in the TB measurements, while the algorithms adopted in 

the S3 products assume seasonal and climatological tables for the additional inputs, parameters 

interpolated from ERA5 are used here, attempting to include some small space and time scales of 

these geophysical parameters (as far as the atmospheric model allows). 

A comparison with independent WPD from scanning imaging microwave radiometers shows that 

the best configuration is a neural network with 4 inputs: TB at 23.8 and 36.5 GHz, σ0 and SST 

interpolated from ERA5 (UP4S0). It has been shown that once the small-time scales of the SST are 

included, the fifth input γ800 adopted by 5I becomes redundant and unnecessary. The same 

comparison shows that the global RMS of the WPD differences between SIMWR and the proposed 

algorithm is lower than 1 cm. Globally, the use of this algorithm instead of those adopted in the S3 

products can reduce the RMS of the WPD differences between S3 MWR and SIMWR by about 1 mm, 

while reaching almost 1 cm over some regions. Results indicate that the two MWR-derived WTC 

provided in the S3 products (3I and 5I) are not significantly different, suggesting that a proper 

learning was not used and these algorithms were simply inherited from EnviSat. 

These results are more pronounced for distances from coast between 30 and 250 km, where the 

improvement of the UP algorithm over those adopted in Sentinel-3 products in RMS is globally 

almost 3 mm. For the same range of distances from coast, 5I is not better than 3I. This only happens 

for distances from coast larger than 250 km, where 5I is slightly better than 3I (a global effect less than 

0.5 mm in the RMS). 

The inclusion of the two components of the wind speed from ERA5 instead of σ0 has been tested, 

however a significant global impact was not achieved. 
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The performance of the WTC algorithm here described against those adopted in the Sentinel-3 

data records shows a substantial improvement in the quality of the WTC. Therefore, this paper 

proposes the use of a new WTC retrieval algorithm, originally designed for Sentinel-3 and providing 

improved wet tropospheric corrections for this mission, as the UP4S0 here described. These improved 

corrections will allow the estimation of more accurate sea surface heights from the SRAL instrument 

aboard Sentinel-3, in particular for distances from coast shorter than 150 km. This shall also contribute 

to the estimation of improved WTC such as the GNSS-derived Path Delay Plus (GPD+) WTC 

(Fernandes et al., 2016, 2018; Lázaro et al., 2020) which extend the validity of this crucial range 

correction to all surface types. 
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5. Conclusions 

Earth observation and monitoring, particularly over the oceans and water bodies, is increasingly 

important and satellite radar altimetry is a robust technique with a wide range of applications that 

can help to understand Earth’s dynamics processes. The determination of the sea level from this 

technique depends directly on the ability to compute accurately tropospheric path delays, becoming 

the corrections of these effects crucial to get accurate water surface height measurements. 

This thesis addresses the tropospheric corrections of the altimeter observations, aiming at 

improving their retrievals, with particular focus over coastal regions and inland waters. Any 

improvement in the estimation of these corrections, directly translates into an improvement in the 

sea level determination, provided that all required terms are properly considered. 

Apart from some preventable wrong procedures, the state-of-the-art estimation of the DTC over 

coastal and inland waters is easily performed with centimetric accuracy. Results show that systematic 

errors related with the DTC height dependence still exist in some altimetry products, however, once 

computed at the correct water level, adopting appropriate procedures, the DTC has errors below 1 

cm. 

On the contrary, the estimation of the WTC over coastal and continental waters is more 

challenging and, for this reason, more attention has been dedicated to this correction. Thus, the focus 

of this thesis is the WTC. 

The GNSS-derived WTC proves to be a useful independent source to monitor the stability of the 

microwave radiometers aboard the altimeter missions and to inspect the land effects on MWR 

observations, determining the distance from coast at which this contamination occurs. This distance 

ranges from 10 to 30 km for the analysed altimetric missions, depending on their footprint sizes and 

MWR retrieval algorithms. This study also shows the ability of the GNSS-derived path delay plus 

algorithm to remove this land contamination and to improve the WTC retrieval. 

The global assessment of the impact of ERA5 in the WTC computation indicates that the global 

RMS of the differences between MWR and ERA5 is 1.2 cm and the effect of using 1h intervals instead 

of 6h intervals is small. Hourly intervals have a very small impact on the WTC from ERA5, being a 

temporal resolution of 3h high enough to ensure the same level of accuracy of 1 h. This study also 

shows that the latest ECMWF reanalysis, like its predecessors, cannot map the WTC small space and 

time scales. 

Concerning the first main objective of this study, the modelling of the WTC altitude dependence, 

aiming at developing improved expressions, revealed to be a very difficult task, due to the high WTC 

vertical variation. The time evolution of the modelled coefficients shows regions where they are 

highly variable. A modelling dependent on geographic location and period of the year has been 
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developed. Results show that the most significant error decrease with respect to the adoption of a 

single coefficient occurs when only spatially dependent coefficients are used. Independent 

comparisons show that the developed modelling is a significant improvement, leading to a decrease 

in the error larger than 1 cm. 

Regarding the second main objective of this thesis, the MWR-derived WTC present in Sentinel-3 

products suggests that improvements are required. In the sequel, an enhanced WTC retrieval 

algorithm for open-ocean for this mission, considering a suitable learning and a better accounting for 

the contribution of the surface to the WTC retrieval was developed. Results show that the current 

algorithms do not use the best combination of inputs, using a fifth unnecessary parameter. The 

developed algorithm proved to be a significant enhancement over the current algorithms (firstly 

designed for a former mission), leading to a decrease in the errors by about 1 mm globally, while this 

decrease can reach almost 1 cm over some regions. These results are more pronounced for distances 

from coast between 30 and 250 km, where the improvement of the proposed algorithm over those 

adopted in Sentinel-3 products is globally almost 3 mm. 

In the future work, various topics of research will be subject of study. On one hand, the coastal 

zones are of increasing interest, due to the sea level rise and, on the other hand, these zones are more 

challenging for the WTC retrieval. Concerning the second objective relative to the open ocean, it is 

expected to improve the WTC retrieval from MWR over coastal regions (ocean/land transition), by 

means of a proper handling of the contribution of different surfaces in the brightness temperature 

measurements and the land contamination in the corresponding WTC retrievals. This will be 

performed by exploring different methodologies and the steps before the WTC retrieval (the antenna 

pattern correction). Since the atmospheric attenuation in the returned signal is derived also from the 

brightness temperatures, this correction also can be of interest in future work. New instruments in 

the recent missions, such as the high frequencies in the MWR on board Sentinel-6, as well as the 

collocated GNSS-Radio Occultation (GNSS-RO) instrument, with highly accurate temperature and 

humidity information, combined with each other, can also be a topic for the future work. Other topics 

of interest, such as the effect of the global warming in the atmospheric humidity, and consequently 

in the WTC and its retrieval will also be of interest, aiming at better modelling the effect of the 

troposphere in satellite altimetry. 

The work performed in the scope of this thesis contributes to the retrieval of precise water surface 

heights from satellite altimetry, by means of better tropospheric corrections estimations. Thus, the 

contribution of this space technique to the climate crisis is more and more reliable. A better accuracy 

will foster a proper use and management of the water resources, as well as a better monitoring of the 

climate changes and their impacts. 
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